
Probabilistic Noise Identification and Data Cleaning

Jeremy Kubica
Carnegie Mellon University

Robotics Institute
Pittsburgh, PA 15213
jkubica@ri.cmu.edu

Andrew Moore
Carnegie Mellon University
School of Computer Science

Pittsburgh, PA 15213
awm@cs.cmu.edu

Abstract

Real world data is never as perfect as we would like it
to be and can often suffer from corruptions that may im-
pact interpretations of the data, models created from the
data, and decisions made based on the data. One approach
to this problem is to identify and remove records that con-
tain corruptions. Unfortunately, if only certain fields in a
record have been corrupted then usable, uncorrupted data
will be lost. In this paper we present LENS, an approach for
identifying corrupted fields and using the remaining non-
corrupted fields for subsequent modeling and analysis. Our
approach uses the data to learn a probabilistic model con-
taining three components: a generative model of the clean
records, a generative model of the noise values, and a prob-
abilistic model of the corruption process. We provide an al-
gorithm for the unsupervised discovery of such models and
empirically evaluate both its performance at detecting cor-
rupted fields and, as one example application, the resulting
improvement this gives to a classifier.

1 Introduction

Real world data is never as perfect as we would like it to
be and can often suffer from corruptions that may impact in-
terpretations of the data, models created from the data, and
decisions made based on the data. In this paper we present
LENS (Learning Explicit Noise Systems), an approach for
identifying corrupted fields and using the remaining non-
corrupted fields for subsequent modeling and analysis. We
consider the case where a corruption completely replaces
the original data value. Such errors could be the result of:
partial sensor failure, environmental conditions, transcrip-
tion error, or data storage corruption. By identifying noisy
values it may be possible to increase classification accuracy,
improve models, or make better decisions.

We present an approach that uses the data to learn a
probabilistic model of the complete data generation pro-

cess. We explicitly model both the noise and the data cor-
ruption process giving several possible advantages. First,
explicitly modeling the noise and the data corruption pro-
cess may increase the accuracy and robustness of the noise
identification. For example, attribute corruptions may not
be independent. Noise in a camera image may affect mul-
tiple pieces of information extracted from the image. Sec-
ond, a model of the corruption process may be used to im-
prove the data collection process. For example, in the case
of robotic planning an explicit model of sensor failure can
show that one or more sensors have an abnormally high
noise rate. This information could then be used to plan
better experiments or to choose the best (and presumably
reduced) weights given to those sensors.

The input is assumed to consistN records withD real,
categorical, or mixed attributes. Formally, eachrecord is an
entry in the data and corresponds to a single observation,
item, or data point. Eachattributecorresponds to a single
field in the record. Acell refers to a single attribute of a
single record. Thus the entire data set containsN ∗D cells,
certain fraction of which have been corrupted by noise. It is
important to appreciate that we are interested in cases where
corruptions occur on the level of the individual cells and
not entire records or attributes. We wish to label only the
corrupted portions of the records as such and to use all of
the data to obtain better estimates of both the underlying
model and the corruption process itself.

Figure 1 provides a motivating example. Although the
record marked with an X has a corrupted attribute, the re-
maining uncorrupted attribute can be used in estimating the
x-coordinate of the mean. Further, the record marked with a
triangle is a second outlier that has been corrupted the same
way, but could have plausibly resulted from corruptions in
either or both attributes. By modeling the corruption pro-
cess we may be able to use knowledge of the first record’s
corruption to more accurately determine which corruptions
are present in the second record. Both of these advantages
are more significant as the number of corrupted records and
attributes increase.

−6 −5 −4 −3 −2 −1 0 1 2
−8

−6

−4

−2

0

2

4

6

Figure 1. Example of two records each with a
single corrupted attribute.

Corruption
Model

Noise
Model

Clean
Model

Corruption
Matrix

Noise
Data

Clean
Data

Data

Figure 2. Model of data generation.

2 Model Learning and Noise Identificiation

The ultimate task is to both identify the corrupted cells
and learn accurate models of the generative process. The in-
formation gained can then be used to calculate “clean” val-
ues for the corrupted cells. We approach this task by defin-
ing a probabilistic generative model and presenting an iter-
ative approach for maximizing the model’s log-likelihood.

