
Mobile Robot Programming in Education
Jean-François Lalonde, Christopher P. Bartley, and Illah Nourbakhsh

The Robotics Institute
Carnegie Mellon University

Pittsburgh, USA
{jlalonde, cbartley, illah}@ri.cmu.edu

Abstract— The Mobile Robot Programming Laboratory course
has been taught at Carnegie Mellon University for the past
twelve years. It is a problem-driven class designed for students
with little or no experience with robots. In this paper, we first
present the current status of the class, and show how it improves
the education and training of students in a robotics curriculum
by giving them a hands-on experience with a real robot. We
show that, in addition to core subjects such as perception,
action and cognition, students also have the opportunity to
learn advanced topics such as reinforcement learning and multi-
robot coordination. We then discuss the evolution of the class
under general categories: hardware and programming environ-
ment, team experiments, and assignments. We present important
lessons learned in each category, and how they affect the learning
experience of participating students. We conclude by discussing
future opportunities.

I. I NTRODUCTION

Robots have played an important role in education for many
years. Whether being used as tools to support teaching or
as the primary objective, their presence is stimulating for
students. As shown in [1], the current uses of robotics in
education are now very broad and diverse.

In this paper, we describe theMobile Robot Programming
Laboratory course that has been taught for the last twelve
years at Carnegie Mellon and earlier at Stanford University
[2]. It is offered both to undergraduate and graduate students.
In this class, teams of students with little or no prior experience
with robots must program a mobile robot to overcome a variety
of challenges of increasing difficulty. As we shall see, mobile
robots represent an excellent opportunity for students to get
hands-on experience with real problems and are a unique tool
for learning.

The aim of the paper is two-fold. First, we present the
current status of the course and show that it contributes
significantly to the students’ education not only in robotics,
but also under more general educational themes. Second, we
take advantage of its long history and present the evolution
of the class and lessons learned since its creation. By doing
so, we hope to improve the learning experience of students in
future versions of the class, and also help groups from other
universities that have a similar curriculum by sharing thislong-
term experience. We also support our claims with educational
data, taken from a survey filled byn = 37 students from the
last two editions of the class at Carnegie Mellon, as well as
with collected students’ typical comments.

Similar courses are now being offered at numerous univer-
sities. However, theMobile Robot Programming Laboratory
course differs from many in two key areas. First, it emphasizes

robot programmingwhereas many other classes also cover
robot morphology and construction. For example, the courses
discussed in [3], [4], [5] use commercially-available parts
(LEGO bricks), but require the students to assemble the
robot. Similarly, some other courses, such as those discussed
in [6], [7], use custom kits which the students must first
build. In contrast, theMobile Robot Programming Laboratory
course focuses solely on robot programming and therefore
uses a preassembled, commercially-available platform. Thus
the students can begin programming the robot immediately and
hardware-related concerns are kept to a minimum. The second
major difference concerns hands-on experience. Courses such
as the one described in [8] employ research robots which
are very often in high demand and whose availability is very
limited. Courses such as [9], [10] use simulated or remotely-
controlled robots. However, theMobile Robot Programming
Laboratorycourse strives to provide a large amount of hands-
on experience under real-world constraints by providing each
team with a robot to which they have virtually unlimited
access.

The rest of the paper is organized as follows. In Sec-
tion II we describe the course logistics. The following section
presents its current status, and provides more details about the
technical concepts learned. Finally, Section IV presents the
evolution of the class.

II. COURSE OUTLINE

We first present the current status of the course by describ-
ing the logistics, presenting the mobile robotic platform used,
and by giving a brief outline of the different topics covered.

A. Logistics

Mobile Robot Programming Laboratoryis a one-semester
course that uses a problem-driven syllabus to give students
hands-on experience with mobile robot programming. The
class is kept to a manageable target size of 30 students, with
the support of 2 teaching assistants. It is designed for students
with little or no experience with robots, and it is availableto
senior undergraduates in Computer Science or new graduates
in Robotics.

Students first form teams of three that are kept intact
throughout the semester and immediately begin addressing
weekly assignments that usually build upon the previous one.
Each week, teams are evaluated based on their robot’s ability
to meet the assignment requirements, and all team members
are given the same grade. The last four weeks are dedicated



to preparing for a final mobile robot competition between the
teams (see Section IV-C).

