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A perspective factorization method for |
Euclidean reconstruction with uncalibrated

cameras

By Mei Han*' and Takeo Kanade
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Structure from motion (SFM), which is recovering camera motion and scene structure from
image sequences has various applications, such as scene modelling, robot navigation, object
recognition and virtual veality. Most of previous research on SEM requires the use of
intrinsically calibrated caineras In this paper we describe a factorization-based method fo
recover Euclidean structure from multiple perspective views with uncalibrated cameras. The
method first performs a projective reconstruction using a bilinear factorization algorithm,
and then converts the projective solution to a Euclidean one by enforcing metric constraints,
The process of updating a projective solution to a full metric one is referred as normalization
in most factorization-based SFM methods. We present three normalization algorithms
which enforce Euclidean constraints on camera calibration parameters to recover the scene
structure and the camerq calibration simultaneously, assuming zero skew cameras The first
tweo algorithms are linear, one for dealing with the case that only the focal lengths are
unknown, and another for the case that the focal lengths and the constant principal point are
unknown The third algorithm is bilinear, dealing with the case that the focal lengths, the
principal points and the aspect ratios are all unknown The results of experiments are
presented. Copyright © 2002 John Wiley & Sons, Lid,

Rewised: 2 May 2002

KEY WORDS: structure from motion; 3D modelling; camera calibration; Euclidean
reconstruction; computer vision

brated cameras and the intrinsic parameters, such as the
focal lengths, are changing throughout the sequences.
In this paper we present a factorization-based method
for Buclidean reconstruction from multiple uncalibrated
views

The factorization method, first developed by Tomasi
and Kanade' for orthogiaphic views and extended by
Poelman and Kanade® to weak and paraperspective
views, achieved its robustness and accuracy by apply-
ing singular value decomposition (SVD) to a large
number of images and feature points The decomposi-
tion solutions are converted to Buclidean reconstruc-
tions by the mormalization process which enforces
mme to: M. Han, NEC USA, Inc., 10080 North metric constraints on the camera motion parameters

3 , .
Wolfe Road, SW3-350, Cupertino, CA 95014, USA Yu ef al © presented a new approach based on a higher-
E-mail: meikan@eccrl sj.nec com order approximation of perspective projection by using

TThe research desciibed in this paper was conducted while the ~ 1aylor expansion of depth The accuracy of the approx-
first author was a PhD student in the Robotics Institute at CMU imation depended on the order of Taylor expansion and

Introduction

When a camera moves around in a scene, the images
taken contain information about the scene structure, the
camera motion and the camera inirinsic parameters.
Structure from motion (SEM), which is recovering camera
motion and scene stiucture from monocular image
sequences, has various applications, such as scene
modelling, robot navigation, object recognition and
virtual reality Much work has been done on 1econstiuc-
tion with intrinsically calibiated cameras. However, in
practice, many image sequences are taken with uncali-
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the computation increased exponentially as the order
increased Chuisty and Horaud*? described a method
for the perspective camera model by inczementally
performing reconstructions with either a weak o1 a
paraperspective cameia model Recently, some work
has been done to extend the factorization methods
from feature-based methods to plane-based methods
Ma and Ahuja® recovered a dense shape, which is
composed of the recovered plane positions and normals,
from region correspondences by factorization Sturm’
presented a factorization-based method to estimate
poses of multiple planes. One major limitation with
most factorization methods, however, is that they re-
quire the use of intrinsically calibrated cameras

When nothing is known about the camera intrinsic
parameters, the extrinsic parameters o1 the scene, it is
only possible to compute a reconstruction up to an
unknown projective tiansformation® There has been
considerable progress on projective reconstruction
Some methods use only two, three or four images to
obtain a projective reconstruction by a linear least
squares method '*'® On the other hand, some projective
reconstiuction methods take advantage of the large
amount of information from image sequences'”
Triggs proposed a projective factorization method®
which recovered projective depths by estimating a set
of fundamental matrices to chain all the images to-
gether Sturm and Triggs'® described an iterative factor-
ization method to recover the projective stiucture
Heyden et al ™ presented methods of using multi-

linear subspace constraints to perform projective stiuc- -

ture from motion Mahamud and Hebert described an
iterative projective reconstruction method® and proved
its monotonic convergence.