2.1 Generative Model

We assume that records are generated independently by
the model shown in Figure 2. Consequently we currently
do not consider the case of time dependent data or noise.
Records are generated using three distinct models: the clean
model, the noise model, and the corruption model. Record
generation can be viewed as a two-stage process. In the
generation stage, (noise free) records are generated accord-
ing to an underlying “clean” probabilistic model. The data
is then corrupted. Which cells are corrupted is determined
by an underlying corruption probability model and the new
values for the corrupted cells are generated according to an
underlying noise model.

We define the elements of our model as:

• Clean Model(MC): The generative model for the un-
corrupted records.

• Noise Model(MN): The generative model for the noise
values.

• Corruption Model(MR): The probabilistic model for
which attributes are corrupted by noise.

We call the combination of the corruption model and the
noise model ournoise systemand the combination of all
three models thegenerative model. Further, we refer to the
Boolean matrix marking whether or not a cell has been cor-
rupted as thecorruption matrix(CM) and the correspond
Boolean vector for a record acorruption vector.

It is important to appreciate that we do not restrict our-
selves to specific classes of probability models. This is done
intentionally to provide flexibility and allow the algorithm
to work on a wide range of underlying models. Further, the
use of an arbitrary corruption model allows us the possibil-
ity to account for dependent corruptions.

2.2 Iterative Identification of Noisy Values

We want to learn the underlying models for which the
data and learned corruption matrix are most likely. Thus,
the problem reduces to:

argmax

MC,MN,MR,CM
P(Data, CM|MC,MN,MR) (1)

where:

P(Data, CM|MC,MN,MR) =
P(Data|MC,MN,CM)P(CM|MR) (2)

becauseCM is conditionally independent ofMC and MN

givenMR. This optimization can be interpreted two ways.
First, the corruption matrix itself is a piece of hidden data
and we are trying to find the models for which all of the data
is most likely. Second, the corruption matrix is part of the
set of models we are trying to learn, but we are constrain-
ing it to be probable with respect to the corruption model.
Thus the hope is the corruption matrix will not be arbitrarily
complex, but rather will contain some underlying structure.

Due to the large number,O(2N∗D), of corruption matri-
ces it is computationally infeasible to exhaustively search
for the best corruption matrix. Instead we propose an iter-
ative approach that consists of alternating between learning
the underlying generative models and learning the corrup-
tion matrix. We turn the optimization into a hill-climbing
problem. Using the model given above, we can break our
task into two steps:

1. For a fixed corruption matrix, learn the models:

argmax

MC,MN,MR

P(Data, CM|MC,MN,MR) (3)

2. For fixed generative models, estimate the corruption
matrix.

argmax

CM
P(Data|MC,MN,CM)P(CM|MR) (4)

Step 1 reduces the problem to that of learning models
from data with missing values. The clean model can be
learned by treating marked cells in the corruption matrix
as missing. Depending on the models used, this can effec-
tively be done using an EM based approach such as the one
described in [7] for Gaussian mixture models with missing
data. Similarly the noise model can also be learned from the
records, this time using the complement of the corruption
matrix to mark which cells are missing. Finally, learning
the corruption model simply consists of learning a proba-
bility distribution over Boolean vectors.

Step 2 consists of finding a corruption matrix or “sur-
prising” cells given fixed probabilistic models. Since the
records are assumed to be independent, we can find the cor-
rupted cells for one record at a time. Below we discuss
techniques to estimate the corruption vector of a record.

It should also be mentioned that it is possible to suggest
an alternative approach that uses an EM method to learn the
models while treating the corruption matrix as hidden data.
Real valued entries could be stored in the corruption matrix
to track the probability that a given cell is corrupted. Un-
fortunately, this approach quickly becomes computationally
infeasible for many interesting models. For example, as an
extreme case consider learning a full joint corruption model
from a real valued corruption matrix. Simply accounting for
a singlerecord’s corruption vector would take timeO(2D).
Further, this does not account for the cost of estimating the
corruption matrix or learning the other two models.

2.3 Identification of Noisy Values

There are a variety of methods for estimating a record’s
corruption vector given the underlying generative models.
From (1) we note that we would like to find:

argmax
R

P(R, x|M) =
argmax

R
P(R|x, M) (5)

whereR is the corruption vector for a given recordx under
consideration andM is the collection all of the models (MC,
MN, andMR).

Again it is possible to use an exhaustive approach to
solve (5) by iterating over each ofR’s 2D possible settings.
Unfortunately, this approach is not computationally feasi-
ble for high dimensional data sets. Instead, one possible

solution is to approximately solve (5) using a hill climbing
search overR.

