
Incremental Scheduling to Maximize Quality in a Dynamic Environment

Anthony Gallagher, Terry L. Zimmerman and Stephen F. Smith
The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh PA 15213
{anthonyg,wizim,sfs}@cs.cmu.edu

Abstract

We present techniques for incrementally managing schedules
in domains where activities accrue quality as a function of the
time and resources allocated to them and the goal is to max-
imize the overall quality of actions executed over time. The
scheduling problem of interest is both over-subscribed and
dynamic; there is generally more to do than is possible within
imposed deadlines, and opportunities to execute new, poten-
tially higher payoff activities continually arrive. Like other
dynamic domains, schedule stability and computational cost
concerns argue for the use of incremental techniques in this
context. The novel emphasis on maintaining schedules that
produce “high value” results when faced with a changing en-
vironment differentiates this problem focus from that of pre-
vious research. We develop and evaluate methods for incre-
mentally maintaining schedules that maximize the quality (or
utility) of executed activities. We contrast the performance
of our incremental techniques to that of comparable sched-
ule (re)generation techniques with respect to quality, stability
and cost considerations. The results clearly favor incremen-
tal scheduling in this context, and suggest opportunities for
broader schedule improvement search.

Introduction
An ability to manage schedules incrementally is crucial to
effective performance in many dynamic environments. In
some cases (e.g., when humans are involved in executing
scheduled activities), this is due to the value that schedule
stability brings to execution processes in the face of un-
expected events that force changes. The performance ad-
vantage that might accrue via schedule re-optimization at
each required change must be balanced against the poten-
tial disruption to execution processes caused by a discon-
tinuous sequence of schedules. In other cases, basic scal-
ability concerns and computational demands tied to keep-
ing pace with execution may simply prohibit schedule re-
computation. Accordingly, prior research has devoted con-
siderable effort toward the design and development of in-
cremental scheduling procedures (Smith 1994; Zwebenet
al. 1994; Becker & Smith 2000; Sakkout & Wallace 2000;
Bartak, Muller, & Rudova. 2004).

Our focus in this paper is on incremental scheduling of
so-called “knowledge-intensive dynamic systems” (KIDS),

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

which are concerned with the production and manipulation
of knowledge products. Central to a definition of this prob-
lem class is the objective of maximizing process quality: the
quality (or utility) gained by executing any given activityis a
function not only of its ascribed worth (or priority), but also
of the time and resources that are allocated to it, and the goal
is to maximize the return on investment of planned activities.
For example, consider the production of a news story by a
news agency. The quality contribution of a given story to
an overall news broadcast will depend on the significance of
the event being covered, the amount of time spent on site,
and on the expertise of the reporter assigned to the story. At
any point in time, there are a number of disparate events that
might be covered, and decision making will focus on max-
imizing the overall quality of the broadcast. Furthermore,
additional news events to be covered arise over time and in-
troduce potentially higher payoff activities whose execution
must be weighed against that of currently scheduled activ-
ities. While already allocated resources may be redirected
to respond to new higher priority events, there is typically
some trade-off cost (e.g. travel change penalties).

Such quality-centric scheduling problems differ signifi-
cantly with respect to key assumptions that are traditionally
made when considering over-subscribed scheduling prob-
lems. With very few exceptions, prior research on over-
subscribed problems has assumed that activity durations are
fixed, and the objective, subject to problem constraints on re-
source availability and activity timing, is either to maximize
the number of activities that get into the schedule (possibly
weighted by priority), or minimize the extent to which dead-
lines must be relaxed (e.g., minimizing weighted tardiness).
In contrast, activity durations in our quality-centric problem
are not fixed; instead they are decision variables, subject to
specified minimum and maximum bounds. In this case, the
objective is to produce a schedule that maximizes the cumu-
lative quality of all scheduled activities, where the quality
of a given activity is determined by its duration, its priority
and the level of expertise of the resource assigned. Many di-
verse application domains present this sort of quality-centric
scheduling problem. In the area of quality testing of large
software systems, the confidence that a given component is
robust varies with time spent in testing it, and both test re-
sults and delivery deadlines will force choices as to level
of testing of different components. In planetary exploration,

the time spent by robotic rovers on various sampling and test
activities will differentially affect overall scientific return of
the mission, and ongoing analysis of results will continually
reprioritize and augment the set of existing tasks.

In this paper, we investigate the implications of this novel
class of dynamic scheduling problem for the design of incre-
mental scheduling procedures. We develop techniques for
minimally-disruptive and priority-based schedule revision
analogous to those developed in previous work, but with an
alternative bias toward maintaining ”high value” schedules.
Through experimental analysis in a representative KIDS do-
main, we show these techniques to exhibit scalable perfor-
mance properties in relation to a baseline reschedule from
scratch approach. We also demonstrate the potential utility
of these techniques for more broad-based schedule improve-
ment.

The remainder of the paper is organized as follows. First,
we formulate more precisely the class of dynamic schedul-
ing problem of interest. Next, we present a core set of tech-
niques for incrementally extending and maintaining high
quality schedules. We define procedures for inserting ac-
tivities into an existing quality-based schedule, for substitut-
ing new higher quality activities for other currently sched-
uled activities, and for composing these basic operations into
overall scheduling procedures. We then define a representa-
tive set of test problems and empirically evaluate the perfor-
mance of these incremental techniques. We present results
indicating the tradeoffs in incremental versus regenerative
response to new events with respect to quality, cost and so-
lution stability. The paper ends with a summary of related
work and a few concluding remarks.

