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ABSTRACT

Filament winding of fiber-reinforced composites
requires precise control of the filament band path on the
mandrel surface onto which it is wound. In helical fila-
ment winding, a basic path is selected for traversing the
mandrel once. This path is then shifted an appropriate
number of times in order to obtain a closed or near-
closed filament layer. The current r corrects a flaw
in previous presentations [1, 2, 3]po an axisymmetric
closure algorithm, Closure algorithms and examples of
their implementation are also presented for smooth and
polygonal non-axisymmetric parts of constant cross-
section (“cylinders™). These algorithms can be used to
wind non-axisymmetric cylindrical parts on standard
two-degree-of-freedom winding machines.

KEY WORDS: Filament Winding, Automa-
tion, Software

1.0 INTRODUCTION

During helical filament winding, filament is
typically wound onto the surface of a rotating
mandrel by a filament delivery point which

1. We gratefully acknowledge the generous support of
ABB TRAFO-BB GmbH, Brilon, Germany, in per-
forming this work.

moves laterally back and forth along the
length of the mandrel. Unlike axisymmetric
parts, non-axisymmetric filament-wound parts
have received relatively little attention in the
literature. Several papers describe CAD/CAM
systems for the determination of control wind-
ing data for non-axisymmetric parts [4, 5, 6, 7,
8], but give little detail on the mathematics of
delivery point motion or surface coverage.
Allard et al. [9], in a treatment of elliptical
shapes, also do not present the mathematics
underlying non-axisymmetric winding, stating
that the situation is complex and is not gener-
ally amenable to closed-form analytical solu-

tion.

In order to helically wind complex part geom-
etries, two basic tasks must be carried out.
First, the desired path of the filament band on
the surface of the mandrel must be specified.
Second, a mathematical description of the
coordinated motions of the machine axes
needed to achieve the desired path must be
given, i.e., the “control data” must be deter-
mined. The first task includes single-circuit
specification and surface coverage. Single-cir-
cuit specification gives the filament path to be
followed for a single traversal of the mandrel.
Surface coverage involves ensuring that suc-
cessive circuits are shifted appropriately with
respect to one another about the mandrel cir-
cumference so that the final winding just cov-
ers the mandrel surface, or has an acceptable
degree of gapping or overlapping between
adjacent circuits.

Using a “geometric approach,” Mazumdar and
Hoa [10, 11] present partial solutions to the
above-mentioned problems of path specifica-
tion and axis coordination for non-axisymmet-
ric cylindrical (i.e., constant-cross-section)
mandrels. In particular, they solve the axis-
coordination problem for a constant-winding-
angle path for a half-circuit for both smooth
and polygonal mandrel shapes. They do not,
however, address the surface-coverage prob-
lem. In addition, for the flat mandrel ends
occurring in the case of a cylindrical mandrel,
the necessity for the filament to turn around in
the end regions requires a path with non-con-
ctant windine ansle Tn thic naner nrevinne



work is extended to include arbitrary path
specification and surface coverage for both
smooth and polygonal non-axisymmetric

shapes.

2.0 PROBLEM
FORMULATION AND
SOLUTION

2.1 Smooth Shapes

2.1.1 Geémehy

The following treatment summarizes that
given by Mazumdar and Hoa [10]. Fig. 1
shows a mandrel cross-section with a smooth
(i.e., differentiable) contour. The y-axis is
inscribed on the mandrel and makes an angle
8 with the fixed axis Y as the mandrel rotates
counterclockwise about its longitudinal axis
of rotation A. The fiber CD originates at the
delivery point D and is tangent to the mandrel
at the point C, the contact or winding point. Its
length I perpendicular to axis A varies
depending on the point of contact. The vari-
able d designates the distance of the delivery
point perpendicular to axis A, and A represents
its (constant) angle of elevation from the Y-
axis. The angle between segments CD and AD
is oL .

The mandrel’s cross-sectional profile is speci-
fied as . ‘

r = F(¢) (EQD
where r is the radius at an angle ¢ measured
from the inscribed axis y. The angle v is
defined as that between the normal to the man-
drel profile at C and the extension of the

radius there.

