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Abstract— We present a method for infrastructure-free local-
ization of underwater vehicles with multibeam sonar. After con-
structing a large scale (4 km), high resolution (1 m) bathymetric
map of a region of the ocean floor, the vehicle can use the
map to correct its gradual dead-reckoning error, or to re-localize
itself after returning from the surface. This ability to re-localize
is particularly important for deep-operating vehicles, which
accumulate large amounts of error during the descent through
the water column. We use a 3D evidence grid, stored in a efficient
octree data structure, to fuse the multibeam range measurements
and build maps that do not rely on particular features and
are robust to noisy measurements. We use a particle filter to
perform localization relative to this map. Both map and filter
are general, robust techniques, and both run in real-time. Lo-
calization convergence and accuracy are improved, particularly
over sparsely varying terrain, by deliberately selecting actions
that are predicted to reduce the vehicle’s position uncertainty.
Our approach to this active localization is to select actions that
are expected to generate sonar data that maximally discriminates
between the current position hypotheses. Maximal discrimination
is a very fast proxy for standard particle filter entropy-based
active localization. These methods are demonstrated using a
dataset provided by the Monterey Bay Aquarium Research
Institute from their mapping AUV, collected near the Axial
Seamount in the Juan de Fuca Ridge. Though it depends on
the situation, the vehicle’s position estimate typically converges
to within 2 m of the true position in less than 100 s of traverse,
or 150 m at 1.5 m/s. We explore the limitations of our approach,
particularly with a smaller number of range sensors: although
performance is degraded, satisfactory results are achieved with
just four sonars.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) have the potential
to allow scientists to unlock the secrets of the world’s oceans
by collecting data on temporal and spatial scales and densities
that are not feasible by conventional means, such as ships
or buoys. One of the great challenges to the deployment of
useful deep-sea vehicles is the problem of localization, or the
vehicle’s self-knowledge of its position. It is a paradox of the
underwater domain that localization is straightforward on the
surface and within a few hundred meters of the bottom but
difficult in the middle of the water column. On the surface, an
integrated GPS provides ~ 15 m absolute position information,
and once the vehicle has dived to within Doppler sonar
range of the bottom, about 200 m, onboard dead-reckoning
localization systems based on Doppler velocity log (DVL)
and inertial measurement unit (IMU) sensors typically provide
< 0.1% of distance traveled dead reckoning position [1].

As a result, localization is straightforward for vehicles that
operate in shallow water, where the DVL can reach the bottom
while the vehicle is on the surface: they can periodically return
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Fig. 1. The particle cloud of possible vehicle locations converging on the
true vehicle position (in yellow), showing a portion the evidence grid map of
the ocean floor near Axial Seamount and the multibeam sonar swath that is
being used to perform localization.

to the surface to correct the gradual accumulation of dead
reckoning error with GPS. But there is no such simple strategy
for vehicles that operate at depths of more than a few hundred
meters and must dive down through the water column. If the
vehicle relies only on onboard sensors, it must use the DVL
to measure the vehicle velocity relative to particles suspended
in the water column, a more noisy velocity measurement that
must be corrected for currents in the water. As a result, local-
ization based on water-velocity measurements has been shown
to be 0.35% of distance traveled [2]. Although localization
performance improves once the vehicle is within range of
the bottom, the higher error in the middle water column-—
compounded with the fact that the vehicle can’t afford the time
or energy to repeatedly return to the surface—has meant that
deep-water AUVs have needed to rely on additional, external
localization infrastructure: long baseline (LBL) or ultra-short
baseline (USBL) acoustic beacons.

High frequency (300 kHz) LBL localization provides sub-
centimeter accuracy, but has a maximum range of only 100
m, while the standard low-frequency (12 kHz) used for long-
range localization up to 10 km has 0.1 to 10 m accuracy
depending on the range and beacon geometry [3]. Likewise,
USBL performance is excellent at short range but long-range
performance degrades with distance and depth since the USBL
fix is dependent on the angular accuracy of the USBL head,
yielding ideal performance of about 0.5% of depth, or 5 m at
1000 m depth [4], [5]. When either LBL or USBL is combined
with IMU/DVL based localization onboard the vehicle, the



accuracy improves to around 0.2% of depth, or 2 m 1 ¢ at
1000 m [6].

