
N-Dimensional Path Optimization: The
Implementation of a Novel Algorithm in ITK

John Galeotti and George Stetten

Carnegie Mellon University
galeotti+miccai@cs.cmu.edu

Abstract. Using the path framework we previously added to ITK, we imple-
mented a novel algorithm for n-dimensional path optimization, which we call
the ND Swath (NDS). NDS uses dynamic programming to globally optimize
the placement of a path within an image, subject to several constraints and a
user-supplied merit function. The NDS algorithm is presented in this paper
along with a description of how it was implemented using ITK.

Introduction

A significant number of segmentation algorithms utilize active contours or other path-
type data objects [1-6]. Here we introduce a new algorithm that uses dynamic pro-
gramming [4-6] to globally optimize a chain-code path with respect to an initial open
or closed chain-code path and a local merit function defined over a ND path placed in
a ND image. The merit function is arbitrary and is supplied by the user. The global
optimization is also subject to several constraints that cause the initial path to act as a
sort of prior. We have named the algorithm the ND Swath (NDS). ITK provided the
ND framework necessary to implement NDS, which is based on a similar, unpub-
lished 2D algorithm by Stetten.

The original intent was to implement the 2D algorithm in ITK, but the ND nature
of ITK encouraged Galeotti to think beyond two dimensions and in the process he
was able to remove some of the original algorithms’ restrictions, particularly its
restrictions on the type of chain-code it could process. Furthermore, the modularity of
ITK encouraged the separation of the merit function from the optimization process,
producing a generic ND path optimizer suitable for a wide range of tasks, some of
which the authors intend to pursue in future research. It is hoped that the generalized
NDS will prove useful to other researchers as well.

Background

The combination of dynamic programming and a restricted search-space make
global optimization possible in practical systems, provided that reasonably good ini-
tializations are provided. Such initializations can be obtained from human interaction,
the use of scale-space, or feature-identification algorithms. Depending on the merit

function used, a path could be optimized, for example, to segment a 2D object, trace a
3D surface (in a generally-specified direction or within a 2D subspace), or find the
axis (central, skeletal, major, minor, etc.) of an object. Because of their continuous
sequential structure, path-based segmentations are able to produce a well-structured
continuous boundary estimate, even when the data is noisy. Noise also is less detri-
mental if a segmentation is globally optimized, because the boundary estimate will
not get trapped in a local extrema produced by the noise. Combined with their effi-
ciency at tracking small boundary changes over time, globally optimized paths can
provide useful object-segmentation in noisy ultrasound video data [4-6], potentially
enabling real-time shape and motion measurements of diverse anatomic structures.

Notation

We will be using and extending the notation presented in [7]. Chain-codes repre-
sent a path as a sequence of offsets between adjoining locations on a rectangular lat-
tice. Whether these locations represent voxel-centers or voxel-vertices is unspecified.
Both of these interpretations are equally valid, so long as one or the other interpreta-
tion is used consistently for the creation, processing, utilization, and visualization of a
given chain-code. Chain-codes can, therefore, be used both to segment between vox-
els and to trace through the centers of voxels. A chain-code with n offset-steps can be
denoted as a sequence

!

P = u
1
,u

2
,u

3
,...u

n() (1)

whose elements are the individual step vectors. An arbitrary step

!

u
i
 is a vector from a

given index to one of its neighbors.

!

u
i
=

u
i
1

M

u
i
N

"

$
$
$

%

&

'
'
'

=
(x

1

M

(x
N

"

$
$

%

&

'
'
, (x

i
) *1,0,1{ }

(2)

For a 2D chain-code,

!

u
i
" 0

1(), 11(), 10(), 1
#1(), 0

#1(), #1#1(), #10(), #11(){ } (3)

as illustrated in Figure 1.

u
i (1,0)

(0,-1)

(0,1)

(-1,0)

(1,1)

(1,-1)(-1,-1)

(-1,1)

Fig. 1. Step

!

u
i
 in a 2D chain-code.

