Resource Contention Metrics for Oversubscribed Scheduling Problems

Laurence A. Kramer and Stephen F. Smith
The Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh PA 15213
{lkramer,sfs} @cs.cmu.edu

Abstract

We investigate a task insertion heuristic for oversubscribed
scheduling problems, max-availability, that uses a simple es-
timate of resource contention to assign tasks to intervals ex-
pected to have the best worst case resource availability. Prior
research in value and variable ordering heuristics for schedul-
ing problems indicated that sophisticated, but more costly
measures of resource contention can outperform simpler ones
by more reliably pruning the search space. We demonstrate
that for oversubscribed, priority-based problems where a fea-
sible, optimal solution may not even exist, max-availability
generates schedules of similar quality to other contention
based heuristics with much less computational overhead.

Introduction

In (Kramer & Smith 2003; 2004) we introduced an algo-
rithm TaskSwap, as a means of repairing oversubscribed
schedules by judicious task retraction and reinsertion. This
work demonstrated the efficacy of assigning previously un-
schedulable tasks by temporarily removing tasks with the
highest predicted fitness for reassignment, assigning the
problematic task, and then reassigning the displaced tasks.
TaskSwap is called recursively on any tasks that fail to
schedule, succeeding with all tasks being scheduled, or fail-
ing when either all contended tasks are tested or a depth
bound reached. The setting for this work is the AMC
domain(Smith, Becker, & Kramer 2004), a large mission
scheduling problem.

Much of this research has focused on the design of re-
traction heuristics, i.e., what is the best way to predict
likelihood of task reassignment when de-assigning a task.
However, more recent work (Kramer & Smith 2005b) has
demonstrated that impressive gains in solution quality can
be achieved by employing resource capacity look-ahead
for task insertion. The heuristic for task insertion, max-
availability, has the benefit of being applicable to schedule
construction as well as schedule repair and improvement.

Max-availability computes potential resource contention
by making the simplest assumption possible, that for each
unassigned task 1 unit of capacity will be consumed every-
where in its feasible window. As tasks are assigned, po-
tential capacity is decremented and actual capacity incre-

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

mented. Potential capacity usage for a resource is the simple
aggregation over time of potential capacity usage for indi-
vidual tasks that can utilize that resource. Where the original
TaskSwap procedure reassigned retracted tasks at their ear-
liest feasible start, max-availability assigns a task on a com-
patible resource where there is the least predicted contention
based on the aggregation of potential and actual capacity.

In this paper we compare the use of this naive metric
for potential resource consumption with two more informed
measures, Operation Resource Reliance (ORR) (Sadeh &
Fox 1996)and SumHeight (Beck et al. 1997). Although
these techniques are more computationally intensive, and are
not typically applied to oversubscribed problems, our hy-
pothesis was that they might find better solutions in a com-
parable amount of time due to a better guided search. How-
ever, our experimental results demonstrate that for priority-
based, oversubscribed problems, even those with structure
similar to those most frequently studied by contention-based
scheduling research, there is little value added by the use of
more sophisticated contention metrics.

The AMC Scheduling Problem
The AMC problem can be described abstractly as follows:

e A set T of tasks (or missions) are submitted for execution.
Each task ¢ € T has an earliest pickup time est;, a latest
delivery time [ft;, a pickup location orig;, a dropoff loca-
tion dest;, a duration d; (determined by orig; and dest;)
and a priority pr;

e A set Res of resources (or air wings) are available for
assignment to missions. Each resource » € Res has ca-
pacity cap, > 1 (corresponding to the number of aircraft
for that wing).

e Each task 7 has an associated set Res; of feasible re-
sources (or air wings), any of which can be assigned to
carry out ¢. Any given task ¢ requires 1 unit of capacity
(i.e., 1 aircraft) of the resource r that is assigned to per-
form it.

e Each resource r has a designated location home,. For
a given task ¢, each resource » € Res; requires a posi-
tioning time pos,; to travel from home, to orig;, and a
de-positioning time depos,.; to travel from dest; back to
home,..

