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Abstract— This paper describes the application of a Rao-
Blackwellized Particle Filter to the problem of simultaneous
localization and mapping onboard a hovering autonomous un-
derwater vehicle. This vehicle, called DEPTHX, will be equipped
with a large array of pencil-beam sonars for mapping, and will
autonomously explore a system of flooded tunnels associated with
the Zacatón sinkhole in Tamaulipas, Mexico. Due to the three-
dimensional nature of the tunnels, the Particle Filter must use a
three dimensional map. We describe an extension of traditional
two dimensional evidence grids to three dimensions. In May 2005,
we collected a sonar data set in Zacatón. We present successful
SLAM results using both the real-world data and simulated data.

I. I NTRODUCTION

An Autonomous Underwater Vehicle (AUV) uses a combi-
nation of depth sensors, inertial sensors, and Doppler velocity
logs (DVLs) to compute a dead-reckoned estimate of its
position. With high accuracy attitude and depth sensors the
only uncertainty in the AUV’s 3D pose (x,y,z,roll,pitch,yaw)
is in x andy. Most underwater vehicle localization strategies
are geared toward open-water situations where the ocean
floor is feature-sparse, and where beacon-based approaches
or periodic surfacing for GPS fixes is a reasonable solution.
The vehicle relies on these external position aides to correct
the inevitable integration error in its dead-reckoning solution.
Simultaneous localization and mapping (SLAM) offers an
attractive alternative method to bound the dead-reckoning error
because it allows the vehicle to be completely self-contained
and autonomous.

SLAM strategies depend on the extraction of features from
sensor data, however in the underwater domain there are not
many sensors which are capable of providing the resolution
necessary to resolve and recognize features. There has been
work with using tunnel cross-sections, or slide images, which
can be derived from sparse sonar ranges [1] as long as the
environment is tunnel-shaped. In the case where there are free
floating artificial features, scanning sonars have been shown to
have high enough resolution to support feature-based SLAM
[2]. Alternatively, in clear water with good lighting, SLAM
has been demonstrated via video mosaicing [3] and also a
combination of vision-based feature detection and sonar [4].
However, many underwater environments are characterized by
large monotonous regions, where there has been promising

Fig. 1. The DropSonde being lowered into Zacatón.

work with Synthetic Aperture Sonar (SAS) to support range-
and-bearing SLAM [5]. Finally, there is the mine-mapping
work by [6] done in similarly complex tunnels, although with
a planar floor plan, using scan matching with a laser range
finder to recover the 2D vehicle pose from which the 3D map
is reconstructed in a post-processing step.

Our application platform is an autonomous hovering ve-
hicle, called DEPTHX, which will explore floodedcenotes
(sinkholes) [7]. The mapping system for DEPTHX is an
array of pencil-beam sonars that provides a constellation of
ranges around the vehicle, but lacks the resolution, update
rate, and point density of a laser scanner, making feature
detection difficult. The deeper portions of the sinkholes are
completely unexplored and may have unexpected geometries,
which makes it even more difficult to design feature detectors.
For these reasons we have selected a very data-driven repre-
sentation, evidence grids, as our basic world representation [8].
In the 3D evidence grid representation, space is divided into
a grid of cubic volume elements, or voxels, which contain
the occupancy evidence inferred from sensors. While 2D
evidence grid-based SLAM is well established in the indoor
mobile robot domain, it has been found to have limited
applicability in truly 3D environments – largely because the
2D map simplification is only suitable in “two and a half”



dimensional environments (such as indoors). The difficulty
in generalizing the evidence grid approach to full 3D grows
from the multiplication of the computational cost of accessing,
modifying, and storing the map due to the third dimension.

Due to the uncertainties in sonar measurements and vehicle
motion models, we chose to address the SLAM problem using
a Bayesian framework. Particle filters (PFs), provide a proven
implementation of Bayesian filtering for systems whose belief
state, process noise, and sensor noise are modeled by arbitrary
probability density functions (PDFs) [9]. Rao-Blackwellized
particle filters (RBPFs), in which each particle contains both a
position and a map, have proven an effective way to do SLAM
with evidence grids and provide the basis for the approach
taken here [10].

In Section II we describe the May 2005 field expedition to
Zacat́on, as well as some of its salient features. Sections III
and IV provide a brief description of 3D evidence grids and
our implementation of an RBPF for SLAM. The next section
describes experimental results from the Zacatón sonar data and
a simulated tunnel system (Section V). Finally, we close with
future work and conclusions.

