
    
Abstract— Autonomous control of small and micro air 
vehicles (SMAV) requires precise estimation of both vehicle 
state and its surrounding environment. Small cameras, which 
are available today at very low cost, are attractive sensors 
for SMAV. 3D vision by video and laser scanning has distinct 
advantages in that they provide positional information 
relative to objects and environments, in which the vehicle 
operates, that is critical to obstacle avoidance and mapping 
of the environment. This paper presents work on real-time 
3D vision algorithms for recovering motion and structure 
from a video sequence, 3D terrain mapping from a laser 
range finder onboard a small autonomous helicopter, and 
sensor fusion of visual and GPS/INS sensors. 

I.  INTRODUCTION 
One of the critical capabilities for making a small- and 

micro-air vehicle (SMAV) autonomous and useful is the 
precise estimation of the SMAV states (pose and position) 
and 3D mapping of its surrounding environment. Among 
many sensors for these purposes, 3D vision by video and 
laser scanning has distinct advantages.  Unlike navigational 
sensors (such as GPS and gyro) that provide information of 
only the vehicle’s own motion with respect to the inertial 
frame, vision can provide information relative to the 
environment – how close the vehicle is to an obstacle or 
whether there are moving objects in the environment. Unlike 
GPS, which does not work in the shadow of satellite 
visibility, vision works in a cluttered urban environment or 
even indoors.  At the same time, camera images are view 
dependent, tend to be noisy, and require a substantial amount 
of processing in order to extract useful information from 
them.    

This paper presents a set of robust real-time vision 
algorithms suitable for the purpose of structure from motion 
vision, with video from a small low-cost AUV on-board 
camera.  Also presented is the environmental mapping 
system that integrates a large number of 3D slice data 
obtained by a small helicopter which autonomously flies over 
and scans a terrain or an urban area with an on-board laser 
scanner. 

 

II. AUV VISION ARCHITECTURE 
On-board real-time active vision, when combined with the 

other inertial sensors and GPS, and glued by adaptive 
model-based robust control, makes the UAV self-sufficient 
and capable of agile maneuvering in a cluttered complex 3D 
environment. At the moment we work with two types of air 
vehicles: a micro fixed-wing University of Florida air 
vehicle, shown in Figure 1 (a), that has a single video camera, 
and a small Yamaha R50-based autonomous helicopter [8], 
shown in Figure 1(b), that has a camera, GPS, gyros, and a 
laser scanner.  

 

(a) (b)
Figure 1. (a) University of Florida fixed wing micro air vehicle,
(b) YamahaR50-based autonomous helicopter 

 
Figure 2 shows the overall architecture of a real-time 3D 

vision system that we have been developing for these 
vehicles.  
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Figure 2 : Overview of vision system. Vision-based motion estimation 
and navigation system provides the vehicle state (pose and position).  
Laser scanner collects the range data, which are integrated into a 
global 3D map using the precise estimate of vehicle state.  The laser 3D 
map is also fused with the image texture as well as the 3D estimation 
from vision based estimation. 

 

The sensory input to the system includes 1) video stream(s) 
captured from the on-board single or multiple cameras, 2) 
positional and inertial motion sensor data from GPS and 
gyros, and 3) three-dimensional slices of the environment 
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below, obtained by an on-board laser scanner.  
We design the real-time vision module to be capable to 

work for itself, if necessary, considering the cases where the 
vehicle is too small to carry other sensors (true for the 
moment with University of Florida vehicle), or in situations 
when other sensor is not available temporarily (such as GPS 
in a shadow).  

The real-time 3D vision module consists of three sub 
modules: feature selection, feature tracking, and structure 
from motion. With these, both 3D structure of the scene 
(position and shape of obstacles) and vehicle’s own motion 
(position and pose) are recovered from the input video. It 
must work robustly to cope with low-quality video, and in 
real time with minimum latency to be usable for control. The 
laser scanner’s output is used at this moment only for 
mapping purposes, not for navigation. As the vehicle flies, 
the sensor scans the terrain below, and obtains a sequence of 
three-dimensional slices or profiles.  The data are converted 
into a common coordinate frame to create a 3D map of the 
terrain.  

