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Abstract

In this paper we examine a fundamental problem in many tracking tasks: track
initiation (also called linkage). This problem consists of taking sets of point observa-
tions from different time steps and linking together those observations that fit a desired
model without any previous track estimates. In general this problem suffers from a
combinatorial explosion in the number of potential tracks that must be evaluated.

We introduce a new methodology for track initiation that exhaustively considers all
possible linkages. We then introduce an exact multiple kd-tree algorithm for tractably
finding all of the linkages. We compare this approach to an adapted version of multiple
hypothesis tracking using spatial data structures and show how the use of multiple trees
can provide a significant benefit.
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1 Introduction

The fundamental task in tracking is to determine which observations at different time
steps correspond to the same underlying object. The linkage or track initiation problem
consists of making these determinations without any previous track estimates. Figure 1
illustrates the computational problem that we are trying to solve. Observations from
five equally spaced time steps are shown on a single image with observations from
different time steps represented as different shapes. The goal is to take the raw data
(Figure 1.A) and find sets of observations that correspond to the desired motion model
(Figure 1.B). The difficulty arises from the combinatorics of such a search.
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Figure 1: The linkage problem is to find one point at each time step such that the points
fit the model for a candidate track. Points from each of the five different time steps
are shown as different shapes (square — circle — triangle — diamond — plus). Two
linear linkages are shown (B) and a third is left as an exercise for the reader.

This is an important problem in such fields as target tracking and computer vision,
but our primary motivating example in this paper is the asteroid linkage problem. Here
we wish to determine which observed objects correspond to the same true underlying
object from a series of visual observations of the night sky. These linkages can then
be used to determine tentative orbits, attribute the observations to a known orbit, and
assess the potential risk of an asteroid. The use of new observation techniques and
equipment has increased the scope and accuracy of this problem, providing the poten-
tial to track hundreds of thousands of asteroids. The next generation of sky surveys,
such as PanSTARRS or LSST, are designed to provide vast amounts of observational
data that can be used to search for potentially hazardous asteroids. Further, these sur-
veys have the potential to allow us to detect and track fainter objects. However, these
improvements greatly increase the combinatorics of the problem reinforcing the need
for tractable algorithms.

Below we introduce a new methodology for track initiation. Instead of treating
track initiation as a sequential decision problem, we exhaustively consider all possible
linkages. Thus we provide an exact algorithm for linkages. We then introduce a mul-
tiple tree algorithm for tractably finding the linkages. We compare this approach to an
adapted version of multiple hypothesis tracking using spatial data structures and show



how the use of multiple trees can provide a significant benefit.

2 Problem Definition

The track initiation problem consists of taking sets of observations from different time
steps and linking together those observations that fit a desired model without initial
estimates of the track parameters. Figure 2 shows a simple one dimensional example
with five time steps and a linear model. The sets of linked observations are shown as
open circles with their linear models as dashed lines.

X

Figure 2: A set of one dimensional observations linked together by linear tracks. The
white circles are the observations that correspond to the linear tracks (dashed lines).

Formally the linkage problem can be phrased as a filtering problem. At each time
step k we observe N points from both the underlying set of tracks and noise. Given a
set of observations at K distinct time steps, we want to return all tuples of observations
such that:

1. the tuple contains exactly one observation per time step, and

2. itis possible for a single track to exist that passes within given thresholds of each
observation.

Thus we wish to filter the HkK:1 Ny, possible tuples down to just those tuples that could
be feasible tracks.

The observations consist of real-valued coordinates in D dimensional space, with
x; indicating the ith observation. These coordinates are the dependent variables of the
track. We use #; to indicate the independent variable of the ith observation. Although
in many of the applications below #; will correspond to the time of the observation, it
can be used to represent any independent variable.

The second condition specifies a constraint on the observations’ fit to the underly-
ing model. A tuple of observations (xy,, -- - , X, ) is valid only if there exists a track g
such that:

8(d] < xi[d] — g(1)[d) < 8"[d] Vd, i (1)



Equation 1 states that a track g is feasible for a tuple of observations if it falls within
some bounds [g(t;.)[d] + 8[d], g(t;)[d] + 87 [d]] of each observation x;, in each dimen-
sion d. The thresholds & and &7 provide upper lower bounds on the fit. Figure 3
shows an example of a feasible triplet using linear tracks and one feasible track for
these points. The track is allowed to pass anywhere within the error bars around each
point.

