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Stereo Matching between Three Images by Iterative

Reﬁnement in PVS
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SUMMARY In the field of computer vision and computer
graphics, Image-Based-Rendering {IBR) methods are often used
to synthesize images from 1eal scene The image synthesis by
IBR requires dense correct matching points in the images How-
ever, IBR does not require 3D geometry reconstruction or camera
calibzation in Fuclidean geometry On the other hand, 3D recon-
structed model can easily point out the occlusion in images. In
this paper, we propose an approach to reconstruct 3D shape in a
voxel space, which is named Projective Voxsl Space (FVS). Since
PVS is defined by projective geometry, it requires only weak cali-
bration PVS is determined by rectifications of the epipolar lines
in three images Three rectified images are orthogonal projected
images of a scene in PV5, so processing about image projection is
easy in PVS In both PV and Euclidean geometry, a point in an
image is on a projection from a point on a surface of the object
in the scene. Then the othe:r image might have a correct match-
ing point without occlusion, or no matching point because of
occlusion. This is a kind of restriction about searching matching
points or surface of the object Taking advantage of simplicity of
projection in PVS, the correlation values of points in images are
computed, and the values are iteratively refined using the restric-
tion described above Finally, the shapes of the objects in the
scene are scquired in PVS3 The reconstructed shape in PVS does
not have similarity to 3D shape in Buciidean geometry How-
ever, it denotes consistent matching points in thiee images, and
also indicates the existence of occluded points Therefore, the
reconstiucted shape in PVS is sufficient for image synthesis by
IBR.

key words: image processing, 3D models, computer vision, robot
vigion

1. Introduction

For synthesizing images of the 1ea! scene fiorn atbitrary
viewpoint, one appioach is to reconstiuct 3D shape of
the objects using multiple images, so that images can
be generated from the 3D shapes and the texture data
3D geometry reconstruction is a common subject in the
field of computer vision, and it requires camera calibra-
tion that has difficulty and complexity of acquisition.
One of the common problems in 3D geometry recon-
struction is occlusion in the images. 3D geometry can
be reconstructed by camera calibration and matching
points in the images, while no matching points can be

Manuscript received July 18, 2001,
Manuscript revised February 26, 2002
"The authors are with the Department of Informa-
tion and Computer Science, Keio University, Yokohama-shi,
223-8522 Japan
" The author is with the Robotics Institute, Carnegie
Mellon University, USA.

‘?ular Member,
and Takeo KANADE'!, Nonmember

detected for occluded regions. Even excepting the prob-
ler of occlusion, the detection of matching points is still
difficult Especially when the baseline of the cameras
being wide, it is moze difficult to obtain the correct
matching points in each image [6]; [7]

There are researches for 3D geometiy reconstruc-
tion using more than two cameras to solve this prob-
lem [8}, [10}, [11] With ptocessing the 3D geometry in
world coordinate, which is generally deseribed as Eu-
clidean geometry, all data can be handled in a common
coordinate systemn  Thus, using many cameras make
it possible to 1econstiuct accurate 3D geometry, as the
oceluded region in an image might be seen fiom another
camera. This method has been applied in Virtualized
Reality [5], [11], which requires ealibzation of about 50
cameras. This calibration for each camera is performed
by checking the correspondence hetween 3D geometry
in world coordinates and 2D geometry in image coor-
dinates

Considering the purpose of image synthesis, Image-
Basad-Rendering methods can generate the same kind
of images  For example, morphing method [1], [9
doesn’t 1equite 3D shape, and it requites only dense
matching points in each image.

Recently, projective geometry is often used in the
field of computer vision [1], {6],[7], [9], because projec-
tive geometry can be determined easier than Euclidean
geometry  While defermination of Fuclidean geom-
etry requires a map of correspondences between the
points in the image and FEuclidean geometry of those
points, determination of projective geometry requires
only matching points in each image[12]. Then, we call
the traditional camera calibration “strong calibration”
and calibration for projective geometry “weak calibra-
tion” Piojective geometry makes it possible to deter-
mire the epipolar line for any point in the image, how-
ever it has no notion of a world coordinate {12] Thus,
projective geometty is easy to calibrate, and denotes
the projective relation between the cameras, but it
doesn’t determine common cocrdinates like Euclidean
geometry.