II. EXPLORING ZACATÓN

We have discovered that the Zacatón cenotein Tamaulipas,
Mexico, is roughly a truncated cone 110m wide, and at least
300m deep (see Figures 1,2). Prior to the May 2005 DEPTHX
expedition it was unmapped except for wire drops to establish
the depth. Zacatón is the deepest of a series of hydrothermal
cenotesin the region. It produces microbial mats in the photic
zone and has exotic geochemical features which make it an
excellent match for the exploration and sampling mission of
DEPTHX.

The DEPTHX team used a sonar test platform (see Figure
3), called the DropSonde, to build a preliminary map of
the first 200m of Zacatón. In addition to a data logging
computer, the onboard sensors include 32 spirally arranged
sonars, a Honeywell HG2001AC RLG IMU, and three depth
sensors. The sonars were fired at about 2Hz, and have a
10cm precision. The IMU has about a 1m/s accelerometer drift
rate, which precludes its use as a dead-reckoning navigation
system, but only a 0.1 degree/hour gyro drift rate, giving use
excellent heading and attitude information. The depth sensors
had individual accuracies of about 10cm.

During a week-long field expedition in May 2005, the
DEPTHX team lowered the DropSonde progressively down
to 200m, the maximum depth rating for several of the com-
ponents. The DropSonde was lowered on a winch from a
stabilized barge, and the locations of the seven “drops” were
recorded with surveying equipment, which together with the
data from the onboard sensors allowed the sonar data to be
registered. By spinning the DropSonde during its slow ascent
and descent, we acquired excellent sonar coverage of the
walls. For the first 250m, thecenote is remarkably smooth
and cylindrical, although there are several shelves (see Figure
2).

Fig. 2. An north-facing side view of the first 200m of Zacatón, plotted as a
sonar point cloud in orthographic projection.

III. 3D EVIDENCE GRIDS

A 3D evidence grid is based on the same set of concepts
and Bayesian update equations as the classic 2D evidence grids
which have been so well described in the literature (see [8]
[11]). Each 3D cell, or voxel, in the evidence grid represents
the probability that the corresponding volume in the real world
is occupied. As measurements are collected, the evidence they
provide about the occupancy of each voxel is entered into
the map. A sonar beam model defines how a single range
measurement can be inserted into the evidence grid. There
are several methods which can be used to construct a beam
model, including deriving it from physical first principles [12]
or learning it [8]. We chose to use the simplest reasonable
approximation – a cone with a cap (see Figure 4). Likewise,
the simplest method to query a sonar range from the 3D
evidence grid is to trace a single ray from the origin of



Fig. 3. The DropSonde – the three main pressure vessels, from top to bottom,
contain the IMU, the batteries, and the sonar system.

Fig. 4. An example of the conic sonar beam model, with a 6 degree beam-
width.

the sonar query until some threshold or other terminating
condition is met.

Evidence grids have strong independence assumptions: each
voxel is independent of its neighbors, and every sonar mea-
surement is independent of all other measurements. While
these assumptions are clearly an over-simplification, they are
precisely what allow the map to be updated using Bayesian
update rules [8] (see the next section for details).

IV. PARTICLE FILTER SLAM

A PF approximates an unknown distribution with a cloud of
particles. In order to achieve this approximation, the particles
must be spread over the dimensions of the distribution. In
the SLAM case, this unknown distribution encompasses both
the particle posesm

t (with m = 0 : Nparticles) at time t and
the mapΘm, conditioned on the range measurementsnr0:t

(with n = 0 : Nsonars) and the vehicle dead-reckoned position
innovationu0:t (for an overview of notation see Table I):

p(st,Θ|r0:t, u0:t)

The key insight the RBPF is that it is possible to factor
this distribution into two parts and analytically marginalizing
out one of the parts, conditioned on the other part, thereby

reducing the number of dimensions that have to be covered
by the particles [10]. Applying this insight to SLAM requires
marginalizing the map distributionp(Θ|s0:t, r0:t, u0:t) (now
also conditioned ons0:t), and using particles to estimate a
posterior over vehicle trajectoriesp(s0:t|r0:t, u0:t)1, in order
to compute

p(st,Θ|R0:t, u0:t) = p(Θ|s0:t, R0:t, u0:t)p(s0:t|R0:t, u0:t).

