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Abstract:  Using a machine learning approach to mine a database of over 70,000 oral 
reading mistakes transcribed by University of Colorado researchers, we generated 225 
context-sensitive rules to predict the frequency of the 71 most common decoding errors in 
mapping graphemes to phonemes. To evaluate their generality, we tested how well they 
predicted the frequency of the same decoding errors for different readers on different text.  
We achieved .473 correlation between predicted and actual frequencies, compared to .350 
correlation for context-independent versions of the same rules.  These rules may help an 
automated reading tutor listen better to children reading aloud. 

1. INTRODUCTION 
This paper addresses the problem of how to predict students’ specific oral reading mistakes, called miscues.  This 
problem arose in the context of Project LISTEN’s automated Reading Tutor [14], which listens to children read 
aloud, but may also be of interest to the reading research and educational communities. 

One reason to predict specific miscues is to improve listening accuracy, which must strike a tradeoff between 
detecting miscues and falsely rejecting correctly read words, thereby frustrating the student.  Previous work has 
approximated miscues as (concatenations of) other words in the text being read [6], or as phonemic truncations of the 
correct word [7].  This method accepted over 95% of correctly read words, but detected fewer than half the miscues 
serious enough to threaten comprehension. Moreover, even when miscues are too minor to remediate, modelling 
them inaccurately may lead the speech recognizer astray.  Thus a better model of miscues may not only improve 
miscue detection but reduce false rejection.  Manual identification of likely mispronunciations for individual words 
in a given text [8] is onerous and does not generalize to new text containing other words.  Although other researchers 
have trained acoustic models for children’s oral reading [10], we are not aware of previous work to predict specific 
miscues in oral reading of connected text, or their frequencies. 

Another reason to analyze miscues is to identify useful types of mistakes to listen for — whether to remediate 
immediately, tolerate as unimportant, or keep track of over time.  Miscue analysis attempts to use a child’s 
omissions, substitutions, insertions, and self-corrections to infer information about the child’s strategies for reading 
[3, 4, 11].  This information can be useful to researchers in understanding reading processes and to teachers in 
remediating them.  The ability to detect recurring instances of a particular type of miscue could help the Reading 
Tutor remediate the miscue.  For example, if the student frequently mispronounces the letter ‘i’ as the short vowel 
/IH/ instead of the long vowel /AY/ in words like “bite,” the Reading Tutor could explain how silent ‘e’ affects 
preceding vowels. 

To address this problem, we applied a machine learning approach to a database of over 70,000 oral reading miscues 
recorded, transcribed, and annotated by Professor Richard Olson, Helen Datta, and their colleagues as part of a 
separate multi-year study at the University of Colorado.  This database contained miscues by 868 subjects, mostly 
between the ages of eight and twelve, reading one of seven graded text passages from Spache’s Diagnostic Reading 
Scales [12].  Each passage consisted of between 296 and 461 words.  Based on subject reading levels, University of 
Colorado researchers assigned each subject to one passage that he or she would find challenging, made an audio 
recording while the subject read, and manually coded miscues from the recording.  For each miscue, they coded the 
word on which the miscue took place, a phonetic transcription of what the subject said, and information about the 
type and severity of the miscue. 

We mined this corpus to develop a set of rules that predict specific mistakes readers are likely to make, and the 
frequencies of these mistakes. For example, one rule predicts that in a word where the grapheme sequence ‘ts’ should 
be pronounced as the phoneme sequence /TS/, readers will omit the /S/ phoneme with a frequency of 12.4%, under 
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assumptions we will explain momentarily.  To validate our results, we set aside part of our data for testing.  We 
designated two of the seven text passages in the University of Colorado as our test data.  Because each subject read 
only a single text passage, there was no overlap in subjects or text passages between our training and test data. 