Also part of the syllabus is a weekly lecture that aims to
enrich students’ theoretical knowledge of important concepts
in robotics. Part of the lecture time is reserved for group
discussion, where students are invited to discuss the previous
week’s challenge and present the solutions they used.

B. Robotic platform

The current robotic platform in use is the Nomad Scout
differential-drive robot mounted by a Dell laptop computer
running the Java 1.4.2 runtime environment under Windows
XP (see Figure 1). The robots are also equipped with a low-
cost USB webcam, for basic vision. Communication between
robot and computer is achieved via a serial interface, and
Java code making native calls via the Java Native Interface
(JNI) to low-level C code, necessary for implementing basic
motor control and sensor reading is provided to the students.
The laptops are also equipped with IEEE 802.11b wireless
adapters, necessary for the last part of the class (see next
section).

Fig. 1. Hardware environment in use for the 2004 edition ofMobile Robot
Programming Laboratory: Nomad Scout with Dell laptop equipped with a
PCMCIA wireless card and a Logitech USB webcam. The camera is fixed on
the magnet support and facing forward. The circles on the sideof the robot
are its sonars.

C. Curriculum

We present an updated curriculum overview in Figure 3
from the originally introduced version in [2]. In summary,
new concepts are introduced each week during lectures. Topics
include feedback control, reactive control, sensors (sonars and
camera), localization, planning, robot architecture, andmulti-
robot collaboration. In addition, we also provide a detailled
review of the main fundamental concepts covered, and we in-
troduce advanced concepts explored by students, in SectionIII.

As shown in Figure 3, the goal of the assignments is to
build a system capable of taking part in the final competition
by playing agame. The students create a team of two mobile
robots to compete with other robot teams in a maze. The robots
have to pick up gold pieces scattered throughout the maze, and
whichever team returns them the fastest wins the game. The
annual competition has now become a popular event in the
university community.

Fig. 2. Students in preparation for the 2004Mobile Robot Programming
Laboratorycontest.

III. T ECHNICAL CONCEPTS

We now review robotics concepts covered in the course, and
show that the “learning-by-doing” experience acquired by the
students is an essential part of a robotics-oriented curriculum.
Furthermore, the hands-on experience with a real robot helps
them develop problem-solving aptitudes and understand real-
world constraints.

A. Fundamental concepts

We divide the fundamental robotics concepts into three
broad categories: perception, action, and cognition.

1) Perception: As mentioned previously, the robots are
equipped with two different kinds of sensors: 16 sonars and
one camera. The sonars are used for localization in the maze
world. Students have to deal with the inherent uncertainty
in sensing, learn about the physics governing the sensors
used, and implement filtering methods to get high-accuracy
localization despite noisy raw data.

The camera is used only to detect the presence of gold in
front of the robot (blue cardboard attached to a metal base).
Color detection algorithms range from simple RGB threshold-
ing to more robust HSV-space automatic segmentation. These
more complex methods proved more successful at dealing with
the different lighting conditions of the final contest location.

2) Action: The main action-related challenge is to build
a robot that can move in a maze very accurately. Therefore,
after exploring low-level controls with PI and PID controllers,
the teams are asked to build an abstract action,go-to-next-
node, that allows the robot to move from one maze node to
another without accumulating rotational or translationalerror.
This seemingly simple request turns out to be very challenging
because of wheel encoder error accumulation and noisy sonars.

For example, this year’s successful teams developed line fit-
ting methods based on filtered sonar readings. When detected,
the walls on either side of the robot were used to infer a center
line (see Figure 4). The robot then followed this center line
using a simple PI controller. The total distance travelled by



1 Introduction
1.1 Initiation to robot programming

2 Feedback and Reactive Control
2.1 Precise rotational and translational movement
2.2 Reactive programming

3 Sensor Interpretation and Corridor Following
3.1 What-do-I-see: Abstract perception command
3.2 Corridor following

4 Robust abstract action
4.1 Go-to-next-node: Basic movement in maze

5 Executing plans
5.1 Introduction toMazeworld
5.2 Sequential and conditional plans
5.3 Universal plans
5.4 State-set tracking automata

6 Planning
6.1 Sequential planning with certainty
6.2 Sequential planning with uncertainty
6.3 Conditional planning

7 Architectures for Interleaving Planning and Execution
7.1 Assumptive programming architecture
7.2 Interleaved planning architecture

8 Single-Robot Game Playing
8.1 Introduction toGameworld

9 Cooperation: Two Robot Game
9.1 Communication protocol

10 Final contest
10.1 Competition and collaboration

Fig. 3. Brief outline of theMobile Robot Programming Laboratoryclass,
as it was taught in Fall 2004.

the robot was locally integrated to allow accurate displacement
from one node to another.

