
Anytime RRTs

Dave Ferguson and Anthony Stentz
Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania

{dif,tony}@cmu.edu

Abstract— We present an anytime algorithm for planning paths
through high-dimensional, non-uniform cost search spaces. Our
approach works by generating a series of Rapidly-exploring
Random Trees (RRTs), where each tree reuses information from
previous trees to improve its growth and the quality of its
resulting path. We also present a number of modifications to
the RRT algorithm that we use to bias the search in favor of
less costly solutions. The resulting approach is able to produce
an initial solution very quickly, then improve the quality of this
solution while deliberation time allows. It is also able to guarantee
that subsequent solutions will be better than all previous ones
by a user-defined improvement bound. We demonstrate the
effectiveness of the algorithm on both single robot and multirobot
planning domains.

I. INTRODUCTION

Rapidly-exploring Random Trees (RRTs) have been shown

to be very effective for solving robotic path planning problems

involving complex configuration spaces [1], [2], [3], [4], [5].

By combining random sampling of the configuration space

with biased sampling around a desired goal configuration,

RRTs efficiently provide solutions to problems involving

vast, high-dimensional configuration spaces that would be

intractable using discrete approaches.

However, while RRTs have been found to be extremely

effective at generating feasible solutions, they provide no

control over the quality of the solutions produced. In many

situations, in particular when dealing with non-uniform cost

search spaces, the difficulty of executing different solution

paths may vary substantially. It is thus important that solution

cost is taken into account during the search process.

Nevertheless, few efforts have been made to incorporate cost

considerations into sampling-based planning algorithms. One

notable exception is work by Urmson and Simmons [6], who

developed a series of modified versions of the RRT algorithm

that select tree nodes for expansion based on the cost of their

current path from the initial node. Their approaches were

able to produce less costly solutions through both uniform

and non-uniform cost search spaces. However, as might be

imagined, this improvement in solution quality usually came

at a computational price: the approach that produced the best

solutions required significantly more computation than the

unmodified RRT algorithm.

For agents operating in the real world under time con-

straints, it is important both that high quality solutions are

produced and that these solutions can be produced within the

time available for planning. One class of planners well-suited

to this task are anytime planners, which quickly find an initial,

highly suboptimal plan, and then improve this plan until time

runs out.

In this paper, we present a sampling-based anytime al-

gorithm for generating solution paths through both uniform

and non-uniform cost search spaces. Our approach works

by generating a series of Rapidly-exploring Random Trees,

where each tree reuses information from previous trees to

improve its growth and the quality of its resulting path. The

first tree is generated using an unmodified RRT algorithm

to ensure that a valid solution is available in the minimum

possible time. We also present a number of modifications to

the Rapidly-exploring Random Tree algorithm that we use to

bias the subsequent searches in favor of less costly solutions.

The resulting approach is able to produce an initial solution

very quickly, then improve the quality of this solution while

deliberation time allows. It is also able to guarantee that

subsequent solutions will be better than all previous ones by

a user-defined improvement bound.

We begin by describing the basic RRT algorithm and ex-

tensions that have been made to this algorithm to improve the

quality of the solutions produced. We then introduce Anytime

Rapidly-exploring Random Trees and show how this approach

can be used to generate less costly solutions through both

uniform and non-uniform cost search spaces. We go on to

present a number of results from a single robot navigation

domain and a multirobot constrained exploration domain, and

conclude with discussions and extensions.

II. RAPIDLY-EXPLORING RANDOM TREES

The standard RRT algorithm for planning a path from some

initial configuration qstart to a goal configuration qgoal is

presented in Fig. 1. This algorithm initializes a search tree

with the initial robot configuration as the root node, then

incrementally grows the tree until the goal configuration is

reached. To grow the tree, first a target configuration qtarget

is randomly selected from the configuration space using the

function ChooseTarget. Then, a NearestNeighbor function

selects the node qnearest in the tree closest to qtarget. Finally, a

new node qnew is created in an Extend function by growing the

tree some distance from qnearest towards qtarget. If extending

the tree towards qtarget requires growing through an obstacle,

no extension occurs. This process is repeated until the tree

grows to within some user-defined threshold of the goal (line

3). A very nice property that follows from this method of

1-4244-0259-X/06/$20.00 ©2006 IEEE
5369

Proceedings of the 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems

October 9 - 15, 2006, Beijing, China

InitializeRRT(rrt T)

