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ABSTRACT

Given a single picture which is a projection of a three-dimensional scene onto the two-dimensional
picture plane, we usually have definite ideas about the 3-D shapes of objects. To do this we need to
use assumptions about the world and the image formation process, since there exist a large number of
shapes which can produce the same picture.

The purpose of this paper is to identify some of these assumptions—mostly geometrical ones—by
demonstrating how the theory and techniques which exploit such assumptions can provide a
systematic shape-recovery method. The method consists of two parts. The first is the application of the
Origami theory which models the world as a collection of plane surfaces and recovers the possible
shapes qualitatively. The second is the technique of mapping image regularities into shape constraints
for recovering the probable shapes quantitatively.

Actual shape recovery from a single view is demonstrated for the scenes of an object such as a box
and a chair. Given a single image, the method recovers the 3-D shapes of an object in it, and
generates images of the same object as we would see it from other directions.

1. Introduction

It is a common experience for us that, given a single two-dimensional picture of
an object, we have definite ideas about its three-dimensional shape, in spite of
the fact that a large number of possible shapes exist which can produce the
same picture. This fact indicates that we use some assumptions or knowledge
about the objects and about image formation. The purpose of this paper is to
identify some of these assumptions—mostly geometrical ones—by demonstrat-
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ing how the theory and techniques which exploit such assumptions can provide
a systematic shape-recovery process.

The process consists of two parts: qualitative shape recovery and quantitative
shape recovery. The first part uses a model of the Origami world [8]. It labels a
line drawing and recovers the geometrically possible shapes by exploiting the
assumption of planar-surfaced objects. When images, either in monochrome or
in color, are given, edge profiles taken across lines in the image can be used in
order to constrain line labels in the search of plausible interpretations. The
second part adopts a technique of mapping image regularities (in particular,
parallelism of lines and ‘skewed symmetry’) into shape constraints. It quan-
titatively recovers the probable shapes by exploiting the assumptions which
exclude accidental alignments and regularities in the picture.

Actual shape recovery from a single view is demonstrated for the scenes of
an object such as a box and a chair. Given an image, the shape recovery
process generates a 3-D shape description of the object in terms of plane
surfaces, and the description is supplied to a display program which can
synthesize images of the same object as we would see it from other view
directions. Throughout the paper we will assume orthographic projection
rather than perspective projection.

In brief, the paper is outlined as follows: in the next section the problem of
shape recovery from a single view is addressed. It is shown that the shape
recovery can be either qualitative or quantitative. The previous research is
briefly reviewed: what results have been obtained from what assumptions.
Section 3 presents example scenes which are used throughout the paper.
Sections 4 through 6 provide descriptions of tools and basic theories: the
gradient space in Section 4; the theory of the Origami world in section 5; and
the mapping of image regularities into constraints in the gradient space in
Section 6. Then, in Section 7 these are put together to obtain quantitative 3-D
shape descriptions. Example scenes are processed. Sections 8-10 deal with the
shape recovery from a real image using an example of ‘chair’ scene: especially
use of color edge profiles is presented in Section 9 to reduce the number of
possible labelings. Section 11 discusses implications of the results in a broader
context.

2. The Problem of Shape Recovery

2.1. Qualitative vs. quantitative shape recovery

Suppose that the drawing of Figs. 1(a) and 1(b) are given. Most commonly, they
both appear as the corner of a solid object, made of three plane surfaces,
coming out toward the viewer. This level of descriptions qualitatively charac-
terizes the shape of objects. In this sense, the two figures in Fig. 1 are
qualitatively equivalent.
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(a) (b)

FIG. 1. Simple line drawings: (a) a ‘cube’ scene; (b) a ‘trapezoid-block’ scene.

FIG. 2. Many shapes can produce the line drawing of Fig. 1(a).

Usually, though, the pictures seem to convey more quantitative shape
information. Fig. 1(a) appears as a right-angled block, whereas Fig. 1(b)
appears as a trapezoidal block, both viewed from the same direction with
respect to the top face. That is, we feel that we can recover the surface
orientations with respect to the view direction, or we can quantitatively
describe the shape. Let us call this the quantitative shape recovery. (Note,
however, that we cannot know any absolute information, such as the absolute
distance to the object or its absolute size without knowing camera parameters.)

Notice that the shapes of our example scenes need not be as described
above. Take the object in Fig. 1(a) for example. It need not be a cube. As
shown in Fig. 2, the object can be any of the shapes made by three plane
segments which intersect at P on the middle view line (which goes through the
middle junction V,, in the picture), and the intersection edge (e.g. PQ) of each
pair lies in the plane defined by the corresponding line in the picture (e.g.
V. V1) and the view line. We will see later that the object in Fig. 1(a) can be of
even a qualitatively different shape; i.e., it may not necessarily be a corner of a
block. These considerations suggest that the assumptions we use in our shape
TECOVEry Process are very strong ones.

2.2. Related work

Stereoscopic shape recovery has been studied quite extensively, but there is not
much work on shape recovery from a single view, especially on quantitative
shape recovery.
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Interpretation of line drawings as 3-D scenes is the research domain which
has been most actively studied. Guzman [3] first defined types of junctions
(e.g.. ELL, ARROW, and FORK), and developed many heuristics concerning
probable association of regions suggested by each junction type. His program
SEE decomposes a given line drawing into object regions, but it works totally
in the 2-D picture domain without any explicit 3-D shape representation.

Huffman [6] and Clowes [1] gave an important theoretical framework. They
observed that lines in the picture can have different physical meanings: a line
can be a convex edge (signified by a label +), a concave edge (signified by —),
and an occluding edge (signified by 4 with the occluding region on its right
side). In the trihedral world in which exactly three planes are assumed to meet
at every corner, the possible combinations of line labels for each junction type
can be catalogued in a dictionary. To find 3-D shapes, a labeling procedure can
assign line labels to the lines in a given line drawing according to the
dictionary. Waltz [18] extended this idea further to include cracks, shadows,
etc., and devised an efficient labeling procedure, called filtering. This body of
work can be named qualitative analysis for qualitative shape recovery, because
they used tools, such as junction types and line labels, which only qualitatively
describe 3-D shapes of polyhedra.

The next group is quantitative analysis for qualitative shape recovery.
Huffman [6] introduced the gradient space to represent surface orientations.
Mackworth [12] employed it as a central tool to test the consistency of labelings
by the method of constructively locating the gradient of each surface. In the
labeling procedure of the Origami world [8], employed in this paper, the
constraints in the gradient space are all maintained and tested symbolically on
a graph called a Surface Connection Graph. Theoretically the constraints in the
gradient space provide only necessary conditions for planar realizability of a
labeled line drawing. Huffman [7] presents a ¢ (¢’)-point test as the necessary
and sufficient condition for a ‘cut set’ of labeled lines (equivalently, set of
regions incident to those lines). Still, unfortunately, it is not the sufficient
condition for a whole configuration, though. Falk [2] and Sugihara [17] directly
investigated the algebraic properties of the linear equation system which
represents the projection from a 3-D space object to the 2-D picture plane:
Falk related degrees of freedom in a projection with the concept of mergeability of
his Face Adjacency Graph; Sugihara presented the conditions for realizability of a
labeled line drawing including hidden lines. All these researches quantitatively
analyze a picture for its possible interpretations as 3-D scenes, but the recovered
shape is still qualitative.

For quantitative shape recovery from a single picture we need to introduce
more assumptions. The support hypothesis, first described by Roberts [15], is
an example of such an assumption, which enables us to determine the depth
(distance) of object points on a table. Mackworth [13] assumed rectangularity
at every corner to uniquely determine the gradients of surfaces.
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More commonly, model descriptions of objects which can appear in the
scene are given to the system, and the system interprets a picture by identifying
(possibly modified) occurrences of the models. In his pioneering work [15],
Roberts used models of a cube, a wedge, and a hexagonal prism represented as
a set of 3-D space coordinates of their vertices. The models are scaled, rotated,
translated, and projected to test matching with the junctions in the picture.
Falk’s INTERPRET [2], which interprets imperfect line drawings, has fixed-
size models of nine prototypes.

When one can assume the conditions in the image formulation process (such
as the imaging geometry, the illumination, and the surface photometry, etc.),
the intensity of a picture point can provide constraints on the surface orien-
tation at the corresponding 3-D point. Horn [5] formulated a basic shape-from-
shading theory employing the gradient-space representation. Woodham [19]
identified two general rules (uniqueness and continuity) and demonstrated the
recovery of local orientations in several cases such as a Lambertian sphere and
a cone.

The quantitative shape recovery in this paper does not assume a predefined
set of objects. Our approach resembles Mackworth’s method and Horn-
Woodham's shape-from-shading method in that we seek a unique deter-
mination of gradients, and in that some picture properties are mapped into
constraints in the gradient space. But we focus on geometrical properties of
objects and of the picture-taking process, and our assumptions are much more
general than Mackworth’s rectangularity assumption.

3. Example Scenes

The example scenes we will use in the rest of the paper are the following.
- ‘Cube’ scene: a line drawing (Fig. 1(a)).
- ‘Trapezoid-block’ scene: a line drawing (Fig. 1(b)).
- ‘W-folded paper’ scene: a line drawing (Fig. 3).
- ‘Box’ scene: a line drawing (Fig. 4).
- ‘Chair’ scene: a color image and a line drawing (Figs. 5(a) and 5(b)).
Each has its own difficulty, which illustrates an inherent problem in the shape
recovery. The names of the scenes are given just for the purpose of referencing

Rl

FIG. 4. A line drawing of a ‘box’ scene. Though

FIG. 3. A line drawing of a ‘“W-folded paper’ it looks ‘perfect’, the trihedral labeling does not
scene. work for it.
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(a)

=

N

(b)
FIG. 5. A ‘chair’ scene: (a) a halftone image; (b) a line drawing.

them. They never imply any assumptions about the semantic nature of the
scene.

4. The Gradient Space: Introduction

In this paper we will use the gradient space, popularized by Huffman [6] and
Mackworth [12], as a tool for representing surface orientations. This section
provides a brief introduction to the gradient space.