In order to obtain a Euclidean reconstruction from the
projective reconstructon, some additional information
about either the camera ot the scene is needed. Hartley
recovered the Buclidean shape using a global optimiza-

-tion technique, assuming that the initrinsic parameters
were constant.** Heyden also proposed a new formula-
tion of Kiuppa equations to calibzate cameras with
constant parameters.™ Heyden and Asttém® used a
bundle adjustment algorithm to estimate the focal
lengths, the principal points, the camera motion and
the object shape together Triggs calibrated the cameras
by recovering the absolute quadric® Pollefeys ef al
assumed that the focal length was the only varying
intrinsic parameter and presented a linear algorithm
Agapito ef al proposed a linear self-calibration algo-

- tithm for rotating and zooming cameras ® Ponce up-

graded projective reconstzuctions to metric ones based

Computer Animation

on & sequence of linear steps for zero-skew uncalibrated
cameras.*

In this paper we desaibe a factorization-based
method which recovers Euclidean shape and motion
from multiple uncalibrated perspeciive views. In prac-
tice, most of the camera intrinsic pazameters are un-
known and varying from image to image, especially
when multiple cameras are invelved The only para-
meter that rarely changes is the skew of the cametra,
which is the difference between II/2 and the angle
between the rows and columns of an image. The skew
is always zero It is proved that the absence of skew is
sufficient to yield a metric reconstruction® Given
tracked feature points, the factorization-based method
reconstructs the object shape, the camera motion and the
Intrinsic parameters. We first apply an iterative algo-
rithm to get a projective 1econstruction, then propose
three normalization algorithms to impose mettic con-
straints on the projective 1econstiuction The normal-
ization algorithms 1ecover the unknown intrinsic
parameters and convert the projective solution to a
Euclidean one simulteneously The first algotithm deals
with the case that the focal lengths are the only un-
known parameters The second one deals with the case
that the focal lengths and the principal point are un-
known, while the principal point is fixed These two
algorithms are linear The third algorithm, which is
bilinear, works in the case that the focal lengths, the
principal points and the aspect ratios are all unknown
Expetimental resulis are presented

Projective reconstruction

We decouple the uncalibrated reconstiuction process
into projective reconstruction and Euclidean reconstruc-
tion. In this section we describe the bilinear projective
reconstruction algorithm.

Suppose there are # perspective cameras: Pj,i=1 n
and m feafure points x;, f = 1. m 1epresented by homao-
geneous coordinates The image coordinates are repre-
sented by (u; v;} Using the symbol ~ to denote equality
up to a scale, the following hold:

14 i
vy | ~Pixp o1 Ayl | =Pix (1)
1 1

where Ay is a non-zero scale factor, commonly called
projective depth. Each P; is 2 3 x 4 matrix and each
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feature point x; is a 4 x 1 vector. The equivalent matrix
form is

P 1y Mty | ]
A | oa A | Ui
1 L1
W:S - .
Un1 [t |
Al | U D | Drum
L 1 L 11
[ Py
=|:|®m x| =PX (@)
“Pn

where W, is a 38 x m matiix, called scaled wmeasurement
matrix It encodes the projected image information and
the projective depths Since each P; is a 3 x 4 matiix, W,
is at most rank 4. We therefore apply the following
projective factorization algorithm, which is very similar
to Triggs's approach'® and Heyden’s ! This algorithm
iteratively applies 1ank 4 factorization to the current
scaled measurement matiix.

