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Both direct schedule representations as well as indirect permutation-based representations in con-
junction with schedule builders are successfully employed in oversubscribed scheduling research.
Recent work has indicated that in some domains, searching the space of permutations as opposed
to the schedule space itself can be more productive in maximizing the number of scheduled tasks.
On the other hand, research in domains where task priority is treated as a hard constraint has shown
the effectiveness of local repair methods that operate directly on the schedule representation. In
this paper, we investigate the comparative leverage provided by techniques that exploit these alter-
native representations (and search spaces) in this latter oversubscribed scheduling context. We find
that an inherent difficulty in specifying a permutation-based search procedure is making the trade-
off in guaranteeing that priority is enforced while giving the search sufficient flexibility to progress.
Nonetheless, with some effort spent in tuning the move operator, we show that a permutation-space
technique can perform quite well on this class of problem in cases of low oversubscription and in
fact was able to find new optimal solutions to a few previously published benchmark problems. Not
surprisingly, the permutation-space search does not perform as well as the schedule-space search in
terms of maintaining schedule stability.
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1 Introduction

In The Sciences of the Artificial [14], Herbert Simon recounts the example of an ant making its
way toward its eventual goal over a wave-molded beach. The ant’s path seems somewhat random
and somewhat directed, with a complexity that is not easily decipherable. Simon makes the point
that the ant itself does not navigate by some complex algorithm, but that the apparent complexity
arises from the features of the terrain it traverses. In a like vein, as we craft search techniques to
navigate a complex space, it has often proven fruitful to employ knowledge about the contours of
the space in the search process. It is generally accepted in Al that choosing the right representation
for a problem can result in search spaces in which the solutions are easier to find.

Our specific focus in this paper is on oversubscribed scheduling problems — scheduling problems
for which there is typically more to do than available resources will allow and the search problem
is to determine which subset of activities to include. For this class of problem, scheduling research
has successfully exploited the use of both direct schedule representations and indirect, usually
permutation-based, representations that can be expanded into direct representations as a basis
for solution. However, very little research has directly analyzed the implications and tradeoffs of
this representational choice for solving various oversubscribed scheduling problems. Barbulescu
et al.[1] have shown a permutation-based genetic algorithm to outperform a schedule repair based
technique in the context of scheduling groundstation access for satellite communications. Globus et
al.[6, 5] similarly argue the relative superiority of a permutation-based representation over a direct
representation based on Gantt charts for scheduling requests for time on Earth observing satellites.



In this paper, we consider the basic question of representation choice in the context of another
oversubscribed scheduling domain, the US Air Force Air Mobility Command (AMC) scheduling
problem [11]. The AMC problem is distinguishable from most other oversubscribed scheduling
problems studied in the literature in one major respect: task priority is treated as a hard constraint.
This characteristic models a range of real-life situations, especially in military operations, where the
priority of a task trumps all other considerations and is not subject to tradeoff. It can be contrasted
with the more typical treatment of priority in oversubscribed scheduling, where the search problem
is formulated as one of optimizing a weighted sum of the priorities of all scheduled tasks and it is
possible to trade one higher priority task for some number of lower priority tasks. Repair-based
algorithms working in the schedule space can be designed to enforce this hard constraint. In fact,
the TaskSwap procedure originally developed for solving the AMC problem is such a schedule-space
search algorithm [9, 10]. The question we consider in this paper is whether the relative superiority
of permutation-based techniques in other oversubscribed domains carries over to domains like the
AMC problem where task priority is a hard constraint.

We hypothesized that it would be difficult to design a competitive search algorithm for the
AMC domain using a permutation-based representation, mainly because of the inherent difficulties
of enforcing the task priority constraint. The hypothesis was based on what we thought to be
a reasonable idea: searching for solutions directly in the schedule space, as opposed to using an
indirect representation which needs to be translated into a schedule, should be better able to adhere
to the hard task priority constraint, while at the same time focusing the search to produce good
solutions faster. We found that, after a certain amount of tuning, a permutation-based search
technique can perform comparably with the repair-based technique for low to moderate levels
of oversubscription. However, as the problems become more oversubscribed, the permutation-
based technique is outperformed by the schedule-space technique. For problems with high levels
of oversubscription there are very few opportunities to move things around, and the permutation-
based technique fails to identify them.

