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Abstract

We describe the initial results in constructing the si-
multaneous localization and mapping system for ex-
ploration of flooded subterranean environments like
mines and caves for an autonomous hovering vehi-
cle which will explore flooded cenotes (sinkholes) in
Mexico. In May 2005, a preliminary data set was
collected in the Zacatén cenote using a drop sonde
equipped with a circular array of 32 pencil beam
sonar transducers. This paper presents the results of
applying an evidence grid and particle filter localiza-
tion system to the Zacatdn data, as well as some sim-
ulations that investigate the effectiveness of different
sonar geometry configurations.

1 Introduction

Underwater vehicle navigation where GPS is not
easily accessible is still dominated by two basic
approaches: direct position measurement with a
surveyed long baseline (LBL) network of acoustic
transponders, and dead-reckoning with a combina-
tion of inertial sensors and doppler velocity sensors.
The first is unsatisfactory because of the effort and
infrastructure involved in deploying and calibrating
the acoustic baseline system, and the second is un-
satisfactory because of the gradual accumulation of
error. Both compromise the autonomy of the under-
water vehicle. For vehicles without access to GPS,
simultaneous localization and mapping (SLAM) pro-
vides a promising alternative.
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Most SLAM strategies depend on the extraction
of features from sensor data, however in the under-
water domain there are not many sensors which are
capable of providing the resolution necessary to re-
solve and recognize features, though there has been
work with using tunnel cross-sections, or slide im-
ages, as features [2]. In the case where there are free
floating artificial features, scanning sonars have been
shown to have high enough resolution to support
feature-based SLAM [12]. Alternatively, in clear wa-
ter with good lighting, vision-based feature detection
and sonar have been combined [11]. However, many
underwater environments are characterized by large
monotonous feature-poor regions, where the most
promising work has been with Synthetic Aperture
Sonar (SAS) to support range-and-bearing SLAM
[6]. Finally, there is the mine-mapping work by [9]
done in unstructured (but not underwater) environ-
ments, using scan matching with a laser range finder
to recover the 2D vehicle pose from which the full
3D map is reconstructed.

DEPTHX is an autonomous hovering vehicle
which will explore flooded cenotes (for a full de-
scription of the DEPTHX project, see [7]). In
the DEPTHX application, the array of pencil-beam
sonars provides a constellation of ranges around the
vehicle, but lacks the resolution and point density of
a laser scanner, which makes scan matching or tradi-
tional corner and edge detection a difficult proposi-
tion. Furthermore, the deeper portions of the cenotes
are completely unexplored and may have unexpected
geometries, which makes it even more difficult to
design feature detectors. For these reasons, a data-
driven approach is appropriate, such as evidence
grids [5].



While 2D evidence grid-based SLAM is well es-
tablished in the indoor mobile robot domain, it has
been found to have limited applicability in truly 3D
environments — largely because the 2D map simpli-
fication is only suitable in “two and a half” dimen-
sional environments. The difficulty in generalizing
the evidence grid approach to full 3D centers on the
multiplication of the computational cost of access-
ing, modifying, and storing the map due to the third
dimension. This computational cost figures highly in
the choice of model for the sonar beams — simpler is
cheaper. Of course, the sonar beam model need not
be the same when evidence is inserted into the map
as when a query is made, and in fact [5] found that
using different insertion and query beam patterns can
improve performance.

In this paper, we present a 3D evidence grid rep-
resentation, in which space is divided into a grid of
cubic volume elements, or voxels, which contain the
occupancy evidence gathered from sensors. We de-
scribe an implementation that supports the use of
3D evidence grids in a large (cubic kilometer) envi-
ronment, fast insertion of sonar information into the
map, as well as very fast querying.

Once a map of Zacatdn is created, it is necessary
to demonstrate that this map can be combined with
measurements from the sonar array to provide an ac-
curate estimate of vehicle position. Due to the uncer-
tainties in sonar measurements and vehicle motion
models, we choose to address the localization prob-
lem using a Bayesian framework.

Particle filtering, also known as Bayesian boot-
strap, condensation, and the Sequential Monte-
Carlo method, provides a proven implementation of
Bayesian filtering for systems whose belief state,
process noise, and sensor noise are modelled by arbi-
trary probability density functions (PDFs). One com-
mon variant is the Sampling/Importance Resampling
(SIR) filter of [3], which will be used here.