A quality-centric scheduling problem
The class of dynamic, incremental scheduling problems that
we focus on in this paper can be defined as follows:

• At any point in timet there is a setA(t) of activities that
could be scheduled. Each activitya has a prioritypr(a),
an earliest start timeest(a) and a latest finish timelft(a),
which defines the window in whicha must occur. The set
A(t) evolves over time as new activities arrive and known
activities that cannot be scheduled within their time win-
dows become lost opportunities.

• A set R of resources are available for assignment to ac-
tivities. Each resourcer has a designated skill level
sk(r), reflecting the efficiency with which activities can
be performed. (Higher skilled resources achieve a given
task quality more quickly than lower skilled resources.)
Each resourcer also requires some amount of time,
setup(r, a, b), to change from the state required by activ-
ity a to the state required by activityb. Where convenient,
we will refer to this sequence-dependent delay simply as
a setup activity.

• Each activitya requires exclusive use of a single resource
r to execute and the quality obtained by executinga in-
creases as its duration increases in an anytime fashion.
Each activitya has a “minimum quality” constraint. If
resourcer is assigned toa, then this implies a minimum
duration constraintmindur(a, r).

• The qualityq(a, r) obtained by executing activitya on
resourcer from t1 to t2 is defined as

q(a, r) = pr(a)× sk(r)× dur(a) (1)

wheredur(a) = t2 − t1. Hence largerpr(a) andsk(r)
values imply higher priority and skill levels. Here we as-
sume a simple linear relation between activity duration
and quality. Note however, that the techniques introduced
in this paper are easily generalized to more complex qual-
ity profiles (e.g., piece-wise linear) by decomposing ac-
tivities into sequences of linear-profiled sub-activities.

• The overall quality of a setS of scheduled activities is
then defined as

QS =
∑

s∈S

q(as, r(as)) (2)

wherer(as) is the resource assigned toas.

Extending and Maintaining Quality-Centric
Schedules

The design of an incremental scheduler for quality-centric
problems presents some interesting representational chal-
lenges. The need to dynamically place new activities into an
existing schedule over time suggests aflexible-timessched-
ule representation. In flexible-times schedules, the startand
end times of activities are not anchored; activities are in-
stead allowed to “float” within the time bounds determined
by current problem constraints, and resource conflicts are
avoided by sequencing pairs of competing activities. On the
other hand, a schedule that maximizes quality will by defin-
ition be afixed-timesschedule. To leave any flexibility in a
scheduled activity’s duration is to settle for a lower quality
solution than would be possible if its duration was simply
extended. Yet, representation of this higher quality solution
may hide opportunities for better utilizing resource capacity
and complicates the process of accommodating change.

We reconcile this representational dilemma by exploiting
dual models of the current schedule. To provide visibility of
options for accommodating schedule change, we employ a
Simple Temporal Problem (STP) constraint network repre-
sentation (Dechter, Meiri, & Pearl 1991), hereafter referred
to as thetemporal network. A flexible-times representation
of each resource’s assigned activities, which we refer to as
its STP timeline, can then be maintained. Here, only mini-
mum duration constraints on quality-accumulating activities
are enforced, together withest and lft constraints on exe-
cution, sequencing constraints and necessary resource setup
activities. As these chains of activities get “pushed” back
and forth within their constraints, time intervals that might
feasibly be allocated to new activities can be identified.

We also maintain a fixed-times representation of each re-
source’s schedule, referred to as the resource’squality time-
line. The quality timeline of a resource designates the set
of start and end times for the currently assigned sequence
of activities that yield the ’sequence optimal’ quality sched-
ule for this resource (optimal with respect to a particular
sequence of chosen activities). By using information from
both representations we are able toincrementallymaintain

 i i i i i i i i i i i i i i i i i i i i i

 0

time windows: est -- lft

 activity 1 (priority 1)

R
es

o
u

rc
e

1

setupa1 activity 1

 activity 1

time windows (est -- lft)

 activity 1 (priority 1) activity 2 (priority 2)

 R
es

o
u

rc
e

1

 activity 2 setupa1

 i i i i i i i i i i i i i i i i i i i i i

 0

setupa2

 i i i i i i i i i i i i i i i i i i i i i

 0

time windows (est -- lft)

activity 1 (priority 1) activity 2 (priority 2)

activity 3 (priority 3)

 R
es

o
u

rc
e

1

activity 1 activity 3 activity 2 setupa1 setupa3 setupa2

time

Figure 1: Consecutive allocation of 3 activities on a resource
timeline. Darker portion of activity represents the minimum
required duration while the dashed extension represents the
duration giving highest quality.

this sequence-optimal fixed-times schedule as new activities
are added and others are retracted. Figure 1 illustrates this
dual schedule representation scheme as three activities pos-
tulated to arrive over time are allocated consecutively and
optimally on a single resource. Each activity is assumed to
have the same minimum quality requirement. Representa-
tion on the quality timeline is depicted by the dashed extent
of activities while the temporal network tracks only the re-
quired minimum duration (shown in dark shading). For ex-
ample, when activity 2 arrives its higher priority causes the
scheduler to cut short resource effort on activity 1 (while re-
specting its minimum duration) such that it can change state
in time to service activity 2 for itsentiretime window (max-
imizing overall plan quality).

We next summarize the incremental scheduling proce-
dures for incorporating a new activity into the current sched-
ule, and then adapt this operation to provide a quality-centric
schedule generation capability.