The individual offset vectors (or steps) of a specific chain-code

!

P may be repre-
sented by adding an index to

!

P as

!

P
i
= u

i
, where u

i
 is the ith step of P . Note that

!

P
(without an index) is an entire chain-code, but

!

P
i
 (with an index) is only one step of

!

P .
The matrix

!

P and its constituent steps

!

P
i
 are relative displacements from a starting

index location s, resulting in a terminal location e.

!

e = s+ P
i

i=1

n

" (4)

The combination of a chain-code

!

P and a starting location s is designated as

!

P
s.

!

P
i

s designates a specific step of a specific chain-code placed at a specific starting loca-
tion. Like

!

P
i
,

!

P
i

s is the offset value of a step, but unlike

!

P
i
, the location of

!

P
i

s can be
calculated because the starting location of the step’s chain-code is known. The abso-
lute location in an image of the chain-code step

!

P
i

s can be represented as

!

pi
s

= s+ P j

j=1

i

" (5)

Note that capital P is used either by itself to denote an entire chain-code or with a
subscript to denote the offset vector of a single step of a chain-code, while lowercase
p is used to denote the location to which a single step of a chain-code points (and
therefore requires that the starting location of that chain-code be specified). Because

!

p
i

s is defined by a sequential iterative process, chain-code location is optimized for
sequential access rather than random access.

A chain-code can be open or closed. If a chain-code is closed, it begins and
ends on the same pixel,

!

e = s (6)

or, put another way, the sum of its steps is the zero-vector,

!

P
i

i=1

n

" = 0 (7)

Chain-codes may cross themselves, in which case, for some j and k , j ≠ k ,

!

p j

s
= pk

s . If a path is closed and does not cross itself, it can be constrained to proceed

in a clockwise or counterclockwise direction, permitting unambiguous determination
of inside vs. outside for any given step.

New Notation: Trails

A partial segment of a chain-code, which we designate a trail, may be represented
as

!

T
i
= P

1
,P
2
,...,P

i() (8)

As with a path, if an arbitrary trail is constrained a-priori such that the trail must
start at s and the trail’s final step i must end at

!

e , then this is designated as

!

T
i

s,e .

Method

NDS makes use of a Markovian chain-code merit function of the form

!

M P
s() = m p

i

s
,P

i()
i=1

n

" (9)

where

!

m is an arbitrary local merit function, representing the merit of placing a sin-
gle chain-code step

!

P
i
 at location

!

p
i

s in the image over which the merit function is de-
fined. It follows that

!

M T
i

s() =
M T

i"1
s() + m p

i

s
,P

i(), i > 0

0, i = 0

$
%

 (10)

The use of a merit function

!

m allows NDS to regard chain-codes as traveling
through either voxel centers or voxel vertices, depending on which interpretation is
used within

!

m . This is an important flexibility considering the advantages of each
interpretation for certain image processing algorithms. The freedom of defining

!

m
also allows NDS to optimize paths over any type of image, whether it be an intensity
image, a RGB color image, or even an image whose voxels contain elaborate data
structures.

A simple but useful merit function defined over a 2D intensity image is one that
rewards a strong unsigned partial spatial derivative of image intensity evaluated at

!

p
i

s
orthogonal to

!

P
i
. This merit function, designated as

!

m"#
, works well for chain-codes

that step between voxel vertices. (If it is known a priori which side of

!

P should be
lighter or darker, e.g. in closed 2D paths that proceed in a clockwise direction, then a
signed partial could be used.)

Another type of merit function is one that performs some form of template correla-
tion, rewarding specific voxel values at

!

p
i

s and/or in specific neighborhoods relative
to

!

p
i

s. One such merit function useful for some 2D segmentations rewards steps where
the image value at

!

p
i

s is consistent with image pixels lying outside the target object,
and particular neighbors of

!

p
i

s have image values consistent with pixels lying inside

the target object. Such a merit function, designated as

!

m
r
 (r is the standard symbol

for correlation), would optimize a closed chain-code to trace through all of the exte-
rior neighbors of a target object, in effect identifying target object pixels as those
which lie strictly interior to the resulting closed chain-code.