Figure 3: Three points that are compatible for linear tracks.

The above definition of feasibility is compatible with a range of statistical noise
models. For example, we can define an arbitrary observation noise model for the points
on a track and set the thresholds in each dimension to be the 95% confidence interval
for the noise in this dimension. Figure 4 shows an example of this. Further, we can
vary 8" and 8 to account for systematic or time varying errors.

- 0 3,1

Figure 4: An arbitrary probability distribution and the resulting bounds. The circle
denotes the observed location and the upper and lower bars indicate the acceptable
locations for the track.

In contrast to the flexibility for noise models, it should be noted that the above
criteria does not allow for a concept known as process noise. This means that we
assume the track always follows the model. For example, a linear track model cannot
account for changes in velocity. This is briefly discussed in Section 8.

Our discussion below focuses on two major types of tracks: linear and quadratic.
The quadratic track is simply a quadric function of time:

g(t)=a-1>+b-1+c )



and can be used to describe physical motions of objects undergoing constant accelera-
tion. The linear track is a linear function of time:

g(t)=b-t+c (3)

and can be used to describe the physical motion of objects traveling at a constant veloc-
ity. In addition, the linear model can be used for such queries as finding lines or edges
described by the observations. While much of our discussion and techniques presented
below will also apply to other track models, we restrict the discussion to the linear and
quadratic models to keep the discussion simple and consistent.

3 Previous Work

There are a variety of different approaches to the problem of track initiation. Below we
briefly discuss some of the more common ones. These approaches differ from our own
in several important ways. First, we are asking a different type of query. Specifically,
we are asking for all sets of observations that could feasibly belong to a path. Second,
we provide an exact algorithm for answering this query.

3.1 Sequential Track Initiation

One common approach to track initiation is sequential track initiation (for a good in-
troduction see [Blackman and Popoli, 1999] and references therein). The unassociated
points are treated as new tracks and projected to the later time steps where they are
associated with other points to form longer tracks. There are many variations to this
type of approach. One common and often successful variation is a very simple form of
multiple hypothesis tracking. When a tentative track matches multiple observations at
a given time step, multiple hypothesizes (tentative tracks) are formed and the decision
is delayed to a later time step. This process is illustrated in Figure 5. The single point
matches three other points at the second time step. These points are used to create
three hypothesized tracks. This process continues to the third and fourth time step with
“bad” hypotheses being pruned away.

In order to reduce the number of candidate neighbors examined gating is used. As
shown in Figure 6, neighbors are first filtered by whether they fall within a window
or gate around the track’s predicted position. This approach has also been used in
conjunction with kd-tree structures to quickly retrieve the candidate observations near
the predicted position of a track [Uhlmann, 1992, Uhlmann, 2001].

There are several potential disadvantages of this type of approach that arise from
the sequential nature of the search itself. It does not use evidence from later time steps
to aid early decisions. Early “good pairs” may be easily pruned using a lack of further
points along the track. Further, this approach has the potential of being thrown off by
noise early in the track. Multiple hypothesis tracking attempts to mitigate this problem
by allowing multiple tentative tracks, but introduces another problem, the possibility
of a high branching factor causing a significant computational load.
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Figure 5: A multiple hypothesis tracker starts from a tentative track (A) and sequen-
tially checks the later time steps. If multiple points fit a candidate track then several
hypothesis are created (B) and (C).

Figure 6: Gating can be used to ignore points that could not be part of the current track.
The predicted position of the track is shown as an X and the points that fall within the
gate are shaded.

It should be noted that sequential track initiation has the advantage that it can be ap-
plied to multiple tracks simultaneously. This gives this approach the ability to discount



Figure 7: Early noise in a track can significantly throw-off predicted positions. The true
points are shown as open circles and the observed points are shown as shaded circles.

observations that are “obviously” members of other tracks.

3.2 Parameter Space Methods

Another approach to the problem of track initiation is to search for tracks in parameter
space. One popular algorithm is the Hough transform [Hough, 1959]. The idea behind
these approaches is that for many simple models, individual observations correspond
to simple regions or curves in parameter space. An example with a linear model is
shown in Figure 8. The points are shown in Figure 8.A and their corresponding lines
in parameter space in Figure 8.B. If a series of observations lie along a line, then their
lines in parameter space will intersect at a common point. The Hough transform looks
for lines by using grid-based counts of the number of lines that go through a particular
region of parameter space (Figure 8.C and 8.D).