III. VISION-BASED 3D MOTION ESTIMATION FOR UAV  
 

Real-time 3D vision can estimate from the video of an 
on-board camera the vehicle state (position and pose), as well 
as 3D of surrounding environment. This task has been 
studied extensively in the field of computer vision as the 
structure from motion (SFM) problem. For its use for small 
and micro air vehicle control, however, there are two critical 
differences that make the SFM solution far more difficult 
than typical off-line SFM applications, such as scene 
modeling from video and motion recovery for image-based 
rendering. Firstly, the input videos are of lower quality. 
On-board cameras tend to have lower resolution and to be 
noisy. Secondly, unlike the computer graphics applications, 
videos are not taken by design, and therefore they include 
large motion or motion blur due to fast motion, or degenerate 
motions that may make some solution methods singular. 
Thirdly, the process must give the best solution using the 
images up to that point in time; unlike off-line applications, 
“future” images cannot be used. 

The key to successful use of SFM for small and micro air 
vehicle control is to make the SFM processes robust to these 
difficulties. The SFM process includes feature detection, 
feature tracking, and reconstruction. 

Feature Detection and Tracking  
Feature tracker finds where the features, defined in the 

previous frames, have moved to in the current frame. In order 
to define “good” features to track, a tracking method has to 
be defined first. Given a feature point (x,y) in the current 
image I, we want to estimate its position in the next image I'. 
According to [4], we use a small window centered at (x,y) in 
the first image I.  Assuming that the corresponding region 

has the same appearance, the tracking algorithm finds the 
displacement d = (dx, dy) by minimizing the following L2 
norm:  
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Assuming small displacement d, the linear closed-form 
solution [4] (so-called Lucas-Kanade feature tracking 
algorithm) is: 
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and Ix, Iy, and It are spatial-x, spatial-y and time derivatives of 
image. While simple, this technique is known to be efficient 
and works well in most situations.  
 

Feature Point Selection  
 

Equation 2, which needs to be solved for tracking the 
feature motion d, suggests the property that a “good” feature 
must possess. For equation 2 to be stable in the presence of 
noises, we must select a feature point (an image template W) 
whose corresponding 2x2 matrix H is stably invertible.  In 
other words, the two singular values 1λ  and 2λ of H should 
be large and sufficiently close to each other [5, 6].  So, we 
define the “goodness” of a window to be 

),( 21 λλλ min=                               (4) 
Our feature selection process is quite simple: for each 

pixel of a current frame, the Hessian matrix H is computed 
using the 7x7 window. Features are selected at the local 
maximums of λ , such that they are separated by at least 7 
pixels from each other. 

 
Dealing with illumination change 
 

The L2 norm that Lucas-Kanade tracker uses assumes that 
corresponding pixels in different images have the same 
appearance.  In real life, such an assumption may not hold 
due to imaging noises, lighting change and view change. 

In our implementation, we first smooth the images with 
Gaussian filtering to reduce noise level. We also model 
lighting change using a scale-and-offset model for each 
corresponding point: 

btaI +),,( ζξ                                   (5)  



 
 

 

The cost function thus becomes: 
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Here a and b are assumed constant inside each window, but is 
different for different feature points. We can still 
simultaneously solve the four unknowns (dx, dy, a, b) using 
least squared estimation similar to equation 2.   We notice 
that the introduction of a and b makes the linear system in 
Eq.(2) more unreliable.  For such reason we scale the affine 
motion parameters m and lighting-related parameters a and b 
respectively to make the system in Eq.(2) reliable. 