Although they provide a localization solution for deep-water
vehicles, both LBL and USBL require a significant amount
of infrastructure and ship time to deploy and operate. LBL
networks provide position fixes in a limited area (about 10
km) and must be recovered, redeployed, and surveyed for each
new locale, though there has been work on automating the
calibration process [7]. USBL is usually attached to a ship,
which avoids the redeployment problem, but the ship must
periodically return to its station above the vehicle in order to
acquire fixes and send them down to the vehicle via acoustic
modem. The fact that deep-sea underwater vehicles must be
shepherded by a ship vitiates the autonomy of the vehicle, and
increases the cost and difficulty of deployment. In some cases,
such as under ice, neither LBL nor USBL may be feasible.

We present a method for robust and accurate localization
without infrastructure. Instead, the vehicle uses an onboard
multibeam sonar to automatically construct bathymetric maps
of the sea floor, and in turn uses these maps to re-localize itself
— addressing both the large amount of position uncertainty
after diving down through the water column, as well as the
gradual accumulation dead reckoning error while in range
of the bottom (Figure 1. This method is an approach to the
Simultaneous Localization and Mapping (SLAM) problem [8].
This problem is a very active area in terrestrial robotics, and
has also been addressed in the underwater domain (see Related
Work).

Much of the sea floor is flat and featureless — at least from a
sonar perspective. It is clear that our basic localization method
will not work over truly featureless plains, but when there
is at least some variation the vehicle can seek out regions
with significant bathymetric variation in order to reduce its
position uncertainty. This process of choosing actions in order
to aide localization is known as active localization [9]. We
present an implementation of active localization that uses very
simple metrics to select actions to reduce position uncertainty,
when necessary. This capability is crucial during the period
immediately after the dive from the surface.

We believe that our main contributions are: 1) a robust real-
time localization method, capable of convergence from a large
amount of initial uncertainty (such as is inevitable after a
dive to 6000 m), 2) automation the map construction process,
which can also be done in real-time, 3) scaleability to multiple
square kilometers or more, and 4) active localization in using
maximally discriminating actions, which makes our approach
more robust in regions with little terrain variability.

We demonstrate our methods with an AUV survey dataset
that was collected by the Monterey Bay Aquarium Research
Institute (MBARI) mapping AUV in 2006 near the Axial
Seamount in the Juan de Fuca Ridge.

II. RELATED WORK

There is an enormous amount of work on the SLAM
problem, particularly in terrestrial robotics. Since our focus
here is on bathymetry-based active localization, we direct the

reader to [10] for an excellent survey of underwater navigation,
including SLAM methods.

a) Bathymetry-Based Localization: Many SLAM meth-
ods depend on the reliable detection of features, such as stop
signs, in the environment. For an underwater vehicle, the main
task is often to generate maps of the bathymetry. This, coupled
with the difficulty of extracting reliable features from sonar
data, encourages the use of the bathymetry itself, rather than
feature-based approaches, for localization.

Approaches to bathymetry-based localization have become
common, largely due to the recent availability of multibeam
sonar systems. Roman and Singh [11] use an extended Kalman
filter (EKF) and a variant of the Iterative Closest Points
algorithm to match submaps of sonar measurements. As in
our method, Ura et al. [12] use a particle filter, but their
mesh-based map is only 150 m x 150 m. Sarma [13] shows
theoretical bounds for bathymetry-based localization.

b) Active Localization: Active localization has long been
an area of research, beginning with exploration and action
selection in uncertain environments [14] [15] [16]. Generally,
taking uncertain actions in an uncertain environment can be
modelled as a partially observable Markov decision process
(POMDP), as in [17]. POMDPs are theoretically satisfactory
but computationally intractable for any realistically compli-
cated scenario, so heuristics (like greedy action selection) are
used.

