Understanding Performance Tradeoffs in Algorithms for Solving Oversubscribed
Scheduling

Laurence A. Kramer and Laura V. Barbulescu and Stephen F. Smith
The Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh PA 15213
{lkramer,laurabar,sfs} @cs.cmu.edu

Abstract

In recent years, planning and scheduling research has paid
increasing attention to problems that involve resource over-
subscription, where cumulative demand for resources out-
strips their availability and some subset of goals or tasks
must be excluded. Two basic classes of techniques to solve
oversubscribed scheduling problems have emerged: search-
ing directly in the space of possible schedules and searching
in an alternative space of task permutations (by relying on a
schedule builder to provide a mapping to schedule space). In
some problem contexts, permutation-based search methods
have been shown to outperform schedule-space search meth-
ods, while in others the opposite has been shown to be the
case. We consider two techniques for which this behavior
has been observed: TaskSwap (7S), a schedule-space repair
search procedure, and Squeaky Wheel Optimization (SWO),
a permutation-space scheduling procedure. We analyze the
circumstances under which one can be expected to domi-
nate the other. Starting from a real-world scheduling problem
where SWO has been shown to outperform 7S, we construct
a series of problem instances that increasingly incorporate
characteristics of a second real-world scheduling problem,
where 7S has been found to outperform SWO. Experimen-
tal results provide insights into when schedule-space methods
and permutation-based methods may be most appropriate.

Introduction and Motivation

As research in automated planning and scheduling has
moved into problem domains that more accurately model
real-world concerns, one issue that has garnered increas-
ing interest has been that of oversubscription (Kramer &
Smith 2004; Barbulescu et al. 2006; Smith 2004; Nigenda
& Kambhampati 2005). Generally speaking, an oversub-
scribed problem is one in which the resources available
(e.g., time, capacity) are not sufficient to permit accom-
plishment of all stated tasks or goals, and hence the prob-
lem solver must decide which subset of tasks or goals to
carry out. The basic objective is to maximize the num-
ber of tasks accommodated or goals satisfied, subject in
some cases to associated task or goal priorities. Oversub-
scribed problems arise in a broad range of application do-
mains, including rover task planning (Smith 2004; Joslin et
al. 2005), satellite and telescope scheduling (Bresina 1996;

Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Frank et al. 2001; Barbulescu et al. 2006) and military airlift
allocation (Kramer & Smith 2004).

With respect to solving oversubscribed scheduling prob-
lems, two basic classes of solution techniques have emerged:
those that search directly in the space of possible schedules,
and those that search in an alternative space of task permu-
tations (in which case a schedule builder is used to provide
a mapping to schedule space). Both permutation-space and
schedule-space methods have been shown to perform effec-
tively in specific problem domains. This raises the question
of whether there are problem characteristics that might sug-
gest the appropriateness of one over the other.

In this paper, we attempt to gain insight into this general
question by analyzing the performance tradeoffs between
two specific methods on a common set of problem instances.
Our starting point is two oversubscribed scheduling prob-
lems that are quite similar in character, the USAF Satel-
lite Control Network (AFSCN) problem previously studied
in (Barbulescu et al. 2006) and the USAF Air Mobility
Command (AMC) airlift scheduling problem described in
(Kramer & Smith 2005a). Prior research with the AFSCN
problem has shown permutation-space scheduling proce-
dures such as Squeaky Wheel Optimization (SWO) to dom-
inate schedule-space methods. Other prior work (Kramer
& Smith 2004; 2005b) has demonstrated the effectiveness
of a schedule-space method called TaskSwap (TS) in solv-
ing the AMC scheduling problem, and in fact 7S can be
shown to outperform SWO in this domain. Given these re-
sults, we attempt to understand what problem characteristics
set these domains and solution techniques apart. We define
a series of problem sets which generalize from the AFSCN
problem and increasingly incorporate characteristics of the
AMC problem. Our experimental results indicate that prob-
lem hardness and the presence or absence of task priorities
are two distinguishing performance factors.

Before describing the AFSCN and AMC domains and
presenting our experimental analysis, we briefly summarize
prior approaches to oversubscribed scheduling problems and
the two specific methods of interest to our study.