There are several major downsides to the parameter space approach. First, main-
taining and querying the parameter space representation can be expensive in terms of
both computation and memory. There are many possible intersections to check and
storing occurrences in a grid structure may require significant amounts of space. Sec-
ondly, the level of discretization of parameter space can drastically affect the accuracy
of the algorithm. If the grid is too tight then a small amount of noise can cause in-
tersections to spread out over several bins and be missed. If the grid is too loose then
coincidental occurrences can accumulate and cause false alarms. Although the false
alarms can be filtered out in post-processing, this step further increases the computa-
tional cost.

4 Multiple Tree Algorithm

Our solution to the problem of track initiation is to build multiple kd-trees over ob-
servations and traverse them simultaneously. Specifically, we build one tree for each
time-step that we wish to use. This approach allows us to not only look for pruning
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Figure 8: Under a linear model observations (A) correspond to lines in parameter space
(B). If several observations lie along a line, their lines in parameter space will intersect
at one place. Such clusters of intersections can be found by using grid based counts (C
and D).

opportunities at the next time step, but also to consider pruning opportunities resulting
from future time-steps. Further, by considering multiple time steps together, we may
be able to reduce redundant computation that can arise from pruning for similar points
or initial tracks.

Figure 9 shows a one dimensional example of this approach. One tree is built
independently on each of the K time-steps. The algorithm starts at the root of each tree
and begins a depth first search of combinations of tree nodes. At each level of the search
the algorithm picks one node and recursively searches its children (Figure 9.B). When
the search reaches a point where all K trees are at leaf nodes, the algorithm explicitly
tests the points at these nodes and returns those tuples of points that fit the criteria for
being potential tracks (Figure 9.C). Figure 10 shows a snapshot of this traversal on two
dimensional data. Figure 10.A and Figure 10.B show trees built from points at two
different times. The dashed boxes indicate the current nodes being examined.

In the above form, the algorithm would search all combinations of the Y& | N leaf
nodes, requiring O(HkK:1 Ny) time. The benefit of using the tree-based algorithm is that
we can prune off a section of the search space if we can ever show that it is not possible
to to fit a track through the K nodes. We call such sets of nodes infeasible. Such a



case is shown in Figure 9.D. This pruning criteria allows us to possibly ignore large
numbers of the tuples that would have been tried under a brute force approach.
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Figure 9: The multiple tree algorithm descends the trees in a depth first search (A and
B). If it reaches the leaf nodes, it explicitly tests the tracks (C). The search can be
pruned if it is not possible to fit a track through each of the nodes (D).

There are multiple ways to choose which tree to descend. For now we use an
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Figure 10: Two KD-trees built on two dimensional points at different times.

approach that chooses the tree with the most points below the current node. Other
methods are discussed below.

It should be noted that the use of multiple trees has been explored for quickly an-
swering spatial queries [Gray and Moore, 2001]. However, this work is so far been
restricted to simple spatial proximity queries on points. In contrast, we consider the
application of multiple trees to a more complex spatial problem with an inherent tem-
poral component.

5 Pruning

In order for the multiple tree algorithm to be effective, we need to accurately and effi-
ciently prune infeasible sets of nodes. Pruning is equivalent to asking: “Can there exist
any track that passes through all K regions?” If no such track can exist, then we can
safely stop searching these subtrees. In general, proof that such a track does or does
not exist may be non-trivial to find.

Formally, the pruning question is equivalent to finding a set of track parameters
(a,b, ¢) that satisfy the constraints imposed by each node or proving that such parame-
ters do not exist. We construct each KD-tree so that each node includes a bounding box
that encloses the points that it owns. The bounds of the ith tree define 2D constraints
on what qualifies as a feasible track, an upper bound H; and lower bound L; on the
position at that time. In the quadratic case, these constraints are:

a[l]- 2 +b[1]-t;+¢[1] <H,[1]
a2]-12+b[2]-1;+c[2] < H;[2]

alD] - t2+b[ |4+ D]

a[l] -7 +b[1] 1 +c[] ]ZLH
al2] -2 +b[2]-1i+e[2] 2 L2]

;[D] -t +b[D] - t; +¢[D] > Li[D]



Thus we wish to find a vector (a, b, ¢) that satisfies all 2K D such constraints.
We can greatly reduce the complexity of the problem by treating each dimension
independently. This reduction is justified by the following theorem:

Theorem 1: (a,b,c) is a feasible track if and only if (a[i], b[i], c[i]) satisfies
the constraints in the ith dimension forall 1 <i < D.

