Searching Alternate Spaces to Solve
Oversubscribed Scheduling Problems

Laurence A. Kramer Laura V. Barbulescu
Stephen F. Smith
The Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh PA 15213
{lkramer,laurabar,sfs } @cs.cmu.edu

May 15, 2007

Abstract

Oversubscribed scheduling problems have been approached using both direct
representations of the solution space and indirect, permutation-based representa-
tions (coupled with a schedule builder to produce the corresponding schedule).
In some problem contexts, permutation-based search methods have been shown
to outperform schedule-space search methods, while in others the opposite has
been shown to be the case. We consider two techniques for which this behavior
has been observed: TaskSwap (7S), a schedule-space repair search procedure, and
Squeaky Wheel Optimization (SWO), a permutation-space scheduling procedure.
We analyze the circumstances under which one can be expected to dominate the
other. Starting from a real-world scheduling problem where SWO has been shown
to outperform TS, we construct a series of problem instances that increasingly in-
corporate characteristics of a second real-world scheduling problem, where 7S has
been found to outperform SWO. Experimental results provide insights into when
schedule-space methods and permutation-based methods may be most appropri-
ate. Finally, we consider opportunities for improving performance by integrating
the two approaches into a hybrid approach that exploits both search spaces. !

1 Introduction and Motivation

As research in automated planning and scheduling has moved into problem domains
that more accurately model real-world concerns, one issue that has garnered increasing
interest has been that of oversubscription [Kramer and Smith, 2004, Barbulescu et al.,
2006, Smith, 2004, Nigenda and Kambhampati, 2005]. Generally speaking, an over-
subscribed problem is one in which the resources available (e.g., time, capacity) are not
sufficient to permit accomplishment of all stated tasks or goals, and hence the problem
solver must decide which subset of tasks or goals to carry out. The basic objective is to

! An abbreviated version of this paper appeared in the Proceedings of AAAI 2007 [Kramer et al., 2007a].

maximize the number of tasks accommodated or goals satisfied, subject in some cases
to associated task or goal priorities. Oversubscribed problems arise in a broad range of
application domains, including rover task planning [Smith, 2004, Joslin et al., 2005],
satellite and telescope scheduling [Bresina, 1996, Frank et al., 2001, Barbulescu et al.,
2006] and military airlift allocation [Smith et al., 2004].

With respect to solving oversubscribed scheduling problems, two basic classes of
solution techniques have emerged: those that search directly in the space of possi-
ble schedules, and those that search in an alternative space of task permutations (in
which case a schedule builder is used to provide a mapping to schedule space). Both
permutation-space and schedule-space methods have been shown to perform effec-
tively in specific problem domains. This raises the question of whether there are prob-
lem characteristics that might suggest the appropriateness of one over the other.

In this paper, we attempt to gain insight into this general question by analyzing
the performance tradeoffs between two specific methods on a common set of problem
instances. Our starting point is two oversubscribed scheduling problems that are quite
similar in character, the USAF Satellite Control Network (AFSCN) problem previously
studied in [Barbulescu et al., 2006] and the USAF Air Mobility Command (AMC)
airlift scheduling problem described in [Kramer and Smith, 2005a]. Prior research
with the AFSCN problem has shown permutation-space scheduling procedures such
as Squeaky Wheel Optimization (SWO) to dominate schedule-space methods. Other
prior work [Kramer and Smith, 2004, 2005b] has demonstrated the effectiveness of a
schedule-space method called TaskSwap (7'5) in solving the AMC scheduling problem,
and in fact 7S can be shown to outperform SWO in this domain. Given these results,
we attempt to understand what problem characteristics set these domains and solution
techniques apart.

We define a series of problem sets which generalize from the AFSCN problem and
increasingly incorporate characteristics of the AMC problem. Our experimental results
indicate that problem hardness and the presence or absence of task priorities are two
distinguishing performance factors. In particular, on smaller problem instances with
lower levels of capacity SWO quite often outperforms 7'S. However, on larger instances
and as capacity increases, 7S becomes quite competitive. For problems where task
priority is a hard constraint, 7'S begins to outperform SWO, particularly as the instances
become more oversubscribed.

Finally, we consider the opportunities of improving performance by combining the
two approaches. Both SWO and TS can often become trapped in states from which
either no progress can be made or no improving moves can be found within a relatively
large number of iterations. We investigate the question: when one technique appears
to be stuck, is it productive to switch to the other technique and search in an alternate
space? We show that a hybrid algorithm that switches from SWO to T'S when SWO gets
stuck is able to either match or outperform the best result of both algorithms on all the
problem sets.

2 Permutation Space vs. Schedule Space Search

As indicated above, we can distinguish two basic classes of approaches to solving
oversubscribed scheduling problems based on the search space representation that is
used. Permutation-based methods emphasize search in the space of task permutations,
where a given permutation specifies a scheduling order and is transformed into an ac-
tual schedule by a “schedule builder.” Search in the permutation space has been ef-
fectively employed in many scheduling applications [Whitley et al., 1989, Syswerda,
1991, Globus et al., 2004, Barbulescu et al., 2006]. The main advantage of a permu-
tation representation is that general-purpose search algorithms can be employed while
all the particular constraints of the domain are encapsulated in a schedule builder. The
main disadvantage is that in general it is not possible to predict the effect of permuta-
tion changes until the schedule builder computes the new schedule. Also, the schedules
reachable via the schedule builder might represent a suboptimal subset of all possible
schedules.

A second class of techniques, referred to generally as repair-based search tech-
niques, operate directly in the space of possible schedules [Johnston and Miller, 1994,
Rabideau et al., 1999, Kramer and Smith, 2004]. Searching the schedule space directly
is sometimes an attractive alternative. Powerful domain-specific heuristics are usually
available (e.g., various resource contention measures), and such measures can direct
the search in an efficient but effective manner. In continuous domains where sched-
ule stability is important, search operators for the schedule space can be defined to
generate new solutions in a controlled manner (and minimize changes to the current
schedule). While general-purpose search operators can still be defined, efficient search
algorithms in the schedule space will typically exploit domain knowledge to decide
how to reorganize the schedule. The challenge is in defining the right search operators.