The following relationships result [10]:

dr
v = atan2 (—d—¢, r) (EQ2)
. rcosv
sino = 7 (EQ3)

| = dcosot —rsinv (EQ4)

0==--a-0¢-—V+A EQS)

o a

'Given a value for ¢, which uniquely specifies

a point on the mandrel perimeter, Equations
(1)-(5) may be solved successively to obtain
values forr, v, o, /, and 6, respectively.

2.1.2 Equation of Motion

From Fig. 2, the tangent of the instantaneous
winding angle, 65 can be written as both a
ratio of velocities and a ratio of distances:

(EQ 6)

where v, and v, are the longitudinal and lateral
velocities of the winding point C with respect
to the surface of the mandrel, and X and x are
the longitudinal positions of the delivery point
D and winding point C, respectively. From
(6), we obtain the winding equation of motion
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FIGURE 1. Mandrel and fiber position at mandrel
rotation angle 0
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. For complex shapes, it is computationally

inconvenient to integrate (7) in the time
domain. It is preferable to multiply through by
the differential d, noting that the expression v
dt is the differential arc length, ds, moved lat-
erally along the perimeter of the mandrel in
time dt. Thus, ,

dr
dé

where the last expression is the differential arc
length in polar coordinates. The negative sign
arises from the fact that ds and d¢ have oppo-
site signs.

2
ds=vdt = (- 2+ (5 )d¢ EQY)

Equation (7) can now be rewritten

dx _X-x
T ®Q9
or, alternatively,
 d&x _ -G©) _
Z - T (x- 10
26 %) (X-x) (EQ10)
where
_ |2, ,dr 2
G(¢)= [r"+ (d_) EQ1)

The integration of (10) may now be performed
numerically with ¢ as the independent vari-
able. The 6-value corresponding to a given ¢-
value may be found from Equations (1)-(5).

2.1.3 Winding-Angle Control

A solution for the delivery point X(¢) is
sought which achieves a desired winding-
angle trajectory. In the most general case, the
winding angle varies over the length of the
mandrel, especially during turnaround in the
mandrel end-regions. Both sides of the equa-
tion of motion (9) are equal to the tangent of
the winding angle at any given point on the
mandrel. Thus,

dx = (tanb) ds (EQ12)

X = x+ltang, (EQ13)

The winding-angle variation can be conve-
niently expressed as a function of the wind-
ing-point perimeter position s. A numerical
solution for X(¢) is derived in iterative form

from (12) and (13) as follows. The integral of
(12) between ¢;_jand ¢; is estimated assuming
a small ¢-increment:

where

) ¢1.
Asi_y,i= I ds
L
approximates the arc length between the man-
drel perimeter points corresponding to ¢;_1 and
¢;. Equation (13) is then written using sub-
scripts to denote evaluation at ¢;

X; = x;+4;tanf (5) (EQ15)

The length As;_,; may be approximated
either by estimating the arc-length integral

n

1
As;_1,i=—5 (9;=¢;,_) (G;+G;_ ) EQ16)
or by finding the straight-line distance
between the mandrel perimeter points, as is
done in [10]:

As;_y,i= «/()’i")’i- D2+ (-2 ) QI

y; = ricosd; z; = r;sing;

In cases where the mandrel profile r(¢) is
given as a set of discrete pairs (r;, ¢;), rather
than as a differentiable function, the second
method must be used, since G involves the
first derivative of r(¢). The first method per-
mits an arbitrary degree of accuracy, whereas
the second method is computationally more
efficient.

The iteration given by (14) and (15) provides
a set of discrete pairs (X;, ¢;) giving the rela-
tionship between the angle ¢ and the filament
support position X in order to achieve a
desired, potentially varying, winding angle.
The values xj and ¢y must be specified to ini-
tialize the iteration. ?_f the winding angle 6yis
made constant, (14) and (15) are identical to
the iteration presented in [10]. This section
has modified these equations to provide for a
non-constant winding angle, and has shown
the relationship between these discrete equa-
tions and the continuous differential winding

equation.



2.1.4 Surface-Coverage Algorithm

A pass is defined as a single back-and-forth
traversal of the delivery point along the man-
drel length, from the “start” end of the man-
drel to the “far” end and back (see Fig. 3). A
helically wound filament layer is laid down by
executing a sufficient number of passes to
cover the mandrel. A single layer defined in
this way involves a double thickness of fila-
ment, with one set of bands laid down in each
direction. The winding-angle control algo-
rithm presented in [10] gives the filament sup-
port trajectory for a single pass, but does not
address the problem of surface coverage.
There are three steps in ensuring surface cov-
erage. First, given the mandrel profile, desired
winding angle, and filament band width, the
number of passes required for closure must be
determined. Second, the positions of the band
centers about the mandrel profile at the start
and far ends must be determined. Third, the
delivery point pauses needed at the mandrel
endpoints in order to properly space the bands
must be determined.