Proof: The proof of Theorem 1 follows from the independence of the con-
straints. For each dimension, 1 <d < D, we can create a set of constraints
that only depend on the variables a[d], b[d], and c[d]. These sets can be
solved independently by choosing values for just those variables in the set.
Since none of the other sets depend on those variables, the track (a,b,c)
is feasible if and only if (a[i],b[i],c[i]) satisfies the constraints in the ith
dimension forall 1 < <D.

Theorem 1 allows us to consider each dimension separately, reducing the pruning
query with 2K D constraints to D sub-queries of 2K constraints. Further, the separation
means that each sub-query consists of significantly fewer variables. For example, in
the case of quadratic tracks each sub-query now consists of just 3 variables instead of
3D.

Below we discuss a “smart brute force” search for answering the pruning queries.
Although we restrict the discussion to the cases of linear and quadratic tracks, the
results and discussion can be applied to tracks of other forms. The computational cost
of pruning tracks of other forms may vary depending on the complexity of the track.

5.1 Brute Force Search

We use a “smart brute force” search to test for the existence of a feasible point. It should
be noted that the constraints above can also be checked using linear programming.
Despite this, the low number of variables and constraints and the existence of additional
structure in the problem makes the smart brute force search computationally attractive.

Before describing the search algorithm, it is helpful to get intuition for the proce-
dure by interpreting each constraint as a hyper-plane in parameter space. In the case of
one dimensional quadratic tracks, the constraint forms a plane in 3-dimensional space
(a,b,c) and for linear tracks the constraint forms a line in 2-dimensional space (b, c).
Each constraint thus defines a partitioning of parameter space into a half-space of fea-
sible points, which lie on one side of the hyper-plane, and a half-space of infeasible
points, which lie on the other. If the intersection of the feasible half-spaces is not
empty, then there exists a track that satisfies all of the constraints. An example with
linear tracks and 6 constraints is shown in Figure 11. The tracks that satisfy all of the
constraints occupy the unshaded region of parameter space.

In its simplest form, our search consists of checking the “corners” of the constraints
for a feasible point. In a C-dimensional parameter space, two C-dimensional hyper-
planes intersect at a (C — 1)-dimensional hyper-plane and C non-parallel hyper-planes
will intersect at a point. We call this point a corner. Since the hyper-planes define the
boundary of the feasible region, this region is non-null if and only if one such corner
exists and is feasible:



Figure 11: Tracks that conform to all of the constraints lie in the region of parameter
space that is defined by the intersection of the constraint half-spaces. The feasible
half-spaces are the unshaded regions.

Theorem 2: The intersection of K half-spaces defined by at least C non-
parallel C-dimensional hyper-planes is not empty if and only if there exists
a point x such that x is feasible and lies on at least C hyper-planes.

Proof: It is easy to see that if there exists a feasible track x then the inter-
section of the K half-spaces is not empty regardless of where x lies. Thus
we only need to show that if the intersection is not empty then there exists
a feasible track x such that x lies on at least C hyper-planes.

Let y be an arbitrary feasible track, which by definition lies in the intersec-
tion of K half-spaces. Assume that y lies on ¢ < C nonparallel boundary
hyper-planes. Since the ¢ hyper-planes intersect at a C' = C — ¢ dimen-
sional hyper-plane, y can be any feasible point on that C’-dimensional
hyper-plane. Therefore we can move y to be a new point y’ by sliding
y along this hyper-plane until it intersects a new constraint. Such an inter-
section must exist because there are at least C nonparallel hyper-planes.
Further, if we constrain y to move to the intersecting hyper-plane that
is closest (requires the least translation along the C’-dimensional hyper-
plane), then we do not cross any other hyper-planes and y’ is still a feasible
point. Thus y’ is a feasible point that lies on ¢ + 1 boundary hyper-planes.
We can continue to push the feasible point in this manner until it lies on C
nonparallel hyper-planes. Thus if the intersection is not empty then there
exists a feasible track x such that x lies on at least C hyper-planes.