1 T .add(qstart);

GrowRRT(rrt T)

2 qnew = qstart;

3 while (Distance(qnew , qgoal) > distance-threshold)

4 qtarget = ChooseTarget();

5 qnearest = NearestNeighbor(qtarget, T);

6 qnew = Extend(qnearest, qtarget, T);

7 if (qnew �=null)

8 T .add(qnew)

ChooseTarget()
9 p = RandomReal([0.0, 1.0]);

10 if (p < goal-sampling-prob)

11 return qgoal;

12 else

13 return RandomConfiguration();

Main()

14 InitializeRRT(tree);

15 GrowRRT(tree);

Fig. 1. The RRT Algorithm.

construction is that the tree growth is strongly biased towards

unexplored areas of the configuration space. Consequently,

exploration occurs very quickly. The RRT algorithm can also

be made significantly more efficient if the search is focussed

towards the goal. This can be achieved through using a

goal bias (lines 9 to 11): with probability 1 − p, qtarget is

randomly selected; with probability p, qtarget is set to the

goal configuration. As the value of p is increased, the RRT

behaves increasingly like best-first search.

As mentioned earlier, the original RRT algorithm does not

take into account solution cost during the search. Thus, it

can produce paths that are grossly suboptimal, particularly

in non-uniform cost search spaces. To improve upon this,

Urmson and Simmons presented three modified versions of

the RRT algorithm that take cost into account when selecting

nodes in the tree for extension [6]. They replaced the simple

NearestNeighbor function (Fig. 1 line 5) with a function that

found the k nearest neighbors to the current qtarget point, then

selected from these k nodes either (1) the closest node qnearest

to qtarget, as long as an estimate of the cost of a path from

qstart through qnearest to qgoal is less than some probabilistic

threshold r, or (2) the first of the k nodes (ordered by estimated

path cost) whose current estimated path cost is less than r,

or (3) the node with the minimum estimated path cost, as

long as this cost was less than r. These 3 different selection

methods resulted in 3 different algorithms. Of these, the third

method produced the best overall solutions, but required more

computation than the standard RRT algorithm.

We are interested in using RRTs for navigation of single

agents and multi-agent teams in partially-known outdoor en-

vironments. Because our agents are acting in the real world,

there may be situations where plans must be generated and

executed extremely quickly. There may also be other situations

where there is more time for deliberation and better plans are

desired. The agents may not know a priori how much planning

time is available and they certainly will not know how long it

will take a particular algorithm to generate a solution. Thus,

it is useful to generate a series of solutions and then employ

the best of these solutions when an action has to be executed.

In the discrete planning community, there exist a number of

efficient algorithms that can provide this performance [7], [8].

For example, the ARA* algorithm developed by Likhachev,

Gordon, and Thrun works by creating an initial, highly-

suboptimal solution by running an inflated A* search with

a high suboptimality bound ε, then improves this solution by

repeatedly running new searches with decreasing values of

ε. After each search terminates, the cost of the most recent

solution is guaranteed to be at most ε times the cost of an

optimal solution.

In order to plan through complex, very high-dimensional

configuration spaces (as might be encountered when planning

for teams of agents), we would like a sampling-based analog

to these discrete anytime algorithms. In the following section,

we present a sampling-based anytime algorithm that efficiently

constructs an initial solution using the standard RRT algorithm,

then improves this result by generating a series of solutions,

each guaranteed to be better than all the previous ones by

some improvement factor εf . These successive solutions are

generated by using modified versions of the RRT algorithm

that take into account cost—both of nodes in the current tree

and of previous solutions—to influence the sampling of the

search space, the selection of nodes in the tree for extension,

and the extension operation itself.

III. ANYTIME RAPIDLY-EXPLORING RANDOM TREES

Discrete anytime algorithms such as ARA* achieve their

anytime performance by efficiently generating a series of

solutions, where each solution is better than the previous ones.

At any point in time the best solution found thus far can be

returned, along with a suboptimality bound on the quality of

this solution.