We consider a greedy approach that limits the search to
look at each attribute in turn, asking whether this attribute
in this record is corrupt. LetRd indicate the value of thedth
attribute of this vector (whereRd = 1 indicates that the cell
is corrupt andRd = 0 indicates that it is not). The probabil-
ity that thedth attribute is corrupted (thatRd = 1) given the
record and models is:

P(Rd = 1|x, M) =
∑Rs.t.Rd=1P(x|R, M)P(R|M)

∑RP(x|R, M)P(R|M)
(6)

Again these sums are over at least 2D−1 elements and
may not be computationally feasible. Fortunately, we can
quickly approximate this probability by assuming that the
previous corruption vector holds for the otherD − 1 at-
tributes:

P(Rd = 1|x, M) =
P(x,R(d=1)|M)

P(x,R(d=1)|M)+P(x,R(d=0)|M)
(7)

where the symbolR(d=v) denotes the vectorR with thedth
attribute set tov and the other elements set to their previous
values.

We can mark thedth attribute of the record corrupt if
P(Rd = 1|x, M) exceeds some threshold or simply:

Rd =
{

1 i f P(Rd = 1|x, M) ≥ P(Rd = 0|x, M)
0 i f P(Rd = 1|x, M) < P(Rd = 0|x, M) (8)

For each record we are effectively asking: “Given that I
believe that this corruption vector holds, what is the prob-
ability that this attribute is corrupt?” Thus we are doing a
hill-climbing search that does not blindly try neighbors, but
rather uses information about the current corruption vector
to direct the step to a neighboring corruption vector.

It is also possible to randomize the search to possibly aid
optimization and escape local minima. Specifically, we can
mark each cell as corrupt with probabilityP(Rd = 1|x, M)
as defined in (7). Including a small minimum probability
of flipping a bit in the corruption vector may also help the
algorithm escape local minima.

3 Noise Correction

The models above can be directly employed to correct
the corrupted records. Specifically, given a record and cor-
responding corruption vector we can “correct” the record
by using EM to determine the most likely values for the
corrupted cells given the uncorrupted cells.

More importantly, this approach can be applied to pre-
viously unseen records. The above techniques can be used
to estimate a record’s corruption vector and correct the ap-
propriate cells. Thus we can build the models on a small

portion of the data and use them to clean the remainder of
the data or to check for corruptions online.

4 Related Work

There is a significant interest in noise identification and
data cleaning in the field of computer science. One tech-
nique that has seen a significant amount of work is to
consider noise on the record/point scale and remove noisy
records such as presented in [1, 4, 8, 6, 11] and others. For
example, in Arninget. al. present a linear time method for
detecting deviations in a database [1]. They assume that all
records should be similar, which may not be true in unsuper-
vised learning tasks, and that an entire record is either noisy
or clean. Assuming entire records are noisy or clean is also
common in outlier and novelty detection [9, 10]. A signif-
icant downside to looking at noise on the scale of records
is that entire records are thrown out and useful, uncorrupted
data may be lost. In data sets where almost all records have
at least a few corrupted cells this may prove disastrous.

Several domain independent models have been presented
which examine the case of noisy cells. Schwarm and Wolf-
man examined the use of Bayesian methods to clean data
[16]. They also use a probabilistic approach, but it differs
from this paper in several respects: we do not assume a sub-
set of precleaned instances and we use an iterative approach
that considers other corruptions that may be present in a
record. Further, our model includes explicit models of both
the noise and the corruption process allowing us to take ad-
vantages of dependencies in the corruption process and reg-
ularities in the noise. Teng presents a data cleaning method
designed to improve accuracy on classification tasks [17].
This model only looks at records which have been misclas-
sified and attempts to make corrections based in part on the
predicted attribute value given the rest of the record (which
itself may be noisy). Again there is no attempt to model the
noise or the corruption process. Finally, Maletic and Mar-
cus survey several methods for finding outlier cells includ-
ing statistical methods, association rules, and pattern-based
methods [12]. The methods they describe do not account
for or utilize possible dependencies between the attributes
and do not build a model of the corruption process.

Speech recognition and signal separation are other ar-
eas that have seen work in data cleaning and noise mod-
eling, including [2, 14, 15] and others. While these meth-
ods have been shown effective, they often make limiting
assumptions, such as time dependencies between points or
pretrained models and classifiers. For example, Roweis
presents a refiltering method designed to separate noise val-
ues from speech values in a signal, but requires the use of
pretrained hidden Markov models for each speaker and data
with time dependencies [15] .