3) Cognition: Because the robots are constrained to evolve
in a structured, discrete environment, the low-level navigation
is sufficiently facilitated and the course can graduate to AI-
level programming assignments after the first third of the
semester. Planning assignments begin with simply executing a
hand-computed conditional plan that depends on the starting
location of the robot in the maze. This quickly evolves
to a fully-autonomous system that automatically interleaves
conditional plan generation and execution. Basic AI tree-
searching algorithms (depth-first, breadth-first, AND-OR,etc)
are explored and implemented in a real-world context.

To facilitate the development process, many of this year’s
teams developed a simulator that could reliably replace the
physical robot. They could then test their planning strategies
off-line, without the need to be physically present in the lab.
This example shows that students learned to develop testing
tools for their application and reduce the time spent debugging.

B. Advanced concepts

In addition to the three fundamental concepts presented in
Section III-A, students also explore more advanced robotics-
related concepts that are often not directly part of the curricu-
lum.

1) Robot observability: An important aspect of mobile
robot programming learned by the students in this class is the

(a)

(b)

Fig. 4. Filtering of noisy sonar data. (a) Robot navigating in a maze. (b)
Corresponding graphical interface showing the robot in red, the sonar data
accumulated over time as the black dots. The blue center line isinferred from
the two detected walls (green lines).

psychology of diagnosing a misbehaving robot. To facilitate
this process, students develop tools that improverobot observ-
ability [11], or the degree to which an outside observer can
identify the evolution of the internal state of a robot. Thiscan
be achieved through the use of audio feedback using sound
clips or a speech synthesizer: the robot would simply “speak”
its actions or states. Data logging and visual interfaces are also
very useful.

For example, a visual interface such as the one shown in
Figure 4-(b) helped one team determine why their robot con-
sistently stopped in the middle of an empty corridor. Because
of sonar interference due to certain pathological configuration
of the maze, a false short reading on the front sonar generated
a false positive detection of an obstacle. Without the help of
such a tool, diagnosing this problem would have been much
more difficult. In fact, all of the teams surveyed reported the
use of at least one form of interface. 86% of students felt that
the interface was a very useful debugging tool.

Since the computers are connected to the robot using a
serial port, students are often obliged to program directlyon
the robot to accelerate the debugging process. It has been
observed that this actually helps them understand the robot
better, because they are constantly watching its every move,
thus improvingrobot observability. Although remote control
of the robots was also available, students would prefer to “sit
down on the floor and code manually without any remote
fashion”.



2) Property mapping:Throughout the semester, students
learned how to map a set of robot percepts to outputs. This
is achieved in a progression, where they first map low-level
sensor inputs to motor output for position control and obstacle
avoidance. They then repeat the same process with higher-level
sensors and effectors (e.g. wall detectors and abstract actions
such asgo-to-next-node).

Even though it was not required, the team of which the first
and second authors were members implemented a framework
based on the suggestions ofproperty mapping, a simple and
language-independent approach proposed in [11] to map robot
percepts to outputs. They discovered that it improved the
observability of their robot. They realized that this framework
was indeed very helpful when trying to determine the reason
certain problems arose in particular situations. With the help
of a data-logger, they could precisely determine the evolution
of the internal state of the robot, and the reason why it made
these decisions. As a result, debugging was much faster and
more intuitive.

3) Reinforcement learning:Although not in the original
curriculum, that same team also explored reinforcement learn-
ing by implementing a simple version of the well-known Q-
learning algorithm [12]. The robot automatically learned the
mapping from its percepts (obstacle on the left, right, front
or no obstacle) to an output (wheel velocities). The learning
process was implemented directly on the robot, and negative
rewards were given when the robot came too close to a wall.
In the end, a robot using the learned parameters would behave
comparably to one that used carefully hand-tuned thresholds.
As in the previous section, this example shows that the class
allows enough flexibility for students to explore and learn
about interesting new subjects, even if they are not part of
the curriculum. This freedom adds to the student’s sense of
achievement and enjoyment of the course.