2. A SUITABLE HYPOTHESIS SPACE 
Children identify printed words in various ways.  They may use a “decoding” strategy to read a word, i.e., map its 
successive graphemes (perhaps imperfectly) to phonemes.  Alternatively, they may try to guess the whole word from 
its first and last letters, its overall shape, the syntactic and semantic context, and/or even an accompanying 
illustration.  They may guess words that are particularly common, words that have similar patterns of letters, or even 
just words they know.  Furthermore, readers may frequently switch between strategies [11].  To attempt to learn in a 
hypothesis space that allows for all of these possibilities would probably require substantially more data than we had 
available.  We needed to make assumptions that would reduce the size of our hypothesis space.   

Given this data and the goal of predicting the mistakes made by readers, we focused on errors that appeared to be the 
result of using a decoding strategy.  We were interested in when a subject would substitute, insert, or omit a 
phoneme.  We attempted to predict these types of errors, but did not attempt to predict whole-word substitutions or 
other errors that take place above the level of individual phonemes. 

By focusing on errors in decoding graphemes to form pronunciations, we excluded the problem of predicting which 
words subjects would be likely to guess.  By focusing on individual phonemes, we reduced the problem of trying to 
predict the misreading of an entire word to the problem of predicting an improper decoding of an individual 
grapheme.  These reductions in the size of our hypothesis space made it feasible to learn some interesting rules from 
our data.  Modeling other reading strategies may be worthwhile as well [1], but lies beyond the scope of this paper. 

2.1 Data Classes and Features 
When analyzing the phonemes spoken using a grapheme decoding approach, it makes sense to look at the mapping 
from a grapheme, to the correct phoneme, to the phoneme that was actually said by the subject.  Throughout this 
paper, we refer to this mapping as a G to P to P’ mapping.  We also refer to portions of this mapping.  A G to P 
mapping, therefore, is a mapping from the grapheme to the correct phoneme.  Similarly, a P to P’ mapping is a 
mapping from the correct phoneme to the phoneme that was actually spoken by the subject.   

Table 1 shows several hypothetical sequences of G to P to P’ mappings that are designed to illustrate the notation.  
Note that we use the caret symbol (‘^’) to represent the beginning of a word, the dollar symbol (‘$’) to represent the 
end of a word, and the underscore symbol (‘_’) to represent a null grapheme or phoneme.  The first example is a 
pronunciation in which an /S/ phoneme was appended to the end of the word.  The second example is a 
pronunciation with /AX/ (schwa) substituted for /OW/ (long ‘o’) and the last syllable omitted.  The final example is a 
pronunciation with an /S/ phoneme inserted at the beginning of the word. 

The G to P to P’ mappings where P does not equal P’ represent decoding errors that we would like to be able to 
predict.  These mappings, therefore, are considered positive examples of decoding errors.  Consequently, negative 
examples have P equal to P’. 

2.2 Assumption Validity 
In order to focus on miscues resulting 
from a grapheme decoding process, we 
needed to disregard data that did not 
appear to be the result of a grapheme 
decoding process.  For example, a 
subject who mispronounced the word 
“protection” as the word “popularity” 
was obviously not using a grapheme 
decoding approach.  We needed to be 
able to recognize and disregard this 
type of data. 

We approached this problem by 
defining a metric of how closely a 
subject’s mispronunciation matched 
the correct pronunciation for a word.  

 

Table 1 – Basic G to P to P’ mappings. 
 

 G P R O T E C T IO N $ 

(1) P /P/ /R/ /OW/ /T/ /EH/ /K/ /SH/ /AX/ /N/ _ 

 P’ /P/ /R/ /OW/ /T/ /EH/ /K/ /SH/ /AX/ /N/ /S/ 

 G P R O T E C T IO N  

(2) P /P/ /R/ /OW/ /T/ /EH/ /K/ /SH/ /AX/ /N/  

 P’ /P/ /R/ /AX/ /T/ /EH/ /K/ _ _ _  

 G ^ P R O T E C T IO N 

(3) P _ /P/ /R/ /OW/ /T/ /EH/ /K/ /SH/ /AX/ /N/ 

 P’ /S/ /P/ /R/ /OW/ /T/ /EH/ /K/ /SH/ /AX/ /N/ 
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We expect that a mispronunciation that matches the correct pronunciation reasonably closely was likely produced by 
a grapheme decoding approach.  Note that we could not apply our metric to correct pronunciations.  We have 
assumed, therefore, that correct pronunciations, which do not reveal the strategy being used, are the result of a 
grapheme decoding approach.   