Bilineax Projective Factotization Algorithm

I Setdyj=1,fori=1 mandj=1 m

2. Compute the current scaled measurement matrix W,
by Equation (2).

3. Perform rank 4 factorization om W,, generate the
projective motion and shape '

4. Reset &; = Pl@xj, where P§3) denotes the third row of
the projection matrix P;

5 Ifall A;'s are the same as the previous iteration, stop;
else go to step 2

Ihe goal of the projective reconstruction process is to
estimate the values of the projective depths (A;’s) which
make Equation (2) consistent The reconstruction results
are iteratively improved by back-projecting the current
projective reconstruction to refine the depth estimates

Euclidean Reconstruction

The factorization of Equation (2) recovers the motion
and shape up to a 4 x 4 linear projective ttansformation
H,

W; = PX = PHH'¥ = PX (3)

where P = PH and X = H'X Pand X arereferred to as
the projective motion and projective shape Any non-
singular 4 x 4 matrix could be inserted between P and X
to get another motion and shape pair

Let us assume zero skews We impose meiric con-
straints to the projective motior and shape In order to
simultaneousty reconstruct the intrinsic parameters (ie,
the focal lengths, the principal points and the aspect
ratios) and the linear transformation H, from which we
can get the Euclidean motion and shape We call this
process mormalization. We classify the situations into
three cases:

Case 1: Only the focal fengths are unknown.

This case includes the situations that the camera
undergoes zooming in/out during the sequence.
The focal lengths are therefore the main concerns of
the reconstruction process

_ Case 2: The focal lengths and the principal point are

unknown, and the principal point is fixed

In this case we are interested in the situations in which
the camera focal length changes only a little, so that
there is no obvious zooming effect and the principal
point is very close to being constant. Aerial image
sequences taken by a flying platform are examples of
this case

Case 3: The focal lengths, the principal points and the
aspect 1atios are all unknown and varying

Ihis case covers the situations that multiple cameras
are included The focal lengths, the principal points
and the aspect ratios all vary from image to image

We present three factorization-based normalization al-
gorithans to deal with these thzee cases respectively The
algorithms are Iinear for the first two cases and bilinea:
for the third case

Normalization Algorithm

Outline
The projection matrix P; is
P~ Ki[Ri ] )
where
fi 0 uy il by
Ki= |0 afi vy Ri=|j! L= | iy
0 0 1 k! tai
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The upper triangular calibration matrix K; encodes the
intrinsic parameters of the ith camera: f; represents
the focal length, (uy vy) is the principal point and o
is the aspect ratio. R; is the ith rotation matrix with i, j;
and k; denoting the rotation axes. t; is the ith translation

vector Combining Equation (4) for i=1 . n into one
matrix equation, we get
P=M I (5)

where

I
My, My, My

R A A

M= [mxl my; My

T={Tu Ty Ia
and

my = i ek My = mofij + ook mg =
To = it + pitioitns Ty = pioifiby + otz Ta = ity
(6}

i 1s the scale factor of the homogeneous representation
in Equation (4). The shape matrix is represented by

[

where
5= ESI So - Sm]
and
T
s = [y % %]
. T
5 = [stj VJ‘J

-
where ; represents the scale factor of the homogeneous

representation in Equation (7).

World Coordinate System Location

We place the origin of the world coordinate system at
the centre of gravity of all the scaled feature points to
enforce

i
> ys=0 (8)
=1
We get
2 Mgy =3y vys; +14T)
=1 j=1

m 1 m
=my D ovsy+Lnd n=Tad ()
=1 =1 =1

Computer Animation
Similatly,
m . b3 e i .
ZAM = IF"ZH’ Z)\;j = IZiZVf (10)
=1 : =1 =1 =
Define the 4 x 4 projective transformation H as
H=[A B (11)
where Ais4 x3and Bis4 x1
Since P = PH,
M T]=P[A B (12)
we have
Ix"j = pxiB Iyi == pyiB Izz’ :15218 . (13)