Burgard et al. [9] distinguishes between active navigation,
in which the entire robot moves, and active sensing, in which
only the sensors are pointed or focussed on particular targets.
Kiimmerle at al. [18] do active sensing, clustering the particles
into groups and calculating the total expected entropy for the
particle filter by a weighted average of the expected entropy
for each group. This is an example of the general technique of
estimating the expected entropy of the entire position filter (not
always a particle filter) after taking different actions [19], but
we turn the problem around by directly comparing the data
(range measurements) that would be generated by different
actions. Intuitively, actions that generate different data for
different particles will allow the particle filter to discriminate
amongst the particles, and simulating range measurements is
far faster than simulating the behavior of the entire particle
filter.

There is not much work in underwater active localization;
despite the name of “coastal navigation” Roy and Thrun [20]
construct an entropy map for a museum robot by simulating
the change in entropy of the particle filter for each possi-
ble point in the map. The entropy map is computationally
intensive, and is usually precomputed. A further limitation
is that the simulated particle filter is started in some default
state, which may or may not be similar to the actual particle
filter state, and thus the precomputed entropy values may be
incorrect. For example, the map may have been computed for
a particular heading and a Gaussian particle distribution, but
the actual heading may be different or the particle cloud may
have a multimodal distribution. Our method selects actions
based on the current state of the map and the particle filter.



Fig. 2. The MBAUV aboard the R/V Zehpyr. Image: Duane Thompson (c)
2005 MBARI

III. VEHICLE

MBARI has developed the 6000 m rated Multibeam Map-
ping AUV (MBAUV) (Figure 2), based on the modular 21”
diameter Dorado AUV design [21]. The navigation system is
built around a Kearfott SEADeViL integrated IMU/DVL. The
primary mapping system is a Reson 7125 200 kHz multibeam
sonar. The multibeam sonar array provides an array of 256
1° by 1° beams spread in a downward facing 150° fan
perpendicular to the AUV’s direction of travel. The update rate
depends on the range to the bottom, but is generally about
2 Hz. The mapping AUV has demonstrated very successful
survey operations [22], including a survey of Axial Seamount
in 2006. The MBARI mapping team has generously provided
this dataset, which includes both the navigation data from the
onboard IMU/DVL and sonar data from the multibeam sonar
system.

IV. METHOD

Our method is a general approach to SLAM in large-scale
natural environments using range sensors. The major compo-
nents of our implementation are a map representation and a
particle filter. The map representation is a 3D evidence grid
stored in an efficient data structure (described below), that can
represent arbitrary 3D geometry. The particle filter is likewise
a general technique, which can be adapted to any vehicle by
plugging in the appropriate vehicle motion and range sensor
models. Our basic method was originally developed for the
DEPTHX vehicle [23], and has been applied, in unpublished
work, to several other aerial, terrestrial, subterranean, and
underwater robots.

A. Particle Filter SLAM

The goal of a SLAM system is to estimate the probability
distribution at time t over all possible vehicle states s and
world maps © using all previous sensor measurements Z; and
control inputs U; (for a complete list of notation, see Table I):

p(s,0|Z;, Up)
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vehicle state of the m-th particle at time ¢

trajectory of m-th particle from time O to ¢

= {sém), sgm), sé’m, o sgm)}

2t sonar measurements at time ¢

Zt history of measurements from time O to ¢
= {Zo, R1yR2y vy Zt}
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U:  history of dead-reckoning from time O to ¢
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w,E"” m-th particle weight at time ¢

TABLE I
PARTICLE FILTER NOTATION.

This distribution is called the SLAM posterior. The recursive
Bayesian filter formulation of the SLAM problem is straight-
forward (see, for example, [24] for a derivation) but is usually
computationally intractable to solve in closed form. Particle
filters are a Monte Carlo approximation to the Bayesian filter.
The particle filter maintains a discrete approximation of the
SLAM posterior using a (large) set of samples, or particles.

For practical purposes, when SLAM is being used to provide
a pose for the rest of the vehicle control software, we usually
want to turn the set particles into a single point estimate. If
the posterior distribution is Gaussian, then the mean is a good
estimator, but other estimators may be better if the distribution
becomes non-Gaussian — which is indicated by high position
variance.

The particle filter algorithm, based on the Sampling Impor-
tance Resampling Filter of [25], has the following steps:

1) Inmitialize The particles start with their poses sq initial-
ized according to some initial distribution and their maps
© (possibly) containing some prior information about
the world. This is called the prior distribution, and it
may be very large if the initial position is uncertain.

