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Abstract. Using the path framework we previously added to ITK, we imple-
mented a novel algorithm for n-dimensional path optimization, which we call 
the ND Swath (NDS).  NDS uses dynamic programming to globally optimize 
the placement of a path within an image, subject to several constraints and a 
user-supplied merit function.  The NDS algorithm is presented in this paper 
along with a description of how it was implemented using ITK. 

Introduction 

A significant number of segmentation algorithms utilize active contours or other path-
type data objects [1-6].  Here we introduce a new algorithm that uses dynamic pro-
gramming [4-6] to globally optimize a chain-code path with respect to an initial open 
or closed chain-code path and a local merit function defined over a ND path placed in 
a ND image.  The merit function is arbitrary and is supplied by the user. The global 
optimization is also subject to several constraints that cause the initial path to act as a 
sort of prior.  We have named the algorithm the ND Swath (NDS).  ITK provided the 
ND framework necessary to implement NDS, which is based on a similar, unpub-
lished 2D algorithm by Stetten. 

The original intent was to implement the 2D algorithm in ITK, but the ND nature 
of ITK encouraged Galeotti to think beyond two dimensions and in the process he 
was able to remove some of the original algorithms’ restrictions, particularly its 
restrictions on the type of chain-code it could process.  Furthermore, the modularity of 
ITK encouraged the separation of the merit function from the optimization process, 
producing a generic ND path optimizer suitable for a wide range of tasks, some of 
which the authors intend to pursue in future research.  It is hoped that the generalized 
NDS will prove useful to other researchers as well. 

Background 

The combination of dynamic programming and a restricted search-space make 
global optimization possible in practical systems, provided that reasonably good ini-
tializations are provided.  Such initializations can be obtained from human interaction, 
the use of scale-space, or feature-identification algorithms.  Depending on the merit 



function used, a path could be optimized, for example, to segment a 2D object, trace a 
3D surface (in a generally-specified direction or within a 2D subspace), or find the 
axis (central, skeletal, major, minor, etc.) of an object.  Because of their continuous 
sequential structure, path-based segmentations are able to produce a well-structured 
continuous boundary estimate, even when the data is noisy.  Noise also is less detri-
mental if a segmentation is globally optimized, because the boundary estimate will 
not get trapped in a local extrema produced by the noise.  Combined with their effi-
ciency at tracking small boundary changes over time, globally optimized paths can 
provide useful object-segmentation in noisy ultrasound video data [4-6], potentially 
enabling real-time shape and motion measurements of diverse anatomic structures. 

Notation 

We will be using and extending the notation presented in [7].  Chain-codes repre-
sent a path as a sequence of offsets between adjoining locations on a rectangular lat-
tice. Whether these locations represent voxel-centers or voxel-vertices is unspecified.  
Both of these interpretations are equally valid, so long as one or the other interpreta-
tion is used consistently for the creation, processing, utilization, and visualization of a 
given chain-code.  Chain-codes can, therefore, be used both to segment between vox-
els and to trace through the centers of voxels. A chain-code with n offset-steps can be 
denoted as a sequence 
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whose elements are the individual step vectors.  An arbitrary step 
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 is a vector from a 

given index to one of its neighbors. 
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For a 2D chain-code, 
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u
i
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as illustrated in Figure 1. 
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Fig. 1. Step 

! 

u
i
 in a 2D chain-code. 

The individual offset vectors (or steps) of a specific chain-code 

! 

P  may be repre-
sented by adding an index to 

! 

P  as 

! 

P
i
= u

i
,  where u

i
 is the ith step of P .  Note that 

! 

P  
(without an index) is an entire chain-code, but 

! 

P
i
 (with an index) is only one step of 

! 

P . 
The matrix 

! 

P  and its constituent steps 

! 

P
i
 are relative displacements from a starting 

index location s, resulting in a terminal location e. 

! 

e = s+ P
i

i=1

n

"  (4) 

The combination of a chain-code 

! 

P  and a starting location s is designated as 

! 

P
s.  

! 

P
i

s designates a specific step of a specific chain-code placed at a specific starting loca-
tion.  Like 

! 

P
i
, 

! 

P
i

s is the offset value of a step, but unlike 

! 

P
i
, the location of 

! 

P
i

s can be 
calculated because the starting location of the step’s chain-code is known.  The abso-
lute location in an image of the chain-code step 

! 