We can use this same basic idea to create a sampling-based

anytime algorithm. We start out by generating an initial RRT

without any cost considerations. We then record the cost Cs

of the solution returned by this RRT. Next, we generate a new

RRT and ensure that its solution is better than the previous

solution by limiting the nodes added to the tree to only those

that could possibly contribute to a solution with a lower overall

cost than Cs. We can also multiply our cost bound Cs by

some factor (1 − εf), where 0 ≤ εf < 1, to ensure that the

next solution will be at least εf times less expensive than our

previous solution. In such a case, εf is known as the solution

improvement factor. We then update our cost bound Cs based

on the cost of the new solution and repeat the process until

time for planning runs out.

Such an approach guarantees that each solution produced

will be better than all the previous solutions. However, it

does not guarantee that new solutions will be able to be

produced. In order for this approach to be truly effective we

require dependable methods for generating each successive

5370

(a) (b) (c) (d) (e)

Fig. 2. Anytime RRT Planning. Given a partial RRT (shown in (a)) being grown from an initial configuration (the bottom filled circle) to a goal configuration
(the top filled circle), this illustration shows how the Anytime RRT approach samples, selects, and extends the tree. To begin with, we assume some previous
solution has already been generated. (b) When using the Anytime RRT approach to sample the configuration space, only areas that could potentially lead to
an improved solution are considered (indicated by the shaded oval). Thus, the black nodes are rejected while the white node is accepted. (c) When selecting
the next node in the tree to extend, the k nodes closest to the sample point are found and ordered according to both their distance from the sample point
and the cost of their path from the start node. Here, k = 3 and the white node and two black nodes are the closest; the white node is selected first since
its path is less expensive than those of the two black nodes. (d) The tree node from (c) is then extended by generating a set of possible extensions and then
probabilistically choosing the one that is least expensive. The cost of the extension to the white node is cheaper than the extensions to the black nodes, so
the white node is chosen as the next element to be added to the tree. (e) After checking that the sum of the cost of the path from the start node through the
tree to the new element and the heuristic cost of a path from the new element to the goal is less than the solution bound, the element is added to the tree.

low-cost solution. We rely upon novel node sampling, node

selection, and node extension operations that incorporate cost

considerations and variable bias factors to efficiently produce

solutions satisfying a specified cost bound. We discuss each

of these operations in turn.

A. Node Sampling

If we are only interested in generating a solution that is

cheaper than some upper bound value Cs, then we can use

this upper bound to influence the sampling process used by

the RRT algorithm. Rather than randomly sampling the entire

configuration space, we restrict our sampling to just those

areas of the configuration space that could possible provide

a solution satisfying the upper bound. Given a node qtarget in

the configuration space, we can check whether qtarget could

be part of such a solution by calculating a heuristic cost

from the initial node qstart to qtarget, h(qstart, qtarget), as

well as a heuristic cost from qtarget to the goal node qgoal,

h(qtarget, qgoal). If these heuristic values do not overestimate

the costs of optimal paths between these nodes then the

combination of these heuristic values gives us a lower bound

on the cost of any path from qstart through qtarget to qgoal. If

this lower bound cost is greater than our upper bound Cs, then

there is no way qtarget could be part of a solution satisfying

our upper bound and so qtarget can be ignored.

However, depending on the complexity of the configuration

space and what heuristics are used, this approach could make

it very difficult for the RRT to find a solution. For example, if

there are narrow passages in the configuration space between

large obstacles, then it may be very difficult to sample nodes

inside the passages. This is a well-known problem with

the original RRT algorithm, but it could be exacerbated by

disregarding any samples that fall inside configuration space

obstacles. Depending on how the heuristic deals with such

samples, the above approach could make it even more difficult

for the tree to grow down any narrow passages. Further, by

reducing our consideration of sample points to only those

whose heuristic values are promising, we are in effect cutting

off large chunks of the configuration space. This is entirely

the point of restricting our sampling, but it can also introduce

new narrow passages. For example, imagine an obstacle that

resides near the edge of the promising configurations, as

determined by our heuristic values. It may be possible to plan

a path around this obstacle, but finding such a path may be

difficult using our restricted sampling approach, as very few

samples exist that will pull the tree towards this edge. Thus,

it is important to use conservative heuristic estimates and not

disregard points that reside in configuration space obstacles.

One way of implementing this restricted sampling idea is to

continue generating random samples qtarget from the configu-

ration space until we find one whose combined heuristic cost is

less than our upper bound. This approach is illustrated in Fig.