From Equations (9) and (10), we know

¥igd . g3
Tu _ 2= Ny Ty 201 N0y

Tz Ta Sk

= 14
TZi Z;:.-'I A] ( )

We set up 2n linear equations of the four unknown
elements of the matrix B Linear least squares solutions
are then computed

Normalization

As my, m,; and my are the sum of the scaled rotation
axes, we get the following constraints from Equation {6):
Imez = uiff + ,“?_Méi
R
Emzilz = pf
my; ;= l-i,guoi Upj
my My = pfuy;
ny; m; — #1-200:' (15)
Based on the three different assumptions of the infrinsic
patameters (three cases), we translate the above con-

straints to linear constiaints on MM, as will be ex-
plained later. According to Equation {12),

M=PA (16)
therefore,
MM = PAATET (17)
Define
Q= AAT (18)
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we can translate the linear constraints on MM to the
constraints on the 10 unknown elements of the sym-
meitic 4 x 4 matrix (. Linear least squares solutions are
computed. Then we get the mairix A from Q by 1ank 3
matrix decomposition

Motion and Shape Recovery

Once the matrices A and B have been found, the
projective transformation is H = [AB]. The shape is
computed as X =H-!X and the motion matrix as
P =PH We first compute the scales u,,

= | {19}

We then compute the principal points (if applied),

m,;, Iy my,‘ m;;
Uy = 7 Ugi = 2 (20)
H; Hy

and the focal lengths as
A/ Imxi|2 - l—‘?u%}'
fi= I — (21)
The aspect ratios (if applied) are

A Imyflz — HFU (22)

wifi

;=

Therefore, the motion parameters are

my . My — gk . My — gk,

kk=— i= Ji=
i Hf Hitkif;

b = T £ Tui — #i?/'{(litzj = Tyi = pirvoityi (23)
i uifi picfi

Algorithm Outline

The normalization process is summarized by the follow-
ing algorithm.

Normalization Algorithm

1 Perform SVD on W; and get the projective motion P
and the projective shape X.

2. Sum up each row of W, and compute the 1atios
between them as in Equation (14)

3. Set up 2n linear equations of the four unknown
elements of the matzix B based on the 1atios and
compute B

4 Set up linear equations of the 10 unknown elements
of the symmeiric matzix @ and get Q

5 Perform 1ank 3 matrix decomposition on © to get A
from Q@ = AAT

6. Put matrices A and B together and get the projective
transformation H = [4 B]

7. Recover the shape using X = H~'% and the motion
matrix using P = PH _

8 Recover the intrinsic parameters, the rofation axes
and the translation vectors according to Equations
(20-(23).

Case |: Unknown Focal Lengths

Assume that the focal lengths are the only unknown
intrinsic patameters IThen we have

u01‘=G Ug;'=0 Qi:]. (24:)

We combine the constrainis in Equation (15) to impose
the following linear constraints on the unknown ele-
ments of the matrix (:

2 2

[my|* = Imyz'l
my; My = 0
My my; = {
my; Dl = 0

We can add one more equation assutning 4 = 1:
ma* = 1 (25)

In total we have 4n+1 linear equations of the 10
unknown elements of

The only int1insic pazameters to be recovered in this
case are the focal lengths. As the aspect ratios are 1, the
focal lengths ate computed by the average of Equations
(21) and (22):

_ ] + Imyfl

o (26)

f

Case 2: Unknown Focal Lengths
and Constant Principal Point

In case 2, we assume that the focal lengths are unknown
and the principal point is constant. Then,

Dy 'my;' _ myi' mg;
My MOz Dy o M
(lmnF - |myil2) (mzx‘ mzi) = (mxi mzi)z - (myi 'mzi)2