2.1 TaskSwap

The specific schedule-space search method we consider in this paper is TaskSwap
(TS)[Kramer and Smith, 2004]. 7S implements a repair-based search aimed at rear-
ranging tasks in an input schedule so as to include additional, previously unassignable
tasks. The InsertUnassignableTasks procedure (Figure 1) considers unassignable tasks
one by one, according to priority or some other ordering criteria, and attempts to in-
sert them into the existing schedule by calling TaskSwap (line 4). TaskSwap (Figure 2)
temporarily retracts some number of conflicting tasks (Figure 2, line 3). Any retracted
tasks are reassigned after assigning the formerly unassignable task (Figure 2, lines 5
and 7); the idea being that there might exist a new feasible schedule where these re-
tracted tasks are shifted somewhat in time and/or assigned to an alternate resource. The
core of the RetractTasks procedure is an heuristic, ChooseTaskToRetract, which selects
those tasks for retraction that have the best “fitness” for reassignment. In prior research
[Kramer and Smith, 2003], the heuristic max-flexibility was shown to be an effective
metric for ChooseTaskToRetract and very fast to execute. We use it throughout the
experiments in this paper.

A look-ahead heuristic is used to select the specific start time and resource for
each task in the procedure ScheduleTasks. This heuristic, max-availability [Kramer and

InsertUnassignableTasks(Unassignables)
. Protected « ()
. loop for (task € Unassignables) do
SaveScheduleState
Result «+ TaskSwap(task, Protected)
if Result # ()

then Protected «— Result

else RestoreScheduleState
8. end-loop
9. loop for (i € Unassignables A status; = unassigned) do
10. ScheduleTask(z)
11.end-loop
12.end

NO U R W

Figure 1: InsertUnassignableTasks procedure

TaskSwap(task, Protected)

1. Protected <« Protected U {task}

2. ConflictSet «— ComputeTaskConflicts (task)

3. Retracted «— RetractTasks (Con flictSet, Protected)
4. if Retracted = () then Return(()) ; failure

5. ScheduleTasks(task)

6. Retracted < PrioritizeTasks(Retracted,least-flexible-first)
7. ScheduleTasks(Retracted)

8. loop for (i € Retracted A status; = unassigned) do
9. Protected <+ TaskSwap(i, Protected)

10. if Protected =) then Return(() ; failure
11.end-loop

12.Return(Protected) ; success

13.end

RetractTasks(Con flicts, Protected)
. Retracted «— ()
. loop for (OpSet € Conflicts) do
if (OpSet — Protected) = () then Return(())
t « ChooseTaskToRetract(OpSet — Protected)
UnscheduleTask(t)
Retracted < Retracted U {t}
end-loop
. Return(Retracted)
end

R R N

Figure 2: Basic TaskSwap Search Procedure

Smith, 2005b], considers existing and potential resource contention for an unassigned
task and places it where availability is predicted to be maximal over the range of that
task.

TaskSwap recurses on any retracted task that cannot be reassigned, and returns
successfully when all visited tasks have been assigned, or with failure when all tasks
contending for the same set of alternate resources have been considered (Figure 2, lines
8-11). In the event of failure, the schedule in place prior to the attempted introduction
of the new task is restored and the next unassignable task is considered (Figure 1, line
7). A final scheduling pass is made on remaining unassignable tasks in case any tasks
can be synergistically assigned due to freed up space in the schedule (Figure 1, lines
9-11).

Since TS relies so heavily on the ChooseTaskToRetract heuristic making good
choices, we’ve found that a stochastic search in the neighborhood of the heuristic is
often effective in assigning additional tasks. In particular, Value Biased Stochastic
Sampling (VBSS) [Kramer and Smith, 2004, Cicirello and Smith, 2002], applied to
the retraction heuristic was shown to boost 7S performance for the AMC problem sets
[Kramer and Smith, 2004]. The results presented for 71 in this paper were obtained by
running 7 with multiple additional iterations of VBSS.

2.2 Squeaky Wheel Optimization

The permutation-based method we consider in this paper incorporates Squeaky Wheel
Optimization (SWO) [Joslin and Clements, 1999] as the core search procedure. SWO
has been used effectively in a number of oversubscribed domains [Globus et al., 2004,
Joslin et al., 2005, Frank and Kiirklii, 2005, Barbulescu et al., 2006]. The algorithm
starts by establishing an initial permutation (scheduling order) of the input tasks to be
scheduled, based on some priority heuristic (Figure 3, line 1), then it proceeds by re-
peatedly iterating through a three step cycle. In the first step, a greedy constructive
technique (the schedule builder) uses the permutation to produce an actual schedule
(Figure 3, line 3). The permutation represents a prioritization of the tasks, since the

Squeaky Wheel Optimization(T'askList, PrHeuristic, MazxIterations)
. TaskOrdering < PrioritizeTasks(TaskList, PrHeuristic)
. loop for i — 1 to MaxIterations do
ScheduleT asks(TaskOrdering)
loop for (task € Unassignables) do
MoveDistance <+ ComputeMoveDistance(task, TaskOrdering)
TaskOrdering «— MoveForward(task, TaskOrdering, M oveDistance)
end-loop
end-loop
end

VPN U AW -

Figure 3: Basic SWO Search Procedure

earlier tasks are considered earlier by the schedule builder. In the second step, the
solution is analyzed and for each of the tasks causing “trouble” (i.e., those tasks that
the schedule builder was not able to get on the schedule) and a “move distance” is
computed (Figure 3, line 5). The move distance represents the number of positions by
which to move the task forward in the permutation. The heuristics used to compute the
move distance can vary anywhere from defining a fixed number of positions to comput-
ing the number of positions as a function of the contribution of the task to the objective
function (where the tasks contributing more would be moved for a longer distance).
Finally in the third step, the “trouble makers” are moved earlier in the scheduling order
(Figure 3, line 6). This cycle is repeated until a termination condition is met.

For the analysis performed in this paper, the schedule builder used by SWO places
tasks into the schedule one by one (in the order specified by the current permutation),
using the same max-availability look-ahead heuristic as 7. If a given task cannot be
feasibly added to the schedule at the time it is considered, it is marked as unassignable
and the schedule builder simply moves on to the next task. The schedule builder is also
employed to generate initial seed solutions for both 7'S and SWO.

3 Comparative Performance in Two Domains

We first contrast the performance of SWO and TS on problems drawn from two real-
world oversubscribed scheduling domains, the USAF Satellite Control Network (AF-
SCN) scheduling problem [Barbulescu et al., 2006] and the USAF Air Mobility Com-
mand (AMC) airlift scheduling problem [Smith et al., 2004]. In the AFSCN domain,
input communication requests for Earth orbiting satellites must be scheduled on a total
of 16 antennas spread across 9 ground-based tracking stations. In the AMC domain,
aircraft capacity from 15 geographically distributed air wings must be allocated to sup-
port an input set of airlift missions.