4.1. Definition of the gradient space

We will give a simplest version of the definition of the gradient space. Let Fig.
6(a) be the geometry involving the viewer, the picture plane, and the object in
the scene. The z-axis is taken as parallel with the view line, and the x—y plane
is on the picture plane, with the x-axis pointing to the horizontal right. We
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FiG. 6. The gradient space: (a) geometry including the object, the picture, and the viewer; (b)
mapping of planes to a gradient.

assume orthographic projection here. A plane in the scene whose surface is
visible from the viewer can be expressed as

—z=px+qy+c. (48]

The two-dimensional space made of the ordered pairs (p, q) is called the
gradient space G (Fig. 6(b)). Let us assume for our convenience that we align
the directions of the coordinates of (x, y) in the picture with those of (p, g). All
the planes in the scene that have the same values of p and g (i.e., the same
orientation) are mapped into the point (p, ), called the gradient, in G.

The gradient (p, q) represents how the planes are slanting relative to the view
line (z-axis). For example, the origin Gy=(0,0) of G corresponds to those
planes (—z = c¢) which are perpendicular to the view line. Points on the positive
p-axis, (p, 0) with p >0, correspond to the planes (—z = px + ¢, p >0) which are
slanting horizontally to the right: the larger p is, the more slanted. From the (1)
we see that the 3-D vector (p, g, 1) is the directional vector of the surface
normal.

When, in general, a surface is represented as —z = f(x, y), then

p=9(-z)/ox, and q=4d(-2)/dy, @)
which is why (p, q) is called the gradient. Thus the direction (tan"'(g/p)) of the
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vector from the origin to the gradient (p, q) is the direction of the steepest
change of —z (depth) on the surface. The length of the vector (p*>+ g*)"? is the
rate of the change of the depth along the direction of the steepest change; i.e.,
the tangent of the angle between the picture plane and the planes correspond-

ing to (p, q).

4.2. Properties of dual lines

One of the most useful properties of the gradient space is the following.
Consider two planes meeting at an edge. Their orthographic picture made of
regions R; and R; and a line L is shown in Fig. 7. Then in the gradient space,
the gradient G, and G, of the two planes should be on a gradient-space line
(called a dual line) which is perpendicular to the picture line L, but the location
of the gradient-space line and the distance between G, and G, are arbitrary.
Moreover, if the edge is convex (+), G; and G, are ordered in the same
direction as are the corresponding regions in the picture. If the edge is concave
(=), their order is reversed. These properties of dual lines are quite useful
because they provide a basis for converting properties observable in the picture

picture plane

gradient space

FIG. 7. Properties of dual lines. If two planes meet and the intersection line is projected to a
picture line L, then the gradients of the two planes are on a gradient-space line which is
perpendicular to L.
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(the directions of lines) into constraints on the properties of a real object (the
orientation of surfaces).

5. A theory of the Origami world

The Origami world [8] is a model for understanding line drawings in terms of
plane surfaces, and finding their qualitative shape interpretations by assigning
one of the three kinds of labels (+, —, f) to each line. The labels signify the
physical meaning of the lines [6]: the label + stands for a convex edge, — for a
concave edge, and »f for an occluding edge (the direction of the arrow is given
so that the region to its right is occluding the region to its left).

The qualitative shape recovery by means of the Origami-world labeling is the
first part of the shape recovery process in this paper. We find possible shapes
which can produce the given line drawing by exploiting the basic assumptions
on the properties of objects.

5.1. Surface-oriented assumption

An important feature of the Origami world is that it is surface oriented. That
~ is, it assumes that plane surfaces themselves can be stand-alone objects, unlike
solid-object oriented models, such as the trihedral world. This idea can be best
illustrated by Fig. 4. Though it appears perfect, the Huffman-Clowes—-Waltz
labeling scheme for the trihedral world cannot handle it, and would call it an
‘impossible’ object. The reason for this failure is that the trihedral world
assumes that the object is solid, and thus the line drawing of a box would need
to be ‘super’ perfect, as in Fig. 8, in order for it to be handled.

The assumptions concerning the geometrical configuration around a vertex in
the Origami world are as follows. No more than three planar surfaces of
different orientations meet at a vertex, and no more than three edges of
different directions are involved at a vertex. The combination of the three
orientations are assumed to be ‘general’ in the sense that they span the
three-dimensional space (i.e., each orientation has a vector component per-
pendicular to the other two). Let us call such vertices up-to-3-surface vertices.
This restriction corresponds to the trihedral vertices in the solid-object world.
Note, however, that the up-to-3-surface vertices generate a richer world than
the world generated by the trihedral vertices, since the former can include 1-

=

FiG. 8. A ‘super-perfect’ line drawing of the ‘box’ scene for the trihedral world.
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TaBLE 1. Comparison of the sizes of junction dictionaries for L, ARROW,
FORK, and T junction types. The Origami world dictionary includes other
junction types, such as K, X, and PSI

Junction type Huffman-Clowes dictionary Origami world dictionary
L 6 8
ARROW 3 15
FORK 3 9
T 4 16

g

ARROW FORK I

and 2-surface vertices; that is, it allows free extending surfaces as stand-alone
objects.

5.2. Junction labels for up-to-3-surface vertices

Once we recognize the basic assumptions of the Origami world, we can
generate a junction dictionary as in the Huffman-Clowes—Waltz theory, which
contains possible junction labels (i.e., possible line-label combinations) for each
junction type. The size of the dictionary shown in Table 1 gives an idea of the
degree of constraints imposed by the Origami world compared with the
Huffman—Clowes trihedral world.

5.3. Augmented junction dictionary

A legal junction label represents a possible configuration of surfaces at a
vertex. The consistent labeling of a line drawing, so that all the junctions are
given legal junction labels, is nothing but a check on the consistency of surface
interconnections: this is done by passing information by means of line labels
from one junction to another. Waltz’ filtering on junction labels is known to be
a good method for doing this. However, labeling in the Origami world cannot
simply rely on the filtering on junction labels. More thorough and global
consistency checks concerning surface orientations are necessary. Because of
the weaker restrictions at the vertices than the trihedral world, the anomalies
caused by solely relying on junction labels show up as a more serious problem;
i.e., the anomalous interpretations in which the labeling is consistent but the
whole configuration is not possible [12, 14]. '

To remedy this, the junction dictionary for the Origami world can be
augmented. To each junction label is attached the information as to what
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constraints in the gradient space should be satisfied by the surfaces incident at
the junction. As shown in Fig. 9(a), the constraints are represented by the links
which connect a pair of related regions and which include information about
the constraints on their gradients. The properties of dual lines explained in
Section 4 are used here.

In such a junction label as shown in Fig. 9(b), the intersection line of surfaces
is occluded. This junction label is typically a result of folding a sheet of a paper
along BC: R, which is folded toward the viewer, occludes a part of R,. But we
can assume that this junction label represents slightly more general cases in
which the intersection line of R; and R, lies within the angle ABC. (See the
middle figure of Fig. 9(b)). That is, we assume that if we remove the right hand
part of R; which is occluding R,, then the rest of R, and R, will form a convex
intersection line, and the line can be anywhere in the angle ABC. We call it an
occluded intersection line and denote it by the label @. Therefore, the
associated link represents that the gradient G, should be inside of the fan-
shaped area whose origin is at G;, and is bounded by the lines which are
perpendicular to AB and BC,

Notice the crucial difference of our links from those Guzman [3] used.
Guzman'’s links are for associating regions in the picture, whereas ours are for
describing the relations between the corresponding surfaces in the scene.

RI
+ G,
3 1
+
+ RZO 7 Rs / \
G2 Gy

——— o

(a)

(b)

FIG. 9. The augmented junction dictionary for the Origami world. Two examples of entries are
shown. For each, the first column is the junction label, the second associated links, and the third is
the illustration of the relationships of gradients represented by the links.
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5.4. Labeling procedure and surface connection graph

The labeling procedure of the Origami world uses the augmented dictionary.
First, the Waltz filtering on junction labels is performed. Then the procedure
begins to assign a junction label to each junction one by one. When a junction
label is assigned to a junction, the constraints represented by the associated
links are instantiated by using the directions of the lines at that particular
junction.

The labeling procedure of the Origami world tests the consistency of surface
orientations by using these instantiated constraints. In order to perform the test
systematically, the labeling procedure constructs a graph called a Surface
Connection Graph (SCG). The SCG is a labeled graph where a node represents
a surface and an arc represents a constraint between the surfaces. It indicates
what surfaces are connected with what surfaces through what constraints.

The test can be performed by using an iterative filtering operation in the
gradient space defined on the SCG. One feature of this operation is that all the
constraints are maintained symbolically in the SCG during the computation.
The details can be found in [8].

5.5. The results of labeling the example scenes

As a result of the labeling procedure of the Origami world, we obtain not only
a labeled line drawing, but also a filtered SCG. Each arc of the resultant SCG
represents the constraint which the gradients of the corresponding pair of
surfaces have to satisfy. That constraint has been filtered by those which the
other parts of the SCG impose on that pair.

Let us see the results of labeling our example scenes. Usually we obtain
multiple labelings. The ‘cube’ scene (Fig. 1(a)) has three labelings shown in
Figs. 10-12. In each figure, (a) shows the labeling, (b) the corresponding SCG,
and (c) the illustration of the constraints among the gradients represented by
the SCG. For example, in the interpretation of Fig. 10(a), the gradients of the
three surfaces S, S,, and S; should form a triangle in the gradient space as
shown in Fig. 10(c). (The directions of the edges of the triangle should be

L

+
Go G
(a) (b) ©

F1G. 10. The first labeling for the ‘cube’ scene: (a) labeling; (b) SCG; (c) illustration of the
constraints on the gradients. This represents a convex corner.
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s/

(a) (b) (©)

2

Fi1G. 11. The second labeling for the ‘cube’ scene. This represents a concave corner.

@/%b A
+
(a) (b) (©)

FIG. 12. The third labeling for the ‘cube’ scene. This represents a shape in which two surfaces S and S,
are connected along a convex edge, and occlude the third plane S5 partially.

@) ()

FIG. 13. In total there are eight labelings for the ‘box’ scene. Two of them are shown here: (a)
corresponds to an ordinary box; (b) a ‘squashed’ box (notice that the front two faces, as well as the
rear two, go in and form a concave edge).

as shown, but its size and position in the gradient space are arbitrary.) In the
interpretation of Fig. 12, the gradient of S; can be anywhere in the hatched
area. The ‘trapezoid-block’ scene (Fig. 1(b)) has also the same set of three
labelings since it is qualitatively equivalent to Fig. 1(a).