Permutation Space vs. Schedule Space Search

As indicated above, we can distinguish two basic classes
of approaches to solving oversubscribed scheduling prob-
lems based on the search space representation that is used.

Permutation-based methods emphasize search in the space
of task permutations, where a given permutation specifies a
scheduling order and is transformed into an actual schedule
by a “schedule builder”. Search in the permutation space has
been effectively employed in many scheduling applications
(Whitley, Starkweather, & Fuquay 1989; Syswerda 1991;
Globus et al. 2004; Barbulescu er al. 2006). The main
advantage of a permutation representation is that general-
purpose search algorithms can be employed while all the
particular constraints of the domain are encapsulated in a
schedule builder. The main disadvantage is that in general it
is not possible to predict the effect of permutation changes
until the schedule builder computes the new schedule. Also,
the schedules reachable via the schedule builder might rep-
resent a suboptimal subset of all possible schedules.

A second class of techniques, referred to generally as
repair-based search techniques, operate directly in the space
of possible schedules (Johnston & Miller 1994; Rabideau et
al. 1999; Kramer & Smith 2004). Searching the schedule
space directly is sometimes an attractive alternative. Pow-
erful domain-specific heuristics are usually available (e.g.,
various resource contention measures), and such measures
can direct the search in an efficient but effective manner.
In continuous domains where schedule stability is impor-
tant, search operators for the schedule space can be de-
fined to generate new solutions in a controlled manner (and
minimize changes to the current schedule). While general-
purpose search operators can still be defined, efficient search
algorithms in the schedule space will typically exploit do-
main knowledge to decide how to reorganize the schedule.
The challenge is in defining the right search operators.

Squeaky Wheel Optimization

The permutation-based method we consider in this paper in-
corporates Squeaky Wheel Optimization (SWO) (Joslin &
Clements 1999) as the core search procedure. SWO has been
used effectively in a number of oversubscribed domains
(Globus et al. 2004; Joslin et al. 2005; Frank & Kiirklii
2005; Barbulescu et al. 2006). Once an initial permutation
(scheduling order) of the input tasks to be scheduled is es-
tablished, SWO proceeds by repeatedly iterating through a
three step cycle. In the first step, a greedy constructive tech-
nique (the schedule builder) uses the permutation to produce
an actual solution (schedule). The permutation represents a
prioritization of the tasks, since the earlier tasks are consid-
ered earlier by the schedule builder. In the second step, the
solution is analyzed and those tasks causing “trouble” (i.e.,
those tasks that the schedule builder was not able to get on
the schedule) are ranked according to their contribution to
the objective function. Finally in the third step, the ranking
of current “trouble makers” is used to modify the permuta-
tion, by moving them earlier in the scheduling order. This
cycle is repeated until a termination condition is met.

For the analysis performed in this paper, the schedule
builder used by SWO places tasks into the schedule one by
one (in the order specified by the current permutation), us-
ing a look-ahead heuristic based on predicted resource con-
tention to assign a specific start time and resource to each
task. This heuristic, max-availability, is described in some

detail in (Kramer & Smith 2005b). If a given task cannot be
feasibly added to the schedule at the time it is considered, it
is marked as unassignable and the schedule builder simply
moves on to the next task. This schedule builder is also em-
ployed to generate initial seed solutions for the other method
analyzed in this paper, TaskSwap (see below).

TaskSwap

The specific schedule-space search method we consider in
this paper is TaskSwap (7) (Kramer & Smith 2004). TS
implements a repair-based search aimed at rearranging tasks
in an input schedule so as to include additional, previously
unassignable tasks. The algorithm considers unassignable
tasks one by one (according to some ordering criteria) and
attempts to insert them into the existing schedule by (tem-
porarily) retracting some number of conflicting tasks. Any
retracted tasks are reassigned after assigning the formerly
unassignable task, the idea being that there might exist a
new feasible schedule where these retracted tasks are shifted
somewhat in time and/or assigned to an alternate resource.
The algorithm recurses on any retracted task that cannot be
reassigned, and returns successfully when all visited tasks
have been assigned, or with failure when all tasks contend-
ing for the same set of alternate resources have been consid-
ered. In the event of failure, the schedule in place prior to
the attempted introduction of the new task is restored, and
the next unassignable task is considered.