Despite the application differences, these two domains share a common core prob-
lem structure:

e A problem instance consists of n tasks. In AFSCN, the tasks are communication
requests; in AMC they are mission requests.

e Each task 7}, 1 < i < n, specifies a required processing duration 7°*".2

e A set Res of resources are available for assignment to tasks. Each resource
r € Res has capacity cap, > 1. The resources are air wings for AMC and
ground stations for AFSCN. The capacity in AMC corresponds to the number of
aircraft for that wing; in AFSCN it represents the number of antennas present at
the ground station.

e Each task T; has an associated set Res; of feasible resources, any of which can
be assigned to carry out 7;. Any given task 7; requires 1 unit of capacity (i.e.,
one aircraft in AMC or one antenna in AFSCN) of the resource r that is assigned
to perform it.

2Although, for AMC, the actual durations are resource-dependent.

e Each of the feasible alternative resources r; € Res; specified for a task T; de-
fines a time window within which the duration of the task needs to be allocated.
This time window corresponds to satellite visibility in AFSCN and mission re-
quirements for AMC.

e The basic objective is to minimize the number of unassigned tasks.

One principal difference between the two domains of interest is the issue of task
priority. In the AFSCN domain there is no explicit notion of priority and all tasks are
weighted equally. In the AMC domain, alternatively, tasks (missions) are categorized
into one of five major priority classes, and task priorities must be respected whenever
scheduling tradeoffs are considered - i.e., it is not possible to substitute a lower prior-
ity task for a higher priority task even if this choice enables additional lower priority
tasks to be inserted into the schedule. This places an additional constraint on the basic
objective of minimizing the number of unassigned tasks.

Consideration of the benchmark problem sets that have been published for each of
these domains reveals a few additional differences:

e Problem Size: the size of the AFSCN instances varies between 419 and 483
tasks, while the size of the AMC problem instances is more than double (983
missions).

® Resource capacity: capacity for AFSCN varies between 1 and 3 units; for AMC,
it varies between 4 and 37.

e Degree of temporal flexibility*: for AFSCN, approximately one half of the re-
quests in a given problem instance have no temporal flexibility (these are com-
munication requests for low altitude satellites); for the AMC benchmark prob-
lems, temporal flexibility is present for all tasks.

Even though the two domains are similar in many ways, their differences somehow
have an impact on solving performance. In the subsections below we show that what
works well for one domain does not work as well on the other.

3.1 Minimizing Unassignable Tasks in AFSCN

Previous work has shown that permutation space search techniques (including SWO)
clearly outperform repair-based search in solving AFSCN problem instances; for our
comparative AFSCN experiments we closely follow the methodology reported in [Bar-
bulescu et al., 2006]. Considering only the five days of data in the more difficult R1
through RS problems, we build an initial schedule starting with a task order based
on most constrained (least available slack) first, sub-sorted by earliest start time first,
sub-sorted by smaller number of resource alternatives first.

During each SWO iteration, we examine the schedule and identify the unassignable
tasks. We move the unassignable tasks forward in the permutation by a distance of five
(this is consistent with the SWO setup described in [Barbulescu et al., 2006], for which
the best SWO performance on AFSCN has been reported).

3measured as task duration relative to the size of the resource time windows.

Initial End | End
Problem || Unassign. | SWO | TS
R1 58 45 49
R2 38 30 34
R3 27 18 20
R4 37 28 32
R5 19 13 15

Table 1: Performance of SWO and TS on AFSCN scheduling. The second column
indicates the number of unassignable tasks in the initial schedule.

The TaskSwap procedure is brought to bear on the same initial schedule for each
problem as SWO, and it is run to completion. As 7S attempts (in the permutation order
since there is no notion of priority) to assign each unassignable task from the initial
schedule, it makes only moves that maintain the state of already assigned tasks. That
is, it is not free to terminate in a state where one task is de-assigned in order to assign
two others. This can be seen as an unfair restriction on TS, but is fairly central to its
design, which emphasizes schedule stability.

The results of running SWO for 500 iterations, and 7S for one iteration show (Ta-
ble 1) that for each problem SWO is able to assign more tasks than 7. Running TS
using VBSS for more than one iteration did not result in improvement for the AFSCN
problem instances, not surprising given the limited resource capacity, and thus a dearth
of good alternative task retraction choices.*

3.2 Minimizing Weighted Unassignables in AMC

For the AMC scheduling problem, 7S has been applied quite effectively. 7S by def-
inition enforces the domain’s priority constraint (since a lower priority unassignable
task can never be substituted for an assigned higher priority task). To ensure that the
priority constraint is also enforced by SWO, we define a new objective function. We
first specify a heuristic scoring value for each priority class, that emphasizes the differ-
ences between classes: priority 5 maps to 1, priority 4 to 1,000, priority 3 to 1,000,000,
and so on. We then define the penalty score for a given schedule to be the sum of the
scoring values for all unassignables. The new objective function minimizes the penalty
score. Since the number of tasks in the AMC instances is less than 1,000, the objective
function ensures that the substitution of any number of lower priority tasks for a higher
priority task will result in a schedule with a greater penalty score.

We build the initial greedy solution for both SWO and TS based on a priority sorted
task permutation. We found empirically that moving unassignable tasks forward in the
permutation only a short distance (50-100 positions) did not perform well, and that
setting the move distance to around 200 resulted in best performance. Biasing this

4Note that our schedule builder is slightly different from the greedy scheduler in [Barbulescu et al., 2006].
While the values produced by SWO with this schedule builder are somewhat worse than the ones reported in
[Barbulescu et al., 2006], it is still the case that SWO outperforms 7S for these problems.

SWOvs. TS

1E+13

1E+12 /D

1E+11 1

1E+10
/ —— SWO

1E+09
/ —o—TS

1E+08

Average Score

1E+07 A

1000000 y

100000 ‘
1 2 3 4 5

Problem Set

Figure 4: AMC Problems: Average Penalty Score.

base distance according to priority class, Pr, of the unassignable u, move distance was
defined as md(u) = 200 + (10 x (6 — Pr(u))).>

To fully take advantage of the new objective function, we loosen the requirement
for accepting schedule repairs in 7. Specifically, an unassignable task w is considered
successfully inserted and the new solution is accepted even when some initially sched-
uled tasks of lower priority than u are not reinserted into the schedule, if the sum of the
scoring values for these tasks is lower than the scoring value of u.

Figure 4 compares the penalty scores obtained running 7S (3 iterations of VBSS)
with SWO (50 iterations) on each of the 5 sets of AMC benchmark problems; the
average end number of unassignable tasks in the same runs are shown in Figure 5.° A
Wilcoxon signed-rank test [Ott and Longnecker, 2000] shows that the average penalty
scores are not significantly different for the first three sets of problems. However,
at higher levels of oversubscription (problem sets 4 and 5) TS is seen to outperform
SWO. With respect to penalty scores, a significant difference (p = 0.0152) is found for
problem set 4.7 With respect to average unassignables, significantly fewer are obtained

5The 5 AMC priority classes range from 1 (highest) to 5 (lowest).
5These results were originally reported in [Kramer et al., 2007b].
TThis difference is not apparent from the graph, due to the presence of outliers in the computed average

SWOvs. TS
100

90

80 _|

70
(/]
=
[72]
S 60
= @ SWOo
8 50
5 BTS
& 40
[\
5

30

20

. B

0 :
1 2 3 4 5
Problem Set

Figure 5: AMC Problems: Average Unassignables.

for both problem sets 4 and 5 (p < 0.01).