(27)

cnn--onl-.o-uo----.lcn-nn-----.----.--llnn-ll--oo.-c-uo.;clucnollnoc--o-o-.c-cn.--‘oooo---o--.co-nlll.o-
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and

mg My meilz - |1’1'11ﬂ'|2

my My |myg* — jmyf

Iml* = jmy,*  my my

2 2 . .
Imle - me,i‘ My My
My Wy Dy Mg

My - My Mg - Mg

My Mg Thy; - Mz

m; By Iy Wy

My Mz My My

{28)

Wy My My My

wherej=i+1,if i #u;j=1,1f i = n We also have the
following equation assuming u; = 1

|my; [* =1 (29)

These are linear equations of the unknown elements of
the symmetric mattix Q7 = gq¥, where q is a 10x 1
vector composed of the 10 unknown elements of the
matrix Q0 In total, we can have 121 + 1 linear equations
of the 55 unknown elements of the matrix Q.

Once () has been computed, q is generated by 1ank I
matrix decomposition of Qr. We then put the 10 ele-
ments of g into a symmetric 4 x 4 mattix  which is
factored as AAT

We compute the principal point as the average of
Equation: (20):

1 " nl; g
=2 =
e M
1

1 myi m;;
R W e (30)
”; H

and the focal lengths as the average of Equations (21)
and (22):

VImal? — i+ g — 2o

24 (31

fi=

Case 3: Unknown Focal Lengths,
Principal Points and Aspect
Ratios

Case 3 includes the situations that the focal lengths, the
principal points and the aspect ratios are all unknown

Computer Animation

and varying We then represent the constraints in Equa-
tion (15} as bilinear equations on the focal lengths and
the principal points plus the aspect 1atios Starting with
the rough values of the principal points and the aspect
ratic of the first camera (oq), we impose linear con-
straints on the unknown elermnents of the matrix Q:

My My = Uply My I
My Fz; = Hpj My - By
My M = Vg My Wy (32)

" We add two more equations assuming p; = 1,

Q%(Imﬂf - ”%1) = |my fz - Uﬁl
P =1 (33)

Once the matrix H has been found, the current shape is
X = H~'X and the cutrent motion matrix is P = PH. We
compute the refined principal points, the currently
recovered focal lengths and the refined aspect ratios
according to Equations (20), (21} and (22) respectively
The current motion parameters are then computed as in
Equation (23).

Taking the refined principal points and the first aspect
1atio, the normalization steps ate performed again to
generate the matiix H, then the focal lengths, the current
shape and motion, the refined principal points and
aspect 1atios The above steps are repeated until the
principal points and the first aspect 1atio do not change

Discussion

The notmalization process is computationally equiva-
lent to recovering the absolute quadric, which is com-
puted by tianslating the constrainis on the intrinsic
camera patameters to the constiaints on the absolute
quadric ?® Our representation is explicit in the motion
parameters (rotation axes and translation vectors) and
enables the geometric consiraints to be naturaily en-
forced The representation also deals with the similarity
ambiguity problem directly by putting the wotld co-
ordinate system at the centre of gravity of the object and
aligning its crientation with the first camera Compared
with the method presented by Pollefeys et al,*® ow
normalization algorithm (case 1} is based on the same
constraints as their method, but our representation
enables natural extensions to the reconstruction of other
intrinsic parameters (normalization algorithms of case 2
and case 3).

R R R N O R N N N Y N N N R NN
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Heyden and Astrdm® described a method to estimate
the focal lengths and the principal points. The method
was based on a bundle adjustment algorithm: Ponce
used a sequence of linear operations to upgrade projec-
tive reconstructions to metric ones *® His method solved
a similar problem as in our case 3. We build projective
and Euclidean reconstiuctions in the unified factotiza-
tion framework in which the normalization step is
naturally incorporated to take care of the metric con-
straints The advantage of the factorization-based
method is its reliability since it uniformly considers all
the data in all the images. However, it requires all points
to be visible in all views, which is a major problem for
most factorization methods Some progress has been
achieved to incorpozate the information of missing data
into the reconstruction framework Shum ef 4l proposed
an iterative method which minimized the sum of sguare
differences between the fitted low rank matiix and the
elements that are not missing in the data matrix >
Urban ef al presented a linear projective reconstruction
method from image sequences with missing data* It
requites that the images share a common reference
view. Rother and Carlsson described a linear algorithm
for scene reconstiuction and camera recovery based on
having four points on a reference plane visible in all
views ¥ Jacobs™ fit a low rank maiix to a matix with
missing elements by combining constraints on the solu-
tion derived from small submatrices of the full matrix
He also presented the application of the linear fitting