The ‘box’ line drawing of Fig. 4 has eight labelings, two of which are shown
in Fig. 13: The labeling in Fig. 13(a) corresponds to an ‘ordinary box’: the two
front faces form a convex intersection and partially occlude the rear two faces
which form a concave intersection. The labeling in Fig. 13(b) corresponds to a
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@ @
o
(@ 5O
2)
0,
(a)
F1G. 14. The ‘W-folded paper’ scene has 16 labelings in total. Two of them are shown here (a)
corresponds to a real W-folded paper. The shape that the labeling (b) represents might be

imagined by first thinking of the shape made of S), S,, and Sy (see the figure, and imagine S; as
horizontal), and then cutting S; properly along the dotted lines as well as adding S;.

‘squashed box’: the front two faces, as well as the rear two, form a concave
intersection.

The ‘W-folded paper’ scene of Fig. 3 has 16 labelings, two of which are
shown in Fig. 14: (a) corresponds to a real W-folded paper, but (b) is a peculiar
shape.

In interpreting these line drawings we do not usually think of such peculiar
shapes as Fig. 12, Fig. 13(b), and Fig. 14(b). It is very difficult even to imagine
those shapes as possible interpretations. Section 7 will present their rotated
views to help in imagining the shapes and clarify the reason why they are not
usually considered.

The line drawing of Fig. 5(b) for the ‘chair’ scene has a very large number of
possible labelings. In order to reduce them into a manageable size, we will
exploit other constraints which the color image (Fig. 5(a)) provides. (See
Section 9.)

6. Mapping Image Regularities into Shape Constraints

The meta-heuristic of nonaccidental regularities exploited in this section is the
following:

“Regularities observable in the picture are not by accident, but
are some projection of real regularities.”

The technique for expointing this meta-heuristic is the mapping of the image
regularities into the constraints in the gradient space. In this paper, parallelism
of lines and skewed symmetry are particularly used as image regularities. This
is a part of the theory and technique developed by Kanade and Kender [10].
The justification, generalization and other applications are found there.
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6.1. Parallelism of lines
The heuristic for this regularity is

“If two lines are parallel in the picture, they depict parallel lines
in the scene.”

Since we assume orthographic projection, the converse of this heuristic is
always true. The heuristic is much more general than it may sound. Referring
to Fig. 15(a), imagine that two lines in the 3-D space, which are denoted by
vectors v; and v,, are viewed from the direction which is denoted by a vector e.
The heuristic fails for only those cases where two nonparallel lines are seen
from such special view directions that the three vectors vy, v,, and e, if properly
translated so that they share the same origin, can lie on a single plane.

Let us consider what constraint this heuristic provides on the gradients of
two planes if a pair of their boundary lines are parallel in the picture, as shown
in Fig. 15(b). Let the angle of parallel boundary lines be @ in the X—y picture
coordinates; i.e., their 2-D vector is a = (cos e, sin &), and let G, = (p1, g1) and
G,=(p, q;) be the gradients of the two planes. Then the 3-D vectors cor-
responding to these boundary lines are

(cosa,sina, —G;-a) and (cosa,sina, —G,- a)

where () stands for the inner product of the vectors. Here the third com-

ponents of these 3-D vectors have been computed as the increment of z

corresponding to the translation from (0, 0) to (cos @, sin a) in the picture:
(-picosa —g;sina—c)—(-c)=—(p;cosa +g;sina)=-G, - a,

since the gradient is related with the plane formula by (1) and the boundary
line lies on the plane.

The heuristic demands that the third components of these two 3-D vectors
are equal, i.e., —-G;-a=—-G,- a, or

picosa+ g sina=p,cosa+qg,sina. 3)

vy

///)'! 3__{

Go (p2, g2)

(@ (b)
FiG. 15. Parallel-line heuristic: (a) If v, v, and e can be on the same plane in the 3-D space by
translating them, even when v, and v are not parallel, then the heuristic fails: (b) Two planes
having parallel boundary lines.
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This equation represents the fact that (p;, g:) and (p», q2) are on a gradient-
space line which is perpendicular to the direction a = (cos a, sin a). Alter-
natively, this condition can be intuitively understood as follows. If a pair of
boundary lines is really parallel in the 3-D space, we can translate one of the
planes toward the other, and make the two planes intersect along those
boundary lines. Therefore, the gradients of the two planes should have the
above relationship (3) because of the property of dual lines.

6.2. Skewed symmetry

Symmetry in a 2-D picture has an axis for which the opposite sides are
reflective: in other words, the symmetrical property is found along the trans-
verse lines perpendicular to the symmetry axis. The concept skewed symmeitry
relaxes this condition a little. It means a class of 2-D shapes in which the
symmetry is found along lines not necessarily perpendicular to the axis, but at a
fixed angle to it. Figs. 16(a—)' show a few examples. Formally, such shapes are
defined as 2-D linear (affine) transformations of real symmetries. A skewed
symmetry defines two directions as shown in Figs. 16(a—c): let us call them the
skewed-symmetry axis and the skewed transverse axis. Stevens [16] does not
use the concept of the skewed symmetry, but he presents a good body of
psychological experiments which suggest that human observers can perceive
surface orientations from figures with this property.
A particular heuristic about this image regularity is

“A skewed symmetry depicts a real symmetry viewed from some
(unknown) view direction.”

@

FiG. 16. Skewed symmetry. (a—) are examples. (d) A skewed symmetry defines two directions: the
skewed-symmetry axis and the skewed transverse axis.

The mouse hole example (Fig. 16(c)) was given by K. Stevens.
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Again, the converse of this heuristic is always true in the orthographic
projection. We can transform this heuristic into constraints in the gradient
space. As shown in Fig. 16(d), let @ and 8 denote the directional angles of the
skewed-symmetry axis and the skewed transverse axis, respectively. Let G =
(p, q) be the gradient of the plane which includes the skewed symmetry. The
3-D vectors on the plane corresponding to the directions a and 8 are

A=(cosa,sina,—G-a) and B=(cosB,sinB, —G -b)
where a = (cos a, sin &) and b = (cos B, sin 8). The heuristic demands these two
3-D vectors to be perpendicular, i.e., A- B =0, or

cos(e —B)+ (G -a)(G -b)=0 @)
By rotating the p—gq coordinates by the amount A = (a + 8)/2 into the p'—q’
coordinates, it is easy to show that

p” cos’((@ — B)/2) — q” sin*((a — B)/2) = —cos(a — B) Q)
where

p'=pcosA+gsinA

g =-psinA+qgcosA and A=(a+pB)2.
Thus, (p,g)’s are on a hyperbola shown in Fig. 17. That is, the skewed

FIG. 17. A skewed symmetry defined by « and 8 can be a projection of a real symmetry if the
gradient of the surface is on the hyperbola. The axis of the hyperbola is the bisector of the obtuse
angle made by & and B. The asymptotes are perpendicular to the direction of @ and 8. The length
from the origin to the tips is (1 —2d?)"*/d where d = sin(y/2) and y = the acute angle made by &
and .
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symmetry defined by « and B in the picture can be a projection of a real
symmetry if and only if the gradient is on this hyperbola. An impression might
be that if we assume the skewed symmetry in the picture to be a projection of a
real symmetry, the surface orientation is uniquely determined, but actually we
have still an infinite number of possible orientations represented by the
gradients on the hyperbola. As a special case, if |@ — 8| = w/2 (i.e., the skewed
symmetry is now a usual symmetry), the hyperbola degenerates into two
perpendicular lines passing through the origin: G-a=0and G - b =0.

The tips or vertices Gr and Gr of the hyperbola represent special orien-
tations with interesting properties. Since they are closest to the origin of the
gradient space, and since the distance from the origin to a gradient represents
the magnitude of the surface slant, Gr and G correspond to the least slanted
orientations that can produce the skewed symmetry in the picture from a real
symmetry in the scene. Also, since they are on the line (the axis of the
hyperbola) which bisects the angle made by @ and B, they correspond to the
orientations for which the length metrics along the directions of a and 8 in the
picture are equal; i.e., the ratio of lengths along them in the picture represents
the real ratio. (See Appendix A for the proof.) In Fig. 17, Gr corresponds to
looking down to the surface, and G to looking up to it. If no other constraints
are available, either one of these gradients may be the most reasonable
selection as the surface orientation.

7. Quantitative Shape Recovery: Basic Method

In Section 5 we have presented a summary of the theory of the Origami world.
For our example scenes, multiple qualitative shapes of objects have been
recovered. Note that all the interpretations except Fig. 10(a) are obtained only
in the surface-oriented Origami world: in the trihedral world they are called
‘impossible’ configurations.

Still a lot of ambiguities exist concerning the shape of the object. First, we
have multiple labelings. Second, given any labeling, the constraints represented
by the SCG are not enough to uniquely determine the shape. For example, in
the labeling of Fig. 10(a) for the ‘cube’ scene, the object still can have many
shapes, depending on the size and location of the triangle of Fig. 10(c) in the
gradient space. We have not yet recovered enough information to uniquely
determine the size and location of the triangle, and to obtain a 3-D description
of the object so as to generate another view of the same object from a different
angle.

Section 6 has described how some image regularities can be mapped into
constraints in the gradient space. They provide additional constraints for
determining the surface orientations.

In this section we will show that by putting these together we can recover
quantitative shapes; i.e., we can assign a unique gradient to each surface.
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7.1. Unique determination of gradients: Simple cases
7.1.1. ‘Cube’ scene

Take the line drawing of Fig. 1(a). Fig. 18(a) shows the angles and the lengths.
It has three labelings (Figs. 10-12). Consider the first one shown in Fig. 10(a)
and reproduced in Fig. 18(b). The labeling indicates that there are three
totally-visible surfaces S, (= VaVuViVa), S, (= VsVeV3Vy), and  S;
(= V1VaV;Vy), and that their gradients, G;, G;, and G, should form a
triangle as shown in Fig. 10(c). On the other hand, S, S:, and S; have skewed
symmetries: their skewed-symmetry axes and skewed transverse axes are
shown in Fig. 18(b) as dotted lines. If we assume these skewed symmetries to
be projections of real symmetries, we can draw the hyperbola for each surface
as shown in Fig. 18(c).

Now the problem is where we can locate the triangle of Fig. 10(c) in Fig.
18(c) so that each vertex of the triangle is on the corresponding hyperbola. It is

|
VG Vo
V5 V3
Vg
(@ (b)
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F1G. 18. Quantitative shape recovery for the ‘cube’ scene for the labeling of Fig. 10.
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not difficult to prove that the location shown in Fig. 18(c) is the only possibility
(see Appendix B for the proof). The gradients of S;, S; and S; are thus
uniquely determined as

G, = (V32,-V12), G,=(-V32,-V12) and G;=(0,V?2).

Four things should be noted about this assignment of gradients. First, the
G;’s remain the same value when we change the sizes of the regions but keep
the directions of lines the same. For example, Fig. 18(d) will result in the same
combination of gradients. This seems reasonable.