In this paper, we propose an approach to recon-
struct a projective 3D voxel space from three images
In this method, a 3D voxel space and three orthograph-
ically projected images are generated from three input
images and weak calibration for the cameras. This 3D
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voxel space is not based on Euclidean 3D geometry,
however we can handle this voxel space just like Eu-
clidean voxel space In this 3D voxel space, consistent
matching points in all thiee images can be solved, be-
cause matching points in a pair of immages can automat-
ically point out a projected point in the other image

2. Epipolar Geometry
Epipolar geometry is one form of projective geometry.

Figure 1(a) shows the general camera model with two
cameras A point in a scene, which is visible in an

image, must. exist on a back-projection line from the

camera. Therefore, a point in a scene must be equal
to the intersection of back-projection lines from each
matching point in the images. Epipolar plane is a plane

going through the line, which connects focus points of

the cameras. Epipolar line is a line on an image plane
obtained by projecting the back-projection line of the
other camera. As shown in Fig 1{b), all epipolar lines
go through a peint called epipole Epipole is the pro-
jected point from the focus point of the other camera.

Fundamental matrix is one form of desciiption
about epipolar geometry between two images [3],112]
Actually, fundamental matiix is a 3x3 matiix, with
gseven degrees of freedom Therefore, fundamental ma-
t1ix can be solved with only seven matching points in
the images with non-livear method[2] More match-
ing points make this solution more accurate. Once
the fundamental matix is solved, weak calibration for
the camera palir is established. The weak calibration
is different from traditional calibration, which we call
“strong colibration” While the stiong calibration is
identification of all camera parameters, weak calibra-
tion identifies only epipolar geometry of a camera palr

The obtained fundamental matrix transfers a point
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Fig.1 Epipolar geometry: {a) Epipolar lines exist on the im-
age planes in the camera model; (b} Epipole is the projected
position of fucus point of the other camera
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in an image to an epipolar line in another imsage A
point on the epipolar line is also txansferred $o an epipo-
lar line in the original image. Thus, arbitrary corre-
sponding epipolar lines in fmages can be acquired by
fundamental matrix With the consideration of the de-
scription in Sect 2, matching points must exist in the
corresponding epipolar lines Therefore, fundamental
matzix can limit the searching area of matching points.

Theie are many methods to estimate fundamen-
tal matiix from matching points in the images In
any method, the accuracy of the estimated fundamen-
tal matiix depends on the number and the accuracy of
matching points

3 Definition of Projective Voxel Space (PVS)

In this section, a 3D voxel space based on projective
geometry is determined.

3.1 Rectification of Thiee Images

In this paper, we suppose to use three cameras The
fundamental matrices between all pairs of three cam-
eras are required at fivgt. With the fundamental ma-
trices, it is possible to get an epipolar line from an ar-
bitiary point in the other image Then, corresponding
epipolar lines can be obtained in arbitrary density.

In two cameras, epipolar lines are distributed as
shown in Fig.2. As mentioned in Sect 2, searching
area of matching points can thecretically be restricted
on the corresponding epipolar lines Then the 1ectifica-
tion of those epipolar lines is reasonable for processing
of searching matching points As described below, we
apply the same kind of rectification in thiee cameras

Theoretically, position of the epipole can be ac-
quired by an eigenvalue problem of fundamental ma-
trix. We utilize the direction of epipole in the im-
ages in the following process, however accurate position
of epipole is not required. To simplify the processes,
we acquire the position of epipole by several practi-
cal epipolar lines. As shown in Fig 3, the points for
acquisition of epipolar lines for the rectification are ai-

e
\

(a)

(o)
Fig 2 Rectification between two images: (a) An example of
distribution of epipolar lines between two images; (b) Rectified
epipolar lines
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bitrary set in the vertical direction of epipole Thus,
we can have epipolar lines in arbitrary density in the
image plane, so that we can set arbitrary resampling
rate in the rectification process Since our final pur-
pose is to find correct matching points in images, the
density of epipolar lines affects the accuracy of outputs
It is difficult to find the suitable density automatically,
because it strongly depends on the target scene and
the settings of cameras Therefore, we set the density
manually based on our experience.