2(b). Another method is to use the heuristic functions to do

the sampling itself, so that every node sampled will satisfy the

upper bound. On the whole, this restricted sampling technique

saves us a lot of unnecessary computation spent on irrelevant

areas of the configuration space.

B. Node Selection

Once a sample node qtarget has been generated using the

above technique, we then select a node from the tree qtree

to extend out towards the sample node. In the original RRT

algorithm, the closest node in the tree to qtarget is selected to

be qtree. However, as Urmson and Simmons show [6], much

cheaper solutions can be obtained if we modify this selection

process to incorporate cost considerations.

Our selection approach is based on their ideas but uses

bias factors to vary over time the influence of cost, so that

5371

ReinitializeRRT(rrt T)

1 T .cleartree();

2 T .add(qstart);

GrowRRT(rrt T)

3 qnew = qstart; time = 0;

4 while (Distance(qnew , qgoal) > distance-threshold)

5 qtarget = ChooseTarget(T);

6 if (qtarget �= null)

7 qnew = ExtendToTarget(qtarget, T);

8 if (qnew �= null)

9 T .add(qnew);

10 UpdateTime(time);

11 if (time > max-time-per-rrt)

12 return null;

13 return T.c(qstart, qnew);

ChooseTarget(rrt T)

14 p = RandomReal([0.0, 1.0]);

15 if (p < goal-sampling-prob)

16 return qgoal;

17 else

18 qnew = RandomConfiguration();

19 attempts = 0;

20 while (h(qstart, qnew) + h(qnew, qgoal) > T.Cs)

21 qnew = RandomConfiguration();

22 attempts = attempts + 1;

23 if (attempts > max-sample-attempts)

24 return null;

25 return qnew ;

Fig. 3. The Anytime RRT Algorithm: GrowRRT and ChooseTarget Func-
tions.

initially nodes are selected based purely on their distance from

qtarget, and in subsequent searches this gradually changes so

that some combination of distance from qtarget and the cost

of the node is considered, eventually leading to purely cost-

based selection. We accomplish this by using a distance bias

parameter db and a cost bias parameter cb. First, the k nearest

neighbor nodes in the tree to qtarget are computed. Next, these

nodes are ordered in increasing node selection cost:

SelCost(q) = db · Distance(q, qtarget) + cb · c(qstart, q),

where c(qstart, q) is the cost of the current path from qstart to

q in the tree. We then process these nodes in order until one is

found from which a valid extension can be made (the extension

process is described below). Fig. 2(c) shows an illustration of

the node selection process.

Initially, db = 1 and cb = 0 and so our node selection

operates exactly as a nearest neighbor lookup. Between each

successful search, db is reduced by some value δd and cb is

increased by some value δc, so that the cost of the tree nodes

becomes increasingly important as time progresses. This has

the effect of producing more costly solutions early on, when

we are most concerned with ensuring that valid solutions are

available, and then providing cheaper solutions if there is extra

time available for planning.

SelCost(rrt T, configuration q, configuration qtarget)

1 return T.db · Distance(q, qtarget) + T.cb · T.c(qstart, q);

ExtendToTarget(rrt T, configuration qtarget)

2 Qnear = kNearestNeighbors(qtarget, k, T);

3 while Qnear is not empty

4 remove qtree with minimum SelCost(T, qtree, qtarget) from Qnear ;

5 Qext = GenerateExtensions(qtree, qtarget);

6 qnew = argminq∈Qext
c(qtree, q);

7 T.c(qstart, qnew) = T.c(qstart, qtree) + c(qtree, qnew);

8 if (T.c(qstart, qnew) + h(qnew, qgoal) ≤ T.Cs)

9 return qnew ;

10 return null;

Main()
11 T.db = 1; T.cb = 0; T.Cs = ∞;

12 forever

13 ReinitializeRRT(T);

14 T.Cn = GrowRRT(T);

15 if (T.Cn �= null)

16 PostCurrentSolution(T);

17 T.Cs = (1 − εf) · T.Cn;

18 T.db = T.db − δd;

19 if (T.db < 0)

20 T.db = 0;

21 T.cb = T.cb + δc;

22 if (T.cb > 1)

23 T.cb = 1;

Fig. 4. The Anytime RRT Algorithm: ExtendToTarget and Main Functions.