4 Exploring the AFSCN/AMC Problem Space

To better understand why SWO outperforms 7S for AFSCN, but not for AMC, we
identify problem features that are different in the two domains. Starting with AFSCN-
like problems we vary these features and generate new problem instances which sample
the common AFSCN/AMC problem space. We design experiments to test two basic
hypotheses:

1. Increasing the capacity and/or slack in AFSCN-like problems with no priority
specified will result in TS performing better than SWO.

2. Priority constraints are better handled by TS than SWO, especially as the level of
oversubscription increases.

Scores.

10

4.1 Experimental Design

The instances in the AMC benchmark sets are larger in size and have more slack and
resource capacity available than the AFSCN benchmark instances. Also, task priority
is only present in the AMC problems. To investigate how these differences account
for the observed difference in the performance of 7S and SWO, we design a problem
generator that produces new AFSCN-like instances with varying degrees of slack and
resource capacity; AMC-like task priorities can also be included in the new instances.

For each of the five AFSCN benchmark problems (R1 to RS), the generator pro-
duces new problems based on its parameter settings, as follows:

e Problem size: For our experiments, we decided to either keep constant, double or
triple the size of the initial AFSCN benchmark problems. When the problem size
is kept constant, new instances are produced by moving each task’s time window
later in time by a uniform random choice over an hour time interval. When the
size is doubled (or tripled), one (or two) new tasks are generated for each task
in the original problem. The new tasks vary from the initial one in terms of time
window and possibly duration.

e Slack (temporal flexibility): A duration factor df is used to determine the dura-
tions for each new task. Given a task 7;, 1 < 7 < n with an initial duration
TPur, the new duration is computed as: TP x (1 — random(df,0)), where
random/(df,0) produces a random number between df and zero. For example,
if df = 0.9, the new task durations can vary anywhere between the initial dura-
tion and 10% of the value of the initial duration.

e Resource capacity: Given a resource 7 with capacity cap, (in the initial AFSCN
benchmark set), a capacity factor cf is used to compute the new capacity of r as:
cap, + random(cf,0).

e Priority: A priority flag pf determines if task priorities are present in the prob-
lem. When pf is true, task priorities are uniformly sampled from 1..5 (following
the five priority classes in AMC).

We generate 36 sets of problems, with 50 instances each. 18 of the sets are produced
with no task priorities (pf = false), and the other 18 are identical but for the addition
of task priorities (pf = true). The parameters used to generate the sets are shown
in Table 2: the second column represents the average size of the problem instance,
while the third and fourth columns represent the value of df and cf respectively. Note
that problem set 1.1 with pf = false contains the five initial AFSCN benchmark
problems plus 45 similar instances (same size, slack and resource capacity, varying
the time windows for each task). As a measure of the level of oversubscription in the
instances for each set, we use the greedy constructor to build an initial schedule for the
50 instances in each set and record the average number of unassignables in columns
five and six. For this newly generated problem set we conduct experiments with 500
iterations of SWO and 30 iterations of 75/VBSS.

11

Prob. || Avg. | Slack | Capac. Init.Sched.Unassignables
Set Size df cf pf = false | pf = true
1.1 443 0 0 34.1 71.2
1.2 886 0 3 127.7 195.6
1.3 1329 0 9 94.8 170.3
2.1 443 0.5 0 25.1 443
22 886 0.5 3 81.6 121.6
23 1329 0.5 9 56.12 106.6
3.1 443 0.5 3 7.4 15.7
32 886 0.5 6 273 48.9
33 1329 0.5 12 47 65.4
4.1 443 0.9 0 11.6 22.6
42 886 0.9 3 379 65.3
43 1329 0.9 9 323 45.4
5.1 443 0 5 4.04 13.5
52 886 0 8 349 69.0
53 1329 0 15 47.8 80.5
6.1 443 0.5 5 3.48 6.8
6.2 886 0.5 8 19.7 29.4
6.3 1329 0.5 15 36.8 44.7

Table 2: Description of the problem sets: the size is either similar to the initial AFSCN
problems (*.1 sets), doubled (*.2 sets) or tripled (*.3 sets); df is the duration factor, ¢ f
is the capacity factor, and pf the priority flag. The average number of unassignables
in a greedy initial solution computed for the 50 instances in each problem set is also
recorded.

4.2 Experimental Results

To investigate our first hypothesis, we focus on the results in terms of average number
of unassignables for the problem sets without priorities (see Figure 6). We ordered
the problems sets on the x axis in terms of the average initial number of unassignables
(column five in Table 2), as a rough measure of the oversubscription level in each
problem set. With a few exceptions we see that the two algorithms result on average
in a similar number of final unassignables for all problem sets. Our initial hypothesis
was that 7S would begin to outperform SWO and vice versa as capacity and/or slack are
increased. A Wilcoxon signed-rank test shows that SWO outperforms 75 (p < 0.01) for
all problem sets except 5.1 and 5.3. While these results do not confirm our hypothesis,
there is some evidence (for example, sets 3.1, 5.1, 5.2, and 5.3) showing that 7'S begins
to perform comparably with SWO? as slack is held constant and capacity is increased.
For our second hypothesis, we compare results in terms of penalty scores when
task priorities are present. We present the data in tabular form (Table 3) since a graph
of either average or median scores obscures the results due to a few outliers of very
significant magnitude. Again, we ordered the problem sets based on the average initial

8As measured by relative difference in end unassignable tasks normalized by initial number of
unassignables.

12

SWOvs. TS
140
2 120 f
[}
i //
2100
g
5 801 ——TS
[7]
§60 —a—SWO
>
S 40
o
g
) ZOM V
€€§§&§Q$¢Q&&§§$W?3
Problem Set

Figure 6: Average Penalty Score (lower values better) for problems without task prior-
ities

Solution Stability

1200

_‘
© O
S S
s &
[—
.