Second, in this assignment the surfaces Sj, S,, and S; are perpendicular to
each other, because the inner products of their surface normals (p,, g;, 1) vanish:

ppitaqq+1=0 fori#j. 6)

This is not a special result for this particular case in which the angles between
lines aroung the FORK junction V; are all 120°. It can be generally shown
(Appendix B) that in the case of a picture made of three parallel quadrilaterals
like Fig. 19(a), the above method of assignment always gives a unique solution
in which the three surfaces are perpendicular to each other, if and only if all
the three angles at the FORK junction are obtuse. This implies that Fig. 19(b),
in which one of the angles is acute, cannot be a picture of a right-angled block;
some surfaces are really skewed.

It is interesting to observe the following here. Suppose we try to draw a
skewed parallelepiped (a rhomboidal prism). Then we normally choose a view
angle which yields a picture like Fig. 19(b), not a view angle which yields a
picture like Fig. 19(a), probably because people will not perceive the latter as a
skewed parallelepiped even though it could be.

Third, once the gradients have been computed we know the plane formula in
the 3-D space for each surface. Of course, we have to assume the z position of
one point on the object; there is no way to know this information from a single
picture. Let us assume z of V; to be 0. If we select the origin of the x—y picture

(b)

FiG. 19. Line drawings of parallelepipeds: (a) This can be a right-angled parallelepiped or a
rhomboidal prism. (b) This must be a squashed rhomboidal prism (the shape of at least one surface
must be really skewed).
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plane at V5, then we have
S \/mx—\/my+z =0,

S —V32x-V12y+2z=0, (7)
Ss: V2y+z=0.
The 3-D coordinates of the vertices are found to be
Vi:  (0,1,—V2), Var (V3/2,1/2,-V12),
Vi: (VB2 =1/2,—VD): Ve \ (0,=1, ~V1P),
Vi (=VEIZ 12, -NB), | VarNEVBR AR,
Vzr (0,0,0).

Fourth, for a parallel quadrilateral, another skewed symmetry can be defined
by its diagonals. Therefore, other combinations of the axes, such as shown in
Fig. 20(a) are possible. In the case of Fig. 20(a), the assignment of gradients is
not unique; those triangles shown in Fig. 20(b) are all possible assignments.
Since the diagonals of each surface are perpendicular in the 3-D space, the
shapes corresponding to those triangles are, in general, the corner of a
rhomboidal prism whose surfaces are equal-sized rhombuses. In both com-
binations of skewed symmetries in Fig. 18 and Fig. 20 the skewed-symmetry
heuristic holds for every surface. The difference between them lies in whether a

(a)

®)

FIG. 20. The parallel quadrilaterals in Fig. 18(b) can have other combinations of axes for skewed
symmetries.
(a) The case in which the diagonals are selected for each region to define its skewed symmetry.
(b) The corresponding loci (each hyperbola has degenerated into two lines in this case). The
triangles are all possible assignments of gradients.
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FI1G. 21. Positions of Gy, Ga, and G; corresponding to the labeling of Fig. 11.

composite of skewed-symmetrical regions in the picture is interpreted as a
symmetrical composite of surfaces in the scene. That is, in the interpretation of
Fig. 18, the composite of S; and S; is symmetrical about the connected line
segments in the 3-D space which correspond to the connected two axes (i.e.,
ABC) of the two skewed symmetrical regions in the picture. This is not the
case for Fig. 20: here the composite of S; and S; is not symmetrical about the
connected lines in the 3-D space which correspond to V;V;V; or V,V>V,. In
other words, the interpretation of Fig. 18 seems to satisfy the skewed-
symmetry heuristic more globally. It may be the reason of our preferring it.
This problem involves other issues, which are discussed in [10]. In this paper,
hereafter, only the skewed-symmetry axis and the skewed transverse axis
obtained by connecting the midpoints of the facing boundaries of quadrilaterals
will be considered.

The labeling of Fig. 11(a) (a concave corner) is processed in the same way. In
this case the triangle made of G,, G,, and Gj; should be like Fig. 11(c), thus the
gradients are located as in Fig. 21:

G, = (*\/3/_2-, \/1_."2) 2 G = (\/3—/2, \/172) and G;=(0, *\/E) -

This assignment is exactly a symmetry of Fig. 18(c) through the origin, and
corresponds to the perceptual phenomenon called Necker reversal.

7.1.2. ‘Trapezoid-block’ scene

Let us consider the line drawing of Fig. 1(b). The angles and the lengths are
shown in Fig. 22(a). As we have noticed this line drawing has the same
qualitative interpretations (labelings) as Fig. 1(a): i.e., three labelings which
have been shown in Figs. 10-12. However, Fig. 22(a) seems to depict a
quantitatively different shape. What makes the difference? ‘
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FIG. 22. Shape recovery of the ‘trapezoid-block’ scene.

Consider the case of the labeling shown in Fig. 22(b). The gradients of the
surfaces S;, S», and S; should form the triangle shown in Fig. 22(c), which is the
same constraint as the convex-corner interpretation (Fig. 18) for the ‘cube’
scene. R, R, and R; have also skewed symmetries. However, the axes for the
skewed symmetries for R, and R; are slightly different from the case of Fig.
18(b), therefore the shape and location of the corresponding hyperbolas also
change (see Fig. 22(d)). As a result, if we try to locate the triangle so that each
vertex is on the corresponding hyperbola, it has to be placed as shown in Fig.
22(d). When we compare this assignment with Fig. 18(c), the location of G; is
the same, but G, and G; are closer to Gs. In this assignment of gradients, the
angle made by &, and S; is equal to that made by S; and S,, and is larger than .
90°. Thus, the resultant shape is a trapezoid block.

As in the case of the ‘cube’ scene, we also have the combination of gradients
shown as the dotted triangle in Fig. 22(d), corresponding to the labeling of Fig.
11(a); the shape is the reversal of Fig. 22(b).
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7.2. Cases involving partially-visible surfaces
7.2.1. Identification of surface boundaries

In order to solve the cases which involve partially occluded surfaces,
identification of surface boundaries and inference of the occluded parts is
necessary. This problem needs research for a systematic method. Though we
have a method which is sufficient for our examples, the topic is worth another
complete paper. We do not pursue it further here, and show how the reasoning
can be made in our particular example cases. The method may sound a little ad
hoc, but the following is noteworthy.

For identifying the surface boundaries in a labeled drawing, the junction
labels play a substantial role, because they represent how boundaries of
surfaces ‘appear’ and ‘hide’ at vertices. Actually, notice that we can identify
surfaces only after a line drawing has been labeled: for example, the labelings
of Figs. 10(a) and 12(b) have a different set of surfaces. In fact, we can assign
rules concerning boundary lines to each junction label and, when given a
labeled line drawing, we can trace the boundaries of each surface according to
the rules.

7.2.2. ‘Box’ scene

Take the labeling shown in Fig. 13(a) for the ‘box’ scene. (It is reproduced in
Fig. 23(a)). This is one of its eight interpretations in the Origami world [8]. The
labeling indicates that there are four surfaces, S;, S», S5 and S,. It also indicates
that the relationships among their gradients should be as illustrated in Fig.
23(b): G, and G, are on a line perpendicular to VsV; in the order as shown,
because of the convex label given to V5V;. Similarly, G; and G, are on a line
perpendicular to V,Vg in the order as shown, because of the concave label
given to V,Vi. G should be within the angle G,Ga because of the junction
label given to V), and G, within G,G,b. Again, these constraints that the
labeling provides are not enough to uniquely determine the values of gradients.
The heuristics of nonaccidental regularities provide additional constraints.
First, S, and S, are totally-visible surfaces, and both have skewed symmetries
in the picture; their axes are shown in Fig. 23(a). Therefore, if we apply the
skewed-symmetry heuristic, the gradients of §; and S, should be on the
hyperbolas drawn as solid curves respectively in Fig. 23(c). Notice, however,
the labeling indicates that S; and S, are only partially visible: the region
V.V, Vs V5, for example, depicts a part of S; because it is occluded along the
lines V;V; and V,;V;. Therefore the shape of the region is meaningless.
Second, the line V,Vj is parallel in the picture with the line V;Vs. Thus, if
we apply the parallel-line heuristic, the surfaces which include these lines as
boundaries (i.e., S;, S», Si, and S, due to the labeling) should have their
gradients on a line perpendicular to VsV5. That is, G, through G, should be on
a single line. Further, because V,V; is parallel to V,V3; G; and G, (the
gradients of the surfaces which include these lines) should be on a line
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b a
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L] G| Go
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FIG. 23. Shape recovery of the labeling of Fig. 13(a) for the ‘box’ scene: (a) labeling; (b) constraints
on the gradients; (c) assignment of the gradients; (d) view of the recovered shape from 10° to the
right and 10° above the original view angle. This is a depth-coded image in which the depth of each
point is coded by the intensity: the brighter, the nearer.
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perpendicular to V;V; When we consider these constraints together in Fig:
23(b), we conclude that G, and G, should coincide. Similarly, G, should be the
same as Gs.

Third, note that use of the parallel-line heuristic on both the pair of V|V,
and V,V; and the pair of V| V; and V;V; implies that these four lines (in the
3-D space) are on the same plane and form a quadrilateral. Therefore, we can
think of an imaginary planar surface segment Ss (= V; V>V, V53). Because Ss has
a skewed symmetry in the picture, its (imaginary) gradient should be on the
corresponding hyperbola shown as a dotted curve in Fig. 23(c). Since Ss
connects with S, and S, along V, V7 and V3V5, respectively, the gradients of S
S, and S5 should form a triangle whose shape is determined by the directions of
V,V;, V3V, and VsV, (the three lines at the FORK junction V7). Remember
that what we did here is not ad hoc but a result of considering the scene-
domain meaning of labelings and the parallel-line heuristics.

Finally, by putting all the above constraints together we can determine the
locations of G, (= G) and G, (= G5) as shown in Fig. 23(c). As before, if we fix
the origin of the x—y picture plane, and assume the z (depth) of any point on
the object, the plane formulas for S, through S, can be determined, and we
obtain the 3-D shape description of the object. Fig. 23(d) is a rotated view of
the recovered shape. We see that an ‘ordinary box’ shape has been recovered.
This image is a synthesized one in which the depth of each point is coded by
the intensity: the brighter, the nearer.