While we defer the details of our metric until section 3.3, we mention it here because defining such a metric was vital 
to focussing on data that matched the assumptions underlying the hypothesis space we defined. 

3. DATA CONVERSION 
To factor each word-level miscue into individual grapheme-to-phoneme mappings, we needed to know the 
correspondence between the graphemes in the word and the phonemes in the correct and incorrect pronunciations.  
The University of Colorado database did not provide this correspondence.  Project LISTEN members Greg Aist and 
Becky Kennedy had already computed these correspondences for the correct pronunciations of all but 49 of the 986 
distinct words in the Spache passages used in the Colorado database, so we added the rest by hand. However, these 
correspondences were expressed in the phoneme set of the Sphinx pronunciation dictionary [13], rather than in the 
phonemic notation used to transcribe the miscues in the database. 

Converting our data to a set of G to P to P’ mappings therefore required three steps.  First we translated the miscues 
from University of Colorado phonetic notation to Sphinx notation.  Then we aligned each translated miscue against 
the correct pronunciation of the word to compute its P to P’ mappings.  Finally, we used the graphophonemic 
correspondence for the correct pronunciation to factor each miscue into individual G to P to P’ mappings, one for 
each grapheme in the word.  Aligning the pronunciations also allowed us to compute a pronunciation similarity 
metric that we used to determine whether to consider a miscue to be the result of a grapheme decoding approach. 

3.1 Miscue Conversion 
We converted University of Colorado pronunciations into Sphinx pronunciations with a simple pattern matching 
process.  To handle conversions involving the flap1 and schwa2 phonemes, as well as minor differences in 
pronunciations, we defined ten Sphinx phoneme pairs to be approximately equal.  Five of the ten pairs defined the 
schwa phoneme to be approximately equal to other vowel phonemes.  Two of the pairs defined the flap phoneme to 
be approximately equal to the /D/ and /T/ phonemes.  The remaining three pairs defined approximate equality 
between /AXR/ and /ER/, between /AA/ and /AO/, and between /AO/ and /OW/. 

3.2 Pronunciation Alignment 
With the miscue in Sphinx notation, we needed to align it with the correct pronunciation of the word.  This allowed 
us to determine what parts of the pronunciation were problematic for the subject.  We used a dynamic programming 
algorithm, derived from a solution to the longest common substring problem [2].  The algorithm considered possible 
alignments of the phonemes sequences, awarded points based on the quality of the match in each phoneme pair of a 
potential alignment, and selected the alignment with the best score.  The algorithm awarded five points if the 
phonemes of a pair were identical, three points if they were approximately equal, and a single point if they were both 
vowels or were both consonants.  These point values were selected arbitrarily, but comparison of the resulting 
alignments to manual alignments indicated that these values worked well. 

3.3 Measuring Alignment Quality 
Given the method we use for aligning pronunciations, we defined our metric of alignment quality to be the score of 
the alignment divided by the number of graphemes in the aligned pronunciation.  Alignment quality scores, therefore, 
had values ranging from zero to five. 

Defining our metric in this way gave us a reasonable measure of whether a subject was using a grapheme decoding 
approach.  If the subject’s pronunciation was very close to the correct pronunciation, the alignment yielded a score 
close to five.  If the subject’s pronunciation could not be reconciled with the correct pronunciation, the alignment 
yielded a score close to zero.  This metric also allowed subjects to make more pronunciation mistakes in longer 
words.  It seems reasonable that subjects using a grapheme decoding approach would make more decoding errors as 
words became longer. 

                                                           
1 The flap phoneme represents the sound associated with the ‘d’ in “faded” and with the ‘t’ in “fated.” 
2 The schwa phoneme represents a reduced vowel.  It is used when it is impossible to distinguish a particular vowel sound, as in 

the vowel sounds near the ends of the words “wagon”, “engine”, and “cradle.” 