 

Dealing with Large Motion 
 

In equation 2, it is assumed that the pixel movement d is 
small. We use the following techniques to deal with large 
motion in real life: 
• Image pyramid. We construct a three-level Gaussian image 
pyramid.  Each level of the pyramid effectively doubles the 
range of pixel movement that our system can handle. 
• 2D affine motion model.  When the motion is large, the 
translational model (dx,dy) may not be sufficient to model  the 
pixel movements inside the small window.  We use 2D affine 
motion model where the 2D motion is described by six 
parameters to account for rotation, scaling, shearing, and 
translation. 
• Progressive model refinement.  We use a simple 
translational  motion model at the highest (coarsest) level, 
and affine motion model at the lowest (finest) level. This 
helps stabilize the estimate. 
• Motion prediction. We use simple Kalman filtering to 
predict the position of each feature point at current image. 
 
 

 
           (a) 
 

       
                  (c)                  (d) 
 
Figure 3.1: Combined tracker.  (a): The green points are reliable trackers by 
template registration, and are used as landmarks.  The pink square is tracked by 
establishing the graph relationship with the landmarks. (c) and(d): two snapshots 
of the tracking using combined tracker. The red points are lost trackers in LK 
algorithm, but salvaged by the combined tracker. 
 
 

 
Combined Tracker 
 

The Lucas-Kanade tracker uses template registration.  
Another type of tracker uses point matching.  In point 
matching, feature points are detected in both images.  For 
each point in the first image, its best corresponding point in 
second image is found by exhausted search within some 
predefined search window.  The point matching method is 
more robust to noise but it often gives ambiguous 
correspondences (one-to-many correspondences).  We use a 
new scheme that combines template registration and point 
matching.   In our scheme, feature points that are reliably 
tracked by Lucas-Kanade algorithm are marked as 
landmarks.  Other feather points that can not be reliably 
tracked by Lucas-Kanade are referenced by the landmarks in 
its neighborhood.  Their correspondences in the second 
image are searched by simple graph matching approach.  See 
Figure 3.1 for an illustration of the combined tracker. 
        
 

(a) 

(b) 

Feature 3: Tracking results (input image size 360x240). The green 
dots are selected feature points. (a): Tracking using the original 
Lucas-Kanade algorithm; (b): Tracking using our extension to 
Lucas-Kanade.  The red circle shows some example feature points 
that are tracked well in our system, but are not handled well using 
the original Lucas-Kanade tracker. 

 
 

  

   
(a) (b) 

Feature 3.3: Tracking results after five frames (input image 
size 360x240): (a) selected feature points in first frame; (b): 
tracked points in the 5th frame using the original Lucas-kanade 
algorithm; (c): tracked points in the 5th frame using our 
extension to Lucas-Kanade.  Our extension tracks much more 
feature points successfully.

(c) 
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Tracking results 
 

The feature tracker that has implemented all of the previous 
extension was test applied to a video sequence taken from a 
real flying micro-AUV and from the same camera attached to 
a car navigating on the ground. It performs well despite the 
large image distortion, frequent lighting change, and large 
image motion.  

Figure 3.2 shows two snapshots of tracking results, 
comparing classical Lucas-Kanade tracker with the extended 
one; the latter has eliminated most of erroneous tracking.  
Figure 3.3 shows tracked points across five frames.  As can 
be seen our extension to the original Lucas-Kanade 
algorithm tracks more features successfully. 

The feature tracker monitors the quality of tracking results 
of each feature by means of the value of J and the property of 
H. It discards a feature once it is found to be no longer easy to 
track well.  New feature points are generated from the current 
frame to keep the total number of active features above a 
certain number.   
 
Two-Frame Motion Estimation 
 
From the 2D correspondences of the tracked features, the 
SFM algorithm estimates the relative motion of the vehicle. 
For UAV real-time control application, the SFM solution 
must provide the camera (i.e., vehicle) motion from the most 
recent image frames. 
  Let us denote a 3D point in the scene corresponding to the 
i-th feature as Mi = (Xi, Yi, Zi)T.  Here we use the first 
camera's coordinate frame as the world coordinate frame. 
The point Mi is projected to the first image as an image point 
mi = (xi, yi, 1)T. Also, let us assume that the camera moves by 
rotation R and translation r. In the second camera’s 
coordinates, the same point appears as Mi'= (Xi', Yi', Zi')T and 
it is projected to the second image as m'i = (x'i, y'i, 1)T. 