2) Predict The dead-reckoned position innovation wu; is
computed using the navigation sensors (IMU, DVL and
depth sensor). A new position s; is predicted for each
particle using the vehicle dead reckoning-based motion
model:

St = h(stfl,ut, N(O, O'u).

This new distribution of the particles is called the
proposal distribution.

3) Weight The weight w for each particle is computed
using the measurement model and the sonar range
measurements (from the #;,, different sonars):

#son
w=n H p(2t]st, ©),
n=1

where 7 is some constant normalizing factor. In our
implementation, the real range measurements z are
compared to ray-traced ranges Z using the particle pose



and map. We compare the simulated and real ranges
using the measurement model

= g(stautaN(Oaaz))v

which is assumed to have a normal noise model, so
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Substituting into the expression for particle weight and
taking the logarithm of both sides shows that maximiz-
ing this weight metric is very close to minimizing the
intuitive sum squared error metric:

p(2s,0) =

H#son
1 5 2
logw:C—ﬁ E (2—2)7,

i=1

where C' = #4,, X log (\/ 27702>.

4) Resample The O(n) algorithm described in [26] is used
to resample the set of particles according to the weights
w such that particles with low weights are likely to be
discarded and particles with high weights are likely to
be duplicated.
Frequently, a rule of thumb introduced by [27] based
on a metric by [28] is used to decide whether or not to
resample:

Nepf= ————
TN ()

so that resampling is only performed when the number
of effective particles Ny falls below half the number
of particles,N/2.

Another trick that is useful in slowing the convergence
of the particle filter is to add noise to the resampled
particle positions, effectively re-initializing the particle
filter around the particles with high weights. The amount
of resampling noise can be gradually reduced, as in sim-
ulated annealing. After resampling, the set of particles
is a new estimate of the new SLAM posterior.

5) Update The measurements z are inserted into the parti-
cle maps ©(™) to update the map according to the sonar
beam model of each measurement relative to the particle
position. This is when maps must be copied and updated.
We save duplicate insertions by inserting before copying
successfully resampled particles. Note that in this paper,
we are primarily testing localization, and do not update
the map after it has been constructed.

6) Estimate Generate a position estimate from the parti-
cles.

7) Repeat from Predict

We now describe the vehicle model and sonar sensor model
particular to the MBAUYV, as well as the 3D map representa-
tion.

B. Vehicle Motion Model

The state vector s of the vehicle model is the static 6 DOF
vehicle pose g, together with its first and second derivatives:

q = [¢a91¢am>y7z]
s =g, 4,4

As described above, this state vector is updated according to
the vehicle model

St = h(stflu Ut, N(Oa Uu))

where v is the control vector, in this case the measurements
from the navigation sensors, and o, is the corresponding
Gaussian noise for each measurement. For example, if a GPS
position fix is available, then the = and y fields of u are set
to the fix position, and the corresponding fields of o, are set
to 15 m, or the standard deviation of the GPS fix.

During the prediction step the particle filter updates each
particle position using the available measurements and sam-
pling from the Gaussian noise model for each measurement.
Under prediction alone, the particles will gradually disperse
according to the navigation sensor error model, representing
the gradual accumulation of dead reckoning error.

C. 3D Octree Evidence Grids

An evidence grid is a uniform discretization of space into
cells in which the value indicates the probability or degree
of belief in some property within that cell. In 3D, the cells
are cubic blocks of volume, or voxels. The most common
property is occupancy, so evidence grids are often also called
occupancy grids [29]. The primary operations on a map are
inserting new evidence, querying to simulate measurements,
and copying the entire map, which is necessary for the update
step of the particle filter. We call the process of updating all
of the voxels which are affected by a particular measurement,
effectively inserting information into the map, an insertion,
and likewise the process of casting a ray within a map until
intersects with an occupied voxel we call a query. Often, the
log-odds value for each voxel 6

is stored in the map rather than the raw probabilities because it
behaves better numerically, and because the Bayesian update
rule for a particular voxel according to the sensor model (like
a conic beam-pattern) for some measurement z becomes a
simple addition [29]:

beam model map prior

ot (227 g (=20 g

The first term on the right-hand-side is the sensor model
(discussed next), and the second is the map prior, or the
expected occupancy of space before we have collected any
measurements. If the prior p(f) = 0.5, the second term is
zero and the initialization simply sets all voxels to zero. By

log (¢)



Fig. 3. On the left is a uniform volumetric grid, made up of cubic voxels. On
the right is an octree: each level of an octree divides the remaining volume
into eight octants, but the tree does not have to be fully expanded.

using log-odds, the update for each voxel can be reduced to
simply summing the value given by the sonar model with the
current voxel evidence.