Fogarty et al. Page 4 Mining a Database of Reading Mistakes 

Table 2 contains actual miscues for the word 
“protection,” together with the scores that the 
pronunciation alignments for these miscues received.  
Example (1) appears to be the result of a subject 
guessing the word “popular” or maybe “popularity.”  
This pronunciation does not align well with the 
pronunciation for “protection”, and so it received a low 
score.  Example (3), with a score of three, seems to be 
the result of a grapheme decoding process.  The 
subject had trouble with the first half of the word, but 
correctly pronounced the second half of the word. 
Example (4) is an exact match except for the addition 
of a final /Z/ phoneme, and so received a very high 
score.  We include Example (5) to illustrate a 
shortcoming of our metric.  While this example did 
align well with the correct pronunciation, this subject 
may have guessed the word “production,” and so may 
not have been using a grapheme decoding approach.   

For the remainder of this work, we filtered our positive 
examples to those G to P to P’ mappings derived from 
miscues whose alignment score was at least 2.5.  
Figure 1 shows a histogram of miscue alignment 
scores, grouped in bins of size 0.5.  By filtering out 
miscues with alignment scores less than 2.5, we 
removed about half the miscues.  This was necessary, 
however, to avoid interference from data generated by 
strategies other than grapheme decoding. 

4. INITIAL RESULTS 
With our data in the form of a set of G to P to P’ 
mappings, we obtained some initial results.  We 
computed the most common positive G to P to P’ 
examples in our training data.  These initial results 
gave us a sense of what mappings we should continue 
to investigate.  We also conducted some preliminary tests to see if these results generalized onto an independent test 
set.  These initial tests indicated that it is likely we would be able to predict errors in an independent test set. 

4.1 Common G to P to P’ Mappings 
After converting subject miscues, aligning them to the correct pronunciation, and filtering out the miscues with an 
alignment score below 2.5, our training data yielded 33,713 instances of 1807 distinct G to P to P’ mappings.  
Luckily for this work, 1346 of those mappings occurred less than ten times each and accounted for a total of less than 
12% of the training instances.  We did not try to predict these errors, as any one of them occurred far too 
infrequently for the data to have provided us with enough information about its causes.  We instead focused our 
attention on the seventy-one mappings that occurred at least one hundred times, as these mappings accounted for 
more than 53% of mapping instances. 

Table 3 lists the ten most common mappings in our training data, all ten of which turned out to be insertions or 
deletions.  Thus, the most common error was to ignore a letter ‘s,’ thereby deleting the phoneme /S/ -- such as the 
plural ending of the word “textbooks.”  For each mapping, the figure shows the number of times the mapping 
occurred, and the percentage of total mapping instances that this number represented. 

4.2 Mappings in an Independent Test Set 
Given the common G to P to P’ mappings in our training data, it was appropriate to wonder if these mappings would 
also be common in an independent data set.  Computing the G to P to P’ mappings in our test data yielded 13,722 
instances of 1085 distinct G to P to P’ mappings.  As should be expected, the mappings were not identical to those 
from the training set.  Substantial overlap can be seen, however, by looking at the frequency in the test data of the 
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Figure 1 – Histogram of training data miscues, binned by 
alignment score.  The bars on the right are above our 

threshold value of 2.5. 

 

Table 2 – Example miscues on the word “protection,” and 
their alignment scores. 

 

PROTECTION 

/P+R+OW+T+EH+K+SH+AX+N/ 
 

#   Pronunciation   Score 

   

( 1 )   /P+AH+P+Y+UW+L+AA+R+IY/ 1.00 

( 2 )   /P+R+IH+N+S+P+IH+D/ 2.00 

( 3 )   /P+ER+T+EY+SH+AX+N/ 3.00 

( 4 ) /P+R+OW+T+EH+K+SH+AX+N+Z/ 4.50 

( 5 )   /P+R+AX+D+AH+K+SH+AX+N/ 3.89 

Formatted: Bullets and Numbering
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seventy-one mappings in the training data on which we focused our work.  This data is plotted in Figure 2.  The chart 
contains four hundred points.  The seventy-one points 
that form a smooth curve are the seventy-one most 
common mappings in the training data and are sorted by 
what percent of the total number of miscue mappings 
they represent.  Each of these points is associated with a 
point on the same vertical line that represents the percent 
of miscue mappings the same error represents in the test 
data.  These two sets of points have a correlation 
coefficient of .582. 