A schedule is a feasible assignment of missions to wings.
To be feasible, each task 7 must be scheduled to execute
within its [est;, [ft;] interval, and for each resource r and
time point ¢, assigned-cap,., < cap,. Typically, the prob-
lem is over-subscribed and only a subset of tasks in 7' can
be feasibly accommodated. If all tasks cannot be scheduled,
preference is given to higher priority tasks. Tasks that cannot
be placed in the schedule are designated as unassignable.

Task Swapping

In (Kramer & Smith 2003; 2004), a repair-based schedul-
ing approach called TaskSwap was introduced as a means
of overcoming the limitations of a greedy procedure used
to generate mission schedules in the AMC domain. The
TaskSwap procedure starts with an initial baseline sched-
ule, built under the assumption that higher priority tasks
take precedence over lower priority tasks, and a set U of
unassignable tasks; and aims at locally rearranging some
number of current assignments into the schedule such that
1 or more tasks in U can be feasibly added. This is accom-
plished by temporarily suspending the assumption that pref-
erence be given to higher priority tasks, and using another
criterion to resolve the conflicts blocking specific © € U
from being feasibly scheduled.

For a given u, a set of competing tasks is retracted to clear
space for scheduling u. When a given task is retracted, the
TaskSwap procedure attempts to find another assignment for
it. For those retracted tasks that cannot be immediately rein-
serted, the TaskSwap procedure is recursively called with
this task, resulting in retraction of 1 or more additional tasks.
If it is possible to feasibly reschedule all tasks that have been
retracted before bottoming out, then this new solution is ac-
cepted and attention moves on to the next unassignable task.
If, alternatively, it is not possible to reinsert all retracted
tasks, then the state of the schedule prior to consideration
of u is restored and u remains unassignable. Given a set of
conflicted tasks, one question concerns which task(s) to re-
tract to create space for u. However, more recent work with
the Max-Availability heuristic (Kramer & Smith 2005b) has
shown that the decision of where to reinsert retracted tasks
is actually much more important to the overall performance
of the TaskSwap procedure.

Max-Availability

Max-availability inserts a task at the start time of an interval
with greatest predicted resource availability, estimated using
a simple resource “texture” measurement, max-predicted-
availability.

Estimating Resource Contention

We compute max-predicted-availability as follows:

o set the potential capacity PC, ; and allocated capacity
AC; to 0 for each resource r € Res,, to 0 for each time
instant 4,0 < i < horizon.

e For each unassigned task, u, set PC,; = PC,; + 1 for
each r € Res, and for each i € RegqInt,, = [est, —
POSy u, lftu + deposr,u]-

e For each assigned task, a with assigned resource, r, set
AC,; = AC, ; + 1foreach i € SchedInt = [st,, etq].

e For each r € Res, and any subinterval s on 7’s timeline,
(ACT,S + PCT,S)
Generating Predicted Availability

Availability, s = Cap, —

Max-availability, predicted capacity, best-worst heuristic

B2

task,, duration = 4 ‘ 4—"

task,, duration = 5 ’4—} ‘

o

Unassigned Tasks
task,, duration = 2

8

Total Capacityg = 7 7

Potential Capacity; 5

Allocated Capacityg

Timre0O 1 2 3 4 5 6 7 8 9 10

Figure 1: Predicted resource contention

The situation depicted in Figure 1 represents Availability
for resource R from timeg through teme;(, before inserting
3 tasks. T'ask; has a duration of 5, and must be scheduled
in the interval [0,8], tasks has a duration of 4, and must be
scheduled in [3,10], and tasks has a duration of 2 and must
be scheduled in [2,7]. Each task requires 1 unit of capacity.