As described in the previous section, evidence grids offer a
method for analytically estimatingp(Θ|s0:t, r0:t, u0:t). Since
it is unrealistic to recompute the evidence gridΘ at each
timestep, in actual implementation each particle consists of
a positionst and a mapΘ, which is kept up to date at each
timestep.

Our particle filter implementation has the following steps,
closely following the Sequential Importance Sampling with
Resampling filter [13]:
• Predict: Particle positionsst are predicted using the

vehicle motion modelh(st−1, ut). The particles are now
an approximation of the prior PDF of the vehicle position,
which is why this step is often called Sampling.

• Weight: The sonar measurementsrt and the particle map
Θ are used to compute the weightw for each particle. The
weights of the particles now approximate the importance
PDF of the vehicle position.

• Resample:These two distributions (prior PDF and im-
portance PDF) are merged to yield the posterior PDF of
the vehicle position, by resampling the particles according
to their weights.

• Update: The particle mapsΘ are updated using the sonar
rangesr, and the particle positionspt.

• Estimate: A position estimate is computed from the
particle cloud.

A. Predict

The dead-reckoned position innovationut is computed
using the navigation sensors (IMU, DVL and depth sensor). A
new positionst is predicted for each particle using the vehicle
motion model:

st = h(st−1, ut, N(0, σs)

which includes a zero mean noise model with standard devia-
tion σs. The distribution of particles is now an approximation
of the prior PDF of the vehicle position.

B. Weight

The weight for each particle is computed by

w = η

Nsonar∏
n=1

p(nrt|st,Θ),

whereη is a normalizing factor. Since the simulated rangesr̂
are generated by the measurement model

r̂ = g(st, ut, N(0, σr)),

1In the DEPTHX application, the particles are primarily distributed overx
andy, due to the very low error in the IMU heading and attitude, as well as
in the depth sensors.



which has a normal noise model,

p(r|s,Θ) =
1√
2πσ2

r

e
−(r̂−r)2

2σ2
r .

Taking the logarithm of both sides shows that maximizing this
weight metric is very close to minimizing the intuitive sum
squared error metric:

log w = Nsonar log
(√

2πσ2
)
− 1

2σ2

Nsonar∑
i=1

(r̂i − r)2.

C. Resample

The O(n) algorithm described in [9] is used to resample
the particle setS according to the weightsw:

St = resample(St−1, w)

In actual implementation, much of the computational cost of
the algorithm is in simply copying the particle maps during
the resampling step.

D. Update

The particle mapsΘm are updated by using the standard
log-likelihood evidence grid update equation [8] to update the
evidence of all the voxelsθ = ijkΘ which lie in the conic
sonar beam model of eachnr:

log (θ) = log
(

p(θ|r)
1− p(θ|r)

)
+ log

(
1− p(θ)

p(θ)

)
+ log(θ)

The map is initialized using

log (θ) = log
(

p(θ)
1− p(θ)

)
.

If the prior p(ijkθ) = 0.5, the second term is zero, and the
initialization simply sets all voxels to zero. The remaining term
involving p(ijkθ|rt) is provided by the sonar beam model,
generally called the inverse sensor model [14]. The update
equation for each voxel can be reduced to simply summing the
value of the sonar model with current voxel evidence. Using
matrix transformations for each voxel is too computationally
expensive for operations such as filling in evidence cones
or simulating ranges by tracing lines. These tasks can be
decomposed into raster operations, which can be performed
by a 3D variant of the classic 2D Bresenham line drawing
algorithm.

E. Estimate

Although many methods exist for generating a position
estimate from the particle cloud, it has been found that simply
taking the mean of the particle positions consistently produces
the lowest estimation error [15].

TABLE I

PARTICLE FILTER NOTATION.

sm
t vehicle pose of themth particle at timet

= (roll, pitch, yaw, x, y, z)
nrt range measurement of thenth sonar at timet

ut vehicle dead-reckoned innovation at timet
ijkΘm evidence grid voxelijk of the mth particle

St particle set at timet

= {(s1
t , Θ1), ..., (sm

t , Θm)}
wm

t weight of the mth particle at timet

h(st−1, ut, N(0, σs)) vehicle motion model with normal noise

g(st, Θ, N(0, σr)) range measurement model with normal noise

Fig. 5. A CAD model of the DEPTHX vehicle with the fairing removed to
expose the sonar three circular sonar arrays.