[\ A s

=TS

Tasks Shifted in Time
N B (2]
o o o
o o o

~a
——
\\
——
\\

Problem Set

Figure 7: Stability: Number of Tasks that Shifted in Time

13

Prob. | Score || Prob. Score Prob. Score
Set Diff. Set Diff. Set Diff.
6.1 0 6.3 0 53 -3514
5.1 0 2.1 0 1.1 -1003500
3.1 0 3.2 -3.5 2.3 -6009
4.1 1 33 0 2.2 -999880
6.2 0 4.2 500.5 1.3 -9815700
43 0.5 5.2 -899500 1.2 -1003805000

Table 3: Comparative Performance SWO vs. TS: the columns labeled Score Diff. are
the median of the differences (7'S — SWO) of the penalty scores for all problem
instances in the set. Negative values indicate problem sets where TS outperforms SWO.
Bold numbers are statistically significant.

number of unassignables (column six in Table 2). Columns two, four, and six in Table 3
show the median of the differences (T7'S — SWO) of the penalty scores for all problem
instances in the corresponding problem set. Negative numbers, then, indicate that 7S
outperforms SWO for that set. The results show that for moderate levels of oversub-
scription SWO and TS perform similarly well, with SWO slightly outperforming 7'S for
a few sets. In terms of statistical significance, a Wilcoxon signed-rank test shows that
for the sets 4.1 and 6.1 SWO significantly outperforms 75 (with p < 0.002); for the rest
of the sets up to 5.2 there are no significant differences. As the problems become more
oversubscribed, there is a crossover point at problem set 5.2 and TS on average finds
better solutions than SWO. The difference is significant (p < 0.0001) for problem sets
5.2,5.3,and 1.3.

We also track schedule stability. We compare the initial and final schedules for
each run in terms of number of tasks that shifted in time (Figure 7)°. Clearly SWO is
not well suited to preserve the initial schedule; on the other hand, 7S is designed with
schedule stability in mind.

5 Searching Alternate Spaces

Our research has demonstrated on a common data set that both Squeaky Wheel Op-
timization and TaskSwap are effective methods for solving oversubscribed scheduling
problems. Given these two good methods with relative strengths and weaknesses we
pose the question: is it productive to combine the strengths of the two in a hybrid
fashion to produce a new the technique which outperforms both methods individually?
Before answering that question we first outline the strengths and weaknesses and the
differing search spaces of 7'S and SWO.

9This result is for the p f = false problems. As before, the x-axis is ordered in increasing order of difficulty.
Similar results are obtained when pf = true.

14

5.1 Two Techniques: Strengths and Weaknesses

Both TS and SWO are designed to be repair procedures that start from an initial good
solution generated by a greedy scheduler. SWO repeatedly generates new schedules —
which may or may not be better than the current best — by generating new task permu-
tation orderings for rescheduling. The new permutation orderings are constructed by
identifying the “squeaky wheel” tasks and moving them forward a distance which is
typically dependent on features of the task. For instance, for the problems that incor-
porate task priority, the squeaky wheels are the unassignable tasks, and they are moved
forward by a function proportional to their priority.

The characteristic that SWO is fairly blind to the current schedule state contributes
to both its strengths and weaknesses. The fact that SWO often schedules and unsched-
ules numerous tasks that may not be central to a good solution allows it jump to prob-
lem spaces that might otherwise not be found by a more directed method. Given a good
initial schedule and a good move operator, this can often allow SWO to converge fairly
quickly to a very good solution. After this very good solution is achieved, though,
SWO continues on blindly, often wasting numerous iterations in the space of bad so-
lutions. In our experiments we regularly see that after SWO has stopped generating
improving solutions it gets stuck in oscillatory behavior, repeatedly trading off one set
of unassignable tasks for another distinct set of unassignable tasks.

In contrast to SWO’s disruptive, though effective, behavior, 7S was designed with
schedule stability in mind, and aims at assigning more tasks by examining in detail
the current schedule state as each unassignable task is attended to in turn. Already
assigned tasks are temporarily de-assigned on the basis of their fitness for reassignment,
and each assignment is made by heuristics that examine the schedule state both at the
time of assignment and in look-ahead to future task assignments. The strong focus
of the 7 algorithm, somewhat tempered by successive searches (e.g., VBSS) in the
neighborhood recommended by the heuristics, is both its strength and weakness. It is
a strength in the sense that 7S is able to move inexorably from one good solution to a
better one. It is a weakness in the sense that 7'S may miss the best solution that requires
undoing of a good one to get there.

5.2 TS and SWO: Combining the Strengths in a Hybrid

Like most local search algorithms SWO and TS often become stuck in a state from
which no improving moves can be found over a relatively large number of iterations.
There are a number of approaches that can be considered for hybridizing 7'S and SWO
to address this problem. We study two TS/SWO hybrids that operate at a very coarse
grain. Since both techniques seem to get stuck somewhat in a good solution, we run
TS to focus on the search for a better solution after SWO gets stuck generating new
solutions in a somewhat undirected way. We also experiment with running SWO after
TS gets stuck at a good solution, with the idea that SWO’s disruptiveness may jump to
an even better point.

For our previous experiments with the problems described in Table 2 we ran 7.S
with VBSS for 30 iterations. The value 30 is somewhat arbitrary, but reasonable given
that the 7S algorithm is very fast and in practice rarely showed improvement after 20

15

iterations. SWO, which has no “natural” stopping criterion other than discovery of
an optimal solution — rare for the problems we studied — was run for a maximum of
500 iterations. In this case 500 is fairly dependent on problem-type, and is based on
the observation that allowing for 1,000 or 2,000 iterations only very rarely produced
additional improvement.

The question of whether 7'S can improve upon SWO after 500 iterations or whether
SWO can improve on T after 30 iterations is in itself only somewhat interesting, as for
any given problem the primary search technique itself may not have finished improving.
In designing our experiments then we ask a different question: When one method is
“stuck,” can the other improve on that solution? Answering this question depends
on how we determine a technique to be “stuck,” and for that we again rely on close
observation of numerous runs of the problems in our test data set.

5.3 Hybrid Experimental Setup

We define a parameter, &, iterations without improvement, which we set to 50 for SWO
and 5 for 7. If SWO makes no improvement within 50 iterations since its last improve-
ment (with the maximum iterations still 500) then TS is run for 5 iterations. We will
refer to this algorithm, SWO followed by TS, as HybridSWO. Similarly for 7'S we set
& = 5. If TS doesn’t improve within 5 iterations to a maximum of 30, SWO is executed
for 50 iterations. We call this algorithm, TS followed by SWO, HybridTS.

We run HybridSWO and HybridTS on the 1,800 problem instances (900 with pf =
false, 900 with pf = true) from the 18 sets and report on the results analogous to
those described in Section 4.2.