Applying this process in all pairs of thiee images,
each image has two kinds of epipolar lines. Figure 4(a)
shows the distribution of epipolar lines between each
pair of thiee cameras Considering the intersections of
these two kinds of epipolar lines as 1esampled points of
the images, thiee rectified images are generated Fig-
ure 4(b}) shows the rectified images fiom Fig 4(a) If A
and B in Fig 4(b) are detected as the correct matching
points by somehow, we can say a point ' is the cor-
1ect matching point for A and B This is because we
have epipolar line from A and B, and € is the inter-

Points for Acquisition
of Epipolar Lines

— ] Epipole t-
] s
— 3
i
(a) (b)

Fig 3 Acquisition of epipolar lines: {a) Direction of epipole
can be acquired by several epipolar lines; (b) Epipolar lines are
set based on the location of epipole

(b)

Fig.4 Rectification between three images: {2) An example of
distribution of epipolar lines between three images; (b) Rectified

epipolat lines (A, B, C: an example of matching points)

g1

section of two epipolar lines Actually, this rule is not
always acceptable becase of occlusion, and this subject
is discussed in the following sections

3.2 Definition of Projective Voxel Space (PVS) by
Rectified Images

In the previous section, three rectified images are gen-
crated By setting the three 1ectifled images like Fig 5,
a 3D voxel space can be determined We call this voxel
space Projective Voxel Space (PVS). The directions of
spatial axes correspond to epipolar lines in each pair of
images In other words, the direction of each axis in
PVS corresponds to the projection of each camera. As
shown in Ilig 3, the relation between reciified images
and PVS is complete orthographic projection Such
relation simplifies the geometrical transformation be-
tween PVS and the images. The detection of the ex-
istence of a voxel in PVS is equal to the detection of
matching points in three rectified images.

PVS is a distorted space of Euclidean: one. The
concept of distortion between PVS and Euclidean space
is shown in Fig 6. The distortion between PVS and Eu-
clidean space is unknown from weak calibration. There-
fare, 3 shape in the real world, which is desciibed
in Buclidean geometiy, can not be recovered from 3D
shape in PVS When the 3D shape of object is 1equired
(ie 3D measurement system), you have to reconstruct

Rectified Image

Reciified Image

Fig 5  The connection of the generated images and projective
3D voxel

Camera

Shape in the Real Scene Shape in PVS

Fig 6 The relation between real world and constructed PVS8
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3D shape in BEuclidean geomet1y, not in PVS Howevet,
PVS is enough for synthesis of the images from new
viewpoints Image synthesis doesn’t require 3D shape
itself, because images can be synthesized fiom consis-
tent and correct matching points in all images [1], [9]
Because PVS provides the way to handle three images
at one time, PVS is effective to detect consistent match-
ing points in three images

4. Iterative Refinement in PVS for Stereo
Matching

In this section, a sterec matching method between three
images is described Fiist, Zitnick’s method [13], which
reduces the ambiguity of matching between two images,
is mentioned. After that, it describes how we extend
the method to PVS Since the existence of matching
points in images is equal o the existence of a voxel
in PVS, all voxels are initially evaluated by correlation
between the images Then, all voxels ate refined by an
iterative method with checking the sround voxels

41 Iterative Refinement of Two Cameras Stereo
Matching

Zitnick et al. proposed an iterative method [13] to 1e-
duce the ambiguity of matching points between two
images Their method is based on two general assump-
tions of stereo matching [4] The first assumption is
that a single unique match exists for each pixel in im-
ages 'The second assumption is that disparity values
are generally continuous. They called their method
“cooperative stereo algorithm,” which uses disparity
space to utilize those two assumptions Figuie 7 shows
the concept of Zitnick’s cooperative stereo algorithm.
First of all, they define lattice points in a 2D plane,
which is so called disparity space, so that a matching
point in images can be equal to the existence of lattice
point in this plane Then, they defined a parameter,
which stands for certainty of the matching We call
this parameter “likelihood” in this paper. Likelihoods
for all combinations of matching points are initialized
by correlation values Then, they took into account two
above-mentioned assumptions

Using the first assumption about uniqueness, an
area called “inhibition area” in the disparity space is
defined for each combination of matching points In
Fig 7(a), the inhibition area for the black point is
shown as the light gray area The inkibition area is
equal to the projection lines from the black point to
the cameras Tf a point in disparity space denotes cot-
1ect matching points, there should be no more matching
points in its inhibition area