4) Multi-robot coordination: During the last part of the
class, the teams are asked to build a two-robot team that
competes against another team in the same maze (see Sec-
tion II-A). It is therefore critical that a robust communication
protocol be developed in order to synchronize the two robots
towards a common goal. This section introduces students to
evaluate different kind of control architectures, and deadlock
and collision avoidance schemes. Because the robot population
is homogeneous, egalitarian architectures were successful,
although master-slave protocols were also tested.

It is now clear that theMobile Robot Programming Lab-
oratory class is a great educational experience for students
to learn not only about robotics and software engineering,
but also about problem-solving in general. The challenges
they face require imagination, teamwork, observing their robot
using different interfaces, and creatively elaborating solutions.
Because mobile robots evolve in the real world, students have
to learn to cope with a constantly changing environment, noisy
sensors, and real-time constraints. Moreover, the structure of
the class also gives them occasions to further explore subjects
that arouse their curiosity, even if they are not explicitlyin the
curriculum. In the next section, we will look at the evolution
of the class and the educational lessons learned.

IV. EVOLUTION

The Mobile Robot Programming Laboratoryclass was first
taught twelve years ago, and has since been offered yearly. The
evolution of the class will now be presented under four dif-
ferent categories: the hardware environment, the programming
environment, the final challenge (the game), and the teamwork
experience. Finally, future directions will be discussed.

A. Hardware environment

The hardware on which the students work has a great
influence on their learning experience. Throughout the years,
different robotic platforms were used (see Table I). We now
review the main platforms and their influence on the class.

The first models used were the Nomadic Technologies
robots serial numbers 1 and 2. These are three-wheeled,
synchro-drive robots, which means that the robots always face
in the same direction and the wheels can turn independently
of the robot’s body. The next generation of robots, the Nomad
150, had the same motion system. However, it could also orient
its sensor turret independently, which gave it an additional
degree of freedom. This allowed a lot of variability in the so-
lutions proposed by the students, even for simple assignments.
For example, the common solution for a maze-wandering robot
is to have the robot execute straight lines in corridors and
stop before turning around each corner. However, the synchro-
drive also allowed the implementation of a continously moving
robot that would turn without stopping, which resulted in much
faster performances. Higher number of degrees of freedom
in the physical system can thus favor student’s creativity
by allowing a larger number of valid solutions to the same
problem.

Figure 1 illustrates the current robotic platform: the Nomad
Scout robot. It is driven by a two-wheeled differential-drive,
and is therefore more restricted than its predecessors. As a
consequence, since its introduction, the number of different
solutions proposed by students has decreased significantly. The
“continous robot” implementation, although still feasible, is
much harder and less popular among students. However, this
model was kept because of its smaller size, which in turn
allows for much larger mazes and different challenges (see
Section IV-C).

B. Programming environment

The programming environment also has a critical impor-
tance on the class. As illustrated in Table II, the programming
language and environment underwent many changes.

LISP on Macintosh was the programming language origi-
nally used for this class. Its functional nature made it perfect
for the application. Moreover, because each function can be
executed independently from a command-line debugger, it was
the ideal diagnostic tool to test fragments of code, and make
sure the basic functions were working properly. This allowed
students to identify and correct bugs very rapidly. Unfortu-
nately, LISP was later replaced by C because there existed no
reliable LISP programming environment on Windows at that
time.

With C, programming suddenly became much harder, and
the instructors witnessed an explosion of bugs in students’



Year Robotic platform Description Sensors
1-2 Nomadic Technologies robots serial numbers 1 and 2 3-wheels synchro-drive Infrared
3-6 Nomad 150 3-wheels synchro-drive, independent sensor turretSonars
7-11 Nomad Scout Differential-drive, smaller size Sonars

TABLE I

EVOLUTION OF THE ROBOTIC PLATFORM.

code. However, most of these bugs were not “robot-related”,
but were instead due to bad memory and pointer management.
The use of C++ tried to address that problem, but the learning
curve for novice programmers then became too high, and there
simply was not enough time for students to learn the language
appropriately. Therefore, students would spend the semester
struggling with programming language problems, and were
not fulfilling the educational objectives of the class.