5.4 Experimental Results for Hybrid Runs (Without Task Priority)

Table 4 summarizes the results of running HybridTS and HybridSWO for the 18 prob-
lem sets without task priority (pf = false). The second column shows the improve-
ment that HybridTS (TS followed by SWO) was able to achieve over TS alone. It is
computed as the median of the difference in end number of unassignable tasks be-
tween HybridTS and TS for each individual problem. IL.e., for all problem instances,
pi, 1 < ¢ < 50, with end number of unassignables, u, HybridTS Improvement =
median(HybridT'S; , — TS;.,). A negative value, then, indicates some measure of
improvement for that problem set. Similarly, column three displays the improvement of
HybridSWO over SWO alone (HybridSWO Improvement = median(HybridSW O, ,—
SWO;.4)). As can be seen, HybridTS is able to improve somewhat on 7S in four of
the problem sets; HybridSWO improves on SWO alone in one problem set.

Columns four and five indicate the performance of HybridTS and HybridSWO ver-
sus the best of 7S and SWO alone. Column four, HybridTS vs. Best, is computed
for all problem instances, p;,1 < ¢ < 50, with end number of unassignables, u, as
median(HybridT'S; ., — min(T'S; v, SW O, ,,)) and column 5, HybridSWO vs. Best,
as median(HybridSW O, ,, — min(T'S; ,,, SWO, ,,)). These results are not encour-
aging for the Hybrid methods as HybridTS performs worse than the best in 11 of 18
problem sets and can improve on the best in none. HybridSWO doesn’t fare as poorly,

16

Prob. HybridTS HybridSWO | HybridTS | HybridSWO
Set Improvement | Improvement vs. Best vs. Best
6.1 0 0 0 0
5.1 0 0 0 0
3.1 0 0 0 0
4.1 -1 0 0 0
6.2 0 0 1 0
4.3 0 0 3 0
32 0 0 2 0
2.1 -1 0 2 0
6.3 0 0 1.5 0
52 0 0 0 0
4.2 0 0 4 0
1.1 -5 0 0 0
53 0 0 0 0
33 0 0 3 0
2.3 0 -0.5 3 0
22 0 0 9 0
1.3 0 1 1 1
1.2 -3.5 1 4 1

Table 4: Problems without Task Priority: Relative Performance of HybridTS and Hy-
bridSWO compared to TS, SWO and the better of TS and SWO, respectively. Negative
values reflect improvement.

matching the best in 18 of the 20 sets, but in general it, too, is unable to improve on the
best solution.

5.5 Experimental Results for Hybrid Runs (With Task Priority)

The results for pf = true are summarized in Table 5 and are computed identically
to the ones in Table 4, but now the values represent the median difference in penalty
scores, not unassignable tasks. The results show (column five of Table 5) that Hy-
bridSWO is able to match or improve upon the best results of 7S or SWO alone for all
problem sets, significantly so for four of them. This behavior is not surprising, as 7S
was shown (Table 3) to outperform SWO for the “harder” problems incorporating task
priority. Clearly running 7S to improve upon SWO in HybridSWO produces a signif-
icant benefit, but what was not intuitively obvious is that it would improve on 7S by
itself. Apparently starting from the “better plateau” that SWO provides leverages TS
more than starting from a good, greedy solution.

The data also show that HybridTS (TS followed by SWO) is only able to improve
significantly on 7S in one case — problem set 6.3. HybridSWO matches or improves
on the performance of SWO in all problem sets, and is significantly better in 13 if 18.
Compared to the best results HybridTS is able to improve in only problem set 6.3, and
produces worse values in half the problem sets.

17

Prob. HybridTS HybridSWO | HybridTS | HybridSWO
Set Improvement | Improvement vs. Best vs. Best
6.1 0 0 0 0
5.1 0 0 0 0
3.1 0 0 0 0
4.1 0 0 1 0
6.2 0 -0.5 0 0
4.3 0 -3 1000 0
6.3 -1503072 -2002.5 -1004071 0
2.1 0 -998.5 0 0
32 0 -2003.5 0 0
33 0 -1000450 599.5 -1000
4.2 0 -1998.5 1001.5 -963.5
5.2 0 -999475 0 0
53 0 -651500 0 0
1.1 0 -4006422.5 50.5 0
2.3 0 -3016008.5 400.5 -3154
22 0 -6057765 1165 -2502395
1.3 0 -1005870000 300 -999500
1.2 -1200 -1509085150 592500 -2496700

Table 5: Problems with Task Priority: Relative Performance of HybridTS and Hy-
bridSWO compared to TS, SWO and the better of TS and SWO, respectively. Negative
values reflect improvement, with those in bold statistically significant (p < 0.009).

5.6 Revisiting Problem Set 1.2

An interesting question that arises is why HybridSWO is so effective for the harder
problem sets with task priority, but is ineffective for the same problem sets without
task priority? A quick answer to this might be that in general for problems without
task priority the performance of TS often lags behind that of SWO, and thus it might
be somewhat surprising had 7'S been able to improve on SWO when it got “stuck.”
This turns out not to be the case, though. The problem turns out to be the difficulty in
selecting an appropriate value for ¢, iterations without improvement. For all problem
sets without task priority, and for the “easier” problem sets with task priority, SWO
converges to its best solution fairly quickly, so the choice of £ = 50 is a good one.
Some of the problem instances in the harder problem sets without task priority do not
follow this trend.

We can see this by closely tracing the runtime behavior of Problem Set 1.2, the
hardest we tested. For this test we ran SWO 1,000 iterations instead of 500, and for
each of the 50 problem instances recorded at which iteration an improving move oc-
curred. The results are recorded graphically in Figure 8 where each line in the graph is
one solution instance, the x-axis is the move number, and the y-axis the iteration corre-
sponding to that move. The first thing we note is that for half of the problem instances
some improvement was made after 500 iterations. This was generally not the case for
most of the other problem sets. The second thing is that most problem instances make

18

Solution Trajectories

1000

900

800

700

600 -

500

Iteration

Figure 8: Solution Trajectories for Problem Set 1.2 (pf = false)

most of their improvement early and often, clustering in the lower left hand quadrant
of the graph. For these instances, the choice of £ = 50 is a good one, as it picks up the
fact that SWO has made a number of moves, but appears to be stuck.

Problem instances like those labeled A and B occur fairly frequently in this graph,
though, and represent a problem for choosing a common value of £. In case A we
see that SWO makes a few quick improving moves before iteration 50, but then does
not improve until iteration 151, and then at iteration 307. A few more improvements
are found up until iteration 761. Increasing £ to even 100 in this case would not have
helped, so by declaring SWO to be stuck at iteration 31, we are asking 7 to do a
great deal of work from that point. Example B is somewhat different, but equally
problematic. In this case SWO has made 19 improving moves by iteration 205. There
is a then a large gap to a better state at iteration 307. Suppose we had increased & to
150. This would get us to iteration 319 at move 21. But then the next move is not until
iteration 680, and we would miss it and the succeeding two improving moves.