C. Node Extension

When a node in the tree is selected for extension, we take

into account the nature of the configuration space in its vicinity

to produce a new, low-cost branch of the tree. There are two

different approaches we use to do this. The first approach is

to generate a set of possible extensions that lead from the tree

node qtree in the general direction of the sample node qtarget

and then take the cheapest of these extensions. This results

in a new node qnew which is added to the tree if it could

potentially contribute to a solution satisfying our upper bound

Cs, i.e., if

c(qstart, qtree) + c(qtree, qnew) + h(qnew, qgoal) ≤ Cs,

where c(qstart, qtree) is the cost of the current path from

qstart to qtree in the tree (as before), and c(qtree, qnew) is

the cost of the extension just constructed from qtree to qnew.

If qnew does not satisfy our solution bound then a new set

of extensions that do not lead as directly to the sample node

is considered. This process continues, with each subsequent

set of extensions ‘fanning out’ further from the sample node,

until either a qnew is generated that satisfies our bound or

some maximum number of attempts have been made.

The second approach is to use a large initial set of possible

extensions and take the cheapest of these extensions. Again,

we check that the corresponding new node qnew satisfies our

solution bound before adding it to the tree. This approach is

5372

(a) (b) (c) (d) (e)

Fig. 5. Anytime RRTs used for single robot path planning. The start node is the vehicle at the bottom of the environment, the goal is the square at the
top. Shaded regions represent higher-cost areas to traverse through; black regions represent obstacles. (a) Initial RRT generated without cost consideration.
(b) Fifth RRT generated, using costs of previous solutions and nodes of the current tree to bias the growth of the current tree. (c) Final RRT generated. (d)
Path corresponding to initial RRT from (a). (e) Path corresponding to final RRT from (c). These images correspond to the results presented in Fig. 7(a).

illustrated in Fig. 2(d). Because the first of these approaches is

generally faster and the second produces less costly solutions,

both are useful in our anytime framework: the first can be used

to efficiently produce RRTs at early stages of our planning,

while the second can be used to produce later trees with less

costly solutions. It can also be beneficial to include some

randomness in the extension operation: with some probability

a random extension operation is selected and tested against

our solution bound.

Pseudocode of the basic Anytime RRT approach is given

in Figures 3 and 4. For space and simplicity we have not

included all the features mentioned in the previous discussion.

In particular, our actual implementation begins by generating

a standard RRT and uses this to provide an initial solution

and bound, and the ExtendToTarget function is modified over

time to switch between our different extension approaches.

In the pseudocode, UpdateTime(time) increments an elapsed

time counter, kNearestNeighbors(qtarget, k, T) returns the

k closest nodes in the tree T to a sample node qtarget,

GenerateExtensions generates a set of extension operations

(in the manner discussed earlier) and returns the nodes at

the endpoints of these extensions, and PostCurrentSolution
publishes the current solution so that it can be executed if

deliberation time runs out. The plaintext identifiers (e.g. ‘num-

neighbors’) are constants. Other identifiers (e.g. db) are as

described earlier, prefixed with the tree identifier T to illustrate

that they are variables associated with the tree.

Because the Anytime RRT approach uses a solution bound

to influence the growth of each RRT, it has a number of nice

properties. We include the major ones here; proofs of these

can be found in [9]. Firstly, because the algorithm restricts

nodes added to the tree based on the solution bound Cs, it is

guaranteed not to produce any solution whose cost is greater

than Cs.

Theorem 1. When the solution bound is Cs, the cost of any
solution generated by the Anytime RRT algorithm will be less
than or equal to Cs.

By updating the solution bound each time a new path is

generated, the algorithm is also able to guarantee that the next

solution will be better than the previous one, by at least our

user-defined solution improvement factor εf .

Theorem 2. Each time a solution is posted by the Anytime
RRT algorithm, the cost of this solution will be less than (1−
εf) times the cost of the previous solution posted.

Together, these properties ensure that solutions produced

by the Anytime RRT algorithm improve over time and that

the rate of improvement is at least as good as the solution

improvement factor εf .

Corollary 1. If εf > 0 then the solutions posted by the
Anytime RRT algorithm will have associated costs that are
strictly decreasing. Moreover, these costs will decrease by at
least a factor of εf between each successive solution.