When a checking point in the disparity space has
singular high likelihood in its inhibition area, it ieli-
ably denote correct matching points As long as the
variance of likelihoods in the inhibition area is small,
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Fig. 7  Concept of Zitnick’s cooperative stereo algorithum: (a)
The black point is checking point, the light gray area is inhibi-
tion area for the black point, and the dark gray area is smocthing
area for the black point ; (b) When many points in the disparity
space, that are drawn as black points in this figure, have high
correlations drawn as black points, it is difficult to detect cor-
rect matching points; (¢) Zitnick’s cooperative algorithm will
decrease the value in the non-unigue or non-continuous point,
because thers are two other high values in its inhibition area and
there are no other high values in its smoothing area However,
the unique and continuous matching points will remain relative
high values

it is difficult to discern whether that point denotes cor-
rect matching points or not. Then, they proposed an
iterative calculation o enlarge the variance in the inhi-
bition area for any point in the whole disparity space.
In short, their approach is realized with division of the
likelihood value by the sum of the squared likelihcods
in its inhibition area

Using the second assumption about continuity,
they applied smoothing to the likelihood values with
reference of the neighborhoods in dispatity space, which
is shown as a dark gray area in Tig 7(a).

In practice, the division and smoothing are ap-
plied at one time With applying these processes it-
eratively, the values in whole disparity space will co-
operatively changes into satisfying the both of the two
above-mentioned assumptions In Fig 7(b), the mis-
matching point has many high values in its inhibition
area, and also has no high values in its smoothing area.
On the other hand, the correct matching points have
only a little high values in its inhibition ares, and also
have many high values in its smoothing azea Then, the
mismatching point glows relatively lower, and the cor-
rect matching points glow relatively higher. Therefore,
only cotrect magching points will remain high values
after the iteration of enough times.
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42 Initialization of Voxel Values

As desciibed in Sect. 3, PVS is a voxel space determined
by the projective geometry between three images. Con-
versely, the relation between three images and voxel
space can be described as follows: there is a scene in
this 3D voxe! space, and the three rectified images are
orthographic projected images of this scene In this

way, the detection of matching points in each peir of

the images is equal to the detection of the surface of
the objects in PVS.

Like most of the stereo matching methods, our
method for searching matching points is based on cor-
relation We calculate normalized correlation values
for each voxel Normalized corvelation can be calcu-
lated as ' in equation (1) Ix{k = 1,2} is the inten-
sity of the image, and I, is the average of intensities
of pixels in the window for correlation, which is sized
(2m + 1) x (2m + 1) I} is the subtraction between [y
and T, in the window o(Iy) is the standard deviation
of the intensities in the window

i i D1 (un,01) X Tg{un, v
CZ Zz_—m Zj_ 1( 1 1) 2( 2 2) (1)

(2m +1)24/02(1) x o2(I2)
- 5§ M

i=—m j=—m

Lfug, vp) = N{ug + 4,00 + ) — In(ug, vz) (3)

Since a voxel corresponds to the maiching points,
it seemns to be reasonable to adopt the average of all
cotrelation values between three pairs of the images
However, we have to be careful about occlusion. When
a voxel is in occlusion, the occluded voxel corresponds
to matching points in only two images Ir such case,
the other voxel must exist between that voxel and one
of the cameras This subject is shown in Fig 8 Thus,

Image3.~~ Projectad Point

Occluded Paint
Projected Point

-
Image2

Fig.8 Three correlations between three images. V is the
checking voxel, and Cj; is the correlation between image i and
image 7. In this figure, C12 and Cp are invalid because of oc-
clusion, and Caz is valid for evaluating the checking voxel ¥V
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the occluded voxel should not be evaluated with the
average of three correlation values It should be eval-
uated with the correlation value between the correct
matching points. Generally, we can expect the corre-
lation value between correct matching points is higher
than the correlation value between mismatching points
Then, we adopt the maximum of thiee correlation val-
ues as a voxel value Because we don’t know a voxel
is in occlusion or not in practice, this adoption 1ule is
used for all voxels Applying this operation to all vox-
¢ls, each voxel has some value.

V = Maz of{Cy2,C23,Can1 } (4)

43 Iterative Refinement of Voxel Values

In this paper, we extend the Zitnick’s algorithm to be
suitable for thiee input images. It is a kind of extension
fiom 2D to 3D PVS

In the same way of Zitnick’s method, we can set
inhibition areas in PVS as shown in Fig 9. Here, oc-
clusion must be considered again DBecause we assume
three input images, even occluded point in an image
may be visible in the other two images, as shown in
Fig 8§ In such case, the checking voxel denotes correct
matching points, however another voxel exists in one
of its inhibition areas On the other hand, the hiding
voxel in this case also has another voxel in one of its
inhibition areas.