It should be noted that Theorem 2 does not require that the feasible region is fully
enclosed by the hyper-planes. Instead, it only requires that there exists at least C non-
parallel hyper-planes. Under this condition there will be at least one corner to search
and the theorem holds. Figure 12 shows such a set. If there is only C’ < C nonparallel
hyper-planes then by the same reasoning the feasible region is non-empty if and only
if any point on the intersection of those C’ nonparallel hyper-planes is feasible.

We can use Theorem 2 to define a brute force search for a feasible point. Specif-
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Figure 12: The search algorithm will work as long as there are at least C nonparallel
planes, even if the feasible region is unbounded.

ically, we can test each C-tuple of nonparallel hyper-planes and calculate the point of
intersection. We can then test whether this point is feasible, by testing it against each
of the constraints. This search requires O(K (CH)) operations, O(K) feasibility tests for
each of the O(K®) corners. Below we discuss ways that we can exploit the structure of
the problem to reduce this cost.

Above we make the implicit assumption that the planes are not all parallel or in an-
other degenerate configuration. In general these additional cases can easily be handled
as special cases. It is important to note though that many of the planes will have at least
one corresponding parallel plane. Specifically, the upper and lower constraints for any
node in any dimension form two parallel planes:

a[d]- 12 +bld] - 1;+ c[d] < H,[d] 5
ald]-1? +b[d] -t;+ c[d] > L;[d]

5.2 Utilizing Structure in the Search

In general the above brute force search is too computationally expensive to be used for
the pruning query. We can mitigate this cost by noting that the tree search provides a
significant amount of structure that can be exploited:

1. At each level of the search, the constraints for all tree nodes except one are
identical to the previous level.

2. Ateach level of the search, the constraints for the one tree node that changed are
tighter than at the previous level.

The first observation follows from the fact that we are only splitting one node at each
level of the search. Thus all of the other nodes and their bounds remain unchanged. The
second observation follows from the fact that each time we split a node, the position
bounds of the children nodes are strictly contained within the position bounds of the
parent node. Therefore the constraints defined by these bounds always get tighter.

12



The first observation indicates that we can avoid the computation altogether if the
feasible track found at the previous level is compatible with the few new constraints.
We must have already found a feasible track for the last level by virtue of the fact we
did not prune at the previous level of the search. Thus we can keep this point and test
it against the new constraints. If it remains compatible, we do not need to resolve all of
the constraints.

The first and second observation also indicate that we only need to search a limited
number of corners if the old point is not feasible. Specifically, if the old point is not
compatible with a new constraint then either the new set of constraints are not compat-
ible or a new feasible point lies on a corner where one of the planes is the incompatible
constraint. This is shown below in Theorem 3.

Theorem 3: If the feasible track from the previous level is not compatible
with a new constraint then either the new set of constraints is not compati-
ble or a new feasible point lies on the plane defined by the new constraint.

Proof: We prove this by showing that if the set of constraints is compatible
and the feasible track from the previous level x is not compatible with
the new constraint then there exists a new feasible point x’ that lies on
the plane defined by the new constraint. Let y be any point in the new
feasible region. Since the new constraint is strictly tighter y also lies in
the previous feasible region. We can define a line segment L between x
and y. Since the feasible regions are convex, all points on L lie within
the feasible region from the previous level. Further, because x is not in
the new feasible region, the line segment must intersect the hyper-plane
defined by the new constraint. This point of intersection is X’

Theorem 3 indicates that we do not need to search all corners, but rather only the
corners that contain the infeasible constraint. Further, we can add new constraints one
at a time and only do the search if the previous point is not feasible. This reduces the
cost of handling an infeasible point from O(K¢*1) to O(K©).

5.3 Combining Operations

We can further reduce the cost of pruning by combining the searching and checking
steps. Here we can take advantage of the fact that with a C-dimensional parameter
space, C — 1 nonparallel hyper-planes intersect at a line. Instead of searching all corners
we can instead search all lines. Then in order to check feasibility (and find a specific
feasible point) we can test the other constraints against that line. Each constraint will
either be parallel to the line, and can be checked directly, or will intersect the line. Each
intersection provides a signed point on the line. We can examine all of these signed
intersections asking whether any point on the line is feasible. An example is shown in
Figure 13.