Incremental Activity Insertion
Given these representational assumptions, let us first con-
sider the basic operation of inserting a new activity into
an existing schedule. Accommodation of a new activity
consists of (1) determining a feasible insertion point on
a suitable resource’s timeline and then adjusting the dura-
tions of key activities so as to maximize overall plan qual-
ity. This operation is outlined in Figure 2. Step one is ac-
complished by interrogating the temporal network to iden-
tify the set of feasible insertion points for the new activity
anew on some resource. A feasible insertion point is a gap
on a given resourcer’s STP timeline large enough to ac-
commodate the minimum duration ofanew along with any
sequence-dependent setup time constraints. For example, a
feasible insertion option on resourcer between two activi-
tiesai andaj must satisfy the conditionlst(j) − eft(i) ≥

Schedule-Activity(Schedule,Activity)
1. Options← Find-Options(Schedule,Activity)
2. Selected← Choose-Option(Options)
3. Insert-In-Temporal-Network (Activity, Selected)
4. Insert-In-Quality-Timeline (Activity, Selected)
5. Return(Selected)

end

Figure 2: High level algorithm for scheduling a new activity

setup(r, ai, anew)+mindur(anew, r)+setup(r, anew, aj)
in addition to satisfyinganew ’s est andlft constraints.

Once feasible options are determined,Choose−Option
(Step 2) is applied to evaluate each and select one for im-
plementation. This choice is of course central to quality and
stability properties of the schedule over time, and we pro-
pose several candidate strategies below.

Having chosen an insertion option, Step 3 adds the ap-
propriate sequencing, setup and (minimum) duration con-
straints associated withanew ’s placement in the chosen op-
tion to the underlying temporal network. An incremental
STP network solver is used to propagate constraints and
check consistency.1

Finally, Step 4 inserts the new activity into the corre-
sponding quality timeline of the assigned resource. Upon
insertion of a new activityanew into a resourcer’s quality
timeline, the durations of surrounding activities are recom-
puted to ensure that the duration assigned toanew andr’s
overall schedule remains quality-optimal with respect to the
sequence. This is accomplished by first determining the set
of existing activities on the timeline whose durations may
require adjustment as a result of the insertion.

Let TL(r) be the timeline of resourcer containingN
indexed scheduled activities (a1..aN), and let the insertion
point of anew be i (i.e., located between activitiesai and
ai+1 on TL(r)). Further assume thatst(aj), ft(aj) and
dur(aj) designate the current start time, finish time and
duration respectively of anyaj on TL(r). We can bound
the set of scheduled activities possibly affected by the in-
sertion of anew in the timeline by identifying two activ-
ities on TL(r): the nearest activityax preceding inser-
tion point i whose start time cannot be pushed earlier (i.e.,
st(ax) = est(ax)) and the nearest activityay following in-
sertion pointi whose finish time cannot be pushed later in
time. We define the bounding regionBRr,i to be the set of
activities onTL(r) betweenax anday. More precisely,

BRr,i = {ak ∈ TL(r) | x ≤ k ≤ y} (3)

where

1The underlying network is robust enough to handle much
more complex precedence relationships than this domain’s single-
resource precedence chains.

x = arg max
k

{ak∈TL(r) | st(ak)=est(ak), 0<k≤ i}

y = arg min
k

{ak∈TL(r) | ft(ak)= lft(ak), i+1≤k<N}

Given the choice to insertanew betweenai andai+1 and
having determinedBRr,i, the optimal duration ofanew is
established by decreasing the time allocated to activitiesin
BRr,i in reverse priority order (since the quality contribu-
tion of an activity is proportional to its priority). LetSBRr,i

be a reverse-priority sorted queue of the activities inBRr,i,
andap be the head ofSBRr,i. Computation proceeds by
repeatedly determining, for the currentap, the amountδ by
which ap’s duration should be shrunk andanew ’s duration
expanded. Ifanew has higher priority thanap, thenδ cannot
exceedslack(ap) = dur(ap) − mindur(ap). However,δ
will be less thanslack(ap) if any intervening activityaj be-
tweenap and the insertion pointi has a time bound that lim-
its its ability to “slide” alongTL(r). Conversely, ifap has
higher priority thananew, thenδ is the maximum amount
by which ap can be shrunk in an effort to achieveanew ’s
minimum duration.

More precisely, assume thatap precedes insertion pointi
onTL(r) and defineminslide(ap, i) as follows:

minslide(ap, i) = min
[

{st(ak)− est(ak)}ik=p+1

]

Then theδ value by whichap’s duration is reduced is
given by:

δ =



















































min
[

slack(ap),

minslide(ap, i), st(a
new)− est(anew)

]

if pr(anew) > pr(ap)

min
[

slack(ap),minslide(ap, i),

st(anew)− est(anew),

mindur(anew, r)− dur(anew)
)]

if pr(anew) ≤ pr(ap)
(4)

Theδ value for the case whereap follows insertion point
i is defined similarly. The algorithm continues to shrink ex-
isting activities in this manner untilSBR = ∅ or pr(ap) ≥
pr(anew) anddur(anew) ≥ mindur(anew, r).

Considered overall, the activity insertion operation of Fig-
ure 2 provides a baseline approach to balancing quality and
stability objectives as new activities are introduced intothe
schedule over time. The choice of which placement option
to commit to is a heuristic one, but given the sequencing
constraints established on a given resource, the durations
for scheduled activities are optimized with respect to qual-
ity. Given that existing sequencing constraints are left intact,
perturbation is also minimized (at the possible expense of
achieving higher quality via sequence rearrangement). We
examine the impact of this trade-off between quality and sta-
bility in the Experimental Analysis section.

Insertion Option Heuristics
As indicated previously, a feasible insertion option
for activity anew on a resource r’s timeline in-
cludes an availability gap large enough to accommo-
date the sum of the following duration constraints:
mindur(anew, r), setup(r, aprev, anew), if aprev exists,
and setup(r, anew, anext), if anext exists. Given a set of
feasible insertion options, there are a number of possible
strategies for determining which option to take:

• first-slot - A naive, low-cost strategy is to simply insert
anew in the first such valid insertion option that is found
(given some enumeration procedure). While this is likely
to be the most efficient strategy, blindly insertinganew

in the schedule may actuallydecreaseoverall schedule
quality.