2 Basic Representational Choices

For many scheduling applications in general and oversubscribed scheduling applications in partic-
ular, the representation of choice is a permutation of the tasks to be scheduled, together with a
schedule builder to transform the permutation into a schedule [16, 15, 6, 1]. The advantage of
using such an indirect representation is that a wide range of general-purpose search algorithms
(from heuristic methods to exact, tree search methods) can be employed to search the permutation
space, while all the particular constraints of the domain are encapsulated in a schedule builder.
As a downside, in general, one can not predict the effect of a change in the current solution (per-
mutation) until the schedule builder computes the new schedule. Also, depending on the schedule
builder, the set of schedules that can be reached from the permutation space is usually a proper
subset of all possible schedules. It is not clear if this subset contains the optimal solution. Finally,
the permutation search space/schedule builder combination is not well suited for preserving sched-
ule stability (since it is difficult to predict how a permutation change will affect the corresponding
schedule).

Searching the schedule space directly can be an attractive alternative ([7, 3, 9, 10]) to permu-
tation space search. Powerful domain-specific heuristics are usually available (for example, various
resource contention measures), and such measures can drive the search. Also, when schedule sta-
bility is important, search operators for the schedule space can be defined such that stability is
preserved (by minimally changing the current schedule). While general-purpose search operators
can still be defined, efficient search algorithms in the schedule space will typically exploit domain



knowledge to decide how to reorganize the schedule. The challenge is in defining the right search
operators.

3 The AMC Scheduling Domain

The AMC scheduling problem considered in this paper abstracts the large airlift and tanker mission
scheduling problem faced by the US Air Force Air Mobility Command (USAF AMC). Drawing from

[11], the problem is briefly summarized as follows:
o A set T of tasks (or missions) are submitted for execution. Each task i € T" has

an earliest pickup time est;, a latest delivery time [ ft;, a pickup location orig;, a
dropoff location dest;, a duration d; and a priority pr;

e A set Res of resources (or air wings) are available for assignment to missions. Each
resource r € Res has capacity cap, > 1 (corresponding to the number of aircraft
for that wing).

e Each task i has an associated set Res; of feasible resources (or air wings), any of
which can be assigned to carry out . Any given task i requires 1 unit of capacity
(i.e., 1 aircraft) of the resource r that is assigned to perform it.

e Each resource r has a designated location home,. For a given task ¢, each resource
r € Res; requires a positioning time pos,; to travel from home, to orig;, and a
de-positioning time depos,; to travel from dest; back to home,.

A schedule is a feasible assignment of missions to wings. To be feasible, each task i
must be scheduled to execute within its [est;, [ ft;] interval, and for each resource r and
time point ¢, assigned-cap,; < cap,. Typically, the problem is over-subscribed and only
a subset of tasks in T" can be feasibly accommodated. If all tasks cannot be scheduled,
preference is given to higher priority tasks.

3.1 AMC Task Priority as a Hard Constraint

In the AMC domain tasks are scheduled strictly by priority. Furthermore, it is not normal procedure
to “trade off” or bump a higher priority mission to get some number of lower priority missions into
the schedule. There are five major priority classes: 1 through 5, with 1 the highest priority class.
A simple way of producing schedules that satisfy the task priority constraint is to assign prospec-
tive tasks in priority order. Unless the schedule is extremely oversubscribed, tasks in the highest
priority classes will tend to be feasibly assigned. Assuming that the problem is oversubscribed,
though, at some point resource unavailability will not allow the next pending task to be inserted.
Subsequent (lower priority) tasks can still be feasibly assigned if resources are available for the time
periods required. Hence it is possible for a schedule satisfying the priority constraint to include
tasks of lower priority than those of some tasks that have been forced to be excluded.
A solution (schedule) S respects the hard priority constraint if the following two rules hold:
1. There exists no feasible solution S that contains a superset of the priority 1 tasks that are
contained in S. In other words, there is no S where all priority 1 tasks that are assigned to
resources in S and one or more additional priority 1 tasks (unassigned in S) are assigned.!

2. For any k = 1..4, there exists no S’ that contains exactly the same set of assigned tasks at
priority levels 1 through & that are contained in S and a superset of the priority k& + 1 tasks
that are contained in S.

!This does not imply that S" should schedule exactly the same tasks at the other lower priority levels; in fact it
is likely that the scheduled lower priority tasks would be different.



An optimal solution then is a solution satisfying the 2 rules above that also minimizes the number
of unassigned tasks at each level. We define S to be hard-priority optimal if there is no solution
with exactly the same number of unassignables in the first k& highest priority classes and fewer
unassignables in the k + 1th (next lower) priority class, for any k = 0..4.

3.2 Enforcing the Hard Priority Constraint

In practice, given that the problem we consider is NP-complete [4], it is not in general feasibly
possible to prove that a solution is hard-priority optimal, let alone that the above two rules for
enforcing the task priority are respected. Instead, we choose to define a new objective function
that amplifies the differences between priority classes. Given a schedule, any change that would
insert into the schedule a lower priority unassignable by unscheduling (bumping) a higher priority
task is precluded by the new objective function.