Given a particular merit function, NDS uses dynamic programming to efficiently
find the globally optimal chain-code path

!

Q within a restricted search space. The ini-
tial path must be a “reasonable” approximation of the optimal path, where “reason-
able” is a function of the NDS parameters used; a less restricted NDS can find an op-
timal path that is more divergent from an initial path, but will require more time. The
search space is restricted by requiring that each step in the optimal path be based on
its corresponding step in the initial path:

!

Q i = f Pi,K() (11)

This restriction has three components:
• Preservation of number of steps

• Limitation of step rotation

• Limitation of step translation

The first restriction is that the optimal chain-code must consist of the same number
of steps as the initial chain-code. This restriction does not, however, require that the
physical length of the initial and optimal chain-codes be the same because not all

i
u

are of the same length. The length (vector magnitude) of a diagonal step that spans
three dimensions is physically longer than another step which spans only two, and so
on:

!

±1()
2

+ ±1()
2

+ ±1()
2

> ±1()
2

+ ±1()
2

+ 0()
2

> ±1()
2

+ 0()
2

+ 0()
2 (12)

The second restriction limits step rotation based on the assumption that the basic
shape of the initial path will be correct. Therefore, a path should only be allowed to
expand and contract orthogonal to its direction of traversal. This requires that the ini-
tial and optimal steps have a positive inner product. The set of possible steps from
which

!

Q
i
 can be chosen is designated by the set

!

W
i
 which contains steps

!

w
i
 such that

!

w
i
,P

i
> 0, w

i
"W

i
 (13)

The

!

W
i
 for two different 2D

!

P
i
 and two different 3D

!

P
i
 are shown in Figure 2.

Fig. 2. The set of steps

!

W
i
 (blue) that can possibly replace an original step

!

P
i
 (yellow)

The final restriction limits the ND translation distance between an optimal step
and its corresponding initial step. This limitation is expressed in terms of a hypercube
of radius

!

rf termed a fovea. If a fovea is centered at

!

p
i

s, then

!

q
i

s must lie within that
fovea. A fovea centered at

!

p can be denoted as

!

F
p , and the set of locations within

!

F
p can be denoted as

!

f p . Increasing

!

rf allows NDS to find paths increasingly diver-
gent from the initial path but at the cost of drastically increased search time. It is
typically much more efficient to use scale space with NDS than it is to increase

!

rf be-
yond three or four. Moving the fovea down the length of the initial path sweeps out
the ND region in which the optimal path must lie. This region is referred to as the
swath of the initial chain-code.

Fig. 3. Fovea iterating along initial path in a 2D image

NDS searches the restricted search space by centering a fovea at

!

s, and then iterat-
ing another fovea along

!

P
s as shown in Figure 3. For each step of the path NDS

maintains a list of the set of optimal trails from each location in the starting fovea to
each location in the iterating fovea:

!

T
i

" s , " e { }, # " s $ fs
,# " e $ f

p
i

s

 (14)

Each optimal trail of length n is chosen from the set of all concatenations of all
length n-1 trails

!

T
i"1

 with all possible steps in

!

W
i
 that result in the desired

!

" s and " e :

!

T
i

" s , " e # T
i$1

" s , " e $w
i ,w

i

%

&
'

(

)
* + w

i
W

i
, " e $w

i()# f
p
i$1
s (15)

Note that the necessity of subtracting

!

w
i
 from

!

" e will result in some

!

T
i"1

 with end-
ing locations outside of the swath. Because such trails would not lie within the re-
stricted search space, it is important that these cases be eliminated from the list of
possible trails.

Because the merit of a trail is recursively defined, all that is needed to determine
the merit of a trail is local merit of the new trail’s final step and the already calculated
merit of the rest of the trail:

!