• first-gain-slot - A more costly but more informed strat-
egy is one which generates and assesses valid insertion
options until it finds one that increases current schedule
quality. This strategy will ensure at least some overall
gain in quality before committing toanew, and hence
sometimes may rejectanew despite the fact that there are
feasible options.

• best-slot- A third, more quality-greedy and also more
costly strategy is one that generates all possible insertion
options, assesses the quality gain for each (according to
equations 1 and 2), and then chooses the highest quality
gain option. If no option yields a gain in quality,anew is
rejected.

• min-setup- Finally, given that quality is not accumulated
during periods in which the resource is occupied with per-
forming setup activities, a strategy that attempts to mini-
mize setup time may provide a lower-cost but still effec-
tive alternative tobest-slot. Under themin-setupheuristic
all possible options are generated, as above, but the option
that minimizes setup time is selected.

A more disruptive insertion operation
Regardless of which option selection heuristic is in play, the
basic activity insertion operation described above is funda-
mentally additive in nature. It can be constrained to add a
new activityanew to the schedule only if this addition re-
sults in a higher quality schedule. But it does not consider
possibilities that involve retraction or rearrangement ofex-
isting activities. In this regard it is biased towards stability
in the schedules that are generated over time. On the other
hand, this stability can block the insertion of newly arrived,
higher priority (and hence higher quality) activities.

To overcome this maximally conservative posture toward
acceptance of new activities that arrive over time, we define
a second, more disruptive activity insertion operation that
allows currently scheduled activities to be supplanted by a
new activityanew if there is a net quality gain. Thisbumping
insertion operator attempts to strike a better tradeoff between
solution quality and stability objectives.

Given a new activityanew, candidates for bumping are
those activities that contend for a resource duringanew ’s
time window. The set of conflicting activitiesC is found

by locating the set of activities scheduled during the time
window ofanew:

C = {ak ∈ S | est(anew) ≤ st(ak) ≤ lft(anew) ∨

est(anew) ≤ ft(ak) ≤ lft(anew)} (5)

More precisely, the bumping operator proceeds as fol-
lows. Potential bumping candidates on a given resource, r,
are identified as the intersection of C (the set of all conflict-
ing activities) with TL(r) the set of activities on the timeline
of r. The complexity of this operation is quadratic in the size
of the intersection set because only contiguous sequences
of activities in C are considered as candidates to bump in
favor of anew. The operator utilizes the samebest slotop-
tion selection heuristic as simple insertion, but in this case
the quality that is gained from addinganew at a particular
position onTL(r) is offset by the loss in quality incurred
from the removal of any bumped activities fromTL(r). The
set of options generated is asupersetof the set considered
by simple insertion; existing gaps onTL(r) (for all r) are
evaluated as before, as well as those gaps that would be cre-
ated through the removal of subsequences of one or more
activities currently onTL(r). The combined set of options
is assessed and ranked according to net quality gain, and the
highest gain option is selected. If no option generated during
this process offers a net gain,anew is rejected.

Using Incremental Insertion to Build Schedules
At the other extreme along the quality/stability tradeoff
spectrum we consider the strategy of responding to the ar-
rival of a new activity by simply building a new schedule
from scratch. This strategy is the most disruptive, as no
explicit attention is given to keeping aspects of the current
schedule intact. It can also can be seen to provide the best
opportunity for maximizing quality, as all previous decisions
are reconsidered in light of the newly received activity. Of
course a downside to this strategy is relative computational
cost; given the arrival rate of new activities, gains in sched-
ule quality may be counterbalanced by difficulties in keeping
pace with execution.

The activity insertion operations discussed above can be
configured to provide a basic capability for schedule gener-
ation from scratch. Given the setA(t) of known activities
at timet, an initial schedule can be constructed by repeat-
edly (1) selecting an unscheduled activitya from A(t) and
(2) invoking the activity insertion operation to adda into
the schedule. Since, by definition, the overall problem is
oversubscribed, it is likely that not all activities inA(t) will
be successfully added to the schedule. Hence, the order in
which activities are added can significantly impact the over-
all quality obtained.

Intuitively it makes sense to select activities fromA(t)
in order of their expected quality contribution to the final
schedule. In this respect, an activitya’s priority pr(a) is a
simple surrogate measure of its quality (recall equation 1),
and can be used as one basis for prioritization. We here-
after refer to activity ordering on this basis aspriority. At
the point of selecting an activitya from A(t) for scheduling,

both of the other two factors that influencea’s quality contri-
bution, the resource to whicha will be assigned and its even-
tual assigned duration, are unknown. We do, however, know
a’s duration-constraining time window,lft(a)−est(a), and
use of this upper bound information leads to a second priori-
tization metric,pr(a)×(lft(a)−est(a)). Below we refer to
this second activity ordering strategy aspriority∗maxdur.

The next section quantifies the relative performance of
these proposed incremental scheduling techniques.

Experimental Analysis
We first evaluate the relative performance of the various ac-
tivity and option selection heuristics we have proposed when
coupled with the basic activity insertion operation. We con-
sider this first question in the context of schedule generation
using different activity selection criteria. Our initial goals
are twofold: to identify the best minimally disruptive inser-
tion operation for subsequent evaluation in a dynamic set-
ting, and (2) to establish a baseline reschedule-from scratch
strategy for comparison with incremental strategies.

Following this initial analysis, we evaluate the efficacy of
various scheduling strategies in responding to the dynamic
arrival of new activities. This leads to consideration of some
extended optimization procedures, in an effort to better un-
derstand the observed results.