In Section 2 we describe the May 2005 field expe-
dition to Zacaton, as well as some of its salient fea-
tures. Next, in Section 3 we turn to a brief description
of 3D evidence grids and our implementation. Sim-
ilarly, Section 4 provides a description of our imple-
mentation of an SIR particle filter for localization.
The next two sections describe the tests of the lo-

calization system on Zacatdn sonar data (Section 5),
and the performance of various simulated sonar con-
figurations (Section 6). Finally, we close with future
work and conclusions.

2 Exploring Zacatén

The Zacatén cenote (sinkhole) in Tamaulipas, Mex-
ico, is roughly a truncated cone 110m wide, and at
least 300m deep. Prior to the May 2005 DEPTHX
expedition it was unmapped except for wire drops
to establish the depth. Zacatén is the deepest of a
series of hydrothermal cenotes in the region, but it
alone contains floating reed islands, called zacates.
Zacatén also produces microbial mats in the photic
zone and geochemical features which make it an ex-
cellent testing ground for the DEPTHX vehicle.

In order to “get our toes wet” and learn a little
more about Zacatdn, the DEPTHX team built a sonar
test platform, called the DropSonde (see Figure 3).
In addition to a data logging computer, the onboard
sensors include 32 spirally arranged sonars, a Hon-
eywell HG2001AC RLG IMU, and three depth sen-
sors. The sonars were fired at about 2Hz, and have
a 10cm precision. The IMU has about a 1m/s ac-
celerometer drift rate, which precludes its use as a
dead-reckoning navigation system, but only a 0.1 de-
gree/hour gyro drift rate, giving use excellent head-
ing and attitude information. The depth sensors had
individual accuracies of about 10cm, and were recal-
ibrated to zero at the beginning of each drop. Due to
the quality of the IMU and depth sensors, only the z
and y coordinates of the vehicle were unknown. This
situation will hold for the final DEPTHX vehicle, so
our SLAM implementation concentrates on trying to
estimate the vehicle’s = and y position, but in a fully
3D environment.

During a weeklong field expedition in May 2005,
the DEPTHX team dropped the DropSonde progres-
sively down to 200m, the maximum depth rating for
several of the components. The DropSonde was low-
ered on a winch from a stabilized barge, and the lo-
cations of the seven “drops” were recorded with sur-
veying equipment, which together with the data from
the onboard sensors allowed the sonar data to be reg-



Figure 1: A north-facing pointcloud view of the first
200m of Zacatén — basically a vertical cylinder.

istered. By spinning the DropSonde during its slow
ascent and descent, we acquired excellent sonar cov-
erage of the walls. For the first 250m, the cenote
is remarkably smooth and cylindrical, although there
are several shelves (see Figure 1). In order to see
deeper into the cenote, we rotated the DropSonde by
90 degrees so that the sonar ring was oriented ver-
tically, and thus were able to collect datapoints at
a depth of about 280m when the DropSonde was at
200m. These deepest datapoints are sparse and hard
to interpret, but there seems to be a large shelf slop-
ing down from the south-east at 270m. This could be
the first indication of a horizontal tunnel, which is a
common feature in this type of geological formation.

3 Evidence Grids

In principle, a 3D evidence grid is based on the same
set of concepts and Bayesian update equations as the
classic 2D evidence grids which have been so well
described in the literature (see [5] [8]). The gen-
eral idea is that each value in the 3D evidence grid

Figure 2: A downward-facing pointcloud view (north
is up) Zacatén at about 200m depth. The vehicle
model is to scale, and shows the sonar beams.

represents the probability that the corresponding vol-
ume in the real world is occupied. Usually, this
probability is stored as the log likelihood for com-
pactness, numerical stability, and computational ef-
ficiency. For an example voxel map customized for
visualization purposes, see Figure 4.

3D evidence grids also must support the opera-
tions for the insertion and querying of evidence. The
basic operation on the 3D evidence grid is to use
transformation matrices to calculate the coordinates
of a point in space relative to the vehicle’s current
position. However, using the full matrix operations
is too computationally expensive for operations such
as filling in evidence cones or simulating ranges by
tracing lines. Many of these tasks can be efficiently
decomposed into raster operations, which can be per-
formed by a 3D variant of the classic 2D Bresenham
line drawing algorithm. Bresenham 3D is extremely
fast and uses integer arithmetic, so it is well suited
for use with the discrete evidence grid.