The main difficulty with the 3D evidence grid approach
arises from the cost of storing and manipulating large, high
resolution maps. If the evidence log-odds are represented as
single bytes (with values between -128 and 127), then an
evidence grid 1024 cells on a side requires a megabyte of
memory in 2D and a gigabyte in 3D.

We have developed the Deferred Reference Count Octree
(DRCO) described in depth in [23], that offers a compact and
efficient octree-based data structure that is optimized for use
with a particle filter. An octree is a tree structure composed
of a node, or octnode, which has eight children that equally
subdivide the node’s volume into octants (Figure 3). The
children are octnodes in turn, which recursively divide the
volume as far as necessary to represent the finest resolution
required. The depth of the octree determines the resolution
of the leaf nodes. The main advantage of an octree is that
the tree does not need to be fully instantiated if pointers
are used for the links between octnodes and their children.
Large contiguous portions of an evidence grid are either empty,
occupied, or unknown, and can be efficiently represented by
a single octnode — truncating all the children which would
have the same value. As evidence accumulates, the octree can
compact homogeneous regions that emerge, such as the large
empty volume inside a cavern.

The efficiency of the DRCO depends on the circumstances.
It will be most efficient when the environment displays volu-
metric sparsity, since octrees compactly represent a map that is
mostly empty or full. Most large-scale outdoor environments
seem to be well suited for this type of exploitation.

Next, we discuss how a sonar sensor model is used to update
and query the map.

D. Multibeam Sonar Model

The Reson 7125 multibeam sonar operates at 200 kHz and
provides an array of 256 1° by 1° beams spread in a downward
facing 150°swath perpendicular to the AUV’s direction of
travel [22]. Simplifying somewhat, the 1° degree beamwidth
means that the range value returned by the sonar could have

Fig. 4. A single 6° sonar beam as represented in an evidence grid —
note that the actual beams are only 1°. Unknown regions are transparent,
probably occupied regions are yellow, probably empty regions are red. In this
visualization, very low and very high probability of occupancy regions have
been clipped out, leaving isodox (equal occupancy belief) shells.

been caused by a reflection from anywhere within a cone pro-
jecting from the sonar transducer. At long distances, the sonar
data is coarse, meaning that fine structure cannot be resolved
perpendicular to the direction of the beam — but over time
they do provide information about the environment around
the vehicle. As measurements are collected, the evidence they
provide about the occupancy of each voxel is entered into
the evidence grid map. Given a particular range measurement,
a sonar beam model specifies which voxels within the cone
are probably empty and which voxels are probably occupied.
There are several methods which can be used to construct a
beam model, including deriving it from physical first principles
or learning it [29]. We chose to use the simplest reasonable
approximation — a cone with a cap that is loosely based on the
beam-pattern of the sonar (Figure 4). The cone is drawn as a
bundle of rays with constant negative value, with terminating
voxels with constant positive values.

Likewise, the simplest method to query a sonar range from
the 3D evidence grid is to cast a ray until some threshold
(or other terminating condition) is met. Using matrix trans-
formations for each voxel is too computationally expensive
for operations such as filling in evidence cones or simulating
ranges. These tasks can be decomposed into raster operations,
which are performed with a 3D variant of the classic 2D
Bresenham line drawing, or ray-casting, algorithm [30]. We
have implemented these line-drawing operations on the octree-
based DRCO that run within a (small) constant factor of the
same operations on a uniform array.

It should be pointed out that while the 3D DRCO is a very
general map representation, capable of representing arbitrary
3D geometry, it is more general than necessary for the specific
task of localizing relative the ocean floor, which can almost
always be represented more efficiently as a height map — which



also has faster line-drawing operations.