method to structure from motion problem The basic

idea is to regard the missing data estimation and re-
covery problem as an EM process in order to find
maximum likelihood estimates for unknown values
We are exploring the possibilities of incorporating the
linear fitting idea into the reconstruction method pre-
sented in this paper

It is beyond the scope of this paper to derive a
complete sofution of critical motions that lead to inhet-
ent ambiguities in uncalibrated Euclidean 1econstruc-
tions Basically, the critical motions correspond to the
situations when the linear /bilinear estimations of ( will
fail, that is, the constraint mahix has rank less than the
numbet of unknown values in .

There has been much work done about the critical
motions. Sturm analysed the case where all intrinsic
parameters are fixed *® Kahl e al applied subgroup
approach to self-calibration consiraints when some of
the intrinsic patameters can vary®® They proved that
given the plane at infinity and known skew, aspect ratio
and principal point, then a motion is critical if and only if
there is only one viewing direction The explicit geometiic

descriptions of the corresponding critical motion se-
quences are: {i) arbitrary rotations about the opiical
axis and translations, (ii} aibitrary rotations about at
most two centres, (iii) forward-looking motions along an
ellipse and/or a corresponding hyperbola in an ortho-
gonai plane. These are the critical motion sequences for
case 1. They also analyse the case with zero skew and
unit aspect ratio, which covers case 2 of the uncalibrated
reconstruction method. The critical motion sequences
for this case happen when there are at most fwo viewing
directions. Stwm desczibed the critical motion sequences
for stereo systems with varying focal lengths ¥ Ponce
gave three classes of critical motions for arbitrary zero-
skew cameras:® (i) pure translations: the optical centre
of the camera may change in an arbitrary manner but
the camera’s orientatior is held constant, (i} planat
motions: the optical centre is held in the plane y =0
and the camera is allowed to rotate about the y axis, (11
straight-line motions: the optical centre moves along a
straight line but the orientation of the camera is allowed
to change arbitrarily. These correspond to the critical
motions for case 3

Experiments

In this section we demonstrate experimental results of
the perspective factorization method. Given tracked
feature points, we first generate the projective recon-
struction, and then recover the Euclidean reconstiuction
and the camera intrinsic parameters using one of the
three normalization algerithms Fiist, synthetic experi-
ments are conducted to evaluate the quality of the
reconstruction method Then, resulis for real image
sequences corresponding to each of the three cases are
shown as well Experimental results on synthetic and
real data show that this method is reliable under noisy
conditions

Synthetic Data

We synthesize 50 sequences of 20 frames with eight
feature points representing a cubé in the scene The
distance between the camera and the cube is between
4 and 15 tmes the cube size. The camera rotation is
through 30~65 degrees around the cube. The image size
is 640 x 480. We add 2 pixels standard noise to the fea-
ture locations The experimental resulis show that the
method converges reliably. The exrors of the recovered

L N N N N N N NN Y T R N N R R
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feature points positions, averaged over three cases, are
less than 08% of the object size. The recovered focal
lengths are always within 1+18% of the Hiue values
The errors of the principal points are Iess than 025% of
the image size and the errors of the aspect 1atios are less
than 05% of the ftue values. The maximum distance
between the recovered camera locations and the corre-
sponding ground truth values is 24% of the object size
and the maximum difference between the recovered
camera orientations and the true values is 0 33°