More specifically, we resort to using a heuristic scoring value for each priority class, that em-
phasizes the differences between classes: priority 5 maps to 1, priority 4 to 1,000, priority 3 to
1,000,000, and so on. We define the penalty score for a schedule as the sum of the scoring values for
all the unassignables. The new objective function minimizes the penalty score. Since the number
of tasks we consider is less than 1,000, by using a factor of 1,000 between successive priority classes,
we ensure that a higher priority task couldn’t possibly be swapped out to make way for any number
of lower priority tasks and still achieve a better (lower) penalty score.

4 Algorithms

Previous research has found TaskSwap, a repair-based algorithm, to perform well on the AMC
scheduling problem [9, 10, 12]. Conceptually, the TaskSwap procedure proceeds by temporarily
relaxing the priority constraint, retracting one or more scheduled tasks (regardless of priority) to
allow insertion of a previously unassignable task, and then recursively attempting to reintroduce
retracted tasks elsewhere into the schedule. We define a variant of this base procedure in Section
4.2 as our representative schedule-space search procedure for the experimental analysis to follow.
A wide range of algorithms searching in permutation space have been implemented for over-
subscribed scheduling domains. One stands out because of its similarity with TaskSwap: Squeaky
Wheel Optimization (SWO) [8]. SWO temporarily assigns higher priority to unscheduled tasks
and attempts to schedule them earlier. Also, SWO has been shown to be one of the best perform-
ing algorithms for another oversubscribed domain, scheduling groundstation access for satellite
communications [2]. Hence we choose SWO as our representative permutation-space search pro-
cedure, defined in Section 4.3. We also implemented various hill-climbing algorithms, employing
several simple swap operators as well as a “temperature descent swap” [6] operator, but found these
techniques to perform rather poorly when running for a reasonable number of iterations.

4.1 The Schedule Builder

The schedule builder produces an initial schedule for both TaskSwap and SWO; also, it translates
from the permutation search space to the schedule space while running SWO. Given a permuta-
tion of tasks, the schedule builder considers the tasks in the order in which they appear in the
permutation and uses a look-ahead heuristic to assign start times and resources to tasks, based on
predicted resource contention. This heuristic, maz-availability, is described in some detail in [12].
To produce the initial schedule, the schedule builder is applied to the tasks sorted in priority order.



4.2 TaskSwap

As indicated above, the TaskSwap scheduling procedure of [9, 10] implements a repair-based ap-
proach to rearranging tasks in an input schedule so as to include additional, previously unassignable
tasks. The algorithm considers unassignable tasks one by one (in priority order) and attempts to
insert them in the existing schedule by retracting some number of conflicting tasks. The retracted
tasks are reassigned subsequent to assigning the formerly unassignable task, the idea being that
there might exist a new feasible schedule where retracted tasks are shifted somewhat in time or
assigned to an alternate resource. The algorithm recurses on any retracted task that cannot be
reassigned, and returns successfully when all visited tasks are assigned, or with failure when all
tasks contending for the same set of alternate resources have been considered. For a complete
algorithmic description of this basic TaskSwap procedure, we direct the reader to [9].

TaskSwap localizes its search for a solution that enforces the hard priority constraints by in-
serting new unassignable tasks into the schedule without unscheduling any higher priority tasks in
the process. In fact, TaskSwap can be seen to take an overly conservative approach to enforcing
the priority constraint; since it will never unschedule a task that is in its input schedule, it can
actually miss opportunities for an improved solution that might result from substituting one task
of a given priority for another task of the same priority.

Noticing this deficiency, and also to take advantage of the more general objective function
approximation of the priority constraint defined earlier, we define a less constraining version of
TaskSwap, where an unassignable task u is considered successfully inserted and the new solution is
accepted even when some initially scheduled tasks of lower priority than u are not reinserted back
into the schedule, if the sum of the scoring values for these tasks is lower than the scoring value of
u. We call this version PriorityTaskSwap. 1t is easy to see that the following property holds:

Property 1 The final schedule produced by the new version of PriorityTaskSwap can never result
in a worse (higher) penalty score than the initial schedule.

4.3 Squeaky Wheel Optimization (SWO)

SWO [8] repeatedly iterates through a cycle composed of three phases. First, a scheduling order
of the elements in the problem is defined and based on this a greedy solution is built. Then, the
solution is analyzed and the elements causing “trouble” are ranked based on their contribution to
the objective function. Third, the ranking of such “trouble makers” is used to move them earlier
in the scheduling order. The cycle is repeated until a termination condition is met.