E. Active Localization

Active localization gives the localization system the ability
to influence the behavior of the vehicle. In particular, when
the position estimate becomes uncertain, active localization
can recommend actions that are expected to reduce this uncer-
tainty. Since large regions of the ocean floor (and our dataset
in particular) are basically flat and featureless, simply flying
in a straight line may not be sufficient for quick and accurate
position convergence — and active localization is extremely
useful, if not essential.

As discussed above, many active localization methods use
an information-theoretic framework, in which the entropy
of the entire particle filter is estimated using a variety of
heuristics [19]. By simulating the effect of executing several
different candidate actions on the particle filter, the action that
is expected to lead to the lowest entropy can be selected. But
this is difficult: not only is the simulation computationally
expensive, but it must be repeated for several different sim-
ulated datasets: ideally one per candidate action per particle.
To avoid this, Stachniss et al. [31] only simulate the actions
for a weighted subset of particles, while Kiimmerle et al.
[18] attempt to cluster the particles into groups and run one
simulation per cluster.

But when we are just localizing, rather than updating maps
in full SLAM, we just want to find an action that allows the
filter to discriminate between particles, yielding a unimodal
particle cloud around the true vehicle position. We would like
to find this action without explicitly simulating the particle
filter state and then evaluating its entropy. We can do this by
examining the simulated datasets from a subset of particles:
the most discriminative action is that which generates the
simulated datasets that are the most different. Since the real
dataset which results from taking that action will only be
similar to a few of the particles’ simulated datasets, we know
that all of the other particles will be discarded. Simulating
datasets is fast, only requiring ray-casting and a naive vehicle
motion model, and these datasets can be quickly compared
using, for example, sum-squared difference.

Thus, if A is the set of candidate actions, M is the set of
all particles, and m C M is a subset of particles generated
by sampling according to the particle weights, then for each
action ¢ € A and particle ¢ € m, we simulate the range
measurements zJ using the particle pose, the simulated vehicle
trajectory as a result of taking the action, and the map. We
then find the most discriminative action:

3 1\ 2
arg max DO (-2
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By periodically repeating this action selection process, the
vehicle will select actions which are expected to allow it to best
discriminate amongst its current set of particles, thus reducing
the particle filter entropy — without ever explicitly estimating
the entropy. Due to its simplicity, this approach can be run
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Fig. 5. Axial survey tracklines — the long tracklines were used to create

the map and random segments of the cross-track lines were used to verify
localization.

faster, for longer action horizons, than full filter simulation
and entropy estimation methods.

The set of candidate actions can be arbitrarily complicated,
though the computational expense of evaluating them increases
accordingly. In domains where the vehicle motion is con-
strained (by walls, for example), heuristics can applied to
rapidly eliminate infeasible actions. In our experiments in the
open underwater domain described below, we simply used
straight-line motion for 30 m in one of the 8 cardinal and
intercardinal directions as our set of candidate actions.

F. Results

As described above, our test dataset is from Axial and
Monterey Canyon (Figure 5), a 23.3 km survey in 5 legs
of about 4 km, plus two cross-track legs, in about 4.4 hours
(Figure 5). After examining the dataset, we discarded the last
27 out of 256 beams, which seemed to be very noisy. We
divided the dataset into two pieces: the trackline legs and the
cross-track legs. We then built a map with the trackline legs,
and used the cross-track legs to test our localization methods.

1) Map construction: We used the onboard dead reckoning,
together with the sonar range measurements, to construct an
octree evidence grid map at 1 m resolution. The octmap
dimensions were 81923, and although only a small fraction of
this volume ended up being used, the large size meant that we
didn’t have to worry about the vehicle driving off the edge of
the map — this scaleability is essential for a real-world system.

It took 22 minutes to construct the map on a 3 GHz P4
computer using the 20 km of trackline legs, a total of 6.5



million range measurements. Since this portion of the mission
took 225 minutes to run, this is about 10 times realtime.