Real Data I: Building Sequence

The building sequence was taken using a hand-held
camera in front of a building The camera was very far
from the building at first, then moved toward the
building, and away again The camera was zoomed in
when it was far from the building and zoomed out when
it was close so that the building appeared to be almost
the same size in every image of the sequence. The
longest focal length was about three times the shortest
one according to the rough readings on the camera. The
sequence includes 14 frames, of which three are shown

- Computer Animation

in Figure I(a)—<{c). Fifty feature points were manually
selected along the building windows and the corners as
shown in Figure 1(d) In this example we assume the
focal lengths are unknown while the principal points are
given (the middle of the images) and the aspect tatios
are 1. We apply the perspective factorization algorithm
for case 1 to this example.

Figure 2(a) shows the reconstructed building and
camera trajectories. The top view shows that the recov-
ered camera moves toward the building and then away
again as expected. Lhe recovered camera positions and
orientations shown in the side view demonstzate that all
the cameras have the almost same height and tilt up-
ward a little bit, which are the expected values when the
same person took the sequence while walking in front of
the building Figure 2(b) shows the reconstructed build-
ing with texture mapping. 1o quantify the results, we
measure the orthogonality and parallelism of the lines
composed of the recovered featuze points. The average
angle between pairs of expectéd parallel lines is 0.89°
and the average angle between pairs of expected per-
pendicular lines is 91 74°. Figure 3 plots the recovered
focal lengths, which shows that the focal lengths are
changing with the camera motion as we expected

&

(c)

(d)

Ligure T Building sequence inpul: (a) st image, (b) 4th image, (c) 9th image of the building sequence (d) 1st image of the
building sequence with the feature points overlaid

LR R R R N N Y Y T T
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Figure2 Building sequence vesults: (a) Top and side view of the reconstruciion; the 3-axis figures denote the recovered cameras.

The top view shows that the recovered camera moves toward the building, then away again as expected The side view shows that

the recovered locations of the cameras ave al the same height and the orientations ave tilted upward (b) Bottom and side view of the
reconstructed building with texture mapping

“I Real Data 2: Grand Canyon

= Sequence
£l The second example is an aezial image sequence taken
2 from a small aeroplane flying over the Grand Canyon
Lacsor Ihe plane changed its altitude as well as its 1oll, pitch
gm_ and yaw angles dwing the sequence The sequence

consists of 97 images, and 86 feature points were tracked
oor through the sequence. Three fiames from the sequence
are shown in Figure 4(a)-(c), and the tracked feature
points are shown in Figure 4(d). We assume that the
focal lengths and the principal point are unknown, but
that the principal point is fixed over the sequence. The

frame

Figure 3 Building sequence results Focal lerngths of the

building sequence recovered by the perspeciive factorization

method. The recovered values are changing with the camera
motion as expected

normalization algorithm for case 2 disciibed above is
used here Figures 5(a) and (b) show the reconstructed
camera tajectories and teriain map The camera focal
Iengths changed little when taking the sequence Figure
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Figure 4 Grand Canyon sequence input: (@) Ist image, (b) 46th image, (c) 91st image of the Grand Canyon sequence (d) 1st
image of the Grand Canyon seguence with the feature points overlaid

Figure 5 Grand Canyon sequence results: (a) Top and side view of the reconstruction; the 3-axis figures denote the recovered
cameras (b) Top and side view of the reconstructed Grand Canyon with texture mapping
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Figure 6 Grand Canyon sequence: Focal lengths of the Grand
Canyon sequence vecovered by the perspective faciorization
method The recovered values ave velatively constant, as
expected

6 is a plot of the recovered focal lengths, and shows that
the focal lengths are relatively constant. The principal
point recovered by owr method is (159, 119) (with the
image size of 320 x 240)

Real Data 3: Calibration Set-Up

In this experiment we test oux method on a set-up for
multi-camera calibration In this sef-up 51 cameras are
placed in a dome, and a bar of LEDs is moved around
under the dome The bar is imaged by each camera as it
is moved through a seties of known positions. Since the
intrinsic parameters of each camera do not change as the
bar is moved, the images taken by one camera are
combined into one image containing multiple bars
This composite image includes 232 feature points

(LED positions) Therefore, the setup generates 51
images; each contains 232 features, which are to be
used as calibration data for the camexas Isai’s calibra-
tion algorithm™ is used on this set-up to calibrate the 51
cameras. The calibration results of Tsai’s algorithm are
compared with the results of the perspective factori-
zation method.