V. EXPERIMENTAL RESULTS

The SLAM position error on a single round-trip, or drop,
from the Zacat́on dataset, are shown in Figure 8, together with
dead-reckoned position error. The DropSonde was lowered
to 200m and then raised back to the surface on a cable,
so although there was no significant change inx and y,
we simulated velocity noise with a zero mean and 0.05m/s
standard deviation normal distribution, which roughly corre-
sponds to real-world sensor noise. The SLAM solution shows
considerable drift – we believe this is because the ring sonar
array geometry does not allow the SLAM system to register
itself to previously mapped areas: the sonar only looks at a
slice of the tunnel at a time, and any position error between
slices will accumulate.

The final DEPTHX vehicle will have a more sophisticated
sonar array geometry, closely approximating three perpendic-
ular great circles (abbreviated 3GC, see Figure 5), which has
been show to be a good sonar geometry for the types of
tunnels we expect to encounter [15]. Since the Zacatón data
was collected with the ring sonar geometry, we used simulation
test the performance of the 3GC geometry. For this purpose,
we constructed a “dog’s leg” tunnel with three segments (see
Figure 6). A very simple simulator was used to generate the
vehicle’s trajectory from near the surface to the bottom of the
well and back. In order to test the convergence performance



Fig. 6. The dog’s leg map used for simulated experiments. The top of the
tunnel is the at the “surface”, and the bottom is 150m deep.

Fig. 7. A particle mapΘ after running SLAM on the simulated dog’s leg.

of the SLAM system, the vehicle followed this trajectory five
times. Using the same ray-trace ranging method described
above and the simulated map, simulated ranges with normal
noise distribution were generated for each vehicle position in
the trajectory. The trajectory was also used to generate attitude,
depth, and velocity sensor readings, also with normal noise
distributions.

The SLAM algorithm used 20 particles with2003 voxel
maps at 1m resolution (see Figure 7 for the final map of
a single particle). Each run took about 43 minutes on a
modern desktop computer: about four times faster than real-
time. We did five runs using SLAM, then localization only (by
initializing the particle maps with the true map and performing
no update step), then dead-reckoning only. The mean position
error of these three methods is given in Figure 10. As expected,
the SLAM error is higher than localization only, but much
lower than dead-reckoning. More importantly, the SLAM error
is bounded, as can be seen in Figure 9.

VI. FUTURE WORK

The performance of the SLAM algorithm is clearly linked
to the number of particles which can be supported, as well as

Fig. 8. Position error over time on a single round-trip 200m drop in Zacatón,
which used the ring sonar geometry. The SLAM error demonstrates the
weakness of the ring sonar geometry, though it correctly converges as the
DropSonde is pulled back up to the surface.

Fig. 9. Position error over time of the three different localization algorithms
using the simulated dog’s leg data and the 3GC sonar geometry. There are
five round-trips.

the resolution of the particle maps. Currently, the algorithm
is limited by the amount of memory required to store the
particle maps, as well as the memory copy operation during
the resample step – although insert and query operations are
also significant. We are investigating more sophisticated data
structures for storing and manipulating the 3D evidence grids.

A simple improvement to the current system would be
to exploit an iterative exploration strategy by constructing a
“known world” map off-line after each dive. This “known
world” map could then be used on successive dives to localize
the vehicle until it has reached the frontier of exploration, at
which point the SLAM system could use smaller particle maps
spliced onto the master map to allow the use of more particles.

A more general extension of this idea was implemented for
2D evidence grids in DP-SLAM [16], which explicitly keeps
track of the shared map. Extending this concept to 3D evidence
grids seems promising, as does some recent work, also using
2D evidence grids, on improving the proposal distribution and
selective resampling [17].



Fig. 10. Mean position error (distance between true position and estimated
position) over five runs, and compares three cases: Localization Only, where
the PF is initialized with the real map; SLAM, where the PF must build its
own map; and Dead Reckoning, where the navigation sensors are used to
generate a position.

VII. C ONCLUSION

We have demonstrated SLAM using a Rao-Blackwellized
particle filter with 3D evidence grids using both real data
collected from the Zacatón cenote, as well as a simulated
tunnel system. Preliminary timing results indicate that the
current system can be run in real-time with about 50 particles.
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