7.2.3. ‘W-folded paper’ scene

The labeling of Fig. 14(a) for the ‘W-folded paper’ scene is another example
which involves partially visible surfaces (see Fig. 24(a)): Sy is totally visible, but
S, through S, are partially visible. Because of the parallelisms of lines
(ViVof[VoVy and Vi Vif[VoVip) we conclude that S, and S; have the same

vy ¥z >
8
Yi
(a)
(d)

Ve

LRy,

FiG. 24. Shape recovery of the “W-folded paper’ scene for the labeling of Fig. 14(a).




RECOVERY OF THE 3-D SHAPE OF AN OBJECT FROM A SINGLE VIEW 435

gradient (G;= G;). Similarly, G,= G,. Due to the parallelism of V;V), and
VsV, Gy and G, are to be on a line perpendicular to them. The skewed
symmetry of S; constrains G to be on the hyperbola drawn as a solid curve in
Fig. 24(c). The constraints we have obtained so far are not enough for the
unique determination of G, and G,. Even when we determine G, at one of the
tips of the solid hyperbola, G, can still be anywhere on the half line extending
upward from G, in the perpendicular direction to V;V|,.

In order to extract more constraints, the shapes of partially visible surfaces need
to be inferred. Let us show how the labeling and the constraints obtained so far
can be used for this. Let us work with §,. Imagine that we are tracing the
boundaries of S, clockwise. The labeling tells that they show up along V, V5,
VsV, and Vi, V), but ‘disappear’ at V| and ‘reappear’ at V.. The constraint
that G, and G, are to be on a line perpendicular to V3V, or V5V, implies that
if §; and S, actually intersect, the occluded intersection line (i.e., the occluded
boundary line of S,) should coincide with V,V, (because V,V,[V,V[[VsVio).
How about the boundary line which reappeared at V,? Since it is interrupted
by S, at V, (notice that this is indicated by the junction label given to the T
junction V), it is meaningful to extend V5V, in the picture and we find that the
extended line intersects at V, with the inferred occluded boundary from V.
Thus the shape of S, could be the dotted line shown in Fig. 24(b).

Application of the skewed-symmetry heuristic to this region provides the
dotted curve shown in Fig. 24(c). Since we have no more constraints, let us
determine G, as the lower tip of the solid hyperbola, and G, on the dotted
hyperbola so that the line connecting them is perpendicular to V,V, (Fig.
24(c)). Note that the upper tip of the solid hyperbola is not appropriate for G,
because then G, cannot be on the dotted hyperbola.

7.3. ‘Strange’ shapes violate the regularity heuristics

The labelings we have treated so far all correspond to the most ‘natural’
interpretations of the pictures. The qualitative shape recovery by the theory of
the Origami world yields other labelings. This section will show that some
shapes implied by the labelings are really ‘possible’ but violate some of the
regularity heuristics. We conjecture that this is why they look ‘strange’ or
‘unnatural’.

7.3.1. Non-cube interpretation of the ‘cube’ scene

Take the third labeling (Fig. 12(a)) for the ‘cube’ scene. It is duplicated in Fig.
25(a). It indicates that two totally-visible surfaces S; and S, which are con-
nected and form a convex edge, occlude partially the third surface S;. The
relationships among the gradients G, through G; imposed by this labeling are
illustrated in Fig. 25(b): Gs should be inside of the triangle or on the base line
connecting G, and G,. We see that the parallel-line heuristic cannot be satisfied
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F1G. 25. The third labeling (Fig. 12) for the ‘cube’ scene does not satisfy the parallel-line heuristic:
(a) labeling; (b) constraints in the gradient space. G has to be inside of the triangle or on the base
line, thus G, and G5 cannot be placed so that the parallelism of V,V; and VsV is not accidental.

in this case. The parallelism of lines V;V; and VV; demands that G; and G,
are on a line perpendicular to V4 V5 (i.e., on the left leg of the triangle), and the
parallelism of V,Vy and V,V; demands that G; and G, are on a line per-
pendicular to V, V5 (i.e., on the right leg of the triangle), but both cannot be the
case simultaneously.

7.3.2. Phoney-box interpretations of the ‘box’ scene

Let us go to the ‘box’ scene. The labeling of Fig. 13(b) represents a shape of a
‘squashed’ box with the front two faces going in. Again, Fig. 26 (the diagram
illustrating the constraints in the gradient space) indicates that the parallel-line
heuristic cannot be satisfied: G, and G, cannot be on a line perpendicular to
Vl V7 (01' v:r_ V;)

We have noted that there are eight labelings for the ‘box’ scene in the
Origami world, but it can be found that the interpretations other than Fig.
13(a) which corresponds to an ‘ordinary box’ shape, do not satisfy the
regularity heuristics.

the direction

perpendicular fo VI V?

FiG. 26. Constraints on G, through G, imposed by the labeling of Fig. 13(b). G, and G, cannot be
on a line perpendicular to V| V3.
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7.3.3. Non-W-folded-paper interpretations of the ‘W-folded paper’ scene

In the case of the ‘W-folded paper’ scene, the labeling of Fig. 14(b) is an
example which violates the heuristics. Again only Fig. 14(a), out of 16 possible
labelings, can have the assignment of gradients without violating the regularity
heuristics.

7.4. Conservation of image regularities

We have shown that some qualitative interpretations do not satisfy the image
regularity heuristics. Of course, we ‘can’ assign the gradients, if we neglect the
heuristics. For example, the diagram of Fig. 27(a) shows a particular selection
of gradients for the non-cube interpretation (Fig. 25) of the ‘cube’ scene such
that the skewed-symmetry heuristic holds for S, and S,, and the surface S;
intersects with S; along V,V; and with S, along V5V,. The resultant object
appears exactly like Fig. 1(a) when seen from the present view direction.
However, when it is seen from other directions, say, from 15° to the right and
15° above, it looks like Fig. 27(b). We notice that the image regularity
(parallelism) we observed in the original view (Fig. 1(a)) has disappeared.
Recall that, in contrast, the labeling of Figs. 10 and 11 allows such a selection
of gradients (Figs. 18 and 21) corresponding convex and concave corners,
respectively, and that the resultant shapes produce pictures which conserve
those regularities from whatever direction they are seen.

.rq

(a) (®)

FiG. 27. A ‘strange’ shape for the ‘cube’ scene: (a) a possible assignment of the gradients
corresponding to the labeling of Fig. 12; (b) a view from another angle of the resultant shape. It
does not preserve the parallelism of V;V; and VV; observed in the original view.
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(b)

FIG. 28. A ‘strange’ shape for the ‘box’ scene corresponding to the labeling of Fig. 13(b).

Likewise, Fig. 28 is an example of a ‘phoney box’ which corresponds to the
interpretation of Fig. 13(b). The selection of gradients in Fig. 28(a) satisfies the
basic constraints represented by the SCG. Figure 28(a) is the view of the shape
from 10° to the right and 10° above. It does not conserve the image regularities
in the original view. An example shape of a non W-folded-paper of the
‘W-folded paper’ scene corresponding to the labeling of Fig. 14(b) is shown in
Fig. 29.

It should be emphasized again that even in the case of the labelings
corresponding to ‘natural’ shapes there is no physical reason that the objects
have to be of such particular shapes. In fact, in the convex-corner inter-
pretation of the ‘cube’ scene (Fig. 18), if we do not use the skewed-symmetry
heuristic, we could place the triangle of Fig. 10(c) in the gradient space at any
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FiG. 29. A ‘strange’ shape for the ‘W-folded paper’ scene corresponding to the labeling of Fig.
14(b): (a) assignments of gradients; (b) a rotated view of the shape from 25° to the right and 25°
above. This shape produces the line drawing of the ‘W-folded paper’ scene when seen from the
original direction.

location with any size. Suppose we place it as shown in Fig. 30(a). The resultant
shape appears as Fig. 30(b) when viewed from 20° to the right and 20° above.
Now, though this picture is still qualitatively the same as the original one (Fig.
1(a)), it no longer allows an interpretation as a symmetrical shape.

Similarly in the case of the ‘real box’ interpretation (Fig. 23) of the ‘box’
scene, if we regard the parallelism between the picture lines as accidental
regularities caused by special view directions, we could select the gradients
differently from those in Fig. 23(c). But then the resultant shape will not
conserve some parallelism of lines when viewed from other directions.

Thus what we have shown is the following.

-The Origami world labeling yields multiple interpretations of qualitatively
different shapes, all of which are geometrically possible.

- Some of them cannot satisfy some of the regularity heuristics.

- For some interpretations we can select the gradients of surfaces so that they
satisfy the regularity heuristics. Then the resultant shapes have real regularities
and, therefore, conserve the image regularities observed in the original view, even
when seen from other view angles.

We feel that this conservation of image regularities is strongly related to
whether the interpreted shapes seem ‘natural’ to a human observer.
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FIG. 30. A placement of the triangle of Fig. 10(c) in the gradient space different from that in Fig.
18(c) results in a skewed parallelepiped.

8. Shape Recovery from Real Images: More Complexity and
More Constraints

In the previous sections, we have presented the basic theory and technique to
extract and to exploit geometric constraints for quantitative shape recovery.
The three-dimensional shapes of our simple example scenes have been reco-
vered. When it comes to the shape recovery from real images, such as the
‘chair’ scene (Fig. 5), more complexities are involved and more constraints are
available. The succeeding two sections will present the techniques to be used
for the shape recovery from real images. The ‘chair’ scene example will be
demonstratively processed.

Those simple line drawings we have treated so far (Figs. 1, 3, and 4) consist
of a small number of lines and regions, and the number of legal labelings in the
Origami world is also small. Thus we could consider each labeling and test
whether the regularity heuristics are applicable in order to select ‘natural® or
‘probable’ shapes. However, line drawings with many lines and regions will
have too many labelings (i.e., geometrically possible shapes) to consider them
all individually. The next section shows how we can extract the constraints that
color images provide on line labels, and how we can exploit them to order
multiple labelings according to their degree of match with image properties.

The next problem is related with noise and distortions which the real pictures
include. Due to them, positioning of the gradients may not proceed in such an
idealistic manner as shown in Section 7. Section 10 presents a solution to this
problem. -
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9. Use of Color Edge Profiles

9.1. Edge profiles and line labels

An edge profile is a curve showing how the intensity (or more generally, a
certain image property) changes across an edge. Historically, in the scene
analysis of the block world, it has been known that a few typical types of
intensity profiles exist (Herskovits and Binford [4]), and Horn [5] showed that
they can suggest different types of edges: for instance, a peak-type profile suggests
a convex edge, a roof type a concave, and a step type an occluding edge. Thus the
edge profiles might be used to provide constraints on line labels. However, this
absolute method, which tries to associate properties of edge profiles with label
identities, is not usually very reliable. It strongly depends on the lighting
conditions and the physical composition of objects. Further, for this method to
work, particular properties of edge profiles, such as roof, peak, etc., need to be
recognized.