P
i

s can be represented as 

! 

pi
s

= s+ P j

j=1

i

"  (5) 

Note that capital P is used either by itself to denote an entire chain-code or with a 
subscript to denote the offset vector of a single step of a chain-code, while lowercase 
p is used to denote the location to which a single step of a chain-code points (and 
therefore requires that the starting location of that chain-code be specified).  Because 

! 

p
i

s is defined by a sequential iterative process, chain-code location is optimized for 
sequential access rather than random access. 

A chain-code can be open or closed.   If a chain-code is closed, it begins and 
ends on the same pixel,  

! 

e = s (6) 

or, put another way, the sum of its steps is the zero-vector, 

! 

P
i

i=1

n

" = 0  (7) 

Chain-codes may cross themselves, in which case, for some j  and k , j ≠ k , 

! 

p j

s
= pk

s .  If a path is closed and does not cross itself, it can be constrained to proceed 



in a clockwise or counterclockwise direction, permitting unambiguous determination 
of inside vs. outside for any given step. 

New Notation:  Trails 

A partial segment of a chain-code, which we designate a trail, may be represented 
as 
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As with a path, if an arbitrary trail is constrained a-priori such that the trail must 
start at s and the trail’s final step i must end at 

! 

e , then this is designated as 

! 

T
i

s,e . 

Method 

NDS makes use of a Markovian chain-code merit function of the form 
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where 

! 

m  is an arbitrary local merit function, representing the merit of placing a sin-
gle chain-code step 

! 

P
i
 at location 

! 

p
i

s in the image over which the merit function is de-
fined.  It follows that 
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The use of a merit function 

! 

m  allows NDS to regard chain-codes as traveling 
through either voxel centers or voxel vertices, depending on which interpretation is 
used within 

! 

m .  This is an important flexibility considering the advantages of each 
interpretation for certain image processing algorithms.  The freedom of defining 

! 

m  
also allows NDS to optimize paths over any type of image, whether it be an intensity 
image, a RGB color image, or even an image whose voxels contain elaborate data 
structures. 

A simple but useful merit function defined over a 2D intensity image is one that 
rewards a strong unsigned partial spatial derivative of image intensity evaluated at 

! 

p
i

s 
orthogonal to 

! 

P
i
.  This merit function, designated as 

! 

m"#
, works well for chain-codes 

that step between voxel vertices.  (If it is known a priori which side of 

! 

P  should be 
lighter or darker, e.g. in closed 2D paths that proceed in a clockwise direction, then a 
signed partial could be used.) 

Another type of merit function is one that performs some form of template correla-
tion, rewarding specific voxel values at 

! 

p
i

s and/or in specific neighborhoods relative 
to 

! 

p
i

s.  One such merit function useful for some 2D segmentations rewards steps where 
the image value at 

! 

p
i

s is consistent with image pixels lying outside the target object, 
and particular neighbors of 

! 

p
i

s have image values consistent with pixels lying inside 



the target object.  Such a merit function, designated as 

! 

m
r
 (r is the standard symbol 

for correlation), would optimize a closed chain-code to trace through all of the exte-
rior neighbors of a target object, in effect identifying target object pixels as those 
which lie strictly interior to the resulting closed chain-code. 

Given a particular merit function, NDS uses dynamic programming to efficiently 
find the globally optimal chain-code path 

! 

Q  within a restricted search space.  The ini-
tial path must be a “reasonable” approximation of the optimal path, where “reason-
able” is a function of the NDS parameters used; a less restricted NDS can find an op-
timal path that is more divergent from an initial path, but will require more time.  The 
search space is restricted by requiring that each step in the optimal path be based on 
its corresponding step in the initial path: 

  

! 

Q i = f Pi,K( ) (11) 

This restriction has three components: 
• Preservation of number of steps 

• Limitation of step rotation 

• Limitation of step translation 

The first restriction is that the optimal chain-code must consist of the same number 
of steps as the initial chain-code.  This restriction does not, however, require that the 
physical length of the initial and optimal chain-codes be the same because not all 

i
u  

are of the same length.  The length (vector magnitude) of a diagonal step that spans 
three dimensions is physically longer than another step which spans only two, and so 
on: 
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The second restriction limits step rotation based on the assumption that the basic 
shape of the initial path will be correct.  Therefore,  a path should only be allowed to 
expand and contract orthogonal to its direction of traversal.  This requires that the ini-
tial and optimal steps have a positive inner product.  The set of possible steps from 
which 

! 