Finally, we analyze the stability of the solutions produced
by the various incremental scheduling strategies tested.

A Representative KIDS Problem Suite
To evaluate performance characteristics of the incremental
scheduling procedures defined above, we here describe a
domain that is prototypical of the KIDS problem outlined
in the second section. In this domain, which we refer to
asNews Agency, the agency’s objective is to provide high
quality coverage of worldwide news events using a limited
pool of reporters to provide on-location news reports. The
agency defines an event’sestand lft as a “news event win-
dow” (NEW) -which can be viewed as the time span around
an event during which a news report (the basic activity of
interest) is considered news-worthy. Thus, report tasks have
deadlines since quality is only accrued if they are produced
during the NEW. Sequence-dependent setups may arise be-
cause each news event is postulated to occur in one of five
cities and reporters must travel to each event location to gen-
erate an on-site news report. All problems have 3 available
resources (reporters), each with a randomly generated skill
level between 1 and 3 (sk(r) of equation 1) and a random
initial location. News events have uniformly distributed pri-
orities between 1 and 5 (5 being the highest priority) with
minimum required quality of 1 (corresponding to 1 hr min-
imum duration for a reporter with skill=1). NEW spans are
uniformly distributed between 1 and 10 hours and are situ-
ated within a 10-day time horizon.

Two sets of News Agency problems were generated repre-
senting different degrees of oversubscribed conditions; one
set consists of ten 100 activity problems and the other has
ten 200-activity problems. For the 100-activity problem set
roughly 80% of its activities are typically allocated by the

random
priority

priority*maxdur

100 activities

200 activities0

50

100

150

200

Ave. Plan

Quality

(x 1000)

Activity Ordering Heuristics

Figure 3: Activity sorting impact on plan quality

scheduler and the schedules average over 20% remaining
free space on the timelines. For the 200-activity problem set
slightly more than 50% of activities are typically installed in
the schedule and the schedules contain, on average, less than
5% free space.

Activity Selection and Option Ordering Heuristics
Turning first to the ordering activities for scheduling, Figure
3 shows the average quality of schedules generated for each
of the two problem sets defined above using thepriority
andpriority ∗maxdur activity selection heuristics defined
earlier. To further calibrate the results, we include results
obtained by just randomly selecting activities for scheduling
-therandom selection heuristic. In all cases, the (best-slot)
heuristic (analyzed further below) was used to select among
feasible insertion options and determine final placement of
selected activities in the schedule.

As can be seen, thepriority*maxdur ranking modestly
outperforms the others in terms of average plan quality re-
turned. This heuristic is most closely aligned with factors
contributing to quality, reflecting both activity priorityand
time window size. Thepriority and random heuristics
ranked second and third, respectively. Since differences in
runtime overhead for different heuristics is negligible, we
use thepriority ∗maxdur heuristic to rank activities for all
experiments reported in the remainder of the paper.

Table 1 compares average quality and runtime for each
insertion option selection heuristic on our two problem sets.
The low-cost heuristics (first-slot and min-setup) exhibit
roughly the same runtimes, butmin-setupdominatesfirst-

Heuristic 100 Activities 200 Activities
Quality cpu (s) Quality cpu (s)

first-slot 1.0 1.06 1.0 2.78
first-gain-slot 3.4x 4.05 3.2x 12.13

best-slot 3.9x 4.63 3.4x 12.51
min-setup 2.3x 0.78 1.9x 2.78

Table 1: Insertion option heuristics on 100 and 200 activity
problems (Quality is shown relative tofirst-slotbaseline)

Scheduling % of Optimal # Solutions
Approach Quality at Optimal

min-setup 58.7 0
First-gain option 73.9 0

best-gain slot 89.7 2

Table 2: Comparison of option heuristics to the optimal
quality solution on 10 random problems

slot in terms of quality. Both quality-informed heuristics
(first-gain-slot and best-slot) clearly outperform the other
heuristics in terms of overall quality at a 4-5 times increase
in runtime. Thus, our hypothesis that minimizing setup ac-
tivities (which are non-quality accumulating) might be an
effective surrogate for maximizing quality is shown not to
be the case. Given the reasonable computation times, we
have chosen the more quality-informed heuristic of these
two, best-slot, as the default option-ordering heuristic for
the remainder of this paper.

To further calibrate the performance of our insertion op-
tion selection heuristics, we compared them with the optimal
quality solution for a set of smaller problems. Specifically,
we used an exhaustive enumerative procedure to determine
the optimal quality solution for a randomly generated set
of 10 problems having up to 10 activities each (the largest
sized problems we are able to optimally solve in reasonable
time). Table 2 gives the percent of optimal obtained with
each heuristic, as well as the number of problems for which
each approach found the optimal solution.priority*maxdur
/ best-gain slotscheduling is seen to perform well on these
problems, coming within 10.3% of optimal on average and
finding the optimal solution for 2 of the problems.