A stochastic neighborhood search — Value Biased
Stochastic Sampling (VBSS) (Cicirello & Smith 2002) —
applied to the retraction heuristic was shown to boost 7S
performance for the AMC problem sets (Kramer & Smith
2004). The results presented for 7 in this paper were ob-
tained by running 7'S with multiple iterations of VBSS.

Comparative Performance in Two Domains

We first contrast the performance of SWO and TS on prob-
lems drawn from two real-world oversubscribed schedul-
ing domains, the USAF Satellite Control Network (AFSCN)
scheduling problem (Barbulescu et al. 2006) and the USAF
Air Mobility Command (AMC) airlift scheduling problem
(Kramer & Smith 2005a). In the AFSCN domain, input
communication requests for Earth orbiting satellites must be
scheduled on a total of 16 antennas spread across 9 ground-
based tracking stations. In the AMC domain, aircraft ca-
pacity from 15 geographically distributed air wings must be
allocated to support an input set of airlift missions.

Despite the application differences, these two domains
share a common core problem structure:

e A problem instance consists of n tasks. In AFSCN, the
tasks are communication requests; in AMC they are mis-
sion requests.

e Each task T;, 1 < ¢ < n, specifies a required processing
duration 7!

e A set Res of resources are available for assignment to
tasks. Each resource r € Res has capacity cap, > 1. The

'Although, for AMC, the actual durations are resource-
dependent.

resources are air wings for AMC and ground stations for
AFSCN. The capacity in AMC corresponds to the num-
ber of aircraft for that wing; in AFSCN it represents the
number of antennas present at the ground station.

e Each task 7T; has an associated set Res; of feasible re-
sources, any of which can be assigned to carry out 7;.
Any given task T; requires 1 unit of capacity (i.e., one air-
craft in AMC or one antenna in AFSCN) of the resource
r that is assigned to perform it.

o Each of the feasible alternative resources r; € Res; spec-
ified for a task 7; defines a time window within which
the duration of the task needs to be allocated. This time
window corresponds to satellite visibility in AFSCN and
mission requirements for AMC.

e The basic objective is to minimize the number of unas-
signed tasks.

One principal difference between the domains is the issue
of task priority. In the AFSCN domain there is no explicit
notion of priority and all tasks are weighted equally. In the
AMC domain, alternatively, tasks (missions) are categorized
into one of five major priority classes, and task priorities
must be respected whenever scheduling tradeoffs are con-
sidered - i.e., it is not possible to substitute a lower priority
task for a higher priority task even if this choice enables ad-
ditional lower priority tasks to be inserted into the schedule.
This places an additional constraint on the basic objective of
minimizing the number of unassigned tasks.

Consideration of the benchmark problem sets that have
been published for each of these domains reveals a few ad-
ditional differences:

e The size of the AFSCN instances varies between 419 and
483 tasks, while the size of the AMC problem instances
is more than double (983 missions).

e Resource capacity for AFSCN varies between 1 and 3; for
AMC, it varies between 4 and 37.

e Degree of temporal flexibility (measured as task dura-
tion relative to the size of the resource time windows):
for AFSCN, approximately one half of the requests in a
given problem instance have no temporal flexibility (these
are communication requests for low altitude satellites);
for the AMC benchmark problems, temporal flexibility is
present for all tasks.

Even though the two domains are similar in many ways,
their differences somehow have an impact on solving perfor-
mance. In the subsections below we show that what works
well for one domain does not work as well on the other.

AFSCN Empirical Results: SWO Outperforms 7'S

Previous work has shown that permutation space search
techniques (including SWO) clearly outperform repair-based
search in solving AFSCN problem instances; for our com-
parative AFSCN experiments we closely follow the method-
ology reported in (Barbulescu et al. 2006). Considering only
the five days of data in the more difficult R1 through RS
problems, we build an initial schedule starting with a task
order based on most constrained (least available slack) first,

Initial End | End
Problem || Unassign. | SWO | TS
R1 58 45 49
R2 38 30 34
R3 27 18 20
R4 37 28 32
RS 19 13 15

Table 1: Performance of SWO and TS on AFSCN
scheduling. The second column indicates the number of
unassignable tasks in the initial schedule.

sub-sorted by earliest start time first, sub-sorted by smaller
number of resource alternatives first.