Resource R has a total capacity of 7 over the interval
[0,10] and as indicated in the figure, varying amounts of ca-
pacity are currently consumed over this interval. Adding the
actual capacity for each interval to the potential capacity, and
subtracting from the total capacity (7), we have in the worst
case 2 units of available capacity over [0,2], 1 unit available
in [2,3], and -1 unit available in [3,5]. The fact that -2 units
are available in the interval [5,6] does not make that interval
infeasible, since this is a worst case computation.

The Max-Availability Heuristic

The above computation for Availability, s is used by the
max-availability heuristic to determine to which resource
and in which time interval to assign a task during the
scheduling search. The heuristic is implemented as follows:
For a task i, and Vr € Res; a linear search is made across
the capacity time-line, collecting availability values for
subsets of resource feasible subintervals, termed capacity-
subinterval profiles(Kramer & Smith 2005b). These profiles
are of length equal to dur; and must not cover any values
for a subinterval s, for which the actual capacity AC, ; is
0. For example, in Figure 1 the capacity-subinterval profiles
for task; are (2,2,1,-1,-1), (2,1,-1,-1,-2), (1,-1,-1,-2,1), and
(-1,-1,-2,1,3), corresponding to start times of 0,1,2, and 3.

The interval matching the capacity-subinterval profile
with the greatest minimal, or maximin, value is selected for
assignment. When there is no profile with a unique maximin
value, a leximin (Moulin 1988) ordering is used.

Experimental Design

For our experiments with max-availability, we used the 100-
problem data set of mission scheduling problems for the
AMC domain generated in (Kramer & Smith 2005a). The
100 problems are divided into 5 sets of 20 problems, each
set being progressively more resource constrained. For each
problem an initial schedule is generated according to strict
task priority order, with the max-availability heuristic em-
ployed to determine where to insert a task. No back-tracking
is allowed, and when the initial pass is complete, some num-
ber of tasks that were unable to be assigned may remain. The
TaskSwap procedure is applied to all unassignable tasks,
employing max-flexibility as the retraction heuristic and
max-availability as the commitment heuristic. Run-times
in seconds and the end number of unassigned tasks are
recorded. As a baseline (Table 1, col. 3), we use the best re-
ported results of Experiment 3 in (Kramer & Smith 2005a).
We then substituted differing resource texture measurements
for the max-predicted-availability metric, in an effort to pro-
vide better guidance to the max-availability heuristic.

Sophisticated Metrics for Resource Contention

The max-predicted-availability texture measurement repre-
sents a worse case prediction of resource consumption. By
allocating 1 unit of potential capacity for a task over its en-
tire feasible window for every compatible resource, it ig-
nores the fact that the task will eventually be assigned in one
window equal to its run duration on one resource. There
is a significant body of research that has studied the use of
more sophisticated contention measures to guide scheduling
search. The aggregate demand contention profiles employed
by Sadeh’s Operation Resource Reliance (ORR) heuris-
tic(Sadeh & Fox 1996), and later approximated by Beck’s
SumHeight(Beck et al. 1997) texture metric, produce well-
grounded probabilistic models of resource consumption.

These models take into account the fact that a task of rea-
sonable duration can only possibly consume capacity in the
first interval of a given resource in the case that it is assigned
at its earliest start time on that resource, whereas it will con-
sume capacity in the second interval when its start time is at
its earliest or when it starts at the start of the second inter-
val. For example, given task; from Figure 1, a probabilistic
model of its resource demand can be represented as seen in
Figure 2. For a rigorous discussion of probabilistic metrics
for resource consumption, see (Sadeh & Fox 1996).