Thus, the frst assumption —— a single unique
match exists — is acceptable only in two projection
lines in this case This means we should excuse the
existence of another voxel in one of the three axis di-
rections. Therefore, two of the inhibition areas in Fig 9
are chosen by the sum of likelihoods in each of them.
This selection of inhibition area is formulated as a non-
linear function M{) in later mention. With taking into
account this subject of the first assumption of unique-
ness, we perform the refinement of voxe! values by Eq

(5)
Vn+l<$2 Us z)
_ V(9,9 .
_<M@$WJNM%%%&@%@J ®)

S{X,Y, Z) is a sum total of squared values of all
voxels in the projection line from voxel (z,y,z) to the

X
T e
Z y\\ g//,ﬂl I\\\ ’./":
e Voxel(x,v,z)
i EHXNE I ]
S.’C\ | - " ~ 1
~i ~ e

Fig 9 Three parts of inhibition area for a voxel in PVS T'wo of
them are chosen as inhibition area, because of the consideration
for occlusion
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direction of x axis In other words, 5.{X,Y, Z) is asum
total of squaied values in one of the inhibition areas in
Fig 9. S,(X,Y,Z) and 5,(X,Y, Z) ate the same kind
of values in the other inhibition areas. M(a,b,c) is
sum of two smaller values of g, b, and ¢. V,,(z,y,2) is a
voxel value in the geometiy (z,y, z) at itetation n «is
a constant, which denotes the strength of convergence
When o is too small, the variance of all voxel values
changes only a little, so that the voxel values can not
converge When « is too laige, the correct matching
points are instantly lost We set the value o = 3 based
on our experience

First, we check the sum total ol squared values
on each inhibition area, and thiow away the maximum
one in thiee values, which is indicated as M() This is
because we excuse the existence of another voxel in one
of the inhibition areas, as mentioned above. Then, we
have two values left Next, we decimate the voxel value
by sum of the two values, and the refined value is the
third power to the decimated value In the meaning of
absolute value, all voxels are 1evised to lower values by
applying this operation. However, the variance of the
voxel values is reviled to lager

Using the second assumption about the continuity
of disparity, we also apply a smoothing method to the
voxel values in the iteration The smoothing mask de-
fined by the assumption of disparity countinuity has a
spherical distribution in PVS, which is also applied in
Zitnick’s method [13] In this paper, we apply the mod-
ified smoothing mask as shown in Fig 10, instead of a
spherical mask This mask implies an assumption of
uniform disparity, which is more resfricted assumption

(b) (e}
Fig. 10 Definition of smoothing mask shape: (a) There are
three kinds of disparities in PVS, because three pair of images
are handled in it. Therefore, there are three kinds of “unifoerm
disparity” in PVS In this paper, we assume that each object
in the scene has uniform disparity in each palr of images; (b} a
“uniform disparity” plane, which is parallel to three directions in
{a); (c) the smoothing mask has a shape of ciicle in the plane of

(&)
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than continmity assumption, but we can cbtain better
voxel values in the “uniform disparity” neighborhoods.
PVS includes thiee kinds of dispazities, because it han-
dles matching points in three pairs of the images at one
time As shown in Fig 10(a), uniform disparity area in
a pair of the images stands for a line on a cross section
plane in PVS. The directing arrows in Fig 10{a) show
the directions of the continuities of voxels Consicer-
ing these directions, we determine a plane with thick-
ness of 1 voxel in PVS, which 1s shown in Fig 10(b).
Because this plane is parallel to all directing arrows
in Fig. 10(a), applying smoothing process in this plane
is 1easonable. We also consider the distance from the
voxel to be smoothed Thus, a smoothing mask is deter-
mined to be a circle on the plane in PVS, hich is shown
in Fig 10{c). The values of all voxels in the smooth-
ing mask are % (W is the area size of the smoothing
mask) To perform the smoothing process, this smooth-
ing mask is three-dimensionally convoluted to all voxels
in PVS.

‘ In this way, the practical refinement process is per-
formed by the smoothing method and Eq. (1), By ap-
plying this 1efinement iteratively, all voxel values affect
to others Finally, continuous and unique likelihoods
are generated ir PVS. In the generated likelihoods, the
uniqueness ate considered with the possibility of occlu-
sion

5. Intermediate View Synthesis Based on the
PVS

In the previous sections, voxel values are refined in
PVS, so that the shape of the object can be detected as
the local maximum voxels. The obtained shape itself
is much different from the shape in Euclidean geome-
try However, the obtained 3D shape contains not only
visible matching points between the input images, but
alsc the projected position of occluded points on the
obijects.