3.1 Dual-resolution Maps

Memory usage is one of the major challenges of us-
ing a 3D evidence grid. Using a single byte to rep-
resent the evidence in voxels half a meter on side,
a half-kilometer cube would consume a gigabyte of
memory (10243 bytes). In many environments, and
particularly in our underwater domain, much of the
volume is wasted — either it is unreachable and will



Figure 3:
Zacaton.

The Dropsonde as it is being lowered into

never be explored, or it is very well explored and
completely empty (such as the central water column
in Zacatén, see Figure 2).

In order to address these issues, we have imple-
mented a dual-resolution map data structure. There
are two levels of resolution: coarse (2m) and fine
(0.25m). The coarse map is completely instantiated
as a normal evidence grid, but the fine map is only in-
stantiated in chunks as needed. Each fine chunk (or
submap) represents the same spatial region as a sin-
gle coarse voxel. The sensor information is inserted
into the map using the following method:

e First, the negative evidence of the beam is in-
serted. As long as no submaps have been in-
stantiated, the negative evidence is inserted into
the coarse maps. If a submap has been instan-
tiated, the negative evidence is inserted into the
submap according to the beam model.

e Next, the evidence at the end of the beam is in-
serted. In this case submaps will be created if
they do not already exist, and the evidence is in-
serted into them according to the beam model.

Figure 4: A 3D evidence grid. For visualization pur-
poses, only positive evidence is represented as an
increase both in brightness and opacity. This map
was constructed with the data from four drops and is
about fifty meters deep. The blue grid spacing is 10
meters.

e Any time a submap is updated, the correspond-
ing coarse voxel is added to a “dirty” list. Dur-
ing the cleanup pass, all dirty coarse voxels are
set to be the average value of their submap —
if this value is below a certain threshold, the
submap is deemed to be empty and is discarded.

The dual-resolution map data structure usually
converges to large regions of unambigiously empty
or unexplored space (represented in the coarse map),
that is surrounded by a thin crust of high-resolution
submaps that provide excellent surface detail. In a
loose sense, instead of representing the entire vol-
ume in high resolution, we are just representing the
surface area — the resulting savings in memory foot-
print are significant.

This is clearly a simplified and ad-hoc implemen-
tation of an octree-like data structure. The difficulty
of implementing a full octree is that there is a large
amount of computational overhead involved in the
transformation between resolutions (almost all of the
linear algebra must be redone), as well as the over-
head in maintaining consistency between resolutions
(the cleanup phase described above).



4 Particle Filter Localization

The goal of our particle filter is to estimate x, in this
case a vector which contains the X and Y coordi-
nates of the vehicle, from the measurements 7, ..

The evolution of the state can be described by the
(possibly non-linear) function

zj = fi(Tj-1,u5-1,v5-1)

where u; is the control input and v; is identically
and independently distributed (iid) process noise. Of
course, we don’t actually know f;, but we can ap-
proximate it with fj. Likewise, the measurements

7). eas are described by

Tzneas = h] (ﬂjj, n])
where n; is iid measurement noise, which is approx-
imated by our measurement model as hAj.

The standard Sampling Importance Resampling
(SIR) filter includes the following steps:

Sampling This is also known as the prediction
stage. During the prediction stage, we use our
approximation of the process fj to predict the
new position z;. In practice, this means apply-
ing f ; (every time with a different noise variable
v;) to each particle. The distribution of particles
is now an approximation of the prior PDF of the
vehicle position.

Importance Weighting During this stage, also
known at the update stage, we use the ac-
tual sonar measurements 7,,cqs and one of
the weighting metrics given above to calculate
weights w; for each particle. The weights of
the particles now approximate the importance
density of the vehicle position.

Resampling We then merge these two distributions
to yield the posterior PDF of vehicle position.
Using the O(n) algorithm described in [1], we
sample the particles according to their normal-
ized weights. For example, if a single particle
has as much weight as all the others combined,
it will make up 50% of the new set of particles.