During each SWO iteration, we examine the schedule and
identify the unassignable tasks. We move the unassignable
tasks forward in the permutation by a distance of five (this
is consistent with the SWO setup described in (Barbulescu et
al. 2006), for which the best SWO performance on AFSCN
has been reported).

The TaskSwap procedure is brought to bear on the same
initial schedule for each problem as SWO, and it is run to
completion. As TS attempts (in the permutation order since
there is no notion of priority) to assign each unassignable
task from the initial schedule, it makes only moves that
maintain the state of already assigned tasks. That is, it is
not free to terminate in a state where one task is de-assigned
in order to assign two others. This can be seen as an unfair
restriction on TS, but is fairly central to its design, which
emphasizes schedule stability.

The results of running SWO for 500 iterations, and 7S for
one iteration show (Table 1) that for each problem SWO is
able to assign more tasks than TS>.

AMC Empirical Results: 7S Outperforms SWO

For the AMC scheduling problem, 7S has been applied quite
effectively. TS by definition enforces the domain’s priority
constraint (since a lower priority unassignable task can never
be substituted for an assigned higher priority task). To en-
sure that the priority constraint is also enforced by SWO, we
define a new objective function. We first specify a heuristic
scoring value for each priority class, that emphasizes the dif-
ferences between classes: priority 5 maps to 1, priority 4 to
1,000, priority 3 to 1,000,000, and so on. We then define the
penalty score for a given schedule to be the sum of the scor-
ing values for all unassignables. The new objective function
minimizes the penalty score. Since the number of tasks in
the AMC instances is less than 1,000, the objective function
ensures that the substitution of any number of lower priority
tasks for a higher priority task will result in a schedule with
a greater penalty score.

We build the initial greedy solution for both SWO and

Note that our schedule builder is slightly different from the
greedy scheduler in (Barbulescu et al. 2006). While the values
produced by SWO with this schedule builder are somewhat worse
than the ones reported in (Barbulescu et al. 2000), it is still the case
that SWO outperforms TS for these problems.

TS based on a priority sorted task permutation. We found
empirically that moving unassignable tasks forward in the
permutation only a short distance (50-100 positions) did not
perform well, and that setting the move distance to around
200 resulted in best performance. Biasing this base distance
according to priority class of the unassignable u, move dis-
tance was defined as md(u) = 200 + (10 x (6 — Pr(u))).}
To fully take advantage of the new objective function, we
loosen the requirement for accepting schedule repairs in 7.
Specifically, an unassignable task u is considered success-
fully inserted and the new solution is accepted even when
some initially scheduled tasks of lower priority than u are
not reinserted into the schedule, if the sum of the scoring
values for these tasks is lower than the scoring value of u.
Figure 1 compares the penalty scores obtained running 7'S
(3 iterations of VBSS) with SWO (50 iterations) on each of
the 5 sets of AMC benchmark problems; the average end
number of unassignable tasks in the same runs are shown in
Figure 2. A Wilcoxon signed-rank test (Ott & Longnecker
2000) shows that the average penalty scores are not signifi-
cantly different for the first three sets of problems. However,
at higher levels of oversubscription (problem sets 4 and 5) 7S
is seen to outperform SWO. With respect to penalty scores,
a significant difference (p = 0.0152) is found for problem
set 4.* With respect to average unassignables, significantly
fewer are obtained for both problem sets 4 and 5 (p < 0.01).

SWOvs. TS

1E+13
1E+12 4 /
1E+11
1E+10 /

TS

1E+08

Average Score

1E+07 q

1000000

100000

Problem Set

Figure 1: Average Penalty Score.

Exploring the AFSCN/AMC Problem Space

To better understand why SWO outperforms TS for AFSCN,
but not for AMC, we identify problem features that are dif-
ferent in the two domains; starting with AFSCN-like prob-
lems we vary these features and generate new problems
which sample the common AFSCN/AMC problem space.
We design experiments to test two basic hypotheses:

1. Increasing the capacity and/or slack in AFSCN-like prob-
lems with no priority specified will result in 7S perform-

3The 5 AMC priority classes range from 1 (highest) to 5.
“This difference is not apparent from the graph, due to the pres-
ence of outliers in the computed average scores.