This joint searching and merging steps means that we only need to check O(K€~1)
lines instead of O(K€) corners. Further, it can be combined with the tricks in Sec-
tion 5.2 to reduce the cost of handling an infeasible point from O(K¢*1) to O(KE .
While this savings may not appear significant, for the relatively simple task of quadratic

13



Figure 13: We can check for feasibility along a line by checking the signed intersections
of each constraint and the line.

tracks (C = 3) and five time steps (K = 5) these improvements provide a factor of 25
speedup.

5.4 Additional Constraints

The above pruning methodology provides a simple and formal way to provide addi-
tional constraints for the tracks. For example, we may wish to provide bounds on
the minimum and maximum accelerations that a target can undergo. These additional
constraints can be specified directly:

ald] < a’'*[d]

ald] > aM!V[d] (6)

and fit into the pruning algorithm without modification. This allows the user to seam-
lessly provide potentially valuable domain knowledge.

5.5 Missing Observations

Up to this point, our discussion has assumed that each track produces one observation
every time step. There are several simple approaches to handling missing observations.
Perhaps the easiest approach is include “missing” as a single new node in the tree as
shown in Figure 14. Additional logic can be added to prune the search if too many
trees are at the “missing” node, preventing such problems as returning tracks without
sufficient support. Here care must be taken to avoid adding subsets of valid tracks
that have already been found. Finally, allowing too many missing points may greatly
increase the computational load by performing the search repeatedly.

6 Relation to Conventional Track Initiation

The multiple tree algorithm can be adapted to function in a manner similar to sequential
track initiation, albeit with a different search order than is normally used. Consider the

14



Figure 14: One approach to handling missing points is to treat “missing” as another
tree node. Here the new tree is shown is a new root R’ and a missing node M.

following rule for descending the K trees:
Always descend the earliest tree that is not already at a leaf node.

This rule descends the first tree until it reaches a leaf node. It then searches the second
tree for points compatible with those in the first tree’s leaf node. The algorithm con-
tinues on in this manner, searching subsequent trees, and thus subsequent time steps,
looking for points to confirm the tentative track. Pruning is only done in relation to
whether the trees traversed so far allow a valid track. Thus the decent rule makes the
multiple tree algorithm perform like the sequential track initiation algorithms.

It is important to note that although this algorithm performs similarly to the sequen-
tial track initiation, it is still an exact algorithm for detecting potential tracks. Unlike
many proposed sequential track initiation algorithms, it does not try to fit a track to the
first few points and project this track ahead in time. Instead it maintains the same fea-
sibility criteria as the general multiple tree algorithm and will always return the same
result. For this reason, we use this descent rule for comparison in the below experi-
ments.

7 Experiments

7.1 Algorithms

In the below experiments, we examine a series of variations on the multiple tree al-
gorithm, denoted MT-1 through MT-K. Specifically, we use a rule similar to the one
described in Section 6:

Descent Rule for MT-k: If one or more of the first k£ trees are not at a leaf

node, descend the tree in the first k£ that owns the highest number of points.
Otherwise descend the earliest tree that is not already at a leaf node.

15



This rule runs a multiple tree algorithm on the first & trees and then confirms the poten-
tial tracks by sequentially examining the remainder of the trees. When k = 1, this al-
gorithm is the one described in Section 6 and mimics sequential track initiation. These
approaches cover the spectrum from a conventional track initiation approach to a full
K-tree algorithm.

7.2 Simulated Data

For the first set of experiments we used observations generated from artificial tracks
in order to examine the algorithms’ relative performance under a variety of conditions.
The data was generated by first creating NV artificial quadratic tracks:

e ¢ ~ uniform(0, 1)
e b ~ uniform(—basax, byax)
e a ~ uniform(—ayax, apyax)

The bounds on velocity and acceleration were included as constraints on feasible tracks.
Observations were then generated by sampling the tracks at each time step ¢:

1
X/ [d] = Ea,-[d]tz—i—b,-[d]t—i—c,'[d]—i—e Vd:1<d<D (7

where € is drawn uniformly from [8%[d],8[d]] for all d. In the below experiments
& [d] = —0.01 and &7[d] = 0.01.

Using the simulated observations, we can then ask about the benefit of using mul-
tiple trees as we vary different parameters in the data set. Since the algorithms are all
exact algorithms, they will return the same set of solutions. The major difference then
is the number of pruning computations that are performed throughout the run.