Responding to New Events
We now turn attention to the dynamic problem of respond-
ing to the arrival of a new activity. Specifically we compare
the performance of three incremental dynamic scheduling
strategies in adapting a base schedule to account for the ar-
rival of a newly arrived activity. Base schedules are cre-
ated using the best quality-centric scheduling strategy found
above (i.e.,priority ∗maxdur activity selection,best-gain
slot insertion), again using our 100 and 200 activity prob-
lem sets. Each problem in both sets is then augmented with
10 new activities (randomly generated under the parame-
ters used for the baseline activities) which are then given
one at a time to the scheduler after it completes the base-
line schedule. The incremental strategies studied are:insert-
only, a pure insertion method that seeks the insertion option
with the highest quality gain,insert-or-bump, the insertion-
plus-bumping method previously described, which selects
the highest quality gain choice amongst available insertion
options and bumping options, andinsert-or-bump+, an ex-
tended insertion-plus-bumping strategy that additionally at-
tempts to reinsert any bumped activities. This latter strat-
egy looks for opportunities to reinsert any activities thatare
bumped in favor of a new activitywithout bumping addi-

0

100

200

300

400

500

600

700

800

Q
u

a
li

ty
 G

a
in

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

R
u

n
ti

m
e
 (

s
e
c
)

100 activities quality gain 200 activities quality gain

100 act runtime 200 act runtime

 Insert-only insert-or-bump insert-or-bump+ reschedule
 (greedy-quality)

Figure 4: Dynamic incremental strategies vs. rescheduling.
(Averages charted are for a single new activity insertion:
Quality gain and runtime are averaged for each of the 10
new activities per problem, and these problem averages are
then averaged across the 10-problem set.)

tional activities on the timeline. Areschedule-from-scratch
strategy, which simply adds the new activity to its original
set and reschedules using the greedy-quality heuristic, isin-
cluded for comparison.

Figure 4 compares the dynamic incremental scheduling
strategies with rescheduling from scratch in terms of the av-
erage quality gain (quality increase over baseline schedule
given a new activity) and runtime. As might be expected,
the insert-onlystrategy produces the lowest quality gains,
its effectiveness degrading as the resource timelines become
more heavily loaded (i.e. in the 200-activity set). Not sur-
prisingly, rescheduling generates higher quality plans than
the former and is computationally more expensive than the
other strategies by factors of between 5 and 160 times. How-
ever, the fact that the bumping enhanced strategies,insert-
or-bumpand insert-or-bump+, perform so well relative to
rescheduling is unexpected. Rescheduling is slightly outper-
formed byinsert-or-bump+in the average quality of sched-
ules produced over the 100-activity problem set, andboth
bumping strategies outperform rescheduling from scratch
on the 200-activity set. In part, the efficacy of the bump-
ing strategy search for opportunities to replace low quality-
producing activities in the schedule constitutes a local repair
capability that heuristic-guided schedule construction alone
cannot match.

We confirmed the Figure 4 implication that the advantage
afforded by bumping grows as the problem becomes more
oversubscribed, by generating two additional 10-problem
sets of 300 and 500 activities while fixing the number of re-
porters at three. These experiments showed that the quality-
gain factor for scheduling under theinsert-or-bumpheuris-
tic versus rescheduling grows in nearly linear fashion as
problems become more oversubscribed. Predictably, perfor-
mance of theinsert-onlyheuristic degrades as the likelihood
of open insertion options on the timelines diminishes.

Extended Schedule Optimization
Considering this observation in more detail, we can iden-
tify two ways in which the greedyreschedule-from-scratch
strategy can be misled into making suboptimal placement
decisions. First, the presence of sequence-dependent setup
times can lead to situations where an activity rated highly
by thepriority*maxdur activity sorting heuristic gets placed
at some position on a resourcer’s timeline without proper
anticipation of the future opportunities to minimize setup
time, resulting in a final schedule with substantial non-value
adding segments of time onTL(r). Second, the fact that ac-
tivities have unique time windows (NEWS) implies that the
placement of one activity on a givenTL(r) will constrain
the quality contributing potential of subsequently placedac-
tivities. Since thepriority*maxdur heuristic does not con-
sider current availability onTL(r), it is susceptible to place-
ment decisions that inadvertently cause fragmentation of
availability onTL(r). In both of these cases,reschedule-
from-scratchhas no means to recover from bad decisions,
since once an activity is placed into the sequence of activities
on TL(r) for some resourcer, its position relative to pre-
viously placed activities is fixed and there is no possibility
to reconsider the choice ofr. Application of theinsert-or-
bumpoperator, alternatively, provides just this sort of capa-
bility - to alter previously fixed sequencing relationshipsbe-
tween pairs of activities and to change resource assignments.
This suggests a most costly, but potentially more effective
schedule generation (or reschedule from scratch) procedure.
To explore this hypothesis, we define a new schedule gen-
eration strategy by altering our originalreschedule-from-
scratchprocedure to utilize theinsert-or-bumpoperator in-
stead of simple insert-only.

Another approach to providing a more effective
rescheduling procedure is to embed our basicreschedule-
from-scratchgeneration procedure within a broader search
process. There are a number of possibilities here; squeaky
wheel optimization (Joslin & Clements 1999), genetic algo-
rithms (Gilbert Syswerda 1991), heuristic-based stochastic
sampling (HBSS) (Bresina 1996). We’ve explored this
approach by embedding our greedy-quality schedule gener-
ator within a variant of HBSS called value-based stochastic
sampling (VBSS) reported in (Cicerello & Smith 2002). In
brief, the idea in VBSS is to apply a given search heuristic
in a non-deterministic manner, biased according to how
well the heuristic discriminates in a given decision context.
If the heuristic clearly favors one choice over others, then
the tendency is to follow the heuristic with high probability;
if the heuristic assesses several choices equivalently, then
the decision is made with greater non-determinism. Using
this scheme to repeatedly generate different solutions, some
number of solutions in the neighborhood of the heuristic’s
trajectory through the search space are sampled and the
best is retained. This scheme has been previously shown
to produce high performance solutions in other scheduling
domains with classical scheduling objectives. Here we
apply VBSS to randomize the activity sorting heuristic
priority * maxdur defined earlier.