There has been a significant amount of recent work

in data cleaning the field of data warehousing and
data/information quality management. [12, 13] and refer-
ences there in present an overview of some of this work.
Much of this work is concerned with solving problems
that are different from ours, such as: identifying dupli-
cate records, merging databases, and finding inconsisten-
cies. Further, much of the work makes use of the fact that
the databases have some known structure which can by uti-
lized. For example, many of the errors in name attribute
will be in terms of spelling or formatting errors.

Finally, the AutoClass system is also similar to LENS
in that it performs unsupervised clustering while allowing
different classes to use different models for their attributes
[5]. Determining which models to use for a given class is
done in a step similar to the one described in section 2.2. In
contrast to LENS, AutoClass appears to generate all records
from a given class from the models for that class. As a
result it does not appear to consider noise on the level of
cells, where a single cell may be generated by a different
model than cells of the corresponding attribute for the other
records from this class.

5 Evaluation

5.1 Naturally Corrupted Data Sets

As an initial test, we ran LENS on several real world data
sets. These data sets contained “natural” corruptions that
were not explicitly generated from the assumed models.

5.1.1 Leaf and Rock Data

The leaf and rock data, summarized in Table 1, consist of
attributes extracted from a series of pictures of leaves and
rocks respectively. The leaf data set contains 71 records
from pictures of living and dead leaves. As expected, the
living leaves were green in color while the dead leaves were
brownish or yellow. The rock data set contains 56 records
from pictures of slate and granite. The granite rocks con-
tained sufficient feldspar to give them a slightly orange col-
oring. All pictures were taken against a white background
with a single lamp providing primary lighting, but little was
done to standardize lighting conditions. One record was
then generated for each picture as the three number vector
corresponding to the average of each pixel’s RGB value.
Two natural corruptions were introduced: some pictures
werered corruptedby placing a red filter over the primary
light source and some pictures wereblack corruptedby tak-
ing a picture without removing the lens cap (thereby pro-
ducing a picture of black pixels).

Table 1. Leaf and Rock data sets.

TOTAL RED BLACK

LIVING 35 4 1
DEAD 36 4 0

GRANITE 28 4 0
SLATE 28 4 1

5.1.2 Leaf/Rock Cleaning Results

The settings for both data sets were chosen heuristically.
Both data sets were initially modeled using: a single 3-
dimensional Gaussian as the clean model, uniform noise
(with the same range as the observed data) as the noise
model, and a joint Bayesian model as the corruption model.

The LENS algorithm was run on the leaf data set for
2,000 iterations using randomized greedy search and a min-
imum flip probability of 0.02. The resulting output found
12 corruptions including 7 of the 8 corruptions in the R
values for the red-corrupted pictures, corruptions in the B
and G values of the 8th red corrupted pictures, and corrup-
tions in all three values of the black corrupted picture. Thus
the results agreed almost exactly with those predicted from
knowledge of the corruptions.

The LENS algorithm was run on the rock data set for 500
iterations using randomized exhaustive search, a joint cor-
ruption model, and a minimum flip probability of 0.01. The
algorithm found 27 corruptions, marking all three values of
the 9 corrupted records as corrupt. Since only entire records
were labeled as corrupt, later experiments used a naive cor-
ruption model and a randomized greedy search with 5,000
iterations and a minimum flip probability of 0.05. These
settings only identified one corrupt record, the picture taken
with the lens cap on, but showed promise in aiding the clas-
sification task discussed below.

It should be appreciated that the corruptions in the above
data are very simple and could be identified by hand. This
allows us to compare the resulting corruptions found with
a known ground truth. Further, since both the data and the
corruptions are generated by a real world process, we do not
force either to be generated from the assumed models.

5.1.3 Leaf/Rock Classification Results

Since the data sets above contain class information, we are
able to test whether noise identification leads to an improve-
ment on classification. Leave One Out Cross Validation
tests were performed on both sets of data. Each test con-
sisted of: removing a record from the training set, fully re-
learning the models and corruption matrix from their default
values, and classifying the removed record. The results are
shown in Table 2. In addition to the randomized LENS al-
gorithm, we also tested the following algorithms:

Table 2. Number of LOOCV errors for different
noise identification methods.