SWOvs. TS

100

90

80

70

60 1

w0 B SWO|
mTs

40

Unassignable Tasks

30 4

20

1 2 3 4 5
Problem Set

Figure 2: Average Unassignables.

ing better than SWO.

2. Priority constraints are better handled by TS than SWO,
especially as the level of oversubscription increases.

Experimental Design

The instances in the AMC benchmark sets are larger in size
and have more slack and resource capacity available than
the AFSCN benchmark instances. Also, task priority is only
present in the AMC problems. To investigate how these dif-
ferences account for the observed difference in the perfor-
mance of 7S and SWO, we design a problem generator that
produces new AFSCN-like instances with varying degrees
of slack and resource capacity; AMC-like task priorities can
also be included in the new instances.

For each of the five AFSCN benchmark problems (R1 to
RS5), the generator produces new problems based on its pa-
rameter settings, as follows:

e Problem size: For our experiments, we decided to either
keep constant, double or triple the size of the initial AF-
SCN benchmark problems. When the problem size is kept
constant, new problems are produced by moving each
task’s time window later in time by a uniform random
choice over an hour time interval. When the size is dou-
bled (or tripled), two (or three) new tasks are generated
for each task in the original problem. The new tasks vary
from the initial one in terms of time window and possibly
duration.

e Slack (temporal flexibility): A duration factor df is used
to determine the durations for each new task. Given a task
T;, 1 <1 < n with an initial duration TiD”’, the new dura-
tion is computed as: T * (1 — random(df, 0)), where
random/(df,0) produces a random number between df
and zero. For example, if df = 0.9, the new task dura-
tions can vary anywhere between the initial duration and
10% of the value of the initial duration.

e Resource capacity: Given a resource r with capacity cap,
(in the initial AFSCN benchmark set), a capacity factor
cf is used to compute the new capacity of r as: cap, +
random(cf,0).

Prob. || Avg. | Slack | Capac. Init.Sched.Unassignables
Set Size df cf pf = false | pf = true
1.1 443 0 0 34.1 71.2
1.2 886 0 3 127.7 195.6
1.3 1329 0 9 94.8 170.3
2.1 443 0.5 0 25.1 443
22 886 0.5 3 81.6 121.6
23 1329 | 0.5 9 56.12 106.6
3.1 443 0.5 3 7.4 15.7
32 886 0.5 6 27.3 48.9
33 1329 | 0.5 12 47 65.4
4.1 443 0.9 0 11.6 22.6
42 886 0.9 3 37.9 65.3
43 1329 | 09 9 323 454
5.1 443 0 5 4.04 13.5
52 886 0 8 349 69.0
53 1329 0 15 47.8 80.5
6.1 443 0.5 5 3.48 6.8
6.2 886 0.5 8 19.7 29.4
6.3 1329 | 0.5 15 36.8 44.7

Table 2: Description of the problem sets: the size is either
similar to the initial AFSCN problems (*.1 sets), doubled
(*.2 sets) or tripled (*.3 sets); df is the duration factor, cf
is the capacity factor, and pf the priority flag. The av-
erage number of unassignables in a greedy initial solution
computed for the 50 instances in each problem set is also
recorded.

e Priority: A priority flag pf determines if task priorities are
present in the problem. When pf is true, task priorities are
uniformly sampled from 1..5 (following the five priority
classes in AMC).

We generate 36 sets of problems, with 50 instances each.
18 of the sets are produced with no task priorities (pf =
false), and the other 18 are identical but for the addition of
task priorities (pf = true). The parameters used to gener-
ate the sets are shown in Table 2: the second column rep-
resents the average size of the problem instance, while the
third and fourth columns represent the value of df and cf
respectively. Note that problem set 1.1 with pf = false
contains the five initial AFSCN benchmark problems plus
45 similar instances (same size, slack and resource capac-
ity, varying the time windows for each task). As a measure
of the level of oversubscription in the instances for each set,
we use the greedy constructor to build an initial schedule for
the 50 instances in each set and record the average number
of unassignables in columns five and six.