For simplicity, let us assume that the camera is calibrated, 
(i.e., the camera intrinsic parameters are known). Then these 
entities are related to each other by  
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The two-frame SFM estimates the relative camera pose (R,t) 
between two camera positions, and the 3D point positions in 
the coordinate frame of the first camera. 
 
The basic solution of the problem is as follows. From 
equation 7 we have: 

( 0i i′ × =m r R)m                                (8) 
where × is the 3-vector cross product.  The 3×3 matrix E = r 
× R is the so-called Essential matrix in computer vision. 

Given 8 or more pairs of feature point correspondences, we 
can compute f (i.e., E) using the linear Eight Points algorithm 
[3].  Equation 8 can be rewritten as: 
 

8 9 0       || 1s.t.× = =A f f ||                        (9) 
Here f contains the 9 parameters of matrix E. The solution  f  
is the null space of A, i.e., the eigenvector of ATA 
corresponding to its smallest eigenvalue. In principle, if more 
than 8 correspondences are available, then we have a 
least-squared solution, and once we have E, we can factorize 
it into rotation R and translation r . 
 
Detecting Unreliable Estimation 

 

The basic algorithm presented above works well as long as 
feature tracking results are good and the camera motion 
contains a large translational component |r|. 

Outliers in feature tracking come both from gross errors 
and from feature points on moving objects. Since 
least-squared technique is sensitive to outliers, we use the 
RANSAC algorithm to detect the outliers and estimate the 
Essential matrix.  

Dealing with a case where the camera translation is too 
small is far more difficult. In the extreme case, when the 
camera undergoes only rotation, the eight-point algorithm 
outputs a random translational vector r.  Using the amount of 
2D motion is not enough to detect such degeneracy, since 
there are indeed large 2D motions when the camera 
undergoes even only rotation.   

For the no-translation case, the 8-point algorithm outputs 
random estimation to r, but still outputs correct rotation 
estimation (see appendix for a simple proof).  Therefore the 
degeneracy can be handled by the following method: 

1) Estimate the camera rotation using 8-point algorithm. 
2) Transfer the feature points M in the first camera to the 

second camera by Mt = R M. 
3) Compute ∆r = M'- Mt , where M' in the second frame 

is the correspondence of M in the first frame.  The 
displacement ∆r characterizes the amount of parallax 
about the point M.  If the camera translation is zero, 
then ∆r will be zero, too. 

4) If all of the points have small |∆r|, then we declare 
degenerate camera motion.  In such a case, we only 
update the camera orientation, and wait until there are 
enough points with large |∆r| for the estimation of 
camera translation.   

The second degenerate case is when the rank of ATA (a 9x9 
matrix) is less than 8.  We can prove that if camera translation 
is zero, then the rank of ATA is no more than 7.   Since the 
essential matrix is the one-dimensional null space of ATA, it 
requires the rank of ATA be 8 for a reliable estimation of f, 
i.e., the essential matrix.  Therefore, if the last two smallest 
eigen values of ATA are similar, that signals unreliable 
estimation of translation, but still outputs the camera rotation. 
 



 
 

 

                                                    
 
 

                      

Figure 4.1: A snapshot of our system. (a): image source view; (b) 
tracker view shows 2D image motion trajectory; (c) detected 
outliers, larger pink squares are moving objects, and small red 
dots are missing tracks; (d) the final vehicle trajectory and 3D of 
feature points recovered. This video is a real video taken from an 
actual micro air vhecle. 