SEARCH LEAF ROCK

METHOD ERROR ERROR

ASSUMENOISELESS 17 11
RANDOMIZED GREEDY 6 6

GREEDY (1 ITR) 17 10
GREEDY (10 ITR) 17 10

GREEDY (500 ITR) 17 10
SIMPLE CELL 11 14

SIMPLE RECORD 6 10

• Assume Noiseless- assuming all records were noise-
less:

Rd = 0 ∀d (9)

• Greedy- a pure greedy variation (no randomization) of
the LENS algorithm run for 1, 10, and 500 iterations
as given in (7) and (8);

• Simple Cell- a non-iterative approach that determines
whether a cell was more likely to have been gener-
ated from the learned clean model or a uniform noise
model:

Rd =
{

1 P(xd|x, MN) ≥ P(xd|x, MC)
0 P(xd|x, MN) < P(xd|x, MC) (10)

This approach does not relearn the models given the
corruption matrix; and

• Simple Record- a non-iterative approach that deter-
mines whether an entire record was more likely to have
been generated from the learned clean model or a uni-
form noise model:

R=
{

(1, 1, . . .) P(x|MN) ≥ P(x|MC)
(0, 0, . . .) P(x|MN) < P(x|MC) (11)

This approach does not relearn the models given the
corruption matrix.

Assume Noiselesscorresponds to the performance of the
system if no noise identification had taken place.Simple
Cell and Simple Recorddo not learn corruption or noise
models. ThusSimple Cellis similar to the approach pre-
sented in [16] for a single iteration probabilistic noise iden-
tification andSimple Recordis similar to some approaches
used for full point noise identification.

The results in Table 2 indicate that accounting for cor-
ruptions and learning a model of the corruption process, as
with the randomized greedy algorithm, can lead to an im-
provement in classification accuracy. Further, the random-
ized nature of the algorithm can help escape local minima

and result in a better ultimate performance. It is important
to appreciate that at no time does the optimization consider
the classification task itself. The algorithm simply tries to
learn clean models (one for each class), a noise model, and
a corruption model that give the best log-likelihood.

5.2 Artificial Corruption

We also compared the algorithms by their ability to iden-
tify artificial corruptions. Three different test sets were
used: a noise free version of the rock data described above,
the UCI Iris data set, and the UCI Wine data set [3]. Noise
was generated by choosing to corrupt each record with some
probabilityp. For each record chosen, corruption and noise
vectors were sampled from their respective models. The
corruption model was a joint Bayesian model for the rock
and iris data and naive Bayesian model for the wine data.
Parameters for the corruption models were generated ran-
domly at the start of each iteration.

The algorithm’s success was measured using percent
improvement:

Improvement=
ErrsBefore−ErrsAfter

ErrsBefore
(12)

where the error in a corruption matrix is the Hamming dis-
tance between the learned corruption matrix (CML) and the
actual one (CMA):

Errs =
N

∑
i=1

D

∑
j=1

|CMA(i, j)−CML(i, j) | (13)

This measure of performance was used for two reasons.
First, since the records were corrupted randomly, the actual
number of corruptions on a given trial varied. Secondly, this
method penalizes any false positives. An improvement of 0
corresponds to the results if no noise detection was done
(assume noiseless).

Figures 3, 4, and 5 show the improvement versusp on
artificially corrupted rock, iris, and wine data respectively.
The solid line shows the 95% confidence interval for the re-
sults of LENS using randomized greedy search with 2500,
2500, and 5000 optimization iterations for the rock, iris, and
wine data respectively. The dashed line shows the 95% con-
fidence interval for the results of the Simple Record algo-
rithm describe above. As mentioned above this approach
is similar to approaches used for full record noise identi-
fication. Finally, the dotted line shows the 95% confidence
interval for the results of the Simple Cell algorithm describe
above. Again as mentioned above this approach is similar
to the approach presented in [16].