To summarize, then, for most problem sets we can select a common, relatively
small value for £ and be assured that it reflects the fact that the solver is stuck. For
a few problem sets without task priority, though, a reasonable a priori value for £ is
difficult to find. One final point we should make is that for problem set 1.2, whether for
500 max iterations of SWO or 1,000, if we set £ to be sufficiently large, say between
300 and 400, HybridSWO is able to improve on the prior best solution in 32 of 50
instances.

19

Solution Trajectories (pf=true)

140

120 -

100 ~ /

80

Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Move

Figure 9: Solution Trajectories for Problem Set 1.2 (pf = true)

5.7 A Radically Different Search Space

We repeat the same experiment for the problem instances with random task priority
(pf = true) for set 1.2, first running 1,000 iterations of SWO, followed by 5 iterations
of TS. The resulting solution trajectories are plotted in Figure 9. While the solutions
improve over only a slightly smaller number of moves than the problems without task
priority, the striking thing is that all instances except one cease making moves within
60 iterations, with most tightly clustered in the 15 to 25 move range. It is clear from
this experiment that SWO operates in a very different space for the problems with
random task priority. It converges much more quickly to a less than optimal solution,
and it turns out that 7S is able to improve on the SWO solution for all the 50 problem
instances in this set.

5.8 Runtime Behavior

Finally, we compare the runtime performance for 7.5, SWO, and the hybrid methods.
One would hope that we could see some improvement in run times in the hybrid meth-
ods due to the significantly reduced number of iterations that are executed. This turns
out not to be the case, though, as is apparent in Figure 10. The problem is that for all
methods except 71, the runtime behavior of SWO dominates the overall runtime. Cer-
tainly both HybridSWO and HybridTS are faster than SWO alone, but neither of them is
able to match the runtime of 7'S. As can be seen from the graph, SWO runtime is strictly

20

Median Run Times

A1 1
| [~

N

1000 / \

oo |
|

| |

AWIATAIISSN
g u \ / V \ —a— HybridTS
@ / / \ / s HybridSWO

600

ool |2l |

——/ }/ i .
200)‘\\/‘ A
Q'_;‘\ 40'? 0; V\ fo(‘/ VO'J ‘Orb(\:'\ ‘br‘/“:? ;\/‘0(\/ ‘0% \)'\ r\;b r\;‘/’\o)):\/
Problem Set

Figure 10: Median Run Times, Hybrid vs. Non-hybrid Algorithms

a function of problem size and number of iterations — the problem sets with approxi-
mately 450 tasks taking close to 400 seconds to run, those with double the number of
tasks running in approximately 800 seconds, and those with three times the number of
tasks consuming 1,500 to 1,600 seconds. In contrast, the runtime of 7'S depends only
on the initial number of unassignables (it is O(n?) in n, the number of unassignable
tasks) and the number of neighborhood iterations it is run. Looking at the graph from
left to right, we see that its runtime scales very gradually as the problem sets become
harder. The runtimes for both HybridSWO and HybridTS incorporate some number
of SWO runs, and suffer for it. On the other hand, their run time is always much bet-
ter than SWO alone, and with only one exception on average have an upper bound of
about 300 seconds. As a matter of fact, with some reduction of &, iterations without
improvement, it may be possible for the problems with task priority for the runtime
performance of HybridSWO to approach that of 7, since SWO converges very quickly
(generally in less than 30 iterations) for these problems.

We tested this conjecture for problem set 1.2 (pf = true) by resetting £ from 50 to
10, and the maximum iterations to run SWO from 500 to 50. Doing this only minimally
affects the performance of HybridSWO: the median penalty score increased less than
0.00005%. Its median runtime improved from 144 to 82 seconds (as compared to 122
seconds for HybridTS, 166 seconds for TS, and 791 seconds for SWO).

21

6 Related Work

One of the limitations of simple search algorithms is that they often get trapped in a
locally optimal state. Simulated annealing, tabu search, iterated local search, and ran-
dom restarts are just a few examples of widely-studied metaheuristics commonly used
as strategies for escaping or avoiding local optima. These strategies do not alter the
initial search space of the problem; instead, they escape local optima by accepting non-
improving moves. A different, less common strategy is to change the representation
of the problem, under the assumption that a local optimum under one representation
will not remain a local optimum under a different representation. Our two hybrid algo-
rithms HybridTS and HybridSWO employ this latter strategy, by changing the represen-
tation between the permutation space and the schedule space. Representation change
has also been successfully employed by bit climbing and genetic algorithms for bi-
nary search spaces: for example, in [Barbulescu et al., 2000], dynamically changing
the Gray encoding is shown to boost algorithm performance on a set of benchmark
problems traditionally used to test evolutionary algorithm performance.

The idea of hybridizing SWO to improve its performance has also been studied by
Terada et al. [Terada et al., 2006] for a resource constrained “car-sequencing” set of
benchmark problems. Their results show that hybridizing by directly incorporating ge-
netic algorithm features in SWO significantly improves over the performance of both.
While these results are interesting and support the idea that SWO is a good candidate
for hybridizing with another algorithm, their approach is very different and therefore
not directly comparable to ours.

7 Summary and Future Research

Extrapolating from the above experimental results, we can draw a few conclusions
relevant to the choice of permutation-space and schedule-space methods for solving
oversubscribed scheduling problems. For problems that do not incorporate task prior-
ity, the search space is less constrained and the broader (and more disruptive) search
process conducted by SWO provides greater opportunity to find better solutions. In
contrast, repair-based searches such as 7S suffer from a lack of strong heuristic guid-
ance in this context and hence the more localized search that they carry out is not as
effective.

In problems where task priority is in play, the situation is different. If problems tend
to be only moderately oversubscribed, the additional constraint imposed on the search
space by priority still leaves sufficient flexibility for techniques like SWO to reasonably
find better solutions. However, as priority-based problems become more severely over-
subscribed, the search space becomes increasingly constrained and rearrangement of
task permutations become less productive. In this context, repair-based methods like
TS benefit from the additional search space structure imposed by priority and gain in
performance.

Due to its schedule-space search and use of informed heuristics TS is very quick
and non-disruptive of overall schedule state. SWO, on the other hand is quite disruptive
as it makes its way through a search of schedule permutation space, but this “schedule

22

blindness” often allows it to stumble upon solutions that 7S in its relative myopia is
unable to find.