We experimented with three simple methods for de-
riving a position estimate from the particles. The first
was to use the position of the particle with the max-
imum weight — this can be thought of as one way of
approximating the mode of the probability distribu-
tion represented by the particles. The second method
was to use the mode of the positions of the particle
cloud, which was approximated by constructing his-
tograms of the particle positions in the X and Y di-
rections, and then selecting the bin with the largest
number of particles. This method was sensitive to
the number of histogram bins. The last method was
to take the mean of the positions of all the particles.
All three approaches worked reasonably well, but
the mean appeared to consistently produce the low-
est position estimate error (see the results in Section
5.1).

4.1 Sonar Beam Model

The sonar beam model is the method by which a sin-
gle range measurement, which is what we get from
a sonar sensor, is inserted into the evidence grid.
There are several methods which can be used to con-
struct a beam model. First, we could attempt to de-
rive the model from physical first principles, such as
the sonar transducer beam model, detection thresh-
old, and the sonar equations [10]. Alternatively, if we
had a perfect map of the environment, we could use
it to learn the beam model that resulted in the map
that closest approximated the true map [5]. Finally,
we could go with the simplest reasonable approxi-
mation — a cone with a cap (see Figure 5). The cone
itself would be negative evidence, since any obstacle
within the sonar beam would have returned an echo.
At the end of the cone, there is probably an obstacle,
unless the range was spurious, in which case positive
evidence should be entered in the disc-shaped cap at
the end of the cone.

Ultimately, the success of a beam model can only
be evaluated based on the quality of the localiza-
tion solution resulting from the system as a whole.
Since the entire system must share computational re-
sources, this means that a beam model which is sim-
ple and fast can yield overall better performance, be-
cause it allows the system to spend more resources



Figure 5: A low-resolution sample of the cone beam
model, with a 6 degree beamwidth.

on localization (for example, more particles in the
particle filter). In the test results described in Section
5.1, we simply used the cone beam model (see Figure
5), but varied the beamWidth, positiveEvidence, and
negativeEvidence parameters in an attempt to find
the optimal values for minimizing localization error.

4.2 Range Simulation

There is a range of physical fidelity which we could
use to approximate sonar ranging. The most ambi-
tious would be to simulate the propogation of the
sonar pulse through the water, including echoes off
of hard surfaces, in order to generate a time ver-
sus acoustic energy plot, similar to the signal pro-
cessed by the actual sonar electronics. Simplifying
this model a bit by ignoring the echoes, a similar
time versus energy plot could be constructed sim-
ply by tabulating the evidence at a particular range
within the sonar cone. Both of these methods are
expensive, and unecessarily accurate given the level
of approximation in other areas of the system. Fur-
thermore, range simulation, or querying is the core
operation for particle filter-based SLAM, and should
be as fast as possible.

4.2.1 Ray Tracing

A simpler method for querying a sonar range from
the 3D evidence grid is to trace a single ray from
the origin of the sonar query until some threshold or
other terminating condition is met. A more sophisti-
cated terminating condition might be desirable if the

evidence grid is sufficiently noisy that there is a sig-
nificant risk of false returns.

We need to find a method for evaluating each
particle in order to compute the weights w;(j =
]----Npa'r‘Licles) for the SIR filter. For each particle x;
and range measurement 1% .. (i = 1...Ngonar), We
want to compute the probability p(z;|r?, ., ), which
can be rewritten as:

P(@)P(Thneas|?;)
p(r%leas)

using Bayes rule. On the RHS, all the particles are
(initially at least) equally likely, so for the purpose of
assigning relative weights, we can ignore the p(z;),
and we can also discard p(r’,,.,s) by normalizing, we
are left with:

%

p(ilfj |Tmeas) =

p(Ij ‘Tvineas) X p(rfneas ‘17])

We are now left with the task of finding p(7},.q.|%;)
from the values we actually have, namely 7, . con-
ditioned on z;. If we assume a Gaussian error model
for our sonar range-finders (see Figure 6), then we
see that:

i i 2
7(Tsim77‘meas)

P(Tieas) = (2102 "2 52

‘We then compute the weights w; by normalizing the
product over ¢ of p(77,,.,s]2;):