Un-compacted, the octree map size was 530 MB. After
running lossy compaction, in which the octree map was
compacted by thresholding into {empty, occupied} and ho-
mogeneous regions were consolidated, the map was just 78
MB. As an upper bound, a uniform array of 4096 x 4096 x
4096 would be 65536 MB. As a rough lower bound, a minimal
1 m resolution uniform array tightly fit to to the survey area
would be about 4096 x 1024 x 20 = 100 MB; the compact
octree efficiently represents the volume.

2) Localization: Although the dataset was collected at
about 1500 m, we would like to demonstrate that our method
can converge from the initial descent error that would result
from a descent of 1000 and 6000 m. The vehicle travels at
about 1.5 m/s and dives at about 30 degrees pitch, yielding
a 0.75 m/s dive rate. Brokloff [2] reports performance of
0.16% of distance traveled with bottom tracking and 0.35%
with only water tracking. Since the MBAUYV has much better
bottom tracking performance, 0.05% of distance traveled [22],
we hope that assuming 0.35% during descent is a suitably
conservative estimate. Thus, if the vehicle needs to dive 1000
m to bring the DVL into range of the bottom, the final position
error on the bottom is 1000 m <+ 0.75 m/s x 0.35% = 4.7 m
1 0. The same calculation for diving 6000 m yields a position
error of 28 m 1 o.

To evaluate our method, the particle filter used the map
described above, and attempted to localize using data from
the as-yet unused cross-track legs. This process is summarized
in Figure 6. We used several different segments of the cross-
track legs for testing. For a given segment of one of these
legs, we first perturbed the initial position according to a 5 or
28 m 1 o Gaussian (depending on whether we simulating a
1000 or 6000 m dive), and then distributed the particles around
this perturbed mean according to a 10 or 35 m 1 o Gaussian
distribution. The distribution of the particles was larger than
the dive-length derived position perturbation to ensure that
there were particles near the true position. Repeating this
entire process, we evaluated the particle filter performance
over multiple runs according to how quickly and accurately
it converged to the “ground truth” position. Convergence,
indicated by low particle cloud variance, is an important metric
because it indicates when the filter is confident in a unique
position estimate. In the broader context of AUV operation,
convergence indicates that the AUV is well localized and can
begin to perform its other tasks on the sea floor.

The particle filter did not always converge, as indicated by
low particle position variance: Figure 7 shows an example
of successful convergence, while Figure 8 shows a failure to
converge because there are multiple modes, one of which is
the correct one, so the filter could converge given more data.

Convergence was consistent for the 1000 m test (Figure 9),
but sometimes failed (detectably) for the 6000 m test (Figure
10). Since the variance remained high for these failed runs, the
vehicle could choose to restart the entire localization process
(with perhaps a different initial position bias), repeating the
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Fig. 7. Successful particle filter convergence: the particle cloud is unimodally
distributed around the true position. Note that the mean of the initial particle
distribution is significantly perturbed from the true initial position shown by
the left end of the yellow line.
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Fig. 8. Failed particle filter convergence: there are still multiple particle
modes, one of which is the correct position, so the particle filter could still
converge to the correct position given more data. Note that the mean of
the initial particle distribution is significantly perturbed from the true initial
position shown by the left end of the yellow line.

procedure until it successfully localized.

There are many variables which affect the number of parti-
cles that can be supported in real-time. One is the resolution
of the map, which was 1 m for these experiments. Another is
the number of range measurements which must be simulated
during the weighting step of the particle filter. The multibeam
collects 256 ranges at 2 Hz, but not all beams need be used
for weighting. In particular, because all 256 1° beams are
packed into a 150° swath, they overlap almost double. Thus,
in realtime on a 3 GHz P4 computer, we can either support
over 400 particles with all ranges, or over 800 particles if we
decimate the multibeam fan by a factor of two. Likewise, it is
reasonable to decimate the data along the vehicle’s direction
of travel, since it only moves about 0.75 m between pings.
By adjusting these decimation factors, we sometimes ran with
1600 particles in real time: the benefits of additional particle



Fig. 6.

Localization example showing 1) sonar pointcloud from two tracklines, 2) a portion of the evidence grid constructed from all the tracklines, red is

known empty space and green is known occupied space, 3) the occupied portion of the evidence grid, 4) the true vehicle position (in yellow) at the beginning
of a cross-track line (not used to construct the evidence grid) and the particle cloud of possible positions, 5 & 6) the iterative convergence of the particle

cloud to the true position over the course of a few seconds.

density outweighed the loss of denser range data. However, for
the results presented in this paper, we ran with 800 particles
and a multibeam fan decimation factor of 2, which put us
comfortably within realtime.