Experimental Results

For this newly generated problem set we conduct exper-
iments with 500 iterations of SWO and 30 iterations of
TS/VBSS. To investigate our first hypothesis, we focus on the
results in terms of average number of unassignables for the
problem sets without priorities (see Figure 3). We ordered
the problems sets on the x axis in terms of the average initial
number of unassignables (column five in Table 2), as a rough
measure of the oversubscription level in each problem set.
With a few exceptions we see that the two algorithms result

Average Unassignable Tasks

140

SWOvs. TS

120

100

80

60

——TS
—=—SWO

40

20 4

Figure 3: Average Penalty Score (lower values better) for

problems without task priorities

Prob. | Score || Prob. Score Prob. Score

Set Diff. Set Diff. Set Diff.

6.1 0 6.3 0 5.3 -3514

5.1 0 2.1 0 1.1 -1003500

3.1 0 3.2 -3.5 2.3 -6009

4.1 1 3.3 0 22 -999880

6.2 0 4.2 500.5 1.3 -9815700
4.3 0.5 5.2 -899500 1.2 -1003805000

Table 3: Comparative Performance SWO vs. TS: the

columns labeled Score Diff. are the median of the differ-
ences (T'S — SWO) of the penalty scores for all problems
in the set. Negative values indicate problem sets where TS
outperforms SWO. Bold numbers are statistically significant.

on average in a similar number of final unassignables for all
problem sets. Our initial hypothesis was that 7'S would begin
to outperform SWO as capacity and/or slack are increased. A
Wilcoxon signed-rank test shows that SWO outperforms TS
(p < 0.01) for all problem sets except 5.1 and 5.3. While
these results do not confirm our hypothesis, there is some
evidence (for example, sets 3.1, 5.1, 5.2, and 5.3) showing
that TS begins to perform comparably with SWO? as slack is
held constant and capacity is increased.

For our second hypothesis, we compare results in terms of
penalty scores when task priorities are present. We present
the results in tabular form (Table 3) since a graph of ei-
ther average or median scores obscures the results due to
a few outliers of very significant magnitude. Again, we or-
dered the problem sets based on the average initial number
of unassignables (column six in Table 2). Columns two,
four, and six in Table 3 show the median of the differences
(T'S — SWO) of the penalty scores for all problems in the
corresponding problem set. Negative numbers, then, in-
dicate that 7S outperforms SWO for that set. The results
show that for moderate levels of oversubscription SWO and

5 As measured by relative difference in end unassignable tasks
normalized by initial number of unassignables.

TS perform similarly well, with SWO slightly outperform-
ing TS for a few sets. In terms of statistical significance, a
Wilcoxon signed-rank test shows that for the sets 4.1 and
6.1 SWO significantly outperforms 7S (with p < 0.002); for
the rest of the sets up to 5.2 there are no significant differ-
ences. As the problems become more oversubscribed, there
is a crossover point (after problem set 5.2) and TS on average
finds better solutions than SWO. The difference is significant
(p < 0.0001) for problem sets 5.2, 5.3, and 1.3.

A Tale of Two Searches: What Works When
and Why

Extrapolating from the above experimental results, we
can draw a few conclusions relevant to the choice of
permutation-space and schedule-space methods for solving
oversubscribed scheduling problems. For problems that do
not incorporate task priority, the search space is less con-
strained and the broader (and more disruptive) search pro-
cess conducted by SWO provides greater opportunity to find
better solutions. In contrast, repair-based searches such as
TS suffer from a lack of strong heuristic guidance in this
context and hence the more localized search that they carry
out is not as effective.

In problems where task priority is in play, the situation
is different. If problems tend to be only moderately over-
subscribed, the additional constraint imposed on the search
space by priority still leaves sufficient flexibility for tech-
niques like SWO to reasonably find better solutions. How-
ever, as priority-based problems become more severely over-
subscribed, the search space becomes increasingly con-
strained and rearrangement of task permutations become
less productive. In this context, repair-based methods like 7S
benefit from the additional search space structure imposed
by priority and gain in performance.