M T
i

" s , " e #
$
% &

'
(= M T

i)1

" s , " e)w
i

$
%

&

'
(+ m " e ,w

i() (16)

Once the iterating fovea reaches the end of the initial chain-code P, the set of opti-
mal trails from every location in

!

f
s to every location in

!

f
e has been found. The opti-

mum path Q is then the

!

T
n

" s , " e with the largest merit:

!

Q = T
n

" " s , " " e # M T
n

" " s , " " e $
%
& '

(
) =max

" s , " e ()
M T

n

" s , " e $
%
& '

(
) (17)

If P was closed, then Q must be closed as well, and so

!

" s = " e must be enforced:

!

Q = T
n

" " s , " " s # M T
n

" " s , " " s $
%
& '

(
) =max

" s
M T

n

" s , " s $
%
& '

(
) (18)

Implementation in ITK

ITK provided an excellent framework within which to implement NDS. The ITK
iterator and neighborhood iterator constructs were especially helpful in handling the
complexity of a ND fovea, and the shaped neighborhood iterator provided an efficient
means of dealing with the

!

W
i
 for a given

!

P
i
.

Trail storage was handled by making a fovea-sized image representative of each
trail starting location

!

f
s in

!

F
s , and then having each voxel of that image point to an-

other fovea-sized image-of-steps representative of each trail ending location

!

f
p
i

s

 in
the iterating fovea

!

F
p
i

s

. In order to store every step of every optimal trail for every
length of trail, such an image-of-images-of-steps must be calculated for each step of
the initial path, but since the merit of a trail of length i depends only on the merit of
its last step and the merit of a trail of length i-1, only the most recent two images-of-
images-of-merits must be stored.

The implementation used a fovea-sized neighborhood iterator centered at

!

p
i

s to iterate
through the input image voxel indices used for

!

" e for each length of trail. The neigh-
borhood was made to follow the course of the initial path, and for each step

!

P
i
 of the

initial path, the corresponding set

!

W
i
 was calculated. Because the merit of each trail

feeding each corresponding

!

w
i
 would be necessary, an ITK shaped neighborhood was

then created to visit only merit values of the trails feeding each

!

w
i
"W

i
. Since the

feeding trails’ ending locations are offset from the new ending locations by

!

P
i
, each

!

w
i
 was subtracted from

!

P
i
 to transform

!

W
i
 into a list of offsets from the beginning of

!

P
i
 to the beginnings of the

!

w
i
, as was necessary to create the appropriate shaped

neighborhood.

!

W
i
 could be recovered from the list of shaped neighborhood offsets

by simply subtracting the offsets from

!

P
i
. The shaped neighborhood was given a con-

stant boundary condition of -∞ to prevent

!

w
i
 not completely within the swath from

being chosen. In effect, a single shaped neighborhood provided not only

!

W
i
, but for

each

!

w
i
 it also provided the merit value of the corresponding feeder-trail of length i-

1. Once all the optimal trails had been grown to length n, the optimal trail Q was
found using a rather straight-forward standard iterative search.

Discussion

NDS uses dynamic programming to efficiently search for a globally optimum path.
Dynamic programming is not a new technique for curve detection [5], but it has tradi-
tionally been used in relatively small search spaces for 2D images. NDS, however,
searches through a high-dimension search space in polynomial time. It is only re-
cently that computational power has become sufficient for NDS to execute in reason-
able run time, taking only a few seconds on a typical desktop computer to search for
an optimal 100 step chain-code using a fovea of radius 3 (higher search radii can be
efficiently achieved by use of scale space).

NDS must store and process a huge amount of data. Let the number of elements
across one side of the fovea be denoted by

!

df = 2* rf +1, and let the number of di-
mensions of the input image be denoted by

!

D. Then, the number of optimal trails
from every element in

!

F
s to every element in

!