(a) (b) 

(c) (d) 

 
 

Long Sequence SFM by Merging Multiple Two-Frame SFM 
 

The above two-frame SFM is applied whenever the 2D 
features have sufficient motion in the image sequence.  Since 
we can only recover the translational direction, the depth of 
the 3D point is defined up to an unknown scale.  To unify the 
3D scales from multiple two-frame reconstructions, we need 
to merge the 3D structures multiple SFM reconstructions by 
finding the scale among them.  Such scale estimation is 
critical in a long-sequence SFM. For this purpose, previous 
work relies on either initial two-frame SFM reconstruction 
[1] or “reliable” feature track [2]. It is desirable to avoid such 
critical dependence on particular information that may or 
may not correct. 

Suppose that we have N points in the scene whose current 
3D positions are Mi, i=1, 2, ..., N in the reference world 
coordinate frame, and that we denote their corresponding 
positions in the coordinate frame of the current image 
(obtained from two-frame SFM estimation) by M'i. For each 
point Mi we can estimate the scale according to 

 
 

           
 

Then the scale s between the two reconstructions is: 
 
 

                                         
 
 

Here wi is the weight for point Mi based on reconstruction 
reliability, which depends on camera configuration and depth 
of Mi: 
                
 
 

Here ρ is a robust function, is the angle between the two rays 
cast from the camera centers to the 3D point in the scene, and 
ri is the intensity residual from 2D tracking.  In such a 
weighting scheme, a reliably tracked point closer with more 
parallax in image plane will receive larger weight.  Due to 
noise and/or outliers in the 3D estimation, the above 
estimation could be un-reliable, too, if done naively.  We use 
LMedS [10] to initialize the estimation, and then use a 
weighting algorithm to derive the final maximum likelihood 
estimation; points with large reconstruction variance or near 
the direction of the camera translation receive less weight. 

Results of Vision based 3D motion estimation 
Figure 4.1 shows an example output of our system 

consisting of feature detector, tracker and SFM.  The system 
runs in real-time with a standard 2-GHz single-CPU PC.  
Images from the camera are fed to the system and are 
displayed in view (a).  The tracking results are displayed in 
(b), where yellow dots are newly generated feature points in 
the current frame. View (c) shows the outliers as well: pink 
squares indicate moving objects (the car and the moving 
light), and red points that are considered missed 
(disappeared) during the tracking. The recovered camera 
motion is displayed in (d). 

 

      
 
 

                            

Figure 4.2: Verification by ground truth from motion capture 
system: (a) the scene model; (b) one view of the motion capture 
system; (c) camera trajectory from motion capture system; (d) 
camera trajectory from our vision system. 

(a) (b) 

(c) (d) 

 
 
 
To verify our system, we use a motion capture system to 
capture the motion of the camera. The motions output from 
the motion capture system are very accurate and can be used 
as ground truth to verify the camera motions recovered by 



 
 

 

our system.  Figure 4.2 shows the verification result. Figure 
4.2(a) shows the scene model.  We use the same camera as 
the one  used in MAV vision system.  The camera is attached 
to a stick and moved by hand to simulate the MAV motion.  
Figure 4.2(b) shows a snapshot of the captured motion and 
3D recovered by motion captured system.  Figure 4.2(c) 
shows the motion trajectory output by motion capture system.  
Figure 4.2(d) shows the camera trajectory recovered by our 
3D vision system.  It can be seen from (c) and (d) that our 
vision system recovers good camera motion trajectory.    
 
 

IV. SCENE MAPPING BY LASER SCANNER FROM A SMALL 
UAV PLATFORM 

 

A laser ranger finder is an effective sensor to map the 
three-dimensional environment from a small UAV platform, 
when combined with precise estimates of vehicle’s position 
and pose. The map information is in turn used for three 
purposes: automatic target recognition to extract the location 
of potential targets; feature recognition algorithms to classify 
the scene and identify features such as buildings, roads, and 
bridges; visual odometry to maintain high quality 
navigational updates in the event of GPS disruption.  
 