On the rock and iris data sets, the LENS algorithm
consistently performs significantly better than either of the
other algorithms on small to medium amounts of noise. As

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Im
pr

ov
em

en
t

Probability of Point Being Corrupted

LENS
Simple Cell
Simple Record

Figure 3. Percent improvement on artificially
corrupted rock data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Im
pr

ov
em

en
t

Probability of Point Being Corrupted

LENS
Simple Cell
Simple Record

Figure 4. Percent improvement on artificially
corrupted iris data.

expected, performance begins to decline as the amount of
noise increases. In the tests using the wine data set the
performance is superior to that of Simple Record, but on
the later cases is not significantly better than that of Simple
Cell. Here it is important to notice that since an axis aligned
Gaussian and naive corruption model are being used, LENS
is unable to take advantage of possible dependencies be-
tween the attributes. Despite this, these results demonstrate
an advantage to learning a noise and corruption model and
using them in the identification of noise. The figures also
show a significant advantage to looking for corruptions on
the scale of cells rather than records.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Im
pr

ov
em

en
t

Probability of Point Being Corrupted

LENS
Simple Cell
Simple Record

Figure 5. Percent improvement on artificially
corrupted wine data.

5.3 Model Accuracy

A final and important test is whether the learned clean
model is accurate. In other words, we would like “cleaning”
the data to result in a more accurate estimate of the model’s
parameters. To test this we examined corrupted data from
two known clean distributions. In the first set (DS1) 50
records were artificially generated from a 4-dimensional
Gaussian with the first 20 records corrupted in the 2nd and
3rd dimensions and the second 20 records corrupted in the
1st and 4th dimensions. In the second set (DS2) 80 records
were artificially generated from a 4-dimensional Gaussian
with each record corrupted (non-symmetrically) in exactly
one attribute. Note that this means that 100% of the records
were corrupted.

The LENS algorithm was then used to learn the parame-
ters of the clean models. A Gaussian clean model, uniform
noise model, and joint corruption model were assumed. For
comparison, we also examined the performance in estimat-
ing the means after several other cleaning methods, includ-
ing: no cleaning (assume noiseless), perfect record clean-
ing (all records containing any noise are removed), Simple
Record from Section 5.1.3, Simple Cell from Section 5.1.3,
and LENS with a naive corruption model. The estimation
that removed all of the records containing at least one cor-
ruption did not use uncorrupted cells from corrupted records
and thus produced results similar to those that would be ob-
tained after perfectly filtering all outlier records.

Error was measured by the Euclidean distance of the
estimated mean to the true mean that generated the data.
The results are shown in Table 3. As shown, taking advan-
tage of both dependencies in the corruptions and the uncor-
rupted cells in the corrupted records can result in a better
performance at estimating the true underlying model. Also

Table 3. Error in parameter estimation from
noisy data using various algorithms.

ESTIMATION ERROR

METHOD DS1 DS2
ALL RECORDS 3.20 1.95

CLEANED (JOINT MR) 0.71 0.65
CLEANED (NAIVE MR) 1.86 2.14

SIMPLE CELL 3.25 0.82
SIMPLE RECORD 3.20 3.69

NOISELESSRECORDS 1.54 N/A

of interest is the performance of Simple Cell, which per-
formed very well when records had at most a single cor-
ruption (DS2) and poorly when records contained multiple
corruptions (DS1).

5.4 Comments on Evaluation

The above tests reflect an inherent difficulty in algorithm
evaluation. Specifically, in order to evaluate a data-cleaning
algorithm either the actual corruptions must be known or
less direct evaluation, such as classification error, must be
used. For example, all of the above tests used either simple
and readily identifiable corruptions or synthetic corruptions
generated from a known model. This was done in order to
compare the discovered corruptions with a known ground
truth.

6 Data Cleaning as Anomaly Detection

The LENS algorithm can also be run on uncorrupted
data. In this case, abnormal points (or even points that sim-
ply do not conform to the clean model) may be identified
as corrupted. In this way the LENS algorithm serves as
an anomaly detector. Again, since we are identifying cor-
ruptions at the level of attributes, we can mark specific at-
tributes as anomalous and give an “explanation” as to why
a point may contain anomalies.

The webpage data consists of site counter data: the num-
ber of page views and time spent, for two personal websites.
Here the “corruptions” correspond to abnormal viewing pat-
terns, such as spending a large amount of time looking at
few pages. The records are shown in Figure 6. LENS was
run on the data for 1000 iterations using randomized greedy
search and a minimum flip probability of 0.01. The clean,
noise and corruption models were assumed to be a mix-
ture of 3 Gaussians, uniform noise, and a naive Bayesian
model respectively. Since some values were repeated sev-
eral times, a small amount of random noise [0.0,0.1] was
added to all values to prevent singular covariance matrices.

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

Page Views

T
im

e

Visit
Corrupted Page Views
Corrupted Time

Figure 6. Web data with corruptions marked.