Q
i
 can be chosen is designated by the set 

! 

W
i
 which contains steps 

! 

w
i
 such that 

! 

w
i
,P
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> 0, w

i
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The 

! 

W
i
 for two different 2D 

! 

P
i
 and two different 3D 

! 

P
i
 are shown in Figure 2. 



 

Fig. 2. The set of steps 

! 

W
i
 (blue) that can possibly replace an original step 

! 

P
i
 (yellow) 

The final restriction limits the ND translation distance between  an optimal step 
and its corresponding initial step.  This limitation is expressed in terms of a hypercube 
of radius 

! 

rf  termed a fovea.  If a fovea is centered at 

! 

p
i

s, then 

! 

q
i

s must lie within that 
fovea.  A fovea centered at 

! 

p can be denoted as 

! 

F
p , and the set of locations within 

! 

F
p  can be denoted as 

! 

f p .  Increasing 

! 

rf  allows NDS to find paths increasingly diver-
gent from the initial path but at the cost of drastically increased search time.  It is 
typically much more efficient to use scale space with NDS than it is to increase 

! 

rf  be-
yond three or four.  Moving the fovea down the length of the initial path sweeps out 
the ND region in which the optimal path must lie.  This region is referred to as the 
swath of the initial chain-code. 

 

Fig. 3. Fovea iterating along initial path in a 2D image 

NDS searches the restricted search space by centering a fovea at 

! 

s, and then iterat-
ing another fovea along 

! 

P
s as shown in Figure 3.  For each step of the path NDS 

maintains a list of the set of optimal trails from each location in the starting fovea to 
each location in the iterating fovea: 
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Each optimal trail of length n is chosen from the set of all concatenations of all 
length n-1 trails 

! 

T
i"1

 with all possible steps in 
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W
i
 that result in the desired 
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Note that the necessity of subtracting 

! 

w
i
 from 

! 

" e  will result in some 

! 

T
i"1

 with end-
ing locations outside of the swath.  Because such trails would not lie within the re-
stricted search space, it is important that these cases be eliminated from the list of 
possible trails. 

Because the merit of a trail is recursively defined, all that is needed to determine 
the merit of a trail is local merit of the new trail’s final step and the already calculated 
merit of the rest of the trail: 
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Once the iterating fovea reaches the end of the initial chain-code P, the set of opti-
mal trails from every location in 

! 

f
s  to every location in 

! 

f
e  has been found.  The opti-

mum path Q is then the 
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" s , " e  with the largest merit: 
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If P was closed, then Q must be closed as well, and so 
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" s = " e  must be enforced: 
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Implementation in ITK 

ITK provided an excellent framework within which to implement NDS.  The ITK 
iterator and neighborhood iterator constructs were especially helpful in handling the 
complexity of a ND fovea, and the shaped neighborhood iterator provided an efficient 
means of dealing with the 

! 

W
i
 for a given 

! 

P
i
. 

Trail storage was handled by making a fovea-sized image representative of each 
trail starting location 

! 

f
s in 

! 

F
s , and then having each voxel of that image point to an-

other fovea-sized image-of-steps representative of each trail ending location 

! 

f
p
i

s

 in 
the iterating fovea 

! 

F
p
i

s

.  In order to store every step of every optimal trail for every 
length of trail, such an image-of-images-of-steps must be calculated for each step of 
the initial path, but since the merit of a trail of length i depends only on the merit of 
its last step and the merit of a trail of length i-1, only the most recent two images-of-
images-of-merits must be stored. 



The implementation used a fovea-sized neighborhood iterator centered at 

! 

p
i

s to iterate 
through the input image voxel indices used for 

! 

" e  for each length of trail.  The neigh-
borhood was made to follow the course of the initial path, and for each step 

! 

P
i
 of the 

initial path, the corresponding set 

! 

W
i
 was calculated.  Because the merit of each trail 

feeding each corresponding 

! 

w
i
 would be necessary, an ITK shaped neighborhood was 

then created to visit only merit values of the trails feeding each

! 

w
i
"W

i
.  Since the 

feeding trails’ ending locations are offset from the new ending locations by 

! 