Autonomous Helicopters 
 

We have been developing vision-based autonomous 
helicopters [8]. The current fleet consists of three mid-sized 
(~3m long) unmanned helicopters. On-Board systems 
include: a state estimator (integrating GPS/IMU/vision), 
flight controller (capable of accurate (~0.2m) hovering and 
tested for autonomous forward flight (up to 40 Knots and~30 
degree bank angle), laser scanner (900 nm, 120 m range, 12 
KHz frequency) with optics for calibrated color sensing, 
actuated pan-tilt camera system (Sony DXC-9000), and 
multi-CPU computing for general purpose vision algorithms. 

The demonstrated capabilities so far include: 1) unmanned 
take off and landing, 2) 3D terrain mapping that was 
deployed in NASA’s Haughton-Mars expedition (1998) [7], 
surveying the US Airways flight crash site (Sept, 2001), and 
mapping the MOUT site at Fort Polk for the DARPA 
Perceptor Program, 3) vision-based locating of a 10-cm 
diameter pack on the ground and retrieving it from the air by 
visually servoing a magnet at the end of strings to reach it 
(winner of 1997 Unmanned Aerial Robotics Competition by 
perfectly completing the task), 4) forward scouting the 
obstacles and holes by 3D laser vision for autonomous 
ground vehicles, and 5) pointing a laser to a target at 100m 
away at precision <50cm.  
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On-board Scanner 

 

A helicopter with an onboard scanner flies over and scans the 
terrain. The range finder on board is a pulse-based (1ns) 
time-of-flight sensor (LADAR) with one-axis scanning 
mirror, collecting up to 6000 range data per second with raw 
range precision of 2cm.  

In addition to the range measurement, our sensor can also 
measure the color of the surface [10]. As shown in Figure 5, a 
high-sensitivity color sensor is optically aligned with the 
laser path so that the color information (the sun light 
reflected by the surface) is measured simultaneously. 
  

Figure 6 State estimation by GPS/INS integration. The blue line is the 
GPS position measurement. The red curve is the integrated state estimate
while the green curve is the ground truth. 

 

 
Helicopter State Estimation 

 

Robust and precise state estimation is among the most 
important capabilities for UAV’s. “Robust” refers to the high 
level of dependability that is required for successful 
low-altitude flying. The state estimator must be tolerant of 
sensor failures and be intelligent in managing available 



 
 

 

resources to maintain relative state at all times. 
Our existing complete state estimation capability uses an 

on-board inertial measurement unit (Litton LN-200) and 
GPS receiver (NovAtel RT2 dual-band carrier-phase), 
magnetic compass (KVH), and laser altimeter (Yamaha). The 
on-board computing runs our custom-built inertial 
navigation system software. The system implements a 
latitude-longitude mechanization and fuses inertial and GPS 
data using a 13th order Kalman Filter. The filter updates 
position, velocity, pose, and sensor parameters such as 
accelerometer biases modeled as stochastic processes.  
The performance of the system is evaluated by ground truth 
sensors and has been verified when used with a GPS receiver 
as a direct position input (not satellite raw pseudo-range). 
Figure 6 shows an example. The blue (jagged) graph is GPS 
data, the green is ground-truth position measured by strapped 
down transducers and the red is the resolved position 
estimate of the helicopter. Note the high accuracy of the 
predicted position after each GPS sample. 
 

Figure 7: (a) Terrain mapping result by an autonomous helicopter displayed as 
a 3D elevation map; (b) comparing this with USGS orthophoto of the same site 
demonstrate the precision achived. 