Acknowledgements

This research was supported in part by the USAF Air Mo-
bility Command under Contract # 7500007485 to Northrop
Grumman Corporation, by the Department of Defense Ad-
vance Research Projects Agency (DARPA) under Contract
FA8750-05-C-0033, and by the CMU Robotics Institute.
Any opinions, findings and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the USAF or DARPA.

References

Barbulescu, L.; Howe, A.; Whitley, L.; and Roberts, M.
2006. Understanding algorithm performance on an over-
subscribed scheduling application. JAIR 27:577-615.

Bresina, J. 1996. Heuristic-Biased Stochastic Sampling.
In Proceedings of the Thirteenth National Conference on
Artificial Intelligence, 271-278.

Cicirello, V., and Smith, S. 2002. Amplification of search
performance through randomization of heuristics. In Proc.
8th Int. Conf. on Principles and Practice of Constraint Pro-
gramming. Ithaca N'Y: Springer-Verlag.

Frank, J., and Kiirklii, E. 2005. Mixed discrete and contin-
uous algorithms for scheduling airborne astronomy obser-
vations. In CPAIOR, 183-200.

Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2001.
Planning and scheduling for fleets of earth observing satel-
lites. In Proceedings of the Sixth International Symposium
on Artificial Intelligence, Robotics, Automation and Space.

Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A. 2004.
A comparison of techniques for scheduling earth observ-
ing satellites. In Proc. of the 19th National Conference on
Artificial Intelligence (AAAI-04), 16th Conference on Inno-
vative Applications of Al (IAAI-04), 836-843.

Johnston, M., and Miller, G. 1994. Spike: Intelligent
scheduling of hubble space telescope observations. In
Zweben, M., and Fox, M., eds., Intelligent Scheduling.
Morgan Kaufmann.

Joslin, D., and Clements, D. 1999. “Squeaky Wheel” Op-
timization. JAIR 10:353-373.

Joslin, D.; Frank, J.; Jonsson, A.; and Smith, D. 2005.
Simulation-based planning for planetary rover experi-
ments. In Proc. of the 2005 Winter Simulation Conference,
1049-1058. M.E. Kuhl, N.M. Steiger, F.B. Armstrong, and
J.A. Joines, eds.

Kramer, L. A., and Smith, S. F. 2004. Task swapping for
schedule improvement, a broader analysis. In Proc. 14th
Int’l Conf. on Automated Planning and Scheduling.

Kramer, L. A., and Smith, S. F. 2005a. The amc scheduling
problem: A description for reproducibility. Technical Re-
port CMU-RI-TR-05-75, Robotics Institute, Carnegie Mel-
lon University.

Kramer, L. A., and Smith, S. F. 2005b. Maximizing
availability: A commitment heuristic for oversubscribed
scheduling problems. In Proc. 15th International Confer-
ence on Automated Planning and Scheduling (ICAPS-05).

Nigenda, R., and Kambhampati, S. 2005. Planning graph
heuristics for selecting objectives in over-subscription
planning problems. In Proceedings 15th Int’l Conference
on Automated Plannign and Scheduling, 192-201.

Ott, R., and Longnecker, M. 2000. An Introduction to
Statistical Methods and Data Analysis, 5th Ed. Duxbury
Pr.

Rabideau, G.; Knight, R.; Chien, S.; Fukanaga, A.; and
Govindjee, A. 1999. Iterative planning for spacecraft op-
erations using the aspen system. In Proc. 5th Int. Sym. on
Al Robotics and Automation for Space.

Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proceedings 14th International Conference on
Automated Planning and Scheduling, 393-401.

Syswerda, G. 1991. Schedule Optimization Using Genetic
Algorithms. In Davis, L., ed., Handbook of Genetic Algo-
rithms. NY: Van Nostrand Reinhold. chapter 21.

Whitley, L.; Starkweather, T.; and Fuquay, D. 19809.
Scheduling Problems and Traveling Salesmen: The Ge-

netic Edge Recombination Operator. In Schaffer, J. D., ed.,
Proc. of the 3rd Int’l. Conf. on GAs. Morgan Kaufmann.