Nsonar 3
Hi:l p(T:neas“Tj)
Z;\[:pc{7‘ticles w]
Taking the logarithm of both sides shows that maxi-

mizing this weight metric is very close to minimizing
the intuitive sum squared error metric:

w; =

N Nsonar 1

sonar — (Tsim
+

2 2

no i=1

— Tfneas)2

202

logw; =

4.2.2 Point Correlation

Another method, described in [4], generates an er-
ror metric for each particle without actually simulat-
ing any ranges whatsoever. Instead, we use the ac-

tual sonar ranges ¢, .. - and find the endpoints of the
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Figure 6: An example sonar range finder error model
used in the ray tracing method.

sonar beams ¢; ; by projecting the range from each
of the particle poses x; (see Figure 7). In our case,
we have excellent attitude from the IMU and depth
information from the depth sensors , so only z and y
are unknown, and we can actually store the deltas for
each sonar beam, and reuse them for each particle,
resulting in an additional speedup. We then compute
the correlation of the endpoints ¢; ; by examining
the map value at that point. This approach ignores
visibility constraints (nearer obstacles do not inter-
fere), and relies on the sensor error being properly
accounted for in the map (rather than with a sensor
model as in the ray tracing approach), but is much
less computationally intensive.

In order to come up with weights for the particles
using the Point Correlation method, we follow the
same line of reasoning as given before. In this case,
however, we are trying to find p(r?,.,|z;) from our
correlation value at the point ¢; ;, which is found by
projecting 7, ., from z;. Since the map value at ¢; ;

stores the log likelihood (log %) that that
cell is occupied,

) eMaplci, ;]
e
p meas|®)) — eMa‘p[Ci«j]—i-l

and our desired probability p(z;|r) is simply the
product of the probabilities, or the exponent of the
sum of the map values at each ¢; ;, and once again
we normalize these sums in order to use them as
weights.

Figure 7: According to the point correlation metric,
particle A has twice as much correlation with the evi-
dence grid (positive evidence is show as gray) as par-
ticle B.

5 Localization Tests

As described above, we collected sonar range data
from Zacatén by lowering the DropSonde on a line.
Since all the drop locations were surveyed in, all of
the data from the multiple drops could be registered
and merged. While it is possible and even likely
that there is error in the registration between drops,
there is very little error within a drop. This is be-
cause the DropSonde IMU gyro drift rate is negli-
gible, and sources of depth error, such as varying
atmospheric pressure, were minimal during the ap-
proximately two hours required to perform a drop.
Due to the very low error in the IMU heading and at-
titude, as well as in the depth sensors, we were able
to limit ourselves to distributing the particles in the
only unknown dimensions, x and y.

In order to test the performance of the localiza-
tion system on the Zacatén data, we first constructed
maps using a subset of the drops, namely the first
50 meters of four different drops. We then used an
excluded drop as ground truth, running the local-
ization algorithm and comparing its estimated po-
sition with the known vehicle position. During the
map construction phase, we varied the parameters of
the sonar beam model, including the values of Pos-
itiveEvidence, NegativeEvidence, and BeamWidth.



Furthermore, we also experimented with various
map resolutions, ranging from 2m to 0.25m. During
the localization phase we also tried several variations
in the number of particles.

In an attempt to verify an iterative exploration
strategy, in which the vehicle will need to rely on the
map constructed from the previous drop in order to
localize in preparation for new exploration, we also
constructed the map using a single drop (two passes),
instead of using four drops (eight passes) to construct
the initial map.

5.1 Results

Out of all the parameters and metrics, the solution
with the lowest mean position error was just 0.33 me-
ters, which is scarcely above the 0.25 meter map res-
olution for that test. In fact, using maps with 1 meter
resolution, there were many solutions with mean po-
sition errors around 0.5 meters.

Encouragingly, the results from the single drop
map were very close to those using the map con-
structed from four drops (see Figure 10). This is
probably largely due to two factors. First, the drop
used to construct the map was relatively close to the
drop used to test the map (=12m). Since Zacatén
is largely convex, this means that there are not many
sonar “shadows” in the map. Secondly, as mentioned
above, there are significant registration errors be-
tween the drops, which inevitably degraded the qual-
ity of the map. This source of error is practically
eliminated when a single drop is used to construct
the map.