- FIGURE 3. Mandrel-End Arrival and Departure
Angles A

. The total mandrel
perimeter P is given by
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where G(¢) is defined in (11).

Given winding angle 8, and filament band
width B, the band width 1n the direction of the

mandrel perimeter is

B:__g__

p tanef EQ19

The number of bands required for surface cov-

~erage is given by the perimeter divided by the

band width in the direction of the perimeter

f_ 3 Ptanef

B, B

(EQ20)

m =

The number of bands must be an integer for
proper closure, so the value found in (20)
should be rounded to the nearest integer and
then re-inserted into (20) to find an adjusted

winding angle 6.
Band-Center Positions ¢.;. The initial band-

center position ¢y on the mandrel perimeter
at the start end is arbitrary. Once it is speci-
fied, the other band-center positions §; should
be spaced at equal distances B, along the
mandrel perimeter. This is achieved for the
start end by calculating the following integral

¢l:l
ixB, = j G(6)dd
b0 v

EQ21)

fori=0, 1, ..., m-1, where the unknown is the
upper limit of integration. For simplicity, the
same set of band-center positions may be used
for the far end.

Pause Values ¢, For a given pass, the fila-

ment arrives at the start end at an angular posi-
tion ¢, and departs at position ¢gq (see Fig.
3). Similarly, the band arrives and departs at
the far end at angular positions ¢, and ¢¢g,
respectively. The difference between the
arrival and departure angles at a given end is
the pause value for that end for the current
pass. Pause values must be chosen so that the
departure angles correspond to the band-cen-
ter positions determined in (21). Because the
pause values vary from pass to pass in the
general case, a schedule of pause values for
each pass and each end must be calculated.
The schedule of pause values may be deter-
mined as follows:

1. Identify the arrival angle at the start end as
s, For the initial pass, ¢sa = ¢co. The lon-
gitudinal positions of the winding point at
the start and far ends are x; and x, respec-
tively.

2. Pause at the start end until the band contact
point corresponds to the first available of
the ¢; found in (21). The contact angle at
the end of the pause is the start-end depar-



ture angle ¢4. The start-end pause value is
¢sp = g, - Ogg, i.€., the difference between
the arrival SS departure angles.

3. Solve for the arrival angle at the far end of
the mandrel, ¢g,, by performing the itera-
tion (14)-(15) wuhxo = Xg, §g = ¢gg, until x;
is equal to xf

4. As at the start end, pause until the band
contact point corresponds to the first avail-
able of the ¢;. The resulting far-end depar-
ture angle is ¢¢4. The far-end pause value is
b = ra - 9gg, i.., the difference between
the arrival and depanure angles.

5. Solve for the start-end arrival angle for the
pext pass, ¢¢,, by performing the iteration
(14)-(15) with xp = x5, ¢ = bgg, until x; is
equal to x;. '

6. Perform steps 1 through 5 a total of m
times, using the angle ¢g, found in step 5
each time as the new start-end arrival angle
in step 1. Once all m positions have been
filled at both ends, the layer is complete.

Circular Cylinders

Flawed surface-coverage algorithms for circu-
lar cylinders were presented in [1], [2], and
[3]. The correct algorithm is presented here. In
the case of a circular mandrel profile,
G(¢) = r, a constant. The rotational symme-
try of the circle permits a single pause value,
since the shift along the perimeter is the same
for each pass, irrespective of the starting-point
on the mandrel perimeter. The number of
bands is calculated as in (20), with the perime-
ter P given by 2nr. The band centers are at the
evenly spaced positions BC; = —, i=0, 1, .

m-1, using units of mandrel tums rather than
radians. The change in ¢ (i.e., the shift of the
filament contact point along the mandrel
perimeter) from one pass to the next without
pause at any given cross-section is now con-

stant:

1tDtan9f €Q22)

"4
where D is the diameter of the circle. In the
absence of pauses at the mandrel endpoints,
the fractional part of ny is the shift at a given
cross-section, in fractions of a turn, between