The results are also shown in Figure 6. Cor-
rupted/Abnormal records are marked with one or two tri-
angles that point along the axis in which the corruption was
found. The results provide anomalies and explanations (di-
rection of corruption) that correctly agree with intuition.

A word of caution should be added. The identified points
may not truly fit the criterion of being anomalies; they might
just be points that do not fit the clean model. For example,
consider the case of four tight clusters that are modeled with
3 Gaussians. We would expect points from at least one clus-
ter to be poorly accounted for by the Gaussians and thus be
considered noise.

7 Conclusions

This paper presents an iterative and probabilistic ap-
proach to the problem of identifying, modeling, and clean-
ing data corruption. The strength of this approach is that
it builds explicit models of the noise and the corruption
process, which may be used to facilitate such tasks as data
cleaning and planning the collection of future records. Fur-
ther, it considers noise on the cell level, allowing it to use
uncorrupted data from records with only a few corrupted
attributes. We show that this approach can lead to benefits
in classification, overall data accuracy, and model accuracy
using both real world and artificial data.

Acknowledgements

Jeremy Kubica is supported by a grant from the Fannie
and John Hertz Foundation. Andrew Moore supported by
the National Science Foundation under Grant No. 0121671.
The authors thank Dan Pelleg for his helpful comments and
Theodore Kim for providing site counter data.

References

[1] A. Arning, R. Agrawal, and P. Raghavan. A linear method
for deviation detection in large databases. InKnowledge
Discovery and Data Mining, pages 164–169, 1996.

[2] H. Attias, L. Deng, A. Acero, and J. C. Platt. A new method
for speech denoising and robust speech recognition using
probabilistic models for clean speech and for noise. InProc.
of the Eurospeech Conference, 2001.

[3] C. Blake and C. Merz. UCI repos-
itory of machine learning databases.
http://www.ics.uci.edu/∼mlearn/mlrepository.html, 1998.

[4] C. E. Brodley and M. A. Friedl. Identifying and eliminating
mislabeled training instances. InAAAI/IAAI, Vol. 1, pages
799–805, 1996.

[5] P. Cheeseman and J. Stutz. Bayesian classification (auto-
class): Theory and results. In U. M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, editors,Advances in
Knowledge Discovery and Data Mining. AAAI Press/MIT
Press, 1996.

[6] D. Gamberger, N. Lavraˇc, and C. Groˇselj. Experiments with
noise filtering in a medical domain. InProc. 16th Interna-
tional Conf. on Machine Learning, pages 143–151. Morgan
Kaufmann, San Francisco, CA, 1999.

[7] Z. Ghahramani and M. I. Jordan. Supervised learning from
incomplete data via an EM approach. In J. D. Cowan,
G. Tesauro, and J. Alspector, editors,Advances in Neural
Information Processing Systems, volume 6, pages 120–127.
Morgan Kaufmann Publishers, Inc., 1994.

[8] I. Guyon, N. Matic, and V. Vapnik. Discovering informa-
tive patterns and data cleaning. InAdvances in Knowledge
Discovery and Data Mining, pages 181–203. 1996.

[9] F. R. Hampel, P. J. Rousseeuw, E. M. Ronchetti, and W. A.
Stahel.Robust Statistics: The Approach based on Influence
Functions. Wiley International, 1985.

[10] P. J. Huber.Robust Statistics. John Wiley and Sons, 1981.
[11] G. H. John. Robust decision trees: Removing outliers from

databases. InKnowledge Discovery and Data Mining, pages
174–179, 1995.

[12] J. I. Maletic and A. Marcus. Data cleansing: Beyond in-
tegrity analysis. InProceedings of the Conference on Infor-
mation Quality, pages 200–209, 2000.

[13] V. T. Raisinghani. Cleaning methods in data warehousing.
Seminar Report, 1999.

[14] B. Raj, M. L. Seltzer, and R. M. Stern. Reconstruction of
damaged spectrographic features for robust speech recog-
nition. In Proceedings of the International Conference on
Spoken Language Processing, 2000.

[15] S. Roweis. One microphone source separation. InNeural In-
formation Processing Systems, volume 13, pages 793–799,
2000.

[16] S. Schwarm and S. Wolfman. Cleaning data with bayesian
methods. 2000.

[17] C. M. Teng. Correcting noisy data. InProc. 16th Interna-
tional Conf. on Machine Learning, pages 239–248. Morgan
Kaufmann, San Francisco, CA, 1999.