There is another way of exploiting edge profiles which is employed in this
paper; that is the relative method. It is based on the observation that if two
lines have ‘similar’ edge profiles, it suggests that they will likely take the same
label, even though the label identity itself is not known. It can be noted that
this relative method of using color edge profiles is an instance, applied to their
similarities, of the meta-heuristic of non-accidental regularities described in
Section 6.

If the lines with similar edge profiles form a certain special geometrical
configurations, the likelihood for a similar labeling will be higher. The classical
matched T configuration, first described by Guzman [3], is such an example. In
Fig. 31 three pairs of lines (L, and L,, L; and L,, and Ls and L) are collinear.
Guzman used this configuration as a clue suggesting that the regions R, and R»
belong to the same object, and similarly R; and R,.

What the matched T's mean in the context of this paper is the following. If
the edge profiles of L, and L, are similar, then the labels of L, and L, are likely
to be the same, and the lines L; through L, will take occluding-edge labels in
such a way that the middle region R, interrupts an edge which is projected into
L, and L, in the picture. In this section we formalize these kinds of ideas.

Lg

Fi1G. 31. Guzman's matched T's.
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9.2. Extraction of color edge profiles

Color edge profiles for a line consist of three profile curves corresponding to
three color components: R (red), G (green), and B (blue). As shown in Fig. 32,
for each color component, a set of profiles is first taken across the line; the
margin (m), the interval (i), and the length (I) are specifiable parameters.
Profile curves in each set are registered and then averaged to obtain the mean
profile. In this way for each line L; we obtain three profile curves P{(t),
(-1 =t=1) where c €{R, G, B}

Notice that lines (and thus profiles) have to be defined with directionality.
That is, a line L; is to be defined as connecting from Vi to Vj, rather than
connecting Vi, and Vj>. Let us denote this line as L; =(V; V). Then —L; =
(Vi Vi) denotes the same line traced in the opposite direction. If L; has a
profile P(¢), —L; has a profile P<(r) = P{(= t). In the following discussions the
directions of lines and profiles always have to be considered.

Since we can compare three profile curves the relative method is more
reliable and useful when exploiting color edge profiles than when using only
monochrome intensity profiles.

FiG. 32. Extraction of color edge profiles. A set of profile curves are taken across the line for each
color component. Each set is registered and averaged.

9.3. Comparison of color edge profiles
For the purpose of comparing the edge profiles let us define the amplitude of
P<(¢) and the distance between Pf(t) and Pj(t) as follows.
A(i, ¢)=max P{(t)— min P{(¢),
®)
1/2
(i j, &)= i (J' IP5(t) = PE(t + 5)P dt) .

The amplitude A(i, ¢) indicates roughly how much the property of the profile
changes across the line. The distance d(i, J, c) is the minimum mean square
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difference between the two curves; the minimum is taken over various shifts of
the curves in order to compensate possible dislocations of the origins of the two
profiles. It is easy to see the following relations.

Aliey=Al=i ). di~4—je)=4d0 j.e) (9a)
but, in general,
d(=ijc)#d(jc), d(,—j,c)#d(,} c). (9b)

Let us now define s(i, j), the similarity of lines, for a pair of lines L; and L;.
There is not a definite reason to employ the following definition but it can be
thought that the larger the amplitude, the more meaningful is the distance
between the profile curves. Thus we will define s(i, j) as the sum of the ratios of
the amplitude to the distance for each color component: that is, if

(A(, )+ A(, ¢))/d(,j,c)>1 forallc,
> A, c)+ A(, c) (10a)

cekem 8GjLc)
otherwise (i.e., if the ratio is small, the profiles may not be reliable)
s(i,j)=0. (100)

Because of the property of d(i,j, ¢) and A(, ¢), s(i, j) = s(—i, —) but usually
s(@, ) # s(—1i, j).

sli, f)=

9.4. Constraint expressions from edge profile analysis

The similarity in edge profiles, together with certain geometrical configurations
of lines, can be converted to the tonstraint expressions on line labels.

9.4.1. Similar edge profiles

For a pair of lines L; and L; whose similarity s(i, /) > 0 we generate a constraint
expression,

(SAME (L; L;) s(i, j))

which means that L, and L; may have the same label with a confidence value
(weight) s(i, j). All the pairs of L;’s and —L;’s have to be considered for
generating this type of constraint.

9.4.2. Matched T configuration

Suppose that L, through Ls form a matched T configuration, as shown in Fig.
33: it is a pair of opposing T junctions whose vertical bars are collinear. Define
the directions of lines as shown by the big arrows in Fig. 33. Let s(1, 2), s(4, 5),
and s(3, 6) be the similarities between the corresponding pairs of lines, respec-
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FiG. 33. Matched T configuration and the specification of the line directions.

tively. Then the matched T configuration generates two constraint expressions:
(SAME (L, Ly) wr) and (IDENT (L; L, LsLg) (> > < <) wy)

where wr= (s(1,2) - s(4,5) - 5(3, 6))"".

The first expression constrains L; and L, to take the same label. The second
one means that L; through L4 take such a combination of labels (occluding
edges in the proper directions), which corresponds to the case that the middle
region R sandwiched by the two transverse bars of T’s occludes the collinear
vertical bars. Since the first expression about L, and L, must have been
generated from their own similarity, we can regard the matched T configura-
tion as amplifying the constraint. The definition of wr is rather arbitrary, but
the reason for the above definition is just for giving it the same dimension as
s(i,j)'s.

9.4.3. Matched m configuration

A matched 7 configuration shown in Fig. 34 is another geometrical configura-
tion which can amplify constraints. It is made of two neighboring T junctions
which share the same line (L,) as their right and left transverse bars, and which
have parallel vertical bars (L; and L,). Let us define the directions of lines as
shown, and let 5(1, —2) and s5(3, 5) denote the similarities between L, and —L,
and between L; and Ls, respectively. The matched = configuration cor-
responds most often to the case where the same physical configuration occurs
in the right (L, and L;s) and left (L, and L;) halves. Therefore we generate a

F1G. 34. Matched = configuration and the specification of the line directions.
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pair of constraint expressions:
(SAME (L;Ls) wp) and (SAME (L,— L;) wp)
where wp = (s(1, =2) - s(3, 5))"~.

9.5. Search for interpretations which most satisfy the constraints

Now that we have obtained a set of constraints which the line labels should
satisfy, we can search for the ‘best’ interpretations in the sense that the
constraints are most satisfied. In evaluating an interpretation, if it does not
satisfy a constraint, a penalty (the associated weight) is given to it. Thus, the
best interpretation is the one with the least penalty.

In the present implementation, the search is combined with the Origami-
world labeling procedure. The interpretation of least penalty is searched for in
a depth-first manner, along with the search for consistent assignments of
junction labels: each time a junction label is assigned to a junction, not only
does the partial interpretation undergo the consistency check of surface orien-
tations, but also the penalty score is renewed if any constraint expression is
available (i.e., all the lines involved in it have been given labels).

If the partial interpretation turns out to be inconsistent in surface orien-
tations, or if the penalty score exceeds the best (smallest) score so far obtained,
then the search backtracks and the leaves below the present node in the search
tree are pruned.

9.6. Labeling the ‘chair’ scene
9.6.1. Color edge profile analysis

For the ‘chair’-scene image of Fig. 5(a), color edge profiles were computed for
each line. Analysis of them yielded 85 constraint expressions. The total sum of
the weights of all the constraints is 172.26.

9.6.2. ‘Positive’ and ‘negative’ chairs

In labeling Fig. 5(b) with the constraints obtained above, it was found that the
labelings shown in Figs. 35 and 36 are the two best interpretations: in each
figure, (a) is the labeling and (b) is the SCG. Their penalty score is 13.17 out of
172.26.

Though these labelings still have ambiguities in their exact quantitative
shape, it is interesting to think what kind of shapes they represent. Fig. 35(a)
corresponds to the shape of an ‘ordinary chair’: the regions Ry and R;s (the
wainscot in the wall) are occluded by others; the region R, (the arm nearer to
the viewer) occludes other regions; the regions R, through Ry are connected at
the proper convex and concave intersections to form the shape of a seat and a
back.
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FiG. 36. The other of the two ‘best’ interpretations for the ‘chair’ scene. We call this a ‘negative’
chair.

Comparing the labeling of Fig. 35(a) with Fig. 36(a), we notice that the lines
labeled as convex (+) in Fig. 35 are changed to concave (-) in Fig. 36, and
concave to convex. The occlusion labels (‘]*) remain the same. These two
labelings correspond to the phenomenon known as reversal in perceptual
psychology, such as the Necker cube and the Shroeder stairs. Let us name the
shape of Fig. 35 a ‘positive’ chair, and that of Fig. 36 a ‘negative’ chair. It might
be difficult to imagine the shape of the ‘negative’ chair. Descriptively, the shape
is obtained by first reversing the structurs corresponding to the seat and back
in the ‘positive’ chair and then attaching the arms and legs with appropriate
relationships to the reversed structure.

9.6.3. Identification of surfaces

Now let us identify surfaces involved in the labeled ‘chair’ scene. Consider the
labeling shown in Fig. 35(a) (the ‘positive’ chair). Several matched T’s exist
(e.g, Viand V,, V3 and V., etc.), where the collinear lines showing strong
matches in color edge profiles are given identical labels and other lines are
given occluding-edge labels of the appropriate directions. That is, these mat-
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(a) ()
F1G. 37. Identification of surfaces in the ‘chair’ scene corresponding to the labeling of Fig. 35
(‘positive’ chair): (a) identified surfaces; (b) merged SCG.

ched T configurations have been interpreted as the result of the interruption of
a single 3-D space edge by another surface. Therefore, in tracing the boundary
lines of surfaces, we can group a few regions into one region. For example, R,
and R; are regarded as corresponding to a single surface. Ten surfaces are
identified in this way (see Fig. 37(a)):

Si: (R, S:;: (R:R3), Si: (R4 Ry),
Si: (R¢R;Ry), S5t (Ry), Se: (Ry),
S (Ruw), Ss: (Ru), Se: (Rp),
Sw: (RuRys).

Corresponding to the merges of regions, the nodes in the SCG (Fig. 35(b))
are also merged. Fig. 37(b) shows the revised SCG which represents the
interconnection relationships among the ten identified surfaces.