The image synthesis is performed by a simple 2D
morphing method, which calculates a set of weighted
mean geometry of the matching points and weighted
mean color of the matching points. Using the projected
positions of occluded points, even the geometry of oc-
cluded points can be synthesized by the 2D moiphing
Then, occluded points can appear or disappear by mov-
ing the virtual viewpoint, and it makes the synthesized
images plausibly

6. Experiments

To show the effectiveness of owr proposed method, we
applied it to some real images The patameters (num-
ber of matching points for weak calibration, resampling
resolution of 1ectification, size of corielation window,
and number of iteration} were set manually based on
our experiences, because it depends on the target scene

k1)
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and distribution of cameras

Before the actual experiments, we evaluated sev-
e1al methods for estimating fundamental matrices The
evaluated methods are a linear method with data noi-
malization, a method using least median of squares, and
a nonlinear method based on gradient-weighted epipo-
lar erzors. In owr experiments, the camera’s position,
angle, and zooming are static, so that Images for weak
calibration can be easily taken. For example, matching
points can be easily acquired from scenes of lighting
LED in dark room, then sufficient numbers of matching
points can be acquired in high aceuracy Generally, the
accuracy of estimated fundamental matrix strongly de-
pends on the number and the accuracy of given match-
ing points As described later, we had huge number
(over 300) of matching points to estimate fundamen-
tal matiices, and the mismatching points were canceled
manually Then, the ertots of the estimated fundamen-
tal matiices, which can be calculated as the distance be-
tween the calibration points and the epipolar lines, were
less than a pixel width in any evaluated method This
accutacy is enough for our pmrpose, because obtained
fundamental matrices are used only for determining
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cortesponding epipolar lines in our method We ac-
tually adopted a method using least median of squares
[3], {12].

61 Scéne without Occlusion

We applied the proposed method to an object of sim-
ple shape without occlusion, which is shown in Fig 11.
Input images are rectified as shown in Fig 12 Silhou-
ettes of the object in the images are obtained using
subtraction of backgiound images and manual modifi-
cation All voxels are filled with normalized correlations
using windows sized 9 x 9 Figure 13{a) shows the nor-
malized corielation values in a cross section plane in
PVS. These values mean certainty of matching points
between the scan lines in Fig 12(a) and {¢}. We can
see that it is difficult to obtain the correct matching
points from raw correlation values. Figure 13(b} shows
the 1efined voxel values by the proposed operation. In
the refined voxel values, the ambiguity of the match-
ing points is much 1educed As shown in Fig. 13(0),
the meatching points are detected as the local maxi-
mum voxel In Fig l4(a). an image fiom the virtual

(a)

{b)

{¢)

Fig. 11 Input images: (a) left image; (b) top image; {¢) right image -

(a)

()

(c}

Fig. 12 = Rectified images and example of epipolar lines between each pair of imagss: (a)

left image; (b) top image; (c¢) right image
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(a) (b)

Fig.13 Likelihood values in a cross section of PVS:
(a) adopted maximum values from three correlations;
(b} refined likelihood value from (a); (¢) detected
matching points from (b)

() .
Fig. 14 Synthesized images (the virtual viewpoint is
between left and 1ight camera): {a) based on refined
voxel values; (b) based on non-refined correlations

viewpoint is synthesized, For comparison, Fig 14(b)
shows the synthesized image based on non-refined cor-
relations While we can easily 1ead some characters on
the box in Fig 14(a), the texture on the box is much
collapsed and blurred in Fig. 14(b}, because of the mis-
matching points

6.2 Scene Including Occlusion

For the experiment of Figs 15-17, the fundamental ma-
trices were estimated with about 500 matching points in
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each image All baselines of each pair of cameras wers
about 0 8m A 256 x 256 x256 voxel space is constructed
from 320240 sized three images The correlation val-
ues were calculated with windows siged 11x11 The
number of iteration times was two. Figure 15 shows
input images and example of epipolar lines on them.
Figures 16 shows 1ectified images.