IV. EXPERIMENTS AND RESULTS

The primary motivation behind this work was efficient

multirobot path planning in non-uniform cost environments. In

particular, we are interested in constrained exploration, where

a team of robots is tasked with exploring an environment while

abiding by some constraints on their paths [10]. For instance,

imagine an environment containing areas through which no

communication is possible (due to eavesdropping adversaries

or environmental characteristics), and the team must maintain

line-of-sight communication at all times. RRTs are useful for

5373

(a) (b) (c)

R
el

at
iv

e
C

o
st

Fig. 7. Anytime RRT results. (a) Example results from a single run in one of the single robot environments. Shown are the RRT solution costs generated as
time progresses - the regular RRT approach does not use previous solution costs to influence the growth of future trees. (b,c) Average relative solution cost
as a function of time for our (b) single robot, and (c) three robot runs. The minimum-cost solution generated by each of the approaches (relative to the best
overall solution generated) is presented at each point in time.

Fig. 6. Anytime RRTs used for multirobot constrained exploration. On the
left is one of the trees produced by our anytime approach. On the right is the
corresponding path.

solving this problem because they cope well with the very

high dimensional configuration space.

To analyse the performance of Anytime RRTs, we generated

two different sets of experiments. In the first, we planned

paths for a single agent across a 300 × 600 non-uniform cost

environment in which there was a set of randomly placed

obstacles and a set of randomly placed, random cost areas (see

Fig. 5 for an example such environment). We compared the

solutions generated by Anytime RRTs to those generated by a

series of standard RRTs. Each approach was allowed to run for

a total time of 2 seconds (on a 1.5 GHz Powerbook G4), and

each individual RRT was allowed to take up to 0.5 seconds. We

repeated this process for 100 different environments. Fig. 7(b)

plots the average cost of the best solutions generated versus

planning time for these experiments. These results have been

normalized: for each run, the best solution produced by the

Anytime RRT approach was recorded and all solution costs

were then computed relative to this cost.
Our second set of experiments had a similar setup, except

that we planned joint paths for a team of 3 agents and main-

tained a line-of-sight communication constraint over the entire

path. Again, we randomly generated 100 different non-uniform

cost environments, and the obstacles in the environment acted

as both navigation obstacles (i.e., no agent could have its path

intersect any of these obstacles) and communication obstacles

(i.e., if the direct line between two agents intersected one of

these obstacles at any point in the agents’ paths, line-of-sight

communication was broken between these agents). We allowed

the planner 10 seconds of planning time, and each individual

tree was allowed up to 2 seconds. Results from this second

set of experiments are shown in Fig. 7(c); as with the first

experiment, these results have been normalized.
For both these experiments, the Anytime RRT approach

began by growing a standard RRT using the standard nearest

neighbor and extension operators. Then, it slowly decreased

db by δd = 0.1 each iteration and increased cb by δc = 0.1.

It switched its extension operator from the former approach

mentioned in Section III-C to the latter approach after the third

solution was found. εf was set to 0.1 so that each successive

solution was guaranteed to be 10% less costly than the pre-

vious solution. For our heuristics we used Euclidean distance

and our available extensions were straight-line segments for

each agent.
There are a couple points worth noting from the results of

these experiments. Firstly, both the regular RRT approach and

the Anytime RRT approach both start with the same solution

(the graphs start from the same point in the upper left), so

that both are able to provide an initial, valid solution in the

minimum possible time. This is important for occasions where

the available planning time may turn out to be very small and

an agent has to act quickly.
Secondly, the Anytime RRT approach produces much better

solutions, and is able to improve upon initial solutions much

more quickly than the regular RRT approach. Overall, the best

solutions generated by the regular RRT approach at the end

5374

of the maximum time allowed for planning were on average

3.6 and 2.8 times more expensive than the corresponding

Anytime RRT solutions for the single agent and multi-agent

cases, respectively. But the intermediate solutions produced by

Anytime RRTs were also much better: Anytime RRTs were

able to quickly and continually reduce the solution cost so

that at any point in time they provided less costly solutions.
To provide a more detailed look at the behavior of each

approach during a single run, Fig. 7(a) shows the results for

a single environment in our single agent planning scenario.