The ‘negative’ chair (Fig. 36) can be treated in the same way. We identify the
same set of surfaces, and Fig. 38 shows the merged SCG. The difference
between the ‘positive’ and the ‘negative’ chairs is only that the labels on the
arcs connecting S;, S, S;, and S, in the SCG’s of Figs. 37(b) and 38 are
interchanged from + to — and vice versa.

F1G. 38. The merged SCG for the labeling of Fig. 36 (‘negative’ chair).
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10. Optimal Positioning of Gradients with Minimum Errors

In Fig. 37(a) the defined image regularities (parallel lines and skewed sym-
metries) do not exist in a strict sense. In fact, real-world pictures usually
include perspective distortions, camera distortions, and errors due to quan-
tization or feature extraction processes. A standard way to resolve this kind of
situation is to define a measure of error and to minimize it.

Let us first restate each constraint on gradients with a definition of the error
to be minimized. Then the ‘chair’ scene will be processed.

10.1. Constraints and errors
10.1.1. Intersection of surfaces

Suppose that two regions are connected along a convex or concave line with a
direction a = (cos a, sin @) in the picture, and that they are given the gradients
G and G,. We will define the error for this case as,

€]=|G1‘a_‘Gg‘a|2=|(G1—G2)'a|2 (11)

where e; is the projection of the vector G,— G, onto a gradient-space line
perpendicular to the picture line. It should vanish when G, and G, strictly
satisfy the property of dual lines.

10.1.2. Skewed-symmetry heuristic

Suppose that a region has a skewed symmetry defined by the two directions
a=(cos a,sina) and b = (cos B, sin 8), and that it is given a gradient G =
(p. ). Since ideally G satisfies (4), we will define the error es for this case as,

es= (G - a)(G - b)+ cos(a — B)*. (12)

Since the vertex of the hyperbola represents a special orientation, as described
in Section 6, sometimes it is desirable to include the distance from the gradient
to the vertex in the error as

ey = eg+ IG 53 G‘[“2 = 13)
(

Gr is that one of the two vertices of the hyperbola nearer to G. eg is roughly
the discrepancy of G from the hyperbola and its vertex.

10.1.3. Parallel-line heuristic

Suppose that two regions R; and R; have almost parallel boundaries whose
directions are a, = (cos a;, sin ;) and a, = (cos a,, sin a,), respectively. Here it
is assumed |a; — a;| is small. If R, and R, are assigned to G, and G- respectively,
then

ep=1/2((G1— Go) - al + [(G1— G>) - ar) . (14)
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By referring to (11) we see that ep is the mean of the errors which would be
involved if R, and R, were demanded to intersect along both a, and a..

10.2. Minimization of the total error

The total error E is defined as the sum of the individual errors defined above:

E:E€|+ZES'+ZEP. (15)

Each sum in (15) is taken over all the instances of the constraints of that kind.?
It is obvious, though, that only those surfaces which mutually constrain need to
be included in the minimization of E. That is, if a constraint includes a surface
whose gradient does not appear in the other constraints in E, the constraint can be
removed from E because that gradient can be determined independently after all
others have been determined.

The minimization of E can be obtained by the steepest descent method. The
initial values of the gradients can be selected, so that as many constraints as
possible for the basic interconnection relationships (the constraints for ey,
or the constraints in the SCG) are satisfied. For a skewed-symmetrical region
one of the vertices of the corresponding hyperbola may be a good initial
point.

10.3. Shape recovery of the ‘chair’ scene
10.3.1. Determination of the gradients

Let us consider the case of Fig. 37 (‘positive’ chair). The minimization of E
involves the four surfaces (S,, S, Ss, and S;) which mutually constrain. The
total error E = E(p1, g1, P2, 2, P3, G5, Pay g4) consists of five terms for their
surface interconnection (corresponding to the five arcs in the SCG), three terms
for the skewed-symmetry heuristic (S;, S, and S3), and one term for the
parallel-line heuristic (S, and S; have almost parallel boundaries as shown in
Fig. 37(a); others were omitted for simplicity).

The initial locations are selected as shown in Fig. 39(a): G;, G, and G3 are at the
vertices of the corresponding hyperbolas, and G. s at the intersection of two lines
extending from G, and G, because of the constraints due to the intersections of S,
with S, and S,. Fig. 39(b) shows the locations of gradients determined by the
iterative steepest descent method.

21f it is better to weigh the errors, we can define the total error as,
Eg = W] 2 Wi€l; + WS 2 wjes; + Wp 2 Wiep,

with appropriate selection of W’s and w’s.
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FiG. 39. Positioning of the gradients of S through S, for the ‘positive’ chair by the iterative
minimization of errors: (a) initial positions; (b) final positions.

FIG. 40. Gradients of S, through S, for the ‘negative’ chair.

If we begin the iterative minimization for the interpretation of Fig. 38 with
the corresponding initial locations, it ends up with the assignments shown in
Fig. 40. This is exactly the reversal of Fig. 39; i.e., G, = (p, q) in Fig. 39(b)
corresponds to G; = (—p, —q) in Fig. 40.

10.3.2. Completion of the shape recovery

So far we have recovered the shape of the substructure made of the surfaces S,,
S, S and S, (which happens to be the seat and the back) in the ‘chair’ scene,
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for both cases of the ‘positive’ and the ‘negative’ chairs. The scene includes
more surfaces. We will determine their orientations and relative depths.
However, as opposed to the foregoing subsections, the reasoning in this
subsection admittedly lack firm theoretical bases. One big reason for this
weakness is that at this point we cannot do much without semantics or, more
directly, a model of ‘chairs’. Discussion concerning the role of object models is
found in Section 11. For the time being let us proceed and complete the shape
recovery of the ‘chair’ scene without explicitly mentioning semantics.

Let us refer to Fig. 37. First of all, s (which happens to be one of the arms
of the chair) has to be given the same orientation as S;: the junction labels
given to the four T junctions (Vs, Vi, V3, and Vi see Fig. 35), where S, is
connected with Ss, together result in this requirement. Then we can see that the
‘negative’ chair (Fig. 36 or Fig. 38) is not realizable by planes, because if S, and
Ss are in the same orientation, S; cannot cross and occlude S, or S;, each of
which connects with S; along a concave edge. However, if we relax this
requirement by ‘loosening’ the connection of S, and S; at the four T junctions
(we can make S,, say, be connected with Ss at two points Vg and V; so that it
can come in front of S, and S;), then we shall have the 3-D shape of a
‘negative’ chair. Appendix C shows pictures of a model of a ‘negative’ chair.

Let us proceed with the ‘positive’ chair. S;, S, and S, (which happen to be
the legs of the chair) have individually a single constraint with the substructure
(S, S5, S5, and S,) whose shape has been determined. S;, for instance, is
connected to S, at its left lower corner but it is not enough of a constraint to
uniquely determine the orientation of S;. Tentatively (without a definite
reason), S; is given the same gradient as S;. Similarly we give Sg and Sy the
same gradient as S, with which they are connected.

The surfaces whose gradients have been determined so far (S; through Ss,
and S; through S,) are all connected. Therefore, if we assume the z of any one
point on the structure, we can determine their plane formulas.

What can we do about the remaining two surfaces, S¢ and Sjp, which are
separate nodes in the SCG? The visible part of S¢ (which happens to be the
other arm) strongly matches Ss with respect to both color and shape, plus
several pairs of parallel boundaries. This may provide a good reason to give S
the same gradient as Ss. How about its relative depth (position)? Since S;s is
touching S, and S; on this side, and the visible part of S; is the same in the
image as a part of S5, we may conclude that S, is also touching S, and S; on
their other side.

Finally, as for $;y (which happens to be a wainscot), we have no clue except
that it is behind the object. Thus all we can do is to assign the gradient (0, 0)
(the orientation perpendicular to the present view direction) as a default, and
assign a big enough depth so that it is behind the structure made of S; through
Sg.

In this way we have determined the plane formulas of all the surfaces. The
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FiG. 41. A rotated view of the ‘positive’ chair interpretation; 10° to the left and 10° above the
original.

resultant 3-D shape description can be supplied to a display program which
generates other views of the object. Fig. 41 shows a rotated view of the
‘positive’ chair interpretation of the ‘chair’ scene.

11. Concluding Remarks

11.1. Summary of the results

We have demonstrated how the 3-D descriptions for simple scenes can be
achieved systematically from a single view by exploiting a few assumptions.
The assumptions we have used are:

(A1) Objects are planar-surfaced ones with restricted configurations at ver-
tices.

(A2) The meta-heuristic concerns nonaccidental regularities in the picture;
in particular,

(A2.1) similarity of color edge profiles,

(A2.2) parallelism of lines, and

(A2.3) skewed symmetry.

We have developed the theories and techniques for exploiting these assump-
tions. The theory of the Origami world for (A1) provides a labeling procedure
which can recover qualitative shapes of line drawings together with constraints
on surface orientations. The analysis of color edge profiles for (A2.1) provides
constraints on line label combinations with weights, and thus can order the
interpretations which are all geometrically possible. The parallel-line heuristic
for (A2.2) and the skewed-symmetry heuristic for (A2.3) map the picture
properties into constraints in the gradient space. By putting these all together
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we can uniquely determine the surface orientations and obtain the 3-D quan-
titative shape descriptions of the object.

Notice that the up-to-3-surface assumption of the Origami world for (Al) is
independent of the image-regularity assumption (A2). We could have selected
the trihedral assumption for (Al). The Origami world, which is less restricted
than the trihedral world, allowed to interpret those realistic line drawings such
as the ‘box’ scene. In addition, because of its diversity, it helped in emphasizing
the importance of other kinds of assumptions of (A2). One additional comment
on the skewed-symmetry heuristic: it does not assume symmetrical objects but
assumes local symmetry of the surfaces whose projection (picture) is skewed-
symmetrical.

We have used only similarity of edge profiles, parallelism of lines, and
skewed symmetry in this paper. There are other instances of image regularities
which are usable in the same way by formalizing them under the meta-heuristic
of non-accidental regularities. For example, equal-length lines, nearly right
angles, etc. This topic will be discussed in [10], and further developed by
Kender [11].

The essential issue pursued in this paper is how the properties in the picture
(picture-domain cues) can be related to the properties in the scene (scene-
domain cues). The importance of this distinction is emphasized by Kanade [8].
In our discussion, the scene-domain cues are the physical meaning of lines
signified by the labels and the surface orientations represented by the
gradients. The picture-domain cues are the junction types, the direction of
lines, the shapes of regions, and the paralellisms of lines in the picture.