~band center positions in successive passes.
Thus, for example, if ny = 2.25, two succes-

sive band centers at a gjven cross- -section will
he cenarated hv 0.25 = = turn. or H) deerees

The surface-coverage algorithm must now
choose a pause value n,, such that the total
number of mandrel tums per pass
n = ny+n,, which is also the total shift in
turns between bands at a given cross-section,
results in all m bands being laid down at the
distinct positions BC;. The algorithm pre-
sented in [2] and [3] puts the following condi-
tion on n:

kL
M=_"T EQ23)

n

where k is some positive integer, and the pat-
tern number, M, must be equal to a positive
integer. The pattern number M is the number
of passes necessary to arrive at a band center
adjacent to the initial one. However, satisfac-
tion of (23), although necessary, is not a suffi-
cient condition to produce a valid solution for
n. This can be seen by considering a simple
example. If m =24 and M = 3, the solution

1
8-
n=13

2
satisfies (23) with k = 4, since

_ a1
Mn—3n—4a

indicating that the band-center position after
three passes is adjacent to the initial position.
However, the band-center positions after the
first and second passes are

2
8- <
3 and 163,
24 24

r?specnvely, and are not integer multiples of

Incorrect solutions of this type result in
égppmg or overlapping between groups of
bands.

The correct condition to place on n is that its
fractmna] part, ng, be equal to an integer multi-
ple of -

=1
m

ng EQ24)

where jis an integer, 0 <j < m. In order for all
the band-center positions to be filled, j and m
must be relatively prime, i.e., j and m must
have no common factor greater than 1.

In summary, solutions for the circular case are
found as follows:

1. Find the per-pass band-center position shift



EQ25

2. Find the set of integer multiples {j .} of 1
which produce the fractional parts, ng 0
valid solutions for the number of mandrel
turns per pass, n. The j; consist of all j,
0<j <m, such that j and m are relatively
prime, i.e., they have no common factor

greater than 1.

3. Find valid solutions n2n, having allow-
able fractional parts

U}

m

EQ26)

{nf} =
The pause value corresponding to a given
solution for nis ny, = n—ny.

4. If desired, find the pattern number M for a
particular multiple j; from

(kx m)+1
Js

where the integer k is incremented starting
with 1 until M equals an integer. Alterna-
tively, the band-center position sequence
can be generated and inspected to deter-
mine M.

M = EQ27)

2.1.5 Surface-Coverage Example

With a filament band width B = 42 mm and a
desired winding angle 6, = 30°, the integer
number of bands m = 13 is found from (19)
and (20) after calculating the ellipse perimeter
P = 1065.7 mm from (18). Re-insertion of m
into (20) leads to an adjusted winding angle
Bf = 30.59°.

The band-center positions ¢; in degrees are
now found from (21) to be {0.0, 17.7, 36.7,
63.5,99.2, 131.2, 153.3, 170.9, 189.0, 206.7,
228.8, 260.8, 296.5, 323.3, 342.3}. For sim-
plicity, these band-center positions are used at
both ends of the mandrel. In order to begin the
winding at band-center position ¢, the deliv-
ery point is positioned at an elevation above-
the axis of rotation equal to the ellipse major
axis a. The distance d of the delivery point
from the axis of rotation,, must be greater than
the semi-major axis a in order to avoid colli-
sions. The distance d = a+ 130 = 350 mm
is chosen, giving an elevation angle

A= asin(%) = 38.9°

FIGURE 4. Band-Center Trajectory Specification

To illustrate the smooth-shape closure algo-
rithm, we choose an ellipsoidal mandrel with
length L = 1000 mum and ellipse semi-major
axes a = 220 mm and b = 110 mm. The
elliptic mandrel cross-section is given in Car-
tesian coordinates by

2
b4
b
As in [10], the perimeter is divided into 1440
linear segments according to (17), using a

0.25-degree ¢-interval. Substituting
y = rcos¢ and z = rsin¢ into (28) yields

ab

Jbzcoszq) +a’ sinzq)