In this example we assume that all the intrinsic
patameters (except the skews} are unknown, and may
differ from cameza to camera The noumalization algo-
rithm for case 3 is applied We initialize the aspect ratios
as | and the principal points at the middle of the images.
Figure 7 shows the reconstructed LED positions and the
reconstructed camera orienfations and locations The
reconstiucted LED positions are compared with their
known posidons The maximum distance is 20mm,
which is about 061% of the bai length. The recovered
camera locations and orientations are compared with
Tsai's calibration results. The maximum distance be-
tween the recovered camera locations by the two meth-
ods is 32 mm which is about 0 98% of the bar length, the
maximum angle between the recovered cametra orienta-
tions is 0 3°.

Figure 8 are plots of the differences of the focal
lengths, the principal points and the aspect ratios re-
covered by the perspective factorization method and by
Isal’s calibration algorithmr Ihe plots show that the
calibration results of these two methods are very close

Obtaining the ground truth is difficult and time-
consuming in cameza calibration This example demon-
strates a good calibration methed for multi-camera
systems Instead of carefully putting objects at accurate
positions, a person can wave a stick with LEDs ran-
domly in the room The LEDs enable fast and easy
computation of correspondences Given these tracked
feature points, the perspective factorization method can

Figure 7 Calibration set-up vesults: Top and side view of the reconstruction of the calibration set-up; the points denote the
recovered LED positions; the 3-axis figures are the vecovered cameras.

R R Ny Y Y R N Ny N Y A RN IR R R RN )

Copyright © 2002 John Wiley & Sons, Ltd.

221

J Visual Comput Animat 2002; 13: 211-223

W




M HAN AND T KANADE

Visualization &

LR Ry N N N N N N N Y NN

3

| lengths
] 8 a B
s

differences of focal len

4
differences of

princlpal points
4 o 8

4

L
&

+ —— 4l differance
o — v0 difference

Computer Animation

"

pect rallos

?
3

%

&
3

differences of as,
s

b

I - ]

[ A ] )

camsia

{(a)

camera

(e

Figure § Calibration set-up: Differences of (a) the focal lengths, (b) the principal points {ug, ve) and (c) the aspect ratios of the
calibration set-up data recovered by the perspective factorization method and by Tsai’s calibration algorithm

be applied to recover the camera extrinsic and intrinsic
parameters simultaneously

Conclusion

Given image sequences taken with uncalibrated cam-
eras, the perspective factorization method creates 3D
moedels of the scene and recoveis the extrinsic and
infringic parameters of the cameras simultaneously
The reconstiuction process consists of two steps: fixst,
an iterative bilinear factorization method is applied to
the measurement matrix, which is composed of the image
locations of ail the feature points. The output of this step
is the scaled measurement matrix, which is the product of
the projective motion and shape; second, the factoriza-
tion-based normalization is performed on the scaled
measurement matrix, which imposes metric constraints
on the projective reconsiruetion to recover the projective
transformation (matrix H) and generate the Euclidean
shape and motion. In comparison, the normalization in
orthographic and weak perspective factorization meth-
ods'? is applied directly to the measurement matrix,
which imposes similar metiic constraints to recover the
affine transformation.

The perspective factorization method is able to build
30 models from image sequences taken with one or
multiple uncalibrated cameras In this paper we show
the results of applying this method to indoor object
modelling, outdoor scene recovery and multi-camera
calibration. The results are promising
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