The advent of Java solved much of the problems cited
above. Students already possessed good knowledge of it: 86%
of surveyed students reported having prior Java programming
experience ranging from intermediate to expert. Memory-
management problems were rarely an issue due to Java’s
garbage collector. The availability of easy-to-use graphical
interfaces also made it the ideal tool for debugging fragments
of code. Finally, the presence of many well-documented pack-
ages in the Java Software Development Kit (JDK) provide
users with useful basic building blocks. It was observed
that a lightweight Integrated Development Environment (IDE)
equipped with a simple text editor with an easy interface to the
compiler was preferable over big and slow IDEs. The latter are
too bulky and memory-consuming for this kind of application
and development process (often by trial and error).

Year Programming environment
1-2 LISP on Macintosh
3-4 LISP on Windows
5-7 C and C++ on Windows
8-11 Java on Windows

TABLE II

EVOLUTION OF THE PROGRAMMING ENVIRONMENT.

Also related to the programming environment is the amount
of code provided to the teams. Throughout the years, this
has been kept to a minimum. Examples of given code are:
a sample project to get students started; a maze and game
editor, and a Java class that allows easy connection to the
communication server (for multi-robot coordination). This
way, students have to write their own code, which gives them
complete ownership over the system they develop. It increases
their responsibility: in case of a bug, they alone can fix it. In
the end, the final product is complex, and students feel proud
that they developed it entirely. 97% of surveyed students felt
that they were provided the right amount of code throughout
the semester.

In summary, the following programming environment as-
pects have a direct influence on the student’s learning expe-
rience. The students should already be familiar with the pro-
gramming language in use for the class, because its learning
curve might be too high, and students simply do not have

enough time to learn it. Moreover, the language should be
chosen such that students are faced withrobot-relatedand not
language-relatedbugs. Finally, fast debugging tools should be
readily available.

C. Final challenge

The final challenge given to the students depended primarily
on the available hardware. Initially, robots were competing
one-on-one in a shared maze, and the goal was to reach
a particular position in the maze first. Common strategies
consisted of trying to block the opponent while progressing
towards the goal. However, because the robots were equipped
with infrared sensors, they would be “blinded” as soon as they
moved within each other’s line of sight.

With the advent of RF devices for communication, the next
challenge was to build a team of two robots which would
compete against an opposing team in a shared maze. This
proved to be very hard for the students, because the robots
could not know the location of their opponents, and thus
frequent collisions occured.

Each team of robots was then put in separate mazes, and
the quality of games improved dramatically. The challenge
changed: robots now had to pick up “gold” pieces scattered
in the maze. At first, they had to ask a human to pick the
gold, but they were soon equipped with magnets and had to
perform the job themselves. Many games ended up with only
a few seconds in difference. Failures were now due mostly
to problems in communication protocols. Figure 5 shows one
example of a maze used during a contest. The robots must
agree on who goes out of their starting location first, or there
will be a collision right at the beginning.

Fig. 5. Example maze used during the 2004 edition of the contest. The blue
(green) circles indicate the robots’ starting location. Robots with same color
are part of the same team. Walls are indicated in red, and gold pieces are in
orange. The blue empty squares indicate locations where one gold (maximum)
can be dropped off. Note that most gold pieces are accessible by both teams,
and that the teams are completely isolated from each other.



The shared maze challenge was tried once more a few
years later, but it was still too hard, because the opponents
were invisible. Because it is a source of motivation and
pride to the participating students, it is important that the
final assignment be hard, but it must also be feasible. As
experience has shown, overly difficult assignments may be
frustrating to students because, given the particular hardware
configuration, no solution may exist to solve the problem.
Possible improvements to the shared-maze challenge might be
to broadcast the robot’s position to every robot in the game,
or to use vision to detect opponents.

D. Teamwork

Learning how to work efficiently in teams is crucial in many
endeavors, and theMobile Robot Programming Laboratory
class provides a great teamwork opportunity to students. It
has been determined that three-member teams provide the best
teamwork experience. With a larger number (up to five), there
would often be splits within teams, resulting in one or more
students being left out or the creation of non-communicating
subteams. A lower number was not enough to complete the
task.

One interesting fact, also noted in [6], is that the team
members should all be of the same gender whenever possible.
Generally, we observe that all-female teams are more likely
to encourage its member’s active participation. We confirmed
that observation with a quantitative test: same-gender team
members felt that their team was more efficient than mixed-
gender teams (Student’st test:p = 0.05, n = 37). It was also
observed that the definition of roles (ex: robot hacker, master
programmer, strategist, etc.) before team formation helped
build balanced teams. A team performed more efficiently if
all its members’ strengths were compatible. Students from
successful teams commented that they “communicated well
and knew how to focus on each other’s strenghts”.