Probabilistic Potential Capacity for task,

task,, duration = 5 F—V ‘

0.25

Timre0O 1 2 3 4 5 6 7 8 9 10

Figure 2: Probabilistic resource contention

Set | MaxPredAv ORR SumHeight

1 0 0 0.05

2 1.2 1.2 1.15

Tasks 3 11.35 1145 11.35
remaining 4 29.3 28.9 294
5 75.4 75.2 75.45

1 0.15 1.45 4.5

2 24 2495 94.1

Time 3 20.7 242 2353.65
(seconds) 4 52.25 707.85 4486.8
5 206.9 1423 15562.75

Table 1: Quality and Run Times for AMC Problem

Using SumHeight as a Texture Metric

As both Sadeh and Beck point out, computation of resource
texture using the aggregate demand profiles of ORR is very
expensive. Beck introduces an approximation (Beck et al.
1997), which relies on computing 4 points corresponding to
the end points of the lines along the slopes of the “pyramid”
in Figure 2. Interior points can be quickly calculated using a
standard point-slope equation. This calculation applies to a
single-resource problem domain, but in (Beck & Fox 2000)
the authors present a model for scheduling with alternative
resources, that effectively scales the SumHeight computa-
tion by dividing by the number of resource alternatives. We
follow this same methodology in our computations, while
recognizing that alternative resources are not strictly com-
parable due to variations in task duration.

We re-ran the baseline 100-problem set, using the
SumHeight point-slope approximation texture measurement
to guide the max-availability heuristic. We could not hope
to improve on the optimal solutions found for all 20 prob-
lems in the first set; however, we expected that for the
more difficult problems, SumHeight might carve a quicker
path through the search space to find better solutions, com-
pensating for the additional time needed to compute pre-
dicted capacity. This turned out not to be the case. On
average SumHeight gave similar results to max-predicted-
availability. Furthermore, average run-times for the prob-
lems were 2 orders of magnitude slower than the baseline.
(Table 1, column 5; lower numbers are better.)

Using ORR Rough Demand Profiles

In practice, Sadeh realized that approximations to the ORR
aggregate demand profiles need be even coarser than those
employed by Beck when computation time is at a premium.
“Rough demand profiles” are computed by spreading half
the task’s expected demand evenly across it feasible win-
dow and the other half over its most recent best assign-
ment(Sadeh 1994). Using this technique as the texture mea-
surement, we replicated the 100-problem test. Although this
turned out to be much faster than the SumHeight compu-
tations of the prior runs, the experiments still took on the
average an order of magnitude longer than the baseline ex-
periments, and demonstrated just a very slight quality im-
provement in the hardest problems. (Table 1, column 4)

Set | Baseline MaxPredAv ORR SumHt

1 3.95 3.7 3.85 3.45

2 5.3 49 5.15 5.2

Tasks 3 5.3 4.95 4.95 4.8
4 12.1 11.7 12.1 11.1

5 20.35 20.75 20.05 20.25

1 1.85 2.2 2.3 3

2 1.95 2.5 2.3 3.4

Time 3 2.05 2.5 2.25 3.75
4 4.35 64 6.5 8.75

5 6.05 10.55 8.45 13.2

Table 2: Quality and Run Times for Unit Capacity Problems

Unit Capacity Problems

Much prior work in resource contention based heuristics for
scheduling has been conducted on job shop scheduling prob-
lems, as opposed to a mission scheduling problem such as
the AMC domain. One dominant characteristic of that do-
main is that many missions can be assigned to a given re-
source at any time. In contrast, most experimental results
for the job shop scheduling problem are cast as unit-capacity
problems. It’s quite possible that in such a setting, more dis-
criminating contention metrics such as ORR or SumHeight
may significantly outperform Max-Predicted-Availability.
To test this conjecture we generated a set of 100 problems
using the AMC Problem Set as a seed. We assumed a total
capacity of 1 for all wings, and derived problem sets by ran-
domly dropping missions from the original data. In this way
the problems continue to be oversubscribed to a fairly high
degree, but are more manageable in size. The 100 problems
are divided into 5 sets of 20, where the first set is comprised
of about 100 randomly selected missions to be allocated, the
second set of approximately 200 missions, and so on.