It seems reasonable, therefore, to use the frequency of 
mappings in our training data to predict the miscue 
mappings that will occur in an independent data set.  It 
was important to verify this point, because the rest of our 
work required that the frequency of decoding errors in 
the training set generalize to other readers and other text. 

5. MISCUE CONTEXT ANALYSIS 
Because our initial results indicated that no single 
decoding error occurred with a frequency substantially 
greater than that of other decoding errors, we decided to 
examine the contexts of decoding errors to see when 
particular decoding errors occur with a noticeably higher 
or lower frequency.  By determining the contexts in 
which a particular miscue mapping is either more or less 
likely, we can improve the accuracy of our predictions 
for these contexts.  It is important for an automated 
reading tutor to be given the best predictions possible, as 
the imperfections in speech recognizer technology assure 
that a speech recognizer will sometimes hallucinate the 
errors it is told are likely. 

In order to find contexts that make a particular miscue 
mapping more or less likely, we applied a decision tree 
to a set of positive and negative mapping examples.  The 
context of each mapping defined a set of features for that 
mapping.  While our positive mapping examples were 
explicit in the University of Colorado data, our negative 
examples were implicit, and so we had to generate them.  
We then adjusted our data to compensate for the fact that we were using a classifier3 to do density estimation4.  
Finally, we used a modified version of C4.5, a decision tree package created by Ross Quinlan [9], to discover which 
graphophonemic contexts had a substantial impact on the frequency of particular decoding errors. 

5.1 Defining Our Feature Set 
We defined the features of a G to P to P’ mapping to be the graphemes, phonemes, and grapheme to phoneme 
mappings that appeared adjacent to the G to P to P’ mapping in the text passages.  Considering graphemes as context 
is a natural result of our assumption of a grapheme decoding process.  We also considered phonemes as context 
because it seems reasonable that we could find an influence by a variety of graphemes only when they map to a 
particular phoneme.  Similarly, we considered grapheme to phoneme mappings as context because it seems 
reasonable that we could find that a grapheme has an influence only when it maps to a particular phoneme.  Because 

                                                           
3 A classifier uses the features of objects to attempt to learn the classes to which data items belong.  In our case, a classifier 

attempts to classify the value of P’ spoken by the subject as correct or incorrect. 
4 Density estimation is the identification of locations in space where something occurs with high or low density.  In our case, the 

context of G to P to P’ mappings define the space and we are looking for high or low frequencies of positive examples. 
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Figure 2 – The frequency in the training and test data of 
the seventy-one most common miscue mappings in the 

training data, sorted by the frequency in the training data. 

Table 3 – The ten most common training G to P to P’. 
 

G P P’ # % 

     

S /S/ _ 1164 3.45% 

S /Z/ _ 746 2.21% 

_ _ /N/ 735 2.18% 

$ _ /Z/ 724 2.15% 

N /N/ _ 670 1.99% 

T /T/ _ 626 1.86% 

_ _ /R/ 517 1.53% 

R /R/ _ 476 1.41% 

E /EH/ _ 475 1.41% 

_ _ /AX/ 442 1.31% 
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we are making predictions of reading mistakes, we did not consider the value of P’ in nearby mappings to be a 
feature.  We do not have prior knowledge of these values in our planned application of decoding error prediction. 

Ideally, we would like to be able to consider all of the graphemes, phonemes, and grapheme to phoneme mappings in 
a word.  We might even want to look beyond the current word, to see if the previous word has an influence on 
subject miscues.  Because our data set does not contain enough distinct words to allow this approach, we limited the 
feature set of a mapping to the values of G, of P, and of the G to P mapping in the locations directly on either side of 
the mapping.  Considering even the two locations on either side of a mapping resulted in a number of rules that could 
be applied to only a single word in our training data. 