E. Future directions

We now briefly look at future directions the course could
take, as it continues to be taught at Carnegie Mellon Univer-
sity. As presented in previous sections, many elements such
as team formation, programming environment and hardware
platform should be very similar, because the course now has
reached a level of stability on those issues.

Over the years, the continuous increase in computing power
has made the planning problem much easier. With the current
hardware configuration, computing a plan across the whole
maze of Figure 5 takes less than one second, and can be
computed live on-board the robot. Therefore, it is no longer
necessary to interleave planning and execution, as it was be-
fore, rendering the final contest easier. This problem should be
addressed in the future, to keep the assignments challenging.
A solution to this problem would be to introduce cooperation
earlier in class, and have the teams compete in a shared maze.
The robots would therefore have to create plans that take
their opponents expected or possible movements into account.
Moreover, teams could make more use of their cameras and
detect the opponents with more advanced computer vision
algorithms.

V. CONCLUSION

In summary, this paper presented theMobile Robot Pro-
gramming Laboratoryclass taught at Carnegie Mellon Uni-
versity for the past twelve years. We have shown that it is an
essential part of an organized curriculum in robotics.

The presentation of its current status and the in-depth
description and examples of the basic and advanced concepts
learned by the students have shown that it is a very important
part of a broad robotics curriculum. In addition, by providing
students with hands-on experience with real robots, it also
develops their problem-solving, teamwork, and observation
skills. It has also been noted that flexibility is an important
aspect, as it allows students to explore more particular subjects
that arouse their curiosity. Furthermore, the evolution ofthe
class over the years has taught us important lessons about this
kind of class that are also relevant in different applications.
The hardware and programming environment should allow
students to develop their creativity. The assignments should
be challenging, but within reach, and teams should be well-
balanced and have a small number of members (three, in
our case). It is hoped that the lessons learned and important
concepts presented in this paper might be of use to others
pursuing similar educational goals.

ACKNOWLEDGMENTS

The authors would like to thank Professor Alonzo Kelly,
who taught the class in the Fall 2004, for his invaluable
feedback and support during the entire semester. Special
thanks to Kashyap Chandrasekar, the third member of this
team, and to Stuart Anderson, Thomas Stepleton, and Greg
Armstrong for their help.

REFERENCES

[1] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially
interactive robots,”Robotics and Autonomous Systems, Special issue on
Socially Interactive Robots, vol. 42, no. 3, 2003.

[2] I. Nourbakhsh, “Robotics and education in the classroomand in the
museum: On the study of robots, and robots for study,” inProceedings,
Workshop for Personal Robotics for Education. IEEE ICRA, 2000.

[3] M. Rosenblatt and H. Choset, “Designing and implementing hands-on
robotics labs,”IEEE Intelligent Systems and their Applications, vol. 15,
no. 6, November-December 2000.

[4] U. Wolz, “Teaching design and project management with LEGORCX,”
in Proc. SIGCSE Conference, 2000.

[5] C. Stein, “Botball: Autonomous students engineering autonomous
robots,” in Proceedings of the ASEE Conference, 2002.

[6] I. Nourbakhsh, E. Hamner, K. Crowley, and K. Wilkinson, “Formal
measures of learning in a secondary school mobile robotics course,”
in IEEE International Conference on Robotics and Automation, 2004.

[7] “6.270 - MIT’s autonomous robot design competition,”
Massachusetts Institute of Technology, 2006. [Online]. Available:
http://web.mit.edu/6.270/

[8] B. Maxwell and L. Meeden, “Integrating robotics research with under-
graduate education,”IEEE Intelligent Systems and Their Applications,
vol. 15, no. 6, November-December 2000.

[9] C. Cosma, M. Confente, D. Botturi, and P. Fiorini, “Laboratory tools for
robotics and automation education,” inIEEE International Conference
on Robotics and Automation, 2003.

[10] J. Ferńandez and A. Casals, “Open laboratory for robotics education,”
in IEEE International Conference on Robotics and Automation, 2004.

[11] I. Nourbakhsh, “Property mapping: A simple technique formobile robot
programming,” inProceedings of AAAI, 2000.

[12] S. Russel and P. Norvig,Artificial intelligence A modern approach,
2nd ed. Prentice Hall, 2003.