We extend the analysis of the two individual techniques on a common problem set
to the study of two hybrid techniques: HybridTS and HybridSWO. The former employs
SWO to diversify after 7S appears to be stuck at its best solution. The latter uses 7S
to focus on even better solutions after SWO appears to have quiesced to at least a local
optimum. Our experiments tend to show that HybridTS is not much of an improve-
ment on 7S alone, and generally does not improve on the best solution of 7S or SWO
individually. HybridSWO, on the other hand, turns out to be very promising, particu-
larly for problems with task priority. It is quite often able to improve on the results of
SWO alone, and for the hardest problems regularly results in a better penalty score than
the best achieved by either of TS or SWO. Furthermore, with proper parameter tuning,
these better scores may actually be achieved in less time.

Our results, while interesting, raise a number of questions for future research.
Among them:

o Could further improvement be gained by hybridizing at a finer grain, employing
facets of SWO within the TS algorithm, or alternating between the two techniques
repeatedly?

e Would it be productive for the problems we’ve studied, as some research has
suggested, to hybridize SWO or TS with other techniques?

e Are there problem features that our test sets did not encompass that would tend
to favor different techniques and different hybridizations?

e How useful would online and offline learning methods be in improving the per-
formance of the hybrid methods?

Acknowledgements

This research was supported in part by the USAF Air Mobility Command under Con-
tract # 7500007485 to Northrop Grumman Corporation, by the Department of Defense
Advance Research Projects Agency (DARPA) under Contract # FA8750-05-C-0033,
and by the CMU Robotics Institute. Any opinions, findings and conclusions or rec-
ommendations expressed in this paper are those of the authors and do not necessarily
reflect the views of the USAF or DARPA.

References

L. Barbulescu, A. Howe, L. Whitley, and M. Roberts. Understanding algorithm perfor-
mance on an oversubscribed scheduling application. JAIR, 27:577-615, 2006.

L. V. Barbulescu, J.-P. Watson, and D. Whitley. Dynamic representations and escaping
local optima: Improving genetic algorithms and local search. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence, pages 879-884, 2000.

23

J. Bresina. Heuristic-Biased Stochastic Sampling. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 271-278, Portland, OR, 1996.

V. Cicirello and S. Smith. Amplification of search performance through randomiza-
tion of heuristics. In Proc. 8th Int. Conf. on Principles and Practice of Constraint
Programming, Ithaca NY, Sept 2002. Springer-Verlag.

J. Frank and E. Kiirklii. Mixed discrete and continuous algorithms for scheduling
airborne astronomy observations. In CPAIOR, pages 183-200, 2005.

J. Frank, A. Jonsson, R. Morris, and D. Smith. Planning and scheduling for fleets of
earth observing satellites. In Proceedings of the Sixth International Symposium on
Artificial Intelligence, Robotics, Automation and Space, 2001.

A. Globus, J. Crawford, J. Lohn, and A. Pryor. A comparison of techniques for schedul-
ing earth observing satellites. In Proc. of the 19th National Conference on Artificial
Intelligence (AAAI-04), 16th Conference on Innovative Applications of Al (IAAI-04),
pages 836-843, July 25-29 2004.

M. Johnston and G. Miller. Spike: Intelligent scheduling of hubble space telescope
observations. In M. Zweben and M. Fox, editors, Intelligent Scheduling. Morgan
Kaufmann, 1994.

D. Joslin and D. Clements. “Squeaky Wheel” Optimization. JAIR, 10:353-373, 1999.

D. Joslin, J. Frank, A. Jonsson, and D. Smith. Simulation-based planning for planetary
rover experiments. In Proc. of the 2005 Winter Simulation Conference, pages 1049—
1058. ML.E. Kuhl, N.M. Steiger, F.B. Armstrong, and J.A. Joines, eds., 2005.

L. A. Kramer and S. F. Smith. The amc scheduling problem: A description for re-
producibility. Technical Report CMU-RI-TR-05-75, Robotics Institute, Carnegie
Mellon University, 2005a.

L. A. Kramer and S. F. Smith. Maximizing availability: A commitment heuristic for
oversubscribed scheduling problems. In Proc. 15th International Conference on
Automated Planning and Scheduling (ICAPS-05), Monterey CA, June 2005b.

L. A. Kramer and S. F. Smith. Task swapping for schedule improvement, a broader
analysis. In Proc. 14th Int’l Conf. on Automated Planning and Scheduling, Whistler
BC, June 2004.

L. A. Kramer and S. F. Smith. Maximizing flexibility: A retraction heuristic for over-
subscribed scheduling problems. In Proc. 18th Int’l Joint Conf. on Al, Acapulco
Mexico, August 2003.

L. A. Kramer, L. V. Barbulescu, and S. F. Smith. Understanding performance tradeofts
in algorithms for solving oversubscribed scheduling. In Proceedings of the 22nd
Conference on Artificial Intelligence, Vancouver, BC, July 2007a. The AAAI Press.

24

L. A. Kramer, L. V. Barbulescu, and S. F. Smith. Analyzing basic representation
choices in oversubscribed scheduling problems. In Proceedings of the 3rd Multidis-
ciplinary International Scheduling Conference: Theory and Applications (MISTA-
07), Paris, France, August 2007b.

R. Nigenda and S. Kambhampati. Planning graph heuristics for selecting objectives
in over-subscription planning problems. In Proceedings 15th Int’l Conference on
Automated Plannign and Scheduling, pages 192-201, Monterey CA, 2005.

R. Ott and M. Longnecker. An Introduction to Statistical Methods and Data Analysis,
5th Ed. Duxbury Pr, 2000.

G. Rabideau, R. Knight, S. Chien, A. Fukanaga, and A. Govindjee. Iterative plan-
ning for spacecraft operations using the aspen system. In Proc. 5th Int. Sym. on Al,
Robotics and Automation for Space, 1999.

D. Smith. Choosing objectives in over-subscription planning. In Proceedings 14th
International Conference on Automated Planning and Scheduling, pages 393—401,
Whistler CA, 2004.

S. F. Smith, M. B. Becker, and L. A. Kramer. Continuous management of airlift and
tanker resources: A constraint-based approach. Mathematical and Computer Mod-
eling — Special Issue on Defense Transportation: Algorithms, Models and Applica-
tions for the 21st Century, 39(6-8):581-598, 2004.

G. Syswerda. Schedule Optimization Using Genetic Algorithms. In L. Davis, editor,
Handbook of Genetic Algorithms, chapter 21. Van Nostrand Reinhold, NY, 1991.

J. Terada, H. Vo, and D. Joslin. Combining genetic algorithms with squeaky-wheel
optimization. In Proceedings of the S8th Annual Conference on Genetic and Evolu-
tionary Computation (GECCO’06), Seattle, WA, July 2006.

L. Whitley, T. Starkweather, and D. Fuquay. Scheduling Problems and Traveling Sales-
men: The Genetic Edge Recombination Operator. In J. D. Schaffer, editor, Proc. of
the 3rd Int’l. Conf. on GAs. Morgan Kaufmann, 1989.

25