2
Y+ =1 EQ28)
a

r=F() = (EQ29)

corresponding to (1). Differentiation of (29)
yields

b (b* - a’) sin2
dr _ ab(b"—a”)sin2¢ EQ30

Fr 372
49 2 (bzcoszdu + a2sin2¢)

g Mandrel Length, x

¥ Distance Alon

b o
+

Distance Along Mandrel Perimeter, s

A suitable filament-band trajectory x(s) must
now be specified. Fig. 4 shows one such band
trajectory. Two end-region polynomial sec-
tions are linked by a constant-winding-angle
section in the middle region. The winding
angle thus starts at 0°, ramps up to the desired
value 6y, and ramps down to 0° at the other
end, allowing for the necessary reversal of the
filament support direction at the mandrel end-



points. The desired size of the end regions is
specified by the constant h. The inset w at
either end of the mandrel is equal to half the
band width. If the band is to remain on the
mandrel, the contact point ¢ of the band center
may not exceed the limits w < ¢ < L —w. The
order and coefficients of the polynomial are
chosen to ensure continuity of the third deriv-
ative of x with respect to s at the junctures of
the different portions of the curve, which in
turn ensures a smoothly varying delivery point
velocity. In practice, the filament-band trajec-
tory ‘would need to additionally take into
account the conditions of frictional equilib-
rium of the band in the non-geodesically
wound mandrel end regions in order to pre-
vent slippage from occuring [12].

Using this band-center trajectory specifica-
tion, we can write the tangent of the actual
winding angle as a function of the perimeter

distance s:

f; = tan8 (s) §;_1Ss5<s;

3
= (Zh—:) (65% - 15s;s+ lOsf)

Sy

t, = tan@,,

1 -

2hs"2
= ( d )(6s'2-—15s1s'+10s1s')
51

L

where 6¢; is the desired, or nominal, winding

angle, a{(S) is the actual winding angle for a
given vdlue of s, and
so =0 5 = 2h
0 = =<
1 tanf
s _L-2w s _L+2(h-w)
2 = 35 Tang
tanefd tanefd

The initial perimeter position for a given pass
is taken as s = 0.

The delivery point trajectories and pause val-
ues are now calculated by using the function
tanB.(s) in (14) and (15) with an end-region
size h = 80 mm. Table 1 gives a schedule of
@-values for the current examp]g: in units of
mandrel “turns” (# tums = —03). “Travel
turns” refers to the number of rotations

number, BC for the band-center position occu-
pied on a given half-pass. Unlike the circular
case, in which the pause and travel values
remain constant, the pause value varies
between 0.0 and 0.2397, the number of travel
turns varies between 1.6227 and 1.9071, and
the total number of turns per pass varies
between 3.5373 and 3.8171.

TABLE 1. Schedule of Turn Values for Ellipse witha
=220 mm,e =0.5

P Pause BC Travel
0.0000 0 1.8165
0.0305 6 1.6348
0.0125 12 1.6504
0.0093 3 1.8634
0.0122 9 19071
0.2397 14 1.6646
0.0157 5 1.6249
0.0098 11 1.8111
0.0101 2 1.9026
0.0294 8 1.8800
100.1237 13 1.6227
11 0.0107 4 1.7255
12 0.0094 10 1.8897
130.0168 1 1.9022
140.0786 7 1.7239

Far-to-Start
Pause BC Travel
0.0093 3 1.8634
0.0122 1.9071
0.0632 1.8165
0.0305 1.6348
0.0125 1.6504
0.0101 1.9026
0.0294 8 1.8800
0.0518 1.6646
0.0157 5 1.6249
0.0098 1.8111
0.0168 1 1.9022
0.0786 1.7239
0.0206 13 1.6227
0.0107 4 1.7255
0.0094 10 1.8897

Jotal
3.6892

3.5847
3.5427
3.5380 |
3.5823
3.8171
3.5500
3.5373
3.5533
3.7303
3.6653
3.5386
3.5424
3.6551
3.7016
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FIGURE 5. Comparison of Delivery Point
Trajectories for Three Different Half-Passes

X x102 mm

1.20

1.00

0.80

0.60

0.40 L

0.20

000

6, degrees 500.00



Figure 5 shows the delivery point-trajectories-

for the first three start-to-far-end half-passes
as a function of the mandrel rotation 6 in
degrees. The initial 8-value is referenced to 0
degrees in each case for purposes of compari-
son. As can be seen, although the winding
point trajectory on the mandrel surface
remains the same, the delivery point trajectory
depends strongly upon the initial contact point
for on the mandrel perimeter for each pass.