Figure 5 compares the performance of the basic greedy-
qualityreschedule-from-scratchprocedure with the more ex-

196000

197000

198000

199000

200000

201000

202000

203000

204000
S

c
h

e
d

u
le

 Q
u

a
li

ty

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

R
u

n
tim

e
 (s

e
c

)

Quality

greedy-quality greedy-quality VBSS

 w/bumping

 Runtime

Figure 5: Extended rescheduling strategies (Quality and run-
time for 3 schedule-from-scratch approaches over the 200-
activity problems)

tended schedule optimization procedures just outlined. Here
we chart just the baseline solutions for the same 200-activity
problem set of Figure 4 (i.e. without the 10 additional ac-
tivities added dynamically for each problem). As the re-
sults show, it is possible to produce a rescheduling strategy
capable of outperforming our incremental techniques, but
at significant increase in computational cost. Qualitatively,
rescheduling with bumping takes about 3 times as long as
the basic greedy constructor. The VBSS results shown are
for 10 iterations which predictably takes about 10 times as
long as the basic schedule generator. Indeed, the incremen-
tal insert-or-bumpandinsert-or-bump+strategies appear to
strike a nice tradeoff between maintaining high quality solu-
tions and reasonable computational cost.

Solution Stability
Finally, we consider our incremental quality-centric
scheduling strategies from the standpoint of solution stabil-
ity. In dynamic environments, an ability to minimize pertur-
bation to the schedule when responding to new events can
be fundamental to maintaining execution coherence. Char-
acterizing schedule stability is a somewhat subjective matter,
as user perception of it is likely to depend on the problem en-
vironment, work habits, and the impact of various changes
on work process. Furthermore, definitions of schedule sta-
bility that have appeared in the literature (e.g., Policella et
al. 2004) tend to center mainly on temporal flexibility, which
has a different interpretation in classical scheduling domains
than it does in quality-centric scheduling problems. For this
paper, we adopt the following simple parameterized mea-
sure of schedule perturbation,Pschedule, which reflects our
intuition of the importance of various decision variables in
dynamic, quality-centric scheduling contexts.

Pschedule = w1 × b + w2 × r + d (6)

where b is the number of schedule activities removed
(bumped),r is the number of scheduled activities reallocated
to a different resource,d is the number of schedule activities

0.00 2.00 4.00 6.00 8.00

Schedule Perturbation

insert-only

insert-or-bump

insert-or-bump+

reschedule

100 activities

200 activities

Figure 6: Perturbation of baseline schedule due to insertion,
bumping, and rescheduling strategies

whose durations change, andw1, w2 are weighting factors.
For this study we setw1 and w2 to 3 and 2 respectively,
while acknowledging that these values reflect nothing more
than our judgement of the impact of each type of disturbance
in aNews Agencydomain schedule.

Using this metric, Figure 6 compares the average pertur-
bation level relative to the baseline schedules for the in-
cremental strategies and reschedule-from-scratch baseline.
As one might expect, when the only option for accommo-
dating a new activity is insertion into an existing timeline
gap, perturbation is minimized. Perturbation increases with
increasing problem oversubscription because fewer inser-
tion opportunities necessitates increased adjustment to the
durations of currently scheduled activities. As expected,
rescheduling incurs the highest degree of baseline schedule
perturbation. In this case, however, the level of perturba-
tion diminishes as oversubscription increases. This is due
to the fact that more heavily oversubscribed problems start
with higher baseline schedule quality (due to the larger pool
of activities to allocate from) and so fewer new activities are
actually inserted.

Scheduling new activities with either of the bumping en-
hanced modes occupies the middle ground amongst these
strategies. The results for the 200-activity set support the
intuition that theinsert-or-bump+mode is the less disrup-
tive of the two, as it seeks to reinsert any activities that are
bumped. However, this strategy exhibitsmoreperturbation
than the bump without reinsertion mode for the 100-activity
set. Apparently reinsertions in this case incur significantre-
source and duration assignment changes.

Related Work
As mentioned at the outset of the paper, our work has much
in common with previous research in reactive scheduling
(Smith 1994; Zwebenet al. 1994; Becker & Smith 2000;
Sakkout & Wallace 2000; Bartak, Muller, & Rudova. 2004),
which has similarly focused on the development of incre-
mental techniques for managing schedules in dynamic envi-
ronments. However, this research has centered on classical
scheduling problems,with performance objectives relating to
classical measures such as meeting due dates and maximiz-

ing throughput. Our work extends this line of research to
scheduling problems where maximizing the quality of exe-
cuted activities is central concern.

Our approach also shares similarities with several other
models that have appeared in the literature. Our work and
models such asimprecise computation(Liu et al. 1994),
IRIS (Increasing Reward with Increasing Service) (Dey,
Kurose, & Towsley 1996),anytime scheduling(Schwarz-
fischer 2004),progressive processing(Mouaddib & Zilber-
stein 1998) anddesign-to-time scheduling(Garvey & Lesser
1993) all share the common thread of addressing the trade-
off between service time on an activity and schedule quality.
However with very few exceptions, other work has restricted
attention to single resource (agent) scheduling processes.
Much of the noted work also falls under CPU scheduling ap-
plications, where activities are assumed to be pre-emptable
and resumable and switching from one job to the next can
be accomplished without setup.

There have been some studies with these models, how-
ever, that incorporate some of the characteristics of our prob-
lem. For example, in (Kobayashi, Yamasaki, & Anzai 2003),
wind-up activities were introduced within an imprecise com-
putation model. Wind-up activities are roughly analogous to
our setup activities, except that they must be performed af-
ter activity completion and have fixed durations. Another
study (Tirat-Gefen, Silva, & Parker 1997) examines hetero-
geneous resources and non-preemptable activities in a CPU
scheduling context. However, resources capabilities restrict
which activities they can perform and different resource ef-
ficiencies are not modeled. More generally, none of these
studies are concerned with optimizing quality.