7.2.1 Number of Tracks

The primary factor that we would expect to influence the performance of the algorithms
is the number of tracks. We varied the number of tracks from 50 to 5000 and compared
the number of pruning queries from each of the algorithms. The average results over
30 trials are shown in Table 1. As shown, MT-3 consistently outperforms the other
algorithms.

Unfortunately, the performance benefit is largely offset by the increased density
of points. The high density of points means that there are less “empty” regions of
space and thus less pruning is done because more of the initial tracks appear feasible.
Table 2 shows the same experiment as Table 1, but with “slower” tracks. The decrease
in maximum velocity and acceleration effectively reduces the density of the points
relative to their motion. As shown this change significantly aids all algorithms, but
especially helps the multiple tree algorithms.

16



N | MT-1 MT-2 MT-3 MT-4
50 [ 2.86 x10° 2.54 x10° 2.28 x10° 2.39 x10°
100 | 7.60 x10°  6.85 x103  6.21 x10° 8.37 x10°
500 | 1.11 x10°  1.05 x10° 8.41 x10* 1.52 x10°
1000 | 4.66 x10°  4.50 x10°  3.30 x10° 5.81 x10°
2000 | 2.37 x10° 232 x10° 1.72 x10° 2.60 x10°
5000 | 2.57 x107  2.56 x107 2.08 x107 2.24 x107

Table 1: The average number of pruning tests for simulated quadratic tracks as the
number of tracks increases. These tests use “fast” tracks: !b[d]‘ < 0.1 and ‘a[d” <
0.05.

N | MT-1 MT-2 MT-3 MT-4 MT-5
50 | 246 x10° 2.09 x10° 1.73 x10° 1.39 x10° 1.07 x10°
100 | 5.74 x10°  4.83 x10° 4.02 x10° 3.30 x10° 2.60 x10°
500 | 3.88 x10* 3.22 x10* 2.62 x10* 221 x10* 2.01 x10*
1000 | 8.73 x10*  7.24 x10* 5.95 x10* 5.35 x10* 5.56 x10*
2000 | 1.98 x105 1.65 x10° 1.36 x10° 1.33 x10° 1.60 x10°
5000 | 6.11 x10° 5.17 x10° 4.25 x10° 4.87 x10° 7.28 x10°

Table 2: The average number of pruning tests for simulated quadratic tracks as the
number of tracks increases. These tests use “slow” tracks: |b[d]| < 0.01 and |a[d]| <
0.005

7.2.2 Gap Between Observations

Without an initial estimate of velocity or acceleration, the time between observations
may significantly affect performance. If either the movements or the temporal gaps are
small, then the next point on the track will often be close to the location of the last
point even without accounting for the movement. As the gaps or velocities increase
we may have to try many neighbors at the next time step to find the true neighbor. We
would expect to see an increased benefit from using multiple trees as the velocity or
time between observations increases. To test this, we generated artificial linear tracks
with a fixed range of velocities (—0.1 < b[d] < 0.1) and increased the spacing in time
of the observations. The results are shown in Table 3.

Table 3 shows one of the primary benefits of the multiple tree approach. As the gap
in time increases, the number of pairs of observations in the first two time steps that
comply with the velocity constraints increases. The use of three trees prevents us from
having to examine many of these pairs by incorporating information from later time
steps. However, after three trees the track is relatively well confirmed and additional
trees do not help.
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At MT-1 MT-2 MT-3 MT-4 MT-5
0.01 | 5.16x10° 4.16x10° 3.20x10° 2.32x10° 1.51x10°
0.05 | 5.79x10° 4.86x10° 3.88x10° 3.86x10° 4.38x10°
0.10 | 7.61x10° 6.69x10° 4.86x10° 6.00x10° 8.56x10°
0.20 | 1.44x10° 1.34x10° 7.22x105 1.15x10° 2.09x10°
0.50 | 5.30x10° 5.75x10° 1.97x10° 3.95x10° 8.18x10°
1.00 | 2.08x107 2.06x107 5.52x10° 1.13x107 2.27x107

Table 3: Average results for the simulated data sets with linear tracks (byax[d] =
0.1Vd > 1) with 5000 observations at 5 times with varied temporal spacing.

K| M-I  MT2 MT3 MT4
4123238 23230 21340 108.10
5
6

69.19  69.11 58.17  38.77
2893  28.86 2191 19.68

Table 4: The number of pruning tests (in millions) for the astronomy data with varying
numbers of observation and time step size.