P
i
, each 

! 

w
i
 was subtracted from 

! 

P
i
 to transform 

! 

W
i
 into a list of offsets from the beginning of 

! 

P
i
 to the beginnings of the 

! 

w
i
, as was necessary to create the appropriate shaped 

neighborhood.  

! 

W
i
 could be recovered from the list of shaped neighborhood offsets 

by simply subtracting the offsets from 

! 

P
i
.  The shaped neighborhood was given a con-

stant boundary condition of -∞ to prevent 

! 

w
i
 not completely within the swath from 

being chosen.  In effect, a single shaped neighborhood provided not only 

! 

W
i
, but for 

each 

! 

w
i
 it also provided the merit value of the corresponding feeder-trail of length i-

1.  Once all the optimal trails had been grown to length n, the optimal trail Q was 
found using a rather straight-forward standard iterative search. 

Discussion 

NDS uses dynamic programming to efficiently search for a globally optimum path.  
Dynamic programming is not a new technique for curve detection [5], but it has tradi-
tionally been used in relatively small search spaces for 2D images.  NDS, however, 
searches through a high-dimension search space in polynomial time.  It is only re-
cently that computational power has become sufficient for NDS to execute in reason-
able run time, taking only a few seconds on a typical desktop computer to search for 
an optimal 100 step chain-code using a fovea of radius 3 (higher search radii can be 
efficiently achieved by use of scale space). 

NDS must store and process a huge amount of data.  Let the number of elements 
across one side of the fovea be denoted by 

! 

df = 2* rf +1, and let the number of di-
mensions of the input image be denoted by 

! 

D.  Then, the number of optimal trails 
from every element in 

! 

F
s  to every element in 

! 

F
p
i

s

 will be 

! 

df
D*2 , and n steps will have 

to be selected for each of those optimal trails.  Selecting a step requires that each 

! 

w
i
 

be evaluated, and so the number of steps for which the sum of local and previous 
merit must be evaluated is 

! 

df
D*2
* n *Wi

 (19) 

Because trails between different fovea elements overlap and because the foveas of 
neighboring steps overlap, many identical local merit queries will be needed to calcu-
late the different total merit values of each 

! 

w
i
 appended to each trail.  Therefore, 

caching local-merit-values can substantially reduce the number of times the local 
merit function must be evaluated, in the best case (a straight path) reducing it to ap-
proximately 
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! 

W
i
 varies with 

! 

D and with the direction of each step 

! 

P
i
.  As can be seen from 

Figure 2, 

! 

P
i
 that span a larger subspace (diagonal steps) can have fewer 

! 

w
i
 than 
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P
i
 

that span only a few dimensions.  Let 
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Therefore, NDS grows exponentially with image dimension, but it has polynomial 
growth with respect to fovea size (search radius) and linear growth with respect to 
path length.  Use of scale space to reduce the search radius and merit caching to avoid 
redundant computation can substantially reduce the large polynomial growth, how-
ever. 

NDS is a powerful tool for optimization of path-based segmentations.  Its only sig-
nificant shortcoming with regard to quality of result is that it cannot change the num-
ber of steps in a chain-code.  This is not typically a problem, however, because NDS 
can “pinch” a chain-code to remove extra steps (as shown at the top-right corner of 
Figure 4 and such pinched segments can be easily removed from the output of NDS.  
If significant path growth may be needed, extra steps can be added to the input path 
without qualitatively changing it by using the path-to-chain-code conversion filter to 
convert a path to a minimally-connected chain code, all the steps of which are of 
minimum physical length. 

Figure 4 shows an example result of NDS applied to the problem of 2D segmenta-
tion.  The fovea radius was 3, and the merit function used was 

! 

m
r
 which optimized 

the path to trace around the outside of a dark-gray object.  Blurring the square had no 
effect on the resulting optimal path. 

 

Fig. 4. Input image of a blurred square with the input path (left) and output path (right) 

 



Conclusion 

In this paper the novel NDS algorithm for n-dimensional path optimization was de-
veloped and implemented in ITK.  NDS uses dynamic programming to efficiently 
search for a globally optimal path, where optimality is defined in terms of an external 
local merit function.  NDS execution time is linear with path length, polynomial with 
search radius, and exponential with image dimension. 
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