The classic time/cost tradeoff problem in Operations Re-
search (Kelley Jr. & Walker 1959), wherein the scheduler
seeks to optimize time spent on each activity to minimize
a project’s cost and meet its deadline, is essentially an infi-
nite capacity variation of our quality-centric problem. More
recently (Wang & Smith 2005) and (Policellaet al. 2005)
have proposed alternative CSP scheduling models for solv-
ing a restricted version of our quality optimization problem
that involves homogenous multi-capacity resources with no
sequence dependent setup requirements. This work also fo-
cuses exclusively on the static version of the problem and
does not consider dynamic arrivals.

Conclusions and Future Directions
In this paper, we have focused on methods for effective
scheduling in dynamic environments where the utility of
a schedule is measured by the quality that is accrued by
its constituent activities. We have presented novel incre-
mental techniques for generating, extending and maintain-
ing such quality maximizing schedules, and have empiri-
cally evaluated their performance characteristics. Across a
range of test problems, these techniques have been shown to
accommodate dynamically arising events in a way that pro-
duces schedules comparable in quality to a reschedule-from-
scratch baseline approach at significantly reduced compu-
tational cost while avoiding major disruption of the work-
ing schedule. To our knowledge, this is the first example

of an incremental scheduler for dynamic quality-centric do-
mains. We view it as a jumping-off point for investigations
into quality-informed heuristics and broader-based search
processes such as iterative improvement.

One such approach that appears promising involves use
of our bumping operators as part of an anytime scheduling
strategy. In preliminary experiments we have applied the
insert-or-bumpoperator to the unscheduled activities which
remain after first-pass scheduling on our testbed problem
sets, and this action consistently produced additional qual-
ity gains. We anticipate extending this simple approach into
a more ambitious post-processing strategy that heuristically
bumps, inserts and swaps activities in the schedule within an
iterative local search framework. Such tactics might serveto
effectively break out of local quality maxima that the sched-
uler finds itself in due to biases in the quality-centric heuris-
tics.

Acknowledgments
The work reported in this paper has been supported in
part by the National Science Foundation under contract #
9900298 and by the CMU Robotics Institute.

References
Bartak, R.; Muller, T.; and Rudova., H. 2004. A new
approach to modelling and solving minimal perturbation
problems.Recent Advances in Constraints.
Becker, M., and Smith, S. 2000. Mixed-initiative resource
management: The amc barrel allocator. InProceedings
of the 5th International Conference on AI Planning and
Scheduling, 32–41.
Bresina, J. L. 1996. Heuristic-biased stochastic sampling.
In Proceedings of the 13th National Conference on Artifi-
cial Intelligence and 8th Innovative Applications of Artifi-
cial Intelligence Conference, volume 1, 271–278.
Cicerello, V., and Smith, S. 2002. Amplification of search
performance through randomization of heuristics.CP.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks.Artificial Intelligence41(1–3).
Dey, J.; Kurose, J.; and Towsley, D. 1996. On-line schedul-
ing policies for a class of iris (increasing reward with in-
creasing service) real-time tasks.IEEE Transaction on
Computers45(7):802–813.
Garvey, A., and Lesser, V. 1993. Design-to-time real-time
scheduling.IEEE Transactions on Systems, Man and Cy-
bernetics23(6):1491–1502.
Gilbert Syswerda, J. P. 1991. The application of genetic
algorithms to resource scheduling.Proceedings of the 4th
International Conference on Genetic Algorithms.
Joslin, D., and Clements, D. 1999. Squeaky wheel
optimization. Journal of Artificial Intelligence Research
10:353–373.
Kelley Jr., J., and Walker, M. 1959. Critical path planning
and scheduling: An introduction.
Kobayashi, H.; Yamasaki, N.; and Anzai, Y. 2003.
Scheduling imprecise computations with wind-up parts. In

Proceedings of the 18th International Conference on Com-
puters and Their Applications, 232–235.
Liu, J.; Shih, W.-K.; Lin, K.-J.; Bettati, R.; and Chung, J.-
Y. 1994. Imprecise computations. InProceedings of the
IEEE, volume 82, 83–94.
Mouaddib, A.-I., and Zilberstein, S. 1998. Optimal
scheduling of dynamic progressive processing. InEuro-
pean Conference on Artificial Intelligence, 499–503.
Policella, N.; Wang, X.; Smith, S.; and Oddi, A. 2005. Ex-
ploiting temporal flexibility to obtain high quality sched-
ules. InProceedings of the 20th National Conference on
Artificial Intelligen.
Sakkout, H. E., and Wallace, M. 2000. Probe backtrack
search for minimal perturbation in dynamic scheduling.
Constraints5(4):359–388.
Schwarzfischer, T. 2004. Closed-loop online scheduling
with timing constraints and quality profiles on multiproces-
sor architectures. InProceedings of the 14Th International
Conference on Automated Planning & Scheduling. Ameri-
can Association for Artificial Intelligence.
Smith, S. 1994. Opis: An architecture and methodology
for reactive scheduling.Intelligent Scheduling.
Tirat-Gefen, Y.; Silva, D.; and Parker, A. 1997. Incor-
porating imprecise computation into system level design
of application-specific heterogeneous multiprocessors. In
Design Automation Conference, 58–63.
Wang, X., and Smith, S. 2005. Retaining flexibility to max-
imize quality: When the scheduler has the right to decide
durations.Proceedings of the 15Th International Confer-
ence on Automated Planning & Scheduling.
Zweben, M.; Daun, B.; Davis, E.; and Deale, M. 1994.
Scheduling and rescheduling with iterative repair. In
Zweben, M., and Fox, M., eds.,Intelligent Scheduling.
Morgan Kaufmann Publishers.

