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Abstract

We describe a new roadmap, termed the rod-HGVG,
for motion planning of a rod-shaped robot operating in
a three-dimensional volume. This roadmap is defined
in terms of work space distance enabling us to prescribe
an incremental construction procedure. This allows the
rod to explore its configuration space, R® x S%, with-
out ever explicitly constructing the configuration space.
In fact, the rod robot need not know the work space
ahead of time. We term the rod-HGVG a piecewise
retract because it comprises many retracts. Homotopy
theory asserts that there cannot be in general a one-
dimensional retract of non-contractable five-dimensional
space. Instead, we define an ezxact cellular decomposi-
tion on R® x S? and a retract in each cell. Next, we
“connect” the retracts of each cell forming a piece-wise
retract of the rod’s configuration space.

1 Introduction

This work considers the sensor based planning of a
rod robot in three dimensions. Although planning for
rod-shaped robots is geometrically similar to planning
for blimp robots, ultimately motion planning for highly
articulated robots motivates this research and the mo-
tion planning of a rod robot is the first step toward this
goal. In this paper, we will define a roadmap for a rod
robot in three dimensions. This roadmap is the rod hier-
archical generalized Voronoi graph (rod-HGVG). Recall
from Canny’s roadmap work [1] that for each connected
component of free space, a roadmap has the following
properties : (i) accessibility, (ii) departability, and (iii)
connectivity. This means that if there exists a path be-
tween two configurations, we can determine a path by
first finding a path to the roadmap from the start con-
figuration, then following the roadmap, and then finding
another path from the roadmap to the destination. If a
planner can incrementally construct a roadmap, then it
has in essence explored the configuration space.

Canny’s original roadmap work required a priori in-
formation about the robot’s configuration space, and
hence was difficult to implement. The probabilistic com-
munity [5], [9] has successfully demonstrated the capa-
bilities of probabilistic roadmaps for highly articulated
robots; their approach does not construct the configu-
ration space, but requires knowledge of the work space
prior to the planning event. Rimon [8] first suggested a
method for constructing roadmap using“critical point”
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sensors, but did not provide details on these sensors.
Choset and Burdick developed a method to construct
the Voronoi Graph in the plane and in three dimen-
sions without requiring a priori workspace or configu-
ration space information [2). Later, Choset extended
this result to a rod-shaped robot operating in the plane
[3]. This method enabled a rod robot to map its con-
figuration space without any prior information of its
workspace (and configuration space). Loosely speak-
ing, the rod-HGVG in R?® can be viewed as a combi-
nation of two prior roadmaps : (i) the point-HGVG,
which is a roadmap for the point robot operating in
a three-dimensional space, and (ii) the planar Rod-
HGVG, which is a roadmap for rod robot operating in
the plane. The rod-HGVG will be defined in terms of
the distance information that sensors can easily provide,
and it can be generated in an unknown environment.

1.1 The Generalized Voronoi Graph in K? and R

é’Dﬁnlaing and Yap [7] first applied the generalized
Voronoi Diagram (GVD) to path planning of a disk-
shaped robot. This result requires full knowledge of the
environment to construct the roadmap and is restricted
to the plane. Choset and Burdick extended this result
beyond the plane by defining the generalized Voronot
graph (GVG) [2] which is a roadmap for a point robot
operating either in the plane or in three dimensions. The
GVG can be constructed using line of sight sensor data
because it is defined in terms of the distance function,

di(r) = ?Elgl‘ [lr ~ CH,

where r € F'S, FS C R? is the free space and C; is an
obstacle. A point-two-equidistant face is defined as
F; = {reFS:di(r)=d;r),

Vd;(r) # Vd;(r) and

di(r) < dn(r) Vh #4,j} (1
In planar case, Fy; is one-dimensional and the GVG is
the union of Fj;’s, i.e., for an environment with n ob-
stacles, the GVG is UpS UT_, | F;.