Unit Capacity Experimental Results

To provide a baseline, we first ran all problems using no re-
source contention metrics for task insertion. A schedule was
generated by allocating tasks in priority order at their earli-
est feasible start times, and the TaskSwap procedure was ap-
plied to this schedule. For the second run, Max-Availability
— employing the Max-Predicted-Availability texture mea-
surement — was used to guide task insertion during initial
schedule construction and the swap phase. The third run
substituted ORR Rough Demand profiles as the resource
texture measurement, repeating the same procedures. Fi-
nally, SumHeight was employed as the texture metric, and
the schedule and swap process was repeated a fourth time.
As can be seen in table 2 neither SumHeight nor ORR were
able to improve appreciably on the simple texture metric in
quality. The run times in most cases were slightly higher for
SumHeight and comparable for ORR.

Conclusion

Why is the relatively crude resource contention metric, max-
predicated-availability, able to compete so favorably with
the much more sophisticated measures of SumHeight and
ORR? The latter were designed to identify areas of resource

contention and particular tasks on which to concentrate the
search, and schedule tasks so as to avoid areas of contention
to the extent possible. The high degree of computation in-
vested in the search heuristic is expected to pay off by prun-
ing bad decisions as much as it is to guide good ones, reduc-
ing backtracking on the path to a problem solution.

The problems we’ve been studying, though, don’t admit
to a complete “solution,” since they are oversubscribed to
start with. A fine-grained estimate of contention is wasted
since contention is likely to be high throughout the search
space. What appears to make more sense are task inser-
tion heuristics based on easily computed resource contention
metrics that are likely to lead to a good solution, as opposed
to avoiding bad ones. Furthermore in the problems we’ve
tackled, tasks must be assigned in priority order, so the use
of resource contention metrics in variable ordering is of sec-
ondary importance in directing the search.

Acknowledgements

The work reported in this paper was sponsored in part
by the USAF Air Mobility Command under subcontract
10382000 to Northrop Grumman Corporation, and by the
CMU Robotics Institute.

References

Beck, J. C., and Fox, M. 2000. Constraint-directed tech-
niques for scheduling alternative activities. Artificial Intel-
ligence 121(1):211-250.

Beck, J. C.; Davenport, A. J.; Sitarski, E. M.; and Fox,
M. S. 1997. Texture-based heuristics for scheduling revis-
ited. In Proc. 14th National Conf. on Artificial Intelligence.

Kramer, L., and Smith, S. 2003. Maximizing flexibility:
A retraction heuristic for oversubscribed scheduling prob-
lems. In Proc. 18th International Joint Conf. on Al

Kramer, L. A., and Smith, S. F. 2004. Task swapping for
schedule improvement, a broader analysis. In Proc. 14th
Int’l Conf. on Automated Planning and Scheduling.

Kramer, L. A., and Smith, S. F. 2005a. The amc scheduling
problem: A description for reproducibility. Technical Re-
port CMU-RI-TR-05-75, Robotics Inst, Carnegie Mellon.

Kramer, L. A., and Smith, S. F. 2005b. Maximizing
availability: A commitment heuristic for oversubscribed
scheduling problems. In Proc. 15th International Confer-
ence on Automated Planning and Scheduling (ICAPS-05).

Moulin, H. 1988. Axioms of Cooperative Decision Making.
Cambridge University Press.

Sadeh, N., and Fox, M. 1996. Variable and value ordering
heuristics for the job shop scheduling constraint satisfac-
tion problem. Artificial Intelligence 86(1):1-41.

Sadeh, N. 1994. Micro-opportunistic scheduling: The
micro-boss factory scheduler. In Zweben, M., and Fox, M.,
eds., Intelligent Scheduling. Morgan Kaufmann Publishers.

Smith, S. F.; Becker, M. B.; and Kramer, L. A. 2004.
Continuous management of airlift and tanker resources: A
constraint-based approach. Mathematical and Computer
Modeling — Special Issue on Defense Transportation: Al-
gorithms, Models and Applications for the 21st Century
39(6-8):581-598.