6 Sonar Configuration Tests

Since the real-world datasets were collected with the
DropSonde sonar unit, they share the same basic ring
sonar array geometry. The primary weakness of this
geometry is that when the vehicle is entering unex-
plored territory, there are no sonars pointing back
into the mapped region—which would clearly give
crucial information about the vehicle’s current pose.
In order to compare the performance of several dif-
ferent possible sonar geometries, it was necessary to
construct known environments. The primary topic of
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Figure 8: Map resolution versus sonar insertion
beam model beam radius.
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Figure 9: Query method (ray trace and point corre-
lation) versus position estimate method (min mode,
mean, histogram mode).

investigation in this experiment was to compare the
performance of the different geometries as the ve-
hicle passed from a mapped region out into an un-
mapped region. Judging from what we know of the
shape of the Zacatén sinkhole, and from other sim-
ilar formations which have been fully explored, we
invisaged three basic scenarios: first, that the vehi-
cle would be exploring down a vertical shaft; sec-
ond, that the shaft would be sloping at 45 degrees;
and finally, that the shaft would be horizontal. While
many variations and combinations of these scenar-
ios are possible, we expect that the performance of a
particular sonar geometry in these three cases will be
sufficiently indicative of its performance in the gen-
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eral case.

The final DEPTHX vehicle will likely have a more
sophisticated sonar array geometry, closely approxi-
mating three perpendicular great circles (see Figure
11).

6.1 Results

DropSonde Ring geometry is weak, particularly in
the vertical tunnel because it has no sonars to pro-
vide “context” (see Figures 13 14 15). Three Great
Circles Plus also seems weak, except for the horizon-
tal tunnel test. Three Great Circles seems to be the
most versatile, and is the leading candidate for use
on the DEPTHX vehicle.

7 Future Work

From our obserservation of the tests on the Zacatén
data, we have reason to believe that an Extended
Kalman Filter (EKF) might work, at least in the
main cylindrical body of Zacatén. One possibility
we would like to explore is a hybrid approach where
we use the particle filter whenever the vehicle be-
comes uncertain about its position, and the EKF is
used when the particles converge sufficiently .

In the real scenario, it is necessary that the sys-
tem run in real-time. At the moment it seems safe
to say that we should be able to support about 100
particles. However, these are just localization parti-
cles, which are much lighter-weight than full SLAM
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Figure 11: Sonar configurations: Dropsonde(DS),

Three Rings (3R), Three Great Circles (3GC), and
Three Great Circles Plus (3GC+).

particles, such as are used in a Rao-Blackwellized
particle filter. In the final DEPTHX experiment, the
vehicle will need to explore at least some distance
beyond the mapped region, and during this period it
will need to be running a real-time SLAM solution.
The difficulty with full SLAM is that the particles
must also contain a version of the map which corre-
sponds to the particle’s trajectory. How to efficiently
represent and manipulate these maps remains is an
active research area.

It may be possible to use a hybrid map representa-
tion together with an interative exploration strategy,
whereby each dive is merged offline into a master
map, which is then used on successive dives to lo-
calize the robot until is reaches the boundary of ex-
ploration, at which point the robot uses a reduced
number of particles to allow insertion and querying
in real-time.

8 Conclusions

Down to 280 meters, the underwater environment of
Zacaton is less complex than we anticipated, how-
ever there does appear to be the possibility for some-
thing exciting at around 300 meters. This would be



Figure 12: Sonar configuration test tunnels — the up-
per end of the tunnel is capped, whereas the bottom
end of the tunnel is open, so no sonar ranges can be
simulated. During the simulation for each tunnel, the
vehicle is started at the €, about | meter away from
the end cap, and proceeds through the 50 meter tun-
nel in the direction of the arrow.

consistent with other similar geological formations,
which seem to follow a pattern of vertical chimneys
linked together by horizontal tunnels.

We have demonstrated a functional localization
system based on 3D evidence grids and a SIR par-
ticle filter. Much work remains to be done to refine
the parameters of the system, and to extend it to the
full 3D underwater SLAM problem.
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Figure 14: Position estimate error in meters (Y axis)
for the different sonar geometries while traveling in
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Figure 15: Position estimate error in meters (Y axis)
for the different sonar geometries while traveling in
0.1 meter increments (X axis) through the horizontal
test tunnel.
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