F
p
i

s

 will be

!

df
D*2 , and n steps will have

to be selected for each of those optimal trails. Selecting a step requires that each

!

w
i

be evaluated, and so the number of steps for which the sum of local and previous
merit must be evaluated is

!

df
D*2
* n *Wi

 (19)

Because trails between different fovea elements overlap and because the foveas of
neighboring steps overlap, many identical local merit queries will be needed to calcu-
late the different total merit values of each

!

w
i
 appended to each trail. Therefore,

caching local-merit-values can substantially reduce the number of times the local
merit function must be evaluated, in the best case (a straight path) reducing it to ap-
proximately

!

df
D"1
* n *Wi

 (20)

!

W
i
 varies with

!

D and with the direction of each step

!

P
i
. As can be seen from

Figure 2,

!

P
i
 that span a larger subspace (diagonal steps) can have fewer

!

w
i
 than

!

P
i

that span only a few dimensions. Let

!

" D
i
D represent the dimensionality of the

minimum subspace that can contain

!

P
i
. For example, if

!

P
i
= 1 0 "1()

T , then

!

" D
i
= 2 . It

works out that

!

W
i

= 2
" D
i #1()* 3D# " D

i (21)

Therefore, NDS grows exponentially with image dimension, but it has polynomial
growth with respect to fovea size (search radius) and linear growth with respect to
path length. Use of scale space to reduce the search radius and merit caching to avoid
redundant computation can substantially reduce the large polynomial growth, how-
ever.

NDS is a powerful tool for optimization of path-based segmentations. Its only sig-
nificant shortcoming with regard to quality of result is that it cannot change the num-
ber of steps in a chain-code. This is not typically a problem, however, because NDS
can “pinch” a chain-code to remove extra steps (as shown at the top-right corner of
Figure 4 and such pinched segments can be easily removed from the output of NDS.
If significant path growth may be needed, extra steps can be added to the input path
without qualitatively changing it by using the path-to-chain-code conversion filter to
convert a path to a minimally-connected chain code, all the steps of which are of
minimum physical length.

Figure 4 shows an example result of NDS applied to the problem of 2D segmenta-
tion. The fovea radius was 3, and the merit function used was

!

m
r
 which optimized

the path to trace around the outside of a dark-gray object. Blurring the square had no
effect on the resulting optimal path.

Fig. 4. Input image of a blurred square with the input path (left) and output path (right)

Conclusion

In this paper the novel NDS algorithm for n-dimensional path optimization was de-
veloped and implemented in ITK. NDS uses dynamic programming to efficiently
search for a globally optimal path, where optimality is defined in terms of an external
local merit function. NDS execution time is linear with path length, polynomial with
search radius, and exponential with image dimension.

Acknowledgements

The authors would like to thank everyone who has contributed to ITK. This work
has been supported in part by a contract with the National Library of Medicine and a
NSF Graduate Student Fellowship.

References

1. Chen, C., Huang, T., and Arrot, M., 1994. Modeling, Analysis, and Visualization of Left
Ventricle Shape and Motion by Hierarchical Decomposition, PAMI, 16(4), pp. 342-356.

2. Geiger, D., Gupta, A., Costa, L., and Vlontzos, J., 1995. Dynamic Programming for Detect-
ing, Tracking, and Matching Deformable Contours, PAMI 17(3), pp. 294-302.

3. Gunn, S., Nixon, M., 1997. A Robust Snake Implementation: A Dual Active Contour,
PAMI 19(1), pp. 63-68.

4. Stetten, G., Drezek, R., 2001. Active Fourier Contour Applied to Real Time 3D Ultrasound
of the Heart, International Journal of Image and Graphics, 1(4), pp. 647-658.

5. Montanari, U., 1971. On the optimal detection of curves in noisy pictures. Communica-
tions of the ACM, 14(5), pp. 335-345.

6. Pope, Parker, 1984. Dynamic Search Algorithms in Left Ventricular Border Recognition
and Analysis of Coronary Arteries. Computers in Cardiology.

7. Galeotti, J., Stetten, G., 2005. Creation and Demonstration of a Framework for Handling
Paths in ITK, ISC/NA-MIC/MICCAI Workshop on Open-Source Software,
http://hdl.handle.net/1926/40.