(a) (b) 

 
 
Map Generation 
 
The raw LADAR sensor, combined with the forward motion 
of the helicopter, collects a set of terrain profiles, each of 
which is sensed along the flight path. A swath of terrain up to 
200 m wide (and any length) is covered in a single pass.  
Larger areas are scanned by systematic flying patterns that 
completely cover the area. The collected data are transformed 
into a single rectified coordinate system (geodesic or certain 
task-oriented coordinates), using the precise knowledge of 
pose and position estimate – the output of the state estimator.  
Figure 7 shows one such result of mapping [9]. A test site is 
approximately 300m x 300m, and contains an asphalt road 
surrounding an open field with two large buildings and trees 
surrounding the area.  The flight at this site was 
approximately 5 minutes in duration, and produced over 2.5 
million 3D data points. A digital elevation map (figure 7(a)) 
with a 0.5m-square grid spacing was generated from the scan 
data. The intensity of each pixel indicates the average 
elevation measured for that location. Figure 7(b) shows a 
side-by-side comparison of this image with the USGS 
orthophoto. Ground truth measurements have verified the 
spatial accuracy of < 10 cm in all three axes.  

Figure 8 shows another more recent example: (a) color 
image captured by the range sensor’s color sensor, (b) range 
map (color coded – red to blue for high to low), and (c) 
perspective view. 

 
 

   

     
 
 

 

(a) (b) 

(c) 

Figure 8: Another example of terrain mapping 

 

V. SENSOR FUSION FOR STATE ESTIMATION 
 
The real-time motion (and scene) recovery method in 

section III was purely vision-based to be used for 
micro-UAV, and the state estimator of the small autonomous 
helicopter in section IV was mainly GPS/INS-based.  

The two sources of information, vision and GPS/INS, for 
air vehicle state estimation are complementary. For example, 
we can intuitively see the following. Distinguishing between 
small rotation and small translation is extremely difficult 
from images alone, because with a limited field of view a 
yaw rotational motion can appear virtually the same as a 
lateral translation. This ambiguity can be resolved by fusing 
gyro sensors to counteract image ambiguity. We can see this 
in the equations of the two-frame SFM. If the rotation is 
available from other sensors, we can use it to transfer the 
feature points in the first image to the second image, and then 
compute the 2D parallax ∆m=Projection-of(∆M).  The 
camera translational direction can be estimated as the focus 
of expansion (FOE) via the intersection of all parallax vector 
∆m. Such intersection can be estimated reliably in a 
maximum likelihood framework because of a large amount 
of redundancy (estimating two parameters with many 
parallax vectors). Likewise, certain knowledge of translation 
will help stabilize the computation of rotation. 



 
 

 

 

 

 
 
 
 

Figure 9: Comparison and integration of multi-sensor fusion for 
state estimation 

(a) Comparison of vision-based state estimation and GPS/INS based 
state estimation: Red dashed – vision, Blue-solid –GPS/INS 

(b) Fusion of vision and inertial sensor: red dashed – inertial sensor 
integration only, green – inertial plus vision 

 
 
On the other hand, estimating a large motion by integrating 
inertial sensor output over a period is prone to drift 
(especially at slow speed), but vision can provide a good 
estimate as it ensures a long baseline. Further, while GPS 
provides stable geodesic position information, it can suffer 
from intermittent loss of measurement due to a shadow or 
jamming problem. The vision-based position estimation can 
sustain the state estimation.  

We have performed preliminary experiments on 
comparing and fusing the GPS/INS-based state estimator and 
the vision-based estimator (visual odometer) in an 
autonomous helicopter – the particular program for visual 

odometer in this experiment is an older program than the one 
presented above.  

Figure 9 (a) shows comparison of the output of the visual 
odometer’s position (solid) with GPS-based position 
(dashed) while flying diagonally forward and backward. 
Figure 9 (b) shows the comparison of velocity estimation 
between simple integration of inertial sensor (dashed) and 
fusion of gyro and vision (green) while it is hovering. The 
results shown demonstrate promise for sensor fusion 
approach. 
 

VI. CONCLUSION 
 

Small and micro autonomous UAV’s (SMUAV’s) have 
great potential for various applications. Real-time 3D vision 
is a critical and integral part of such SMUAV’s.   
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