How the two different levels of cues interact mutually for the shape recovery
is noteworthy. From the junction types and directions of individual lines, we
have obtained the labelings, which can tell the shapes of which regions and the
parallelisms of which lines are usable. This in turn can be converted into
constraints on the gradients.

11.2. ‘Natural’ interpretations and the roles of object models

When presented the multiple interpretations which the theory of the Origami
world yields, one of the common impressions we tend to have is that most of
them are ‘unnatural’. For example, the labeling of Fig. 13(b) which corresponds
to a ‘squashed’ box may look ‘unnatural’ for a human observer. However, any
labeling is geometrically no more ‘natural’ or ‘unnatural’ than others: they are
equally possible. The feeling of ‘naturalness’ is due to our other presumptions.

This paper has shown that the exploitation of the heuristics which prefer the
conservation of regularities allows us to select the ‘natural’ interpretations for
our simple example scenes. The core of our method is still purely geometrical.
We have tried to keep from using specific object models in order to emphasize
the geometric aspects in the shape recovery.
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Of course, though, I do not intend to claim that object models are un-
necessary. As we have seen in the shape recovery of the ‘chair’ scene, the
‘arms’ and ‘legs’ can be attached to the main structure (‘back’ and ‘seat’) at any
angle. We might be able to do a little more by pursuing some higher-level
regularities, say the 3-D symmetries in this case, but eventually the deter-
mination of their particular shape should rely on our understanding of the
functional shape that ‘chairs’ usually take. However, who can know that the
object is a ‘chair’ before knowing that it could be of a ‘chair’ shape?

‘Chairs’ would have no particular predefined shapes but usually are defined
by the descriptions of their functional shapes: say, an L-shaped main structure
made of a ‘seat’ and a ‘back’, both usually flat; often four legs attached to the
lower corners of the seat; optional two ‘arms’ attached symmetrically to the
main structure, etc. Like this, the generic models of objects are described in
terms of general 3-D shapes and relations (i.e., scene-domain cues). Therefore,
in order to access appropriate models for the top—down use of semantic
information, we have to first reach certain shape descriptions, either qualitative
or quantitative, from the picture in a data-driven manner. Once the ap-
propriate model is found, the general hypothesis-and-test mechanism begins to
work. The theory and the technique in this paper have demonstrated the
crucial point in interfacing between the model-driven part and the data-driven
part of image understanding.
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Appendix A

Let us take two gradient-space lines passing through the origin in the directions
of @ and B, as shown in Fig. A.1(a). We will prove that the gradients (such as
G, or G,) which are on the bisectors of the two lines correspond to the
orientation of the planar surfaces for which the length metrics along the
directions of @ and B in the picture are equal; i.e., the ratio of lengths along
them in the picture represents the real ratio.

In general, for a surface with gradient G = (p, q), the change in depth (z)
corresponding to the transposition Av = (Ax, Ay) in the picture is

Az =—pAx—qAy=—-G-Av. (A1)
We can generally express the gradients on one of the bisectors [, as

G, = (o cos((a + B)/2), o sin((a + B)/2)) . (A.2)
Similarly the gradients on the other bisector [, are

G, = (—o sin((a + B)/2), o cos((a + B)/2)) . (A.3)
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FIG. A.1. (a) Two gradient-space lines passing through the origin in the direction of @ and 8. G. and G,
are the gradients lying on their bisectors. (b) The projection of a surface and two picture lines in the
direction of & and B.

Now suppose that surface with a gradient G. or G, is projected onto a
picture plane, and consider two picture lines in the direction of a and B as in
Fig. A.1(b). What we have to show is that the same length along these two
picture lines depict the same length on the surface in the 3-D space, or,
equivalently, that the rate of change in depth (z) to S is equal along these two
lines.

We can represent unit-length vectors along these picture lines as follows,
respectively:

v;=(cosa,sina) and ;= (cosgB,sinB). (A.4)
The changes in z corresponding to vy and v, are, if S has the gradient G.,

Az;= -G, - v, = —0 cos((a + B)/2) cos a — o sin((a + B)/2) sin «

= —co cos((a — B)/2), (A.5)
Az;= -G, - v,= —0o cos((a + B)/2) cos B — o sin((a + B)/2) sin B
= —o cos((a — B)/2). (A.6)

and if S has the gradient G.
Az;= -G, - v;=—osin((a — B)/2),

gy (A7)
Az, =~G. - v,= o sin((a — B)/2).
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In both cases
|Azy| = |Azy] . (A.8)

That is, the changes in z corresponding to the transposition of a unit length in
the direction of @ and B in the picture are equal.

Appendix B

Let us consider a line drawing shown in Fig. B.1(a). It is made of three parallel
quadrilateral regions, R;, R,, and R;. The central junction V is a FORK
junction, and the three lines [, I, and /; join there. B;, B2, and B; denote the
three angles at the FORK junction. As shown in Fig. B.1(b), let a1, a», and a;
denote the directional angles which the three lines [, I, and /; make with the
positive x-axis, respectively, in the picture. Assume that Fig. B.1(a) depicts a
parallelepiped; that is, three surfaces S, S,, and S; (corresponding to R;, R,,
and R; respectively) form convex edges at [;, I, and [5. Suppose that G, =
(P1, q1), G2= (P2, q2), and Gs= (ps, q;) are the gradients of S;, S,, and S,
respectively.
Since S; and S, intersect along I,

P1COS a;+ g Sin @, = p, COS @, + g» Sin @y,

or, in brief,

Gira=6Ga; (B.1)
where a, = (cos a,, sin a-). Similarly, we have

G, a;:=G; a; (B.2)

o2

o)

X (a) (&)

F1G. B.1. (a) A line drawing of a parallelepiped. (b) The directional angles a), @», and a; of the
three lines joining at the FORK junction.
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G;-a,=G, ay, (B.3)

where a; = (cos a3, sin «;) and a; = (cos ay, sin a;). The region R, has a skewed
symmetry whose axes are in the directions «; and a,. Therefore, if we assume a
real symmetry for S,

(Gl e al)(G1 & az) + COS(CY] = az) =0

or, since cos(a; — a;) = cos B,

(G- a))(G,-a))+cosB,=0. (B.4)
Similarly, for R, and R;,

(G:: a)(G,- a3)+cos B,=0, (B.5)

(G- a3)(Gs - a))+cos B;=10. (B.6)

The equations (B.1) through (B.6) represent the constraints we have on G, G,
and G;, when trying to determine them by the method shown in Fig. 18.

First, let us see that none of B8;’s can be w/2. For example, suppose 8; = /2.
Then cos B; = 0. From (B.4), either G, - a; or G, - a; is zero. Suppose G; - a; =
0. Then from (B.3) and (B.6) we have cos 8;=0; i.e., B;= /2. Now B, = ;=
/2 is contradictory to the assumption that the junction V is a FORK junction.
In this way we know that 8;# m/2, or cos 8;# 0 for i = 1, 2, 3.

From (B.1) through (B.6) we can derive

(G - a;)’ = —cos B cos Bafcos B,>0 . (B.7)

Since w>p;>0 and B,+B,+B;=2mw, we see that w>B;>mn/2 (obtuse
angle) for i = 1, 2, 3 is necessary for the right side of (B.7) to be positive.
Now assume B;’s are all obtuse. Since cos 8; <0, let us put

cosBi=—¢, ;>0 fori=1,2 3.
Then (B.7) becomes

G- a,==(cics/c))'”. (B.8)
Substitution of (B.8) into (B.4) gives

G, - a;= —cos B1/(G; - a;) = =(cicafcs) . (B.9)
We can solve (B.8) and (B.9) for p; and q;.

= tmean L o e, @10

Similarly we obtain the following. (The multiple signs are to be read cor-
respondingly in (B.10), (B.11), and (B.12).)

(Pz) Gerd gt,‘z/C]Cs)m ( 1 sina;— c3 sina, ) : (B.11)
q> sin(as — ;) \—c; COS a3+ €3 COS a
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(ps)= +£M2_)£( czsin @y — ¢ $in e )- (B.12)
qs ~ sin(a; — a3) \—¢2C08 a1+ € COS 3

Thus there are two combinations of G;’s which satisfy (B.1) through (B.6).
Apparently they are symmetrical through the gradient-space origin, and cor-
respond to the two labelings of Fig. B.1(a): the convex-corner (three lines at
the FORK junction are all convex lines) and the concave-corner (they are all
concave). Therefore we have shown that for the convex-corner interpretation
we always obtain the unique assignment of G;’s which satisfies the skewed-
symmetry heuristic if and only if 8;’s are all obtuse. i

Next we will prove that the parallelepiped is right-angled in the above
assignment of gradients. Let us consider S, and S,, for instance. From (B.10)
and (B.11), we can compute

P12+ q1qz = [(cs sin a; — ¢; sin a;)(c; sin a3 — ¢; sin a;)
+ (—¢3 08 @y + ¢, cos a;)(—c €os a;+ €3 €08 as)]
X [¢3 sin(a, — ay) sin(azs — )]’
= [c1¢;3 cos(as — an) — ¢1¢2 cos(a; — az) — ¢
+ coc3 cos(az — ay))/[ca sin(e; — o) sin(as — as)]
= —(c3+ cica)/sin(as — a;) sin(as — a»)
= —[—cos(a;— a;) + cos(a; — a;) cos(as — as)]
X [sin(as — a;) sin{as — a2)]™!

=-1.

That is, p;p2+ qig2+ 1 = 0. Since (p;, g, 1) is the surface normal, we have proven
that S, and S, intersect perpendicularly. We can prove the same for the other
pairs of surfaces.

Appendix C. Pictures of a ‘negative’ chair

A wooden model of a ‘negative’ chair (only the main structure including the
seat, back and arms) was actually made. The picture (1) is taken from the angle
such that the object looks like a positive (real) chair. The sequence of pictures
above, below and right show how it appears as we move our eye position
upward, downward and to the right, correspondingly.

An interesting phenomenon happens when we hung the negative chair in the
air by string and swing it a little as our eye position is fixed where we see the
picture (1) first. Then what we perceive is that a real (positive) chair is flexing
its arms back and forth, rather than a rigid object of funny shape is swinging.
The moving parallax does not help much in perceiving the real shape. This is
probably because once we fix the shape description as a real chair, we try to
interpret the sequence of pictures consistently and one way for that is to regard
it flexing.
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FiG. C.1. Pictures of a ‘negative’ chair.
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