In our scheduling context, we build the initial greedy solution based on the priorities associated
with the elements in the problem. The “trouble maker” elements are unassigned tasks. During
each iteration, we examine the schedule and identify the unassignable tasks. Based on its priority,
we associate a move distance with each unassignable task, which indicates how far forward in the
scheduling order this task will move for the next iteration.

5 Experimental Design

For our experiments with Priority TaskSwap and SWO, we used the 100-instance data set of mission
scheduling problems for the AMC domain which is described in [11]. Each problem instance con-
sists of approximately 1000 missions (tasks) that must be scheduled across 14 air wings (resources)
with variable capacity. The 100 instances are divided into 5 sets of 20, each being progressively
more resource constrained. For each instance an initial schedule is generated after which Prior-
ity TaskSwap and SWO are run. For SWO we found empirically that moving unassignable tasks
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Figure 1: Solution Quality: Number of Unassignable Tasks and Penalty Score

forward for only a short distance (50 to 100 positions) did not perform well. Setting the distance to
around 200 resulted in best performance. We defined the distance to move forward an unassignable
w as: 200 + (10 x numeric_priority(u)), where numeric_priority(u) = 6 — priority_class(u).? For
each instance, PriorityTaskSwap is run to completion, and SWO is run until an iteration limit of
50 is reached?® or the procedure finds an optimal solution (0 unassignable tasks).

6 Experimental Results

First, we compare SWO and TaskSwap in terms of the penalty score and end number of unassignables
(Figure 1). We find that the two algorithms perform similarly for the first four sets of problems.
A Wilcoxon signed-rank test [13] shows that the results are not significantly different for these
problems. SWO is able to find two new optimal solutions (zero unassignable tasks), for problems
4 and 20 in set 3 [11]. However, for the problems with high levels of oversubscription (in set 5),
a Wilcoxon signed-rank test shows that TaskSwap finds significantly better solutions in terms of
number of unassignables. TaskSwap is able to make progress on the harder problems by selectively
focusing on a relatively small subset of tasks, for which it is productive to temporarily relax the
priority constraint, and concentrating on moving these tasks. In contrast, SWO is unable to find
the appropriate combination of tasks to move in order to achieve comparable results.

While TaskSwap focuses on which tasks to move around in order to improve the solution, SWO
is unconstrained in terms of what it can move around in the schedule. We conjecture that this
flexibility of SWO is the reason it finds new optimal solutions for problems with low levels of
oversubscription and at the same time, this is what hurts its performance for moderate to high
levels of oversubscription. This conjecture is supported by our schedule stability results.

To assess schedule stability, we compare initial and final schedules for each run in terms of:
number of tasks that shifted in time and number of tasks that changed resource (Figure 2). As
expected, SWO performs poorly in terms of schedule stability. When the level of oversubscription is
low, there is also more freedom in rearranging the schedule to fit in more of the initial unassignables.
SWO takes advantage of this: on average it changes the start time for as many as 700 tasks for

2For example, a priority-1 unassignable task will be move forward 250 positions, and a priority-2 task 240 positions.

3SWO typically found its best solution after a few iterations, and running more than 50 iterations produced no
further improvement. We also experimented with stochastic versions of the priority to distance mapping, but were
unable to achieve better results.
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the problem set 2 and reassigns resources to more than 170 tasks for that set. For high levels of
oversubscription, there isn’t much flexibility in rearranging tasks in the schedule (since the initial
schedule is so packed). SWO moves a lot fewer tasks for problem sets 4 and 5 than it does for 2
and 3, and it cannot find the right set of moves to perform as well as TaskSwap.

7 Final Remarks

Implementing a permutation-based algorithm that respects task priority constraints is a challenging
proposition. Our approach in this paper has been to define an objective function that encodes the
priority constraint as a numeric sum, that can only be improved by assigning more tasks of higher
priority. The difficulty though is the inherent problem of guaranteeing that priority is enforced
while giving the search sufficient flexibility to progress.

Overall, we find two main results with respect to choice of representation for solving oversub-
scribed scheduling problems that require task priority to be enforced as a hard constraint. First,
for low levels of oversubscription, a permutation-based search technique is able to take advantage
of the many possibilities that exist to rearrange currently scheduled tasks to incorporate new unas-
signed tasks into the schedule; for such problems, a permutation-based representation can work as
well (or even outperform) a repair-based technique. Second, for moderate to high levels of oversub-
scription, there is little room to move tasks around in the schedule; a technique like TaskSwap that
focuses exactly on which tasks would need to be reassigned has a much better chance of finding
improvements than a permutation-based technique, which lacks such guidance.
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