7.3 Astronomy Data

In addition to completely artificial data, we examined simulated data from the astron-
omy domain in order to test whether this algorithm provides a benefit on tracks of
the distribution of real asteroids. Specifically, we simulated orbits for approximately
1,000,000 main belt asteroids and 1,800 near earth objects. These orbits were then ap-
proximated by a quadratic track over a period of 16 nights and observations were gener-
ated from this track. Each observation consisted of two components, Right Ascension
and declination, that gave the object’s location in the sky. We used this approach to
generate observations from 4, 5, and 6 time steps equally spaced over the 16 nights
and covering a 1 square degree region of the sky. This region included observations for
1,768 different objects.

Table 4 show the results of this experiment. The differences between performance
of different K is due to both a varying number of observations and the different spacing
between observations. As shown, the use of multiple trees can lead to a significant
reduction in the number of pruning queries needed.

As discussed in Section 7.2 and indicated by the previous experiment, the spacing
in observation times can have a significant effect on the number of neighbors we need to
search at the next time step. To examine this trend on the astronomy data, we examined
how many observations fell between the projected position and the true position using
the simulated astronomy data. Observations were generated from the quadratic tracks
at varying time intervals. Each observation was then projected to the next time step
(without velocity) and the distance to the location of the true next observation was
calculated as 8. Finally, the number of points closer to the predicted position was
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calculated. Figure 15 shows an illustration of the test.

AT

Figure 15: Without using velocity we would have to try at least 6 neighbors at the next
time step to find the true next point along the track.

Figure 16 shows the results of varying the time between observations. For each
spacing, the graph indicates a histogram of the position of the true closest neighbor. At
a spacing of 1 day most of the observations are very close to the true next point. As the
gap in time increases the distance to the closest point rapidly increases and more neigh-
bors at the next time step would have to be searched with a sequential algorithm. With
a spacing of 4 days, many of the tracks would require searching many observations to
find the true completion of the track. Further, the right hand side of the graph shows a
sharp increase in the number of tracks whose neighbor is further than 100 points away.
It should also be noted that since we are dealing with only a subset of the sky, these
histogram provide an optimistic estimate. In real data the points lying along the edge
of the region will also have interference coming from outside the region.

The trend shown in Figure 16 confirms one of the primary advantages of using mul-
tiple trees. As the spacing in time increases, many neighbors may have to be searched
in the early time steps. The use of multiple trees mitigates this problem by combining
pruning information for later time steps, thus contributing to the speedups shown in
Table 4.

8 Unknown or Complex Track Models

The above discussion assumes that we have a known and relatively simple track model.
However in many domains, this may not the be case. In the astronomy domain, the true
tracks of the asteroids across the sky are not quadratic. For example, relative motion of
the earth may cause the track to undergo retrograde motion.

The easiest solution to the problem of a poor or unknown track model is to approx-
imate the track with a simple model. This often requires a relatively short time span.
Fortunately, this complements the track initiation query itself where we are interested
in finding a set of observations to indicate the start of a track. If longer time spans are
needed, then it is possible to use the above algorithms to find short arcs that can then be
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Figure 16: Histogram of true neighbor positions for each gap in observation time.

glued together by a conventional tracking algorithm. Such an approach was suggested
by Shaw and Arnold [Shaw and Arnold, 1995]. They proposed gluing together track
segments found by a dynamic programming track-before-detect method. Finally, we
can account for systematic errors in the model by extending the fit threshold. However,
it should be noted that if the fit threshold is too loose then many false positives will be
returned.

9 Conclusions

Above we describe an exhaustive methodology for track initiation. We introduced a
multiple tree algorithm for tractably finding the linkages. Empirically, this algorithm
performed very well on several simulated data sets, outperforming an exact adaptation
of conventional multiple hypothesis tracking.

The true advantage of the multiple tree algorithm lies in its ability to use informa-
tion from later time steps to aid in pruning decisions at earlier time steps. For example,
an exhaustive method that does not account for this information may try every pair of
observations from the first two time steps when using a quadratic model. The addi-
tional pruning information afforded by the use of multiple trees can become even more
significant as the time between observations increase and bounds on track parameters
(such as maximum velocity) become weaker. In addition, the use of multiple trees
provides the ability to reduce redundant computation that can arise from pruning for
similar points or initial tracks.
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