5.2 Defining Our Training Data 
The University of Colorado data set explicitly codes the miscues made by subjects, but not the words they read 
correctly.  Using a decision tree requires that we have both positive and negative training examples.  We derived our 
positive examples directly from the miscue data, but needed to infer our negative examples.  We generated our 
negative examples by assuming that the absence of an error for a word indicated that the word was read correctly.  
For each subject, we examined each G to P mapping in the passage read by that subject.  For each mapping, we 
checked the errors made by the subject to see if an error occurred on that mapping.  If we did not find an error, we 
created a negative training example.  If we did find an error, we examined the alignment score for the error.  As 
discussed earlier, we ignored the error if the alignment score was less than 2.5.  In this case, we created neither a 
positive example nor a negative example, as the subject was probably not using a grapheme decoding approach.  If 
the alignment score was at least 2.5, we created a positive training example.     

The process described gave us positive and negative examples that accurately portrayed the contexts in which 
subjects using a grapheme decoding approach had trouble with a particular mapping.  However, the resulting data 
was not yet appropriate for the application of a decision tree classifier, because we needed the classifier to do density 
estimation.  To clarify the problem, consider the training examples that resulted from applying the described process 
to the miscue mapping from ‘S’ to /Z/ to null.  The resulting training examples showed that, of the 24,803 instances 
of a mapping from ‘S’ to /Z/ apparently produced by a grapheme decoding approach, the pronunciation of /Z/ was 
omitted in 659 instances, a frequency of 2.66%.  The entropy5 of the data set, therefore, was low.  If we considered 
the subset of this data where the ‘S’ to /Z/ mapping is preceded by the grapheme ‘RE’, we found that 36 of 79 
instances were omitted, a frequency of 45.57%6.  This was exactly the type of contextual influence that we wanted to 
identify.  However, the entropy of the subset of the data where this rule applies was higher than that of the original 
data set. Decision tree classifiers try to minimize the entropy of a data set.  If C4.5 had identified this subset of the 
data, it would have increased entropy. 

We remedied this problem by duplicating our positive examples until they represented approximately half of our 
training examples.  In the case of the ‘S’ to /Z/ to null mapping, we used 38 instances of each of our 659 positive 
examples, for a total of 25,042 positive examples and 24,144 negative examples.  This gave the root of our decision 
tree a positive example frequency of 50.91% and very high entropy.  Because we duplicated only our positive 
examples, the subset of the mappings preceded by the grapheme ‘RE’ consisted of 1368 positive instances and 43 
negative instances.  This subset had a positive example frequency of 96.95%, and consequently very low entropy.  
This change allowed C4.5 to work properly, and we recovered the actual miscue frequency by compensating for the 
ratio of positive example duplication after C4.5 identified meaningful contexts.  

6. RESULTS AND EVALUATION 
Application of the decision tree algorithm to the seventy-one mappings identified previously yielded 11,697 rules.  
We identified positive rules of interest and evaluated the performance of these rules on our independent test set.  
Similarly, we evaluated negative rules of interest. 

                                                           
5 Entropy is a measure of the homogeneity of a set of data.  A data set that is very homogenous will have low entropy.  A data set 

that is very heterogeneous will have high entropy.   For a discussion of entropy and decision trees, see [5].  
6 Note that the grapheme ‘s’ is preceded by the grapheme ‘re’ only once in our training data, in the word “stores.”  We do not 

believe this result generalizes, but it is an effective example. 
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6.1 Positive Rules 
A positive rule, which indicates that a particular 
miscue mapping is more likely in a given context, was 
obtained from each positive node in the generated 
trees.  In these cases, the frequency of the miscue 
mapping in the given context is greater than the 
frequency of the miscue mapping in the general case, 
which we shall refer to as the base frequency of the 
miscue mapping.  Because we wanted our predictions 
to have a reasonable likelihood of generalizing to new 
words, we identified two other criteria for a rule to be 
considered significant.  First, the rule needed to apply 
to at least three distinct words in the training data.  
Second, the rule needed to define a context in which a 
miscue occurred with frequency of at least one 
percent in the training examples.  These criteria were 
met by 225 positive rules.  Table 4 lists the ten rules 
with the highest predicted miscue frequency, together 
with the number of distinct words in the training data 
that were matched by these rules.  For example, the 
tenth rule predicts deletion of /EH/ with frequency 
9.05% in contexts of the form ‘…ted…’ where ‘te’ 
should be pronounced as /T EH/. 