In this case, there aie may occlusions: for exam-
ple, the right foot of the right person is invisible in
the right image, and the left thigh of the left person
is invisible in the left image at the same time Figure
17 shows depth maps based on the obtained matching
points in PV3. The disparity maps for the occluded ar-
eas are well obtained, because proposed method tacitly
uses only valid matching points in three pairs of the im-
ages. Figuie 18 shows a synthesized image with virtual
viewpoint at the center of three cameras. The above
mentioned occlusions arve plausibly synthesized in the
image.

Figure 19 shows the yet another input images with
another camera distributions All baselines of each
pait of cameras were about 100 cm  For these im-
ages, the fundamental matrices were solved with about
300 matching points in preprocessing. A 256 x256x256
voxel space is constructed from 640x 486 sized three im-
ages. The rectified images are shown in Fig 20 The
correlation values were calculated with windows sized
11x11 The number of iteration times was three

Figuie 21 shows some examples of voxel values in

a cross section plane in PVS This cross section denotes
matching between epipolar lines shown in Fig. 20. Fig-
ures 21(a) and (b) are shown just for the reffernce data,
and not used in the pioposed method. Figure 21(a)
shows 1aw correlation values between left and right im-
ages: Figure 21(b) shows the average of three corre-
lation values between three pair of Images Since the
matching points ate detected as local maximum vox-
els, it is difficult to obtain the cortect matching points
from Figs 21{a) and (b) Figure 21(c) shows the effec-

.tiveness of the adoption of the valid corielation value,

which is described in Sect 42 In this figure, many
mismatching poizts have reduced values Figure 21(d)
shows the voxel values after the iterative refinements.
After iterative refinements, the correct matching points
have singular high values. Thus, maiching points are
finally detected as shown in Fig 21(d)

For evaluation of the estimated matching points,
we detected matching points on the epipolar line by
manual, which is shown in Fig 21(e}. The matching
regults of the proposed method includes 6 6 pixel width
in the average error, while the non-1efined voxels in
Fig.21{c) gives 17.2 pixel width in the average error
Thus, much mismateching is reduced in the iterative re-
finement. These errors are mostly caused by the luck
of texture on objects in the scene. However, the extor
value does not always affect the quality of synthesized
images directly When the ohject has flat textuie and

2
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Fig 15 Input images and example of epipolar lines on them

(a) (&) ' ()

Fig 16 Rectified images generated from the input images based on epipolar geometry

center of three input cameras)

Tig 17 Estimated depth maps in PVS

the error of mismatching points i enough little, the
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Fig. 18 Synthesized image (the virtual viewpoint is in the’

Figure 22 shows synthesized images based on the

quality of synthesized images will not be so much dam- acquired matching points The viewpeint is moving

aged thiough baselines of thiee cameras
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Fig.19 Input images: {a) left image; (b) top image; (¢) xight image

(a} () ()
Fig 20 Rectified silhcuette images with an example of epipolar line between two im-
ages : (a) left image; (b) top image; (c) right image

(e
Fig. 21 Likelihood values and matching peints: (a) correlation values between two
images; (b) average of correlation values between three pairs of images; {c} adopted values
fiom three correlations; {d) refined likelihood values from (c}; {e) estimated matching
points basad on (d}; (f) coriespondence pointed by human
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right image

left image top image

S

top image

(b)

right image left image

(a) {c)
Fig. 22 Synthesized images: The viewpointds moving (a) from left image (top} to right
image (bottorm); (b) from right image (top) to top image {bottom); (¢) from top image
(top) to left image (bottom)
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7. Conclusion

This paper focused on 3D voxel concept in epipolar ge-
ometry. PVS is constiucted with three images and fun-
damental matiices of all image pairs. FVS is easy to
determine, because it requires only weak calibration,
while Euclidean geometry requires strong calibration
The rectified images car be handled as orthographic
projected images of PVS In this paper, correspondence
between thzee images is estimated by normalized cor-
relation and Herative refinements

The basic idea of iterative refinements in this pa-
per is based on Zitnick’s method [13] It uses general
assumptions of sterec matching [4], that a single unique
match exists for each pixel in images, and disparity
values are generally continuous In this paper, such as-
sumptions are utilized with the considerations for oc-
clusion Then, unique and continuous matching points
are acquired in three images

Because the proposed method uses normalized cor-
relation as the initial value of iterative refinements, it
still 1equires textwe on the objects in input images
We think it’s possible to deciease the dependence for
texture by using some kinds of restriction in 3D space
Solying such problem is owr future work '
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