In R3, the point-three-equidistant face defines the
GVG. That is,
Fi]’k = {7‘ c F'S: dl(T) = d]‘(T‘) = dk(’l‘)
Vdi(r) # Vd;(r), Vdi(r) # Vdi(r),

Vd;(r) # Vdg(r),and

di(r) < dn(r)Vh # 14,35, k} (2)
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A three-equidistant face can also be defined as the in-
tersection of two-equidistant faces, ie., Fij;p = Fj; N
Fj, N Fy,. However, we assume that the intersections
are transversal [2] which is a different way of saying
that the obstacles all lie in general position. The GVG
is the union of the Fj;;’s, is one-dimensional, and not
necessarily connected in R*. To connect the GVG, we
will need to define additional structures, resulting in the
hierarchical generalized Voronoi graph (HGVG) [2]. To
distinguish the GVG from the rod-GVG, in later sec-
tions, we call this GVG defined in this section as point-
GVG.

1.2 The Rod-HGVG in 5E(2)

O’Dinlaing, Sharir and Yap [6] extended their disk-
result to rod-shaped robots, but this result also requires
full knowledge of the environment and is restricted to
the plane. Cox and Yap developed an “on-line” strat-
egy for rod path-planning [4], but this result does not
provide a roadmap of the rod robot’s free space. In
this section, we describe the rod-hierarchical generalized
Voronoi graph (rod-HGVG) in the plane. This structure
provides the groundwork for the rod-robot roadmap in
three dimensions.

The rod in the plane has three degrees-of-freedom,
and we represent a rod confizuration as ¢ = (z,y,6)7.
As with the point-GVG, we first define the distance
function. Let ¢ be a rod configuration, and R(g) be
the set of all points that the rod occupies at configura-
tion g. Then, the distance between the obstacle C; and
the rod at g is defined as

Di(q) =

min __||lr —¢||.

reR(q),c€Ci
The rod-GVG is the set of configurations equidistant
to three obstacles. More formally, we first define the

rod-two-equidistant face as follows

CFyj = {¢€SE®2):Di() = D;(q) < Dn(@)Vh #14,j
and VD;(q) # VD;(g)}.

Then, the rod-three-equidistance face is defined as
CFl'jk = CFU n CF]k NCFEy.

In the planar case, we term the rod-three-equidistant
faces as rod-GVG edges. The rod-GVG is simply the
union of the rod-GVG edges, i.e., the set of rod config-
urations that are three-way squidistant. The rod-four-
equidistance faces, which can be defined similarly, are
termed rod-meet points, which correspond to configu-
rations of the rod where rod-GVG edges intersect and
terminate.

The rod-GVG edges are not necessarily connected,
even in the planar case. To produce a connected struc-
ture we introduce another type of edge, called R-edges.

Fig. 2. The Rod-HGVG in R2.

An R-edge is the set of rod configurations defined as,
Riy; = {q€cl(RFy)):r € Fy and

(#) 0 < dilr) < di(r1) Vr1 € R(g) and

(i) di(r) < Dn(q) Vh # 4,5},
where RFj; is the collection of lines tangent to Fj;
(which can be viewed as a “tangent bundle” of Fj;) (3].
Roughly speaking, R-edges connect the disconnected
rod-GVG edges using point-GVG edges. The rod-
HGVG then comprises Rod-GVG edges and R-edges.
Figures 1 and 2 show an example of the rod-HGVG in
R2.

We demonstrate connectivity of the rod [3] by defin-
ing a piece-wise retraction H : FS x [0,1] — CFiy.
This H function also describes how the rod accesses the
rod-GVG. The rod accesses the planar rod-GVG (and
hence the rod-HGVG) via two gradient ascent opera-
tions: while maintaining a fixed orientation, the rod
moves away from its closest obstacle and then while
maintaining double equidistance and a fixed orienta-
tion, the rod moves away from the two closest ob-
stacles until it reaches triple equidistance. Note that
0(q) = 8(H(q,t)) for all t € [0,1], i.e., the rod arrives to
the rod-GVG with a fixed orientation.