We evaluated each of the 225 rules by generating test 
examples in the same way that we generated training 
examples, except that we used the independent 
training data described in section 1.  Of the 225 rules, 
157 matched words in the test data.  To determine the 
predicted number of errors, we multiplied the 
predicted miscue frequency for these 157 rules by the 
total number of test examples for the rules.  We then 
compared this prediction to the actual number of 
miscues in the test examples.  The results, sorted by 
the predicted number of miscues, are given in figure 
3.  The values had a correlation coefficient of .473. 

In order to determine if it is worthwhile for an 
automated reading tutor to consider context, we 
compared these results to those obtained by 
considering only the base frequency of the miscue 
mappings.  For the same test examples used to 
evaluate the context rules, the values had a 
correlation coefficient of .350 — not as good a 
prediction as the context rules yielded.   

6.2 Negative Rules 
A negative rule, which indicates that an error is less likely in a given context, was obtained from each negative node 
in the generated trees.  Negative rules are of interest because they indicate situations in which it is very unlikely for a 
subject to make an otherwise common decoding error.  An automated reading tutor could tell the speech recognizer 
not to listen for a mistake in a particular context, thus reducing the number of errors hallucinated by the speech 
recognizer. 

We evaluated the 107 negative rules that apply to at least two words in the training data, predict a zero percent error 
frequency, and define a context for a miscue mapping with a base frequency greater than one percent.  Of these rules, 
69 matched words in the test data.  The absolute difference between the predicted and actual error frequency 
averaged 3.5 errors for the context rule predictions, compared to 15.5 errors for the context-independent predictions. 
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Figure 3 – Comparison for positive rules of the context 
prediction and the actual number of errors in test data. 

 

 

 

 

Table 4 – The ten positive rules with highest miscue 
frequency. 

 

 G P P’ Context Value Words %

        

 N /N/ _ LEFT G to P  U to /AH/ 4 16.58%

 O /AA/ /AH/ LEFT G to P P to /P/ 3 14.90%

 O /AA/ /AH/ LEFT G to P C to /K/ 4 13.76%

 S /S/ _ LEFT G to P T to /T/ 12 12.41%

 I /IH/ /AY/ LEFT G to P M to /M/ 3 10.71%

 E /EH/ /AE/ LEFT G to P M to /M/ 3 10.34%

 I /IH/ /EH/ LEFT G to P SH to /SH/ 4 9.79%

 E /EH/ _ LEFT G to P P to /P/ 5 9.77%

 S /Z/ _ LEFT G to P 

RIGHT G 

E to /EH/ 

$ 

5 9.62%

 E /EH/ _ LEFT G to P 

RIGHT G 

T to /T/ 

D 

6 9.05%
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7. CONCLUSION 
Our results indicate that we can successfully predict graphophonemic contexts in which some oral reading miscues 
are particularly likely or particularly unlikely.  Our results also indicate that the predictions that consider context are 
better than those that consider only base frequency of a miscue. 

This work derived a new representation from the University of Colorado data.  The new representation enabled us to 
conduct analyses that were not feasible with the data in its original form.  Representing miscues as sets of G to P to 
P’ mappings, filtering out the miscues that did not appear to be the result of a decoding approach, and examining the 
features of mappings allowed us to discover new information about the miscues.  Further analysis of the data in this 
factored representation may lead to additional discoveries. 

Future work will show whether the learned rules indeed enable Project LISTEN’s Reading Tutor to listen more 
accurately and informatively to children’s oral reading.  The learned rules may be of interest in their own right to 
reading researchers, and to the AI and education community as an interesting example of educational data mining. 
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