2.2 Polygonal Shapes

2.2.1 Geometry

Figure 6 [11] shows a pentagonal mandrel

cross-section in order to illustrate the polygo-

nal case. The following steps define the wind-

ing geometry:

1. The cross-section is divided into triangles

" by joining the vertices to the axis of rota-
tion O (see Fig. 6).

2. The parameters ry, Sg, O, and B shown in
Fig. 6 are specified or calcu’iated. For
example, the r; and o may be specified to
define the polygon, and the s and B may
then be calculated from the law of cosines.

3. The distance, d, of the delivery point D
from the axis of rotation O, and the angle,
A, of elevation of D from the fixed horizon-
tal axis X are specified.

FIGURE 6. Polygonal Mandrel Geometry

- Delivery Point

4. For each side s;, the fiber length f; from
vertex Ay to the delivery point D at the
instant when the fiber just covers side si
(segment ApAz,1) is calculated. At these
instants, triangle OA;D has the included
angle ZOA,D = B,, as shown in Fig. 7

for side 1. The including sides AzO and
A;D have lengths ry and fi, respectively.
By application of the law of cosines, fp may
be written as

fi = rkcosBk+ (rkcosBk)2+d2—r:(EQ3l)

The length Ay,1D is analogous to the fiber
length I defined for smooth shapes, and is

given by
L=ApD =fi- 5 (EQ32)

5. For the same situation considered in step 4
above, the angles v, included by sides OAy
and OD of the triangles OA;D are found.
These sides have lengths ry and d, respec-
tively, so that application of the law of
cosines yelds

rz+d2—fi
2rkd

6. For each side sy, find 6y, the position of the
inscribed axis y with respect to the fixed
axis Y for which the fiber just covers si.
Fig. 7 [11] shows this situation for side 1,
with the inscribed, rotating axis y coincid-
ing with ry. The angles 6y are found as fol-
lows:

cosy, = (EQ33)

8, =7, +A EQ34)
k-1

B, = Y, + > o+A (EQ35)
j=1

for k = 2 to n, where n is the number of
sides of the polygon.

FIGURE 7. Position at Which Fiber Just Covers
Side 1.




2.22 Eqaation of Motion

For polygonal shapes, knowledge of X(r) at
certain discrete times determines the laydown
pattern, since filament is only laid down at
those instants when the filament band just
covers one of the sides of the polygon.

The longitudinal position of the laydown point
x is found for an arbitrary filament support tra-
jectory X as follows

‘l

(EQ 36)

where i is the iteration step,i=1,2,...and i' =
(kg + i - 1) mod n, where n is the number of
polygon sides and ky is the index of the initial
side on which filament is laid. The ‘index i'
wraps around each time another full revolu-
tion of the mandrel is performed, i.e., each
time i equals a multiple of n. The X; are the
delivery point positions at those mandrel posi-
tions 6, for which the fiber just covers sides
s,. Equation (36) is directly analogous to (9),
of which it is simply a discretized version,
with the side length s, corresponding to the
differential arc length ds.

2.2.3 Winding-Angle Control

Winding-angle control for polygonal shapes is
analogous to that for smooth shapes. This is
not surprising, because (14) and (15) are
based on a polygonal approximation of a
smooth surface. These equations also apply to
the polygonal case

with two changes:
1. The arc length approximation As;_, ; has
been replaced by the side length s;..

2. The subscripts imply evaluation at the 8.
for which the fiber just covers sides s;.,
rather than at the ¢;, which are not defined

for the polygonal case.

Asin (36), i' = (kg + i - 1) mod n, where n is
the number of polygon sides and k; is the ini-
tial side on which filament is laid. The result is
a set of discrete pairs (X;, 8..) giving the rela-
tionship between the mandrel rotation angle 6

T
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and the filament support position X in‘order to
achieve a desired winding angle.

2.2.4 Surface-Coverage Algorithm

For polygonal shapes, as for smooth shapes,
there are three basic steps for achieving clo-
sure. The number of bands and the band-cen-
ter positions are calculated in a similar way. In
addition to calculating pause values, the final
step consists of adjusting the initial and final
winding angles in each half-pass. Each of
these steps is described below.