By decimating almost all of the ranges, we can also sim-
ulate a vehicle with a simpler sonar system, although the
full multibeam system is necessary to construct the high-
resolution map. Individual pencil-beam sonars (or altimeters)
are far simpler and cheaper than a multibeam system, and
the DVL itself provides up to 4 beams. Figure 11 shows that
convergence for the 1000 m test was slow, but reliable with just
4 beams. Anecdotally, the fewer the beams, the more sensitive
convergence was to the amount of terrain variation.

Finally, the three tests, 6000 m, 1000 m, and 1000 m with
4 beams are compared in Figure 12.

3) Active Localization Results: Using the map constructed
above, we simulated vehicle motion and range data so that
we could allow the simulated vehicle to take different actions.
We compared three methods for choosing the heading for the
next 30 m leg of vehicle travel: a constant heading, a random
heading, and an actively selected heading in which the vehicle
chose between 8 different headings (at 45 degree increments)
by finding the most discriminative action, as described above.
Note that, as shown by the localization results with real data,
sometimes traveling on a constant heading can yield excellent
convergence: in order to distinguish whether active localization
has an effect, we selected a starting location and direction in
which constant heading was known to fail due to the lack of
terrain variation. But even when constant heading fails we

also needed to show that our action selection process was
better than simply choosing a random heading. Localization
convergence (Figure 13) shows that active heading selection
significantly outperforms both constant heading and random
heading selection.

V. CONCLUSION

We have demonstrated robust real-time localization with
multibeam sonar data. Using conservative models of the
vehicle’s position error after 1000 m and 6000 m dives, we
ran large numbers of randomized tests on multiple segments
of real data. Although localization with 800 particles does
not always converge for the 6000 m tests, the failure to
converge is detectable and can be addressed either by restarting
the localization procedure, or by applying active localization.
When the filter converged, it did so within 200 s (half that
for the 1000 m dive tests), yielding a single position estimate
within 2 m of ground truth, which is competitive with the
best LBL/USBL localization results. We have shown that by
selecting the most discriminative action, active localization
can yield accurate convergence in situations where the terrain
variation is sparse and convergence does not necessary occur at
all. We have also shown that our localization method converges
with just 4 sonar beams, meaning that it could be applied to
vehicles with less expensive sonar systems.

a) Future work: While the octree efficiently stores very
large maps, it is limited by available memory. By segmenting
the world into submaps, perhaps by only loading portions of
the octree, we can improve the scaleability. Also, our method



error (m)
o

time (s)

std dev (m)

o 20 40 60 80 100
time (s)

Fig. 9. Convergence plot for 10 different runs of the 1000 m test: on the left is the position error over time, and on the right is the standard deviation of the
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80 T T T T T

70 |

60 [

error (m)
w v
& & 8

N
S

=
S}

[} 50 100 150 200 250 300
time (s)

35 T T T T T

30 st

ALY

E20f

>

]

S

B sp S

i
10}
il L]

| I
L
% 50 100 150 200 250 300
time (s)

Fig. 10. Convergence plot for 10 different runs of the 6000 m test: on the left is the position error over time, and on the right is the standard deviation of the
particle positions over time. Note that several runs failed to converge, but this can be detected by observing that the standard deviation stays high (indicating
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deviation of the particle positions over time.

for selecting candidate actions is intuitively satisfactory, but we
would like to pursue a more rigorous foundation. It is clear that
our approach would benefit from more particles, particularly
for the 6000 m test. We may optimize our code, or we may
wait for Moore’s law to solve the problem. Finally, for the
sake of simplicity the method described in this paper involved
two distinct phases: map construction and localization. These
phases can clearly be unified into a single SLAM system that
would allow the vehicle to take advantage of newly mapped
regions without returning to the surface.

std dev (m)

time (s)

Convergence 10 different runs of the 1000 m test with just 4 sonar beams: on the left is the position error over time, and on the right is the standard
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