Here, we have plotted the most recent solution cost versus

time over the course of planning. This graph shows the costs of

the solutions generated by the Anytime RRT approach strictly

decreasing over time, while the solutions produced by the

regular RRT approach vary widely in cost and do not exhibit

any general improvement. The environment from which these

results came, along with some of the trees and solutions

produced by the Anytime RRT approach, are illustrated in

Fig. 5.

V. DISCUSSION

One of the most significant limitations of sampling-based

planners to date has been their inability to provide high quality

solutions or even bounds on the suboptimality of the solutions

generated. In this work, we have presented techniques that

are very effective at biasing sampling-based planners in favor

of better solutions. These techniques are extremely useful

for producing low cost solutions in non-uniform cost search

spaces. Further, we have shown how these techniques can be

incorporated into an anytime sampling-based planner that not

only improves its solution over time, but can provide (and

accept) bounds on the quality of this improvement.
Our anytime approach generates a series of RRTs, each

producing a new solution that is guaranteed to be less expen-

sive than the previous solution by a user-defined improvement

factor εf . Thus, a valid solution is returned as quickly as by

the standard RRT algorithm, but the quality of this solution

is then improved while deliberation time allows. The result-

ing algorithm provides similar benefits as recently-developed

discrete anytime algorithms, but is able to plan over much

larger, higher-dimensional search spaces. We have provided

key properties of the algorithm including relative bounds on

the quality of the solutions generated, and have demonstrated

its effectiveness for both single agent navigation and multi-

agent constrained exploration.
We are currently investigating a number of extensions to

this work. Firstly, it may be possible to exploit even more

information from previous solutions to aid in the generation

of new ones, such as low cost branches of previous RRTs or

extracted knowledge concerning the nature of the configuration

space (e.g. as in [11] but with cost considerations).

It is also worth further investigating how heuristics can be

most effectively used to focus the growth of the trees. For

example, over the course of our experiments we have found

that when the heuristic is not very informed, inflating the

heuristic values of nodes close to the root can prevent the

RRTs from growing into ‘dead ends’, where no new nodes can

be added because the early nodes were too expensive. Using

information from previous searches and the current search to

improve the heuristic estimates may be an even more effective

approach. Finally, we are implementing the approach on a

team of autonomous John Deere E-Gator vehicles for outdoor

constrained exploration.

VI. ACKNOWLEDGEMENTS

This work was sponsored by the U.S. Army Research Lab-

oratory, under contract ”Robotics Collaborative Technology

Alliance” (contract number DAAD19-01-2-0012). The views

and conclusions contained in this document are those of the

authors and should not be interpreted as representing the

official policies or endorsements of the U.S. Government.

Dave Ferguson is supported in part by a National Science

Foundation Graduate Research Fellowship.

REFERENCES

[1] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” In-
ternational Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
2001.

[2] ——, “Rapidly-exploring Random Trees: Progress and prospects,” Al-
gorithmic and Computational Robotics: New Directions, pp. 293–308,
2001.

[3] M. Kobilarov and G. Sukhatme, “Time Optimal Path Planning on
Outdoor Terrain for Mobile Robots under Dynamic Constraints,” in
Proceedings of the IEEE International Conference on Intelligent Robots
and Systems (IROS), 2004.

[4] J. Kim and J. Ostrowski, “Motion planning of aerial robots using
Rapidly-exploring Random Trees with dynamic constraints,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), 2003.

[5] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots,” in Proceedings of the International
Symposium on Robotics Research (ISRR), 2003.

[6] C. Urmson and R. Simmons, “Approaches for heuristically biasing
RRT growth,” in Proceedings of the IEEE International Conference on
Intelligent Robots and Systems (IROS), 2003.

[7] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” in Advances in Neural Information
Processing Systems. MIT Press, 2003.

[8] R. Zhou and E. Hansen, “Multiple sequence alignment using A*,”
in Proceedings of the National Conference on Artificial Intelligence
(AAAI), 2002, Student abstract.

[9] D. Ferguson and A. Stentz, “Anytime RRTs: The Proofs,” Carnegie
Mellon School of Computer Science, Tech. Rep. CMU-RI-TR-06-07,
2006.

[10] N. Kalra, D. Ferguson, and A. Stentz, “Constrained Exploration for
Studies in Multirobot Coordination,” in Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2006.

[11] B. Burns and O. Brock, “Toward optimal configuration space sampling,”
in Proceedings of Robotics: Science and Systems (RSS), 2005.

5375

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