Number of Bands m. The number of bands 1s

calculated as for smooth shapes, except that
the perimeter is

14

P = (EQ39)

n
Zs,.
i=1

i.e., the sum of the side lengths, where n is the
number of sides.

nd-Center Positions BC;. The band-center
positions measured along the perimeter are
BC. = ixXP

;T — (EQ40)
m
fori=0,1,...,m-1.

FIGURE 8. Example of Endpoint Winding-Angle
Adjustments for Polygonal Shapes

BC, BC, BG, BG, etc...

Mandrel Perimeter ——————]
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Adjustments. For smooth shapes, band cen-
ters can be laid down at any desired position
along the perimeter of the mandrel end, since
the band contact point shifts continuously. For
polygonal shapes, band centers can only be
laid down at the discrete points corresponding
to the vertices of the polygon. This is illus-
trated in Figure 8, where a four-sided polygo-
nal mandrel is unfolded to lie flat, and the
vertices A, and their projections along the
mandrel length are indicated. A given band
segment starts at vertex Ay and ends at vertex
Ap.1, with a constant winding angle in
between. As a result, a single vertex at the
mandrel end must generally be the departure
point for multiple bands. In order to align the
bands for closure, the band segments originat-
ing from a given vertex are laid down in a fan
pattern, having varying winding angles.

The following steps are performed to achieve
closure:

1. For each vertex Ay, find the index my, of the
first band center position originating from
that vertex. This is the first band center
whose distance along the perimeter is
greater than or equal to the distance of the
vertex along the perimeter. The position of
the initial band center BCy is arbitrarily
chosen to correspond to the vertex Aj, so
that m; = 0. To find the remaining my, for
each vertex Ay, k = 2, ..., n, increment i
starting with i = m, _, + 1 until

k-1

BCiZPkE Zsj
j=1

where p, is the perimeter position of the K
vertex measured with respect to vertex Aj.
Set my equal to the resulting value of i.

2. For each of the bands originating at the K
vertex, find the longitudinal position x of
the band at the k+I%' vertex. Do this for
each of the n vertices. As shown in Fig. 8,
the x;;, are found by extending segments
from the band-center positions on side s
with desired winding angle 6 until they
intersect the border with the next side, sg,1-
Once the bands originating at vertex k have
reached these points, they are correctly
positioned to continue with the desired
winding angle. For the K9 vertex, the posi-
tion of the initial band is

X = X+ (P —BC, ) tanb, €Q42)

(EQ4D)

where x, is the initial longitudinal position
at the start end (typically w, half the band

width). The remaining bands are spaced at
intervals of a band width, B, from the initial

Xy = X —B(b-1) (EQ43)

where b = 1, 2, ..., (mp,1 - my), xp is the
longitudinal position at the k+1% vertex of
the b® band originating at the Kb vertex,
and (my4q - my) is the number of bands

originating there.

. Identify the start-end arrival vertex as kg,

Pause at the start end until the first vertex
with empty positions corresponding to the
xyp found in step 2 is reached. This is the
start-end departure vertex k4. The start-end
pause value is Bsp =0, —sgk .

sd sa

. Atvertex kgg, choose the next open x; , t0
~occupy. This may be done in any order at a

given vertex, but sequential order is sim-
plest from a bookkeeping standpoint. For
the start-to-far-end half-pass, the initial lon-
gitudinal position x; is x;, xj is given by the -
chosen Xi b and

c
S, = e+l (;k-l—) EQ44)

. Use (37)-(38) to calculate the x; and X; for

the start-to-far-end half-pass. This results in
a set of (0,,, X;) pairs. As illustrated in Fig-
ure 8, the final side laid down in a given
half-pass will not generally have winding
angle Of. For that (final) if for which the
value for x calculated in (37) is greater than
or equal to x5 the far-end value of x (typi-
cally the mandrel length L minus half the
band width B), calculate X as follows

Xe— X
_ f lj-—l
X'} = xf+ li"(——_‘i' )
S/

Since the side s, will now have been laid
down, this places {he filament at the far-end

arrival vertex kg, = i’ + 1.

(EQ45)

. Pause at the far end until the first vertex

with empty positions corresponding to the
xyp found in step 2 is reached. This is the
far-end departure vertex kgg. The far-end

valueis 8, = 6, -0, .
pause fp kg ke



- Atvertex kgq, choose the next open x; , to
““occupy: Fer the far-to-start-end half-pass,
the initial longitudinal position x is x5 x1 is
givenby L - x; ,,and :

L-x,

fd

(EQ 46)

8. As in step 5, use (37)-(38) to calculate the
x; and X; for the far-to-start-end half-pass.
Precede, however, the second term of each
equation with a negative sign, since (8¢)z,r-

to-start = “(8f )start-to-far For that if for
which x is less than or equal to x;, calculate

X as follows

xif_ l"_xs
EE— (EQ47)

‘} - xs_li’j( -
s

This places the filament at the start-end
arrival vertex for the next pass kg, =i’y + 1.
9. Perform steps 3 through 8 a total of m
times, using the vertex kg, found in step 8
as the new start-end arrival vertex in step 3.
Once all m positions xy;, have been laid
down at both ends, the layer is complete.

2.2.5 Surface-Coverage Example

A four-sided polygon is used to illustrate the
calculations involved in the polygonal case.
The radii r; and internal angles oy, are arbi-
trarily specified as r; _,= 200, 220, 240, 260
mm and o, _, = 100° 80° 60°, 120°. The
side lengths 53 and included angles [3; are then
determined from the law of cosines as
Si_4 = 322,296,251,400 mm and B, _, =
42.3°, 53.0°, 64.0°, 25.7°. Arbitrarily choos-
ing a minimum standoff of 100 mm resultsin a
distance d from the mandrel axis of rotation of
360 mm. The angle of elevation A is set to 0°.

Using (31)-(35) to determine the remaining
parameters, the following table of values can
be constructed, where lengths are given in
mm, angles in degrees.

TABLE 2. Geometric Parameters for Polygonal
Example

Indexr s oo B f I y 8

1 200 322 100 423 482 160 1158 1158
2 220 296 80 530 447 151 978 1978
3 240 251 60 640 394 143 792 2592
4 260 400 120 25.7 576 177 136.1 376.1

The polygonal closure algorithm is now
applied. The perimeter P is found to-be- 1268 -
mm by summing the side lengths. For a
desired winding angle 6, = 30° and band
width B = 39.5 mm, (20)f yields m = 18.53.
Rounding m down to 18, we obtain an
adjusted winding angle 8, = 29.3°. Setting p
=0 at vertex Ay, the banc{-center positions are
at intervals of P/m =70.45 mm, as follows: {0,
70.5, 140.9, 211.4, 281.8, 352.3, 422.7, 493.2,
563.6, 634.1, 704.5, 775.0, 845.5, 915.9,
986.4, 1056.8, 1127.3, 1197.7} mm. The indi-
ces my, corresponding to the first band-center
positions on each of the k sides are mj = 0,
m, = 5, m3=9, and my = 13. The intercepts
Cpp are ¢;y_ 15 = 200, 161, 121, 82, 42 mm,
Ca1— 24 = 169, 129,90, 50 mm, c3; _34 =151,
112,72, 33 mm, ¢4y _ 45 = 217, 178, 138, 99,
59 mm. '

Figure 9 illustrates a partial result of the
polygonal closure algorithm for the current
example, where the mandrel has begun in the
0 = 0° position. All five filament delivery
point trajectories originating at vertex 1 for
the start-to-far-end traversal of the mandrel
are shown. The exact position of the filament
support at mandrel rotation values between
those for which a side is laid down is irrele-
vant. Markers indicate the crucial points
which must be attained in each trajectory.

FIGURE 9. Delivery Point Trajectories Originating
at Vertex 1 for a Four-Sided Polygon Example
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3.0 SUMMARY AND
CONCLUSION

The work described here extends the compu-
tationally efficient “geometric” winding-
angle control algorithms for cylindrical non-
axisymmetric smooth and polygonal mandrel
shapes presented in [10, 11] in two ways.
First, a method for varying, rather than con-
stant, winding-angle control is introduced.
Second, closure algorithms are added to the
winding-angle control algorithms in order to
achieve surface coverage of the wound parts.
The relationship between the discrete, “geo-
metric” approach presented by Mazumdar and
Hoa and the continuous differential equation
of winding was demonstrated. Finally, the
analogy between the smooth- and polygonal-
shape winding algorithms, both of which use
polygonal approximations of the mandrel pro-
file, was elucidated. The method of winding-
angle control and surface coverage presented
here can be straightforwardly implemented on
any two-axis computer-controlled winding-
machine.
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