In order to “make” H continuous, we divide the con-
figuration space R? x S! into junction regions Jijr, where
each junction region Jyj;, is the pre-image of C' Fyj;, under
H. This essentially guarantees that CFj;; is a retract
of Jij. Finally, note that if the rod is “small” enough,
CFij1, has one connected component and is diffeomor-
phic to St.

For each connected component of a junction region
Jijk, there is a connected component of CFij;,. If motion
planning should occur only in one junction region, then
planning is trivial because C'Fyjy, is a retract of Jyjp. If
the union of the CFjj;;’s formed a connected set, then
planning is trivial again. In general, the C'Fy;;;’s will not
form a connected set in R% x S, so we use the point-
GVG to connect the CFjy’s of the junction regions.
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The connections between junction regions are the rod
configurations tangent to the point GVG, i.e., the R-
edges.

Essentially, we are forming an exact cellular decom-
position of R? x §! where the junction regions are the
cells. Planning in a cell is achieved with the rod-GVG
edges, C'Fyji, and planning between the cells is achieved
with the R-edges. We take an analogous approach to
defining the rod-HGVG for the rod in three dimensions.

2 Rod-HGVG in R? x 52, based on the
point-GVG

In this section, we define the rod-HGVG. Since the
rod’s configuration space R® x S? has five dimensions,
it is natural to first define a five-way equidistant struc-
ture which we term rod-G VG edges. Just like the planar
rod-GVG, the three-dimensional rod-GVG (henceforth
called the rod-GVG), is not necessarily connected. Just
like the planar case, we decompose R® x 52 into cells,
also called junction regions, and “connect” them with 1-
tangent edges, structures that are analogous to R-edges.
However, the rod-GVG edges by themselves are not re-
tracts of the junction regions. Instead, the set of con-
figurations equidistant to four obstacles forms a retract
of a junction region. This four-way equidistant struc-
ture has two dimensions, and thus this structure, with
the 1-tangent edges and rod-GVG edges do not form a
roadmap. Therefore, we define an additional structures
called 2-tangent edges, which are four-way equidistant
with an additional constraint. The rod-HGVG com-
prises rod-GVG edges, 1-tangent edges, and 2-tangent
edges. This section formally defines these structures and
the next two sections establish that the rod-HGVG is a
roadmap.
2.1 Rod-GVG Edges

The rod-GVG is the set of configurations that are
equidistant to five obstacles. The definition of the dis-
tance function in R® x S? is identical to that in SE(2),
i.e., Di(q) = min,cr(g),cec; [Ir — ¢ll, but the rod config-
uration ¢ is parametrized by ¢ = (z,y,2,6,¢)7. Note
that 6(g) and ¢(q) define the orientation of the rod. The
rod gradient is derived in Appendix A. With distance
and its gradient defined, we can define rod-equidistant
faces, continuing from where we left off in the planar
case. The rod-four-equidistant face is

CFijy = CFijp NCFyy NCFypy.

Then the rod-five-equidistant face, which is a rod-GVG
edge in the three-dimensional case, is defined as

CFijgim = CFijiy 0 CFyppm, N CFligim -

A rod-meet point is then CFjjximn, the zero-dimensional
set of rod configurations that are six-way equidistant.
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Fig. 3. Here, there are two set of rod configurations that
are five-way equidistant. The configurations in CF12345 are
equidistant to Cy,C2,Cs,C4 and Cs, and the configurations
in CF12346 are equidistant to Cp,Cy,C3,C4 and Cg. Note
that they are not connected to each other.

W

HJ H

Cy
e, b=
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Fig. 4. Side view of Fig. 3 with L > W,L > H, but here, the
length of the rod is smaller than W — H, thus, the rod cannot
be four-way equidistant to Ca, Cs, C4 and Cs. Therefore, five-
way equidistant configurations do not exist either.

The rod-GVG edges can be generated by tracing the
roots of the following function

oo
¢@=| (b,-Dia)
(Ds - D))

In the rod configuration space R x S2, the collection
of rod-GVG edges is not necessarily connected, and in
many environments, it may not even exist at all. Figure
3 shows a rectangular environment, where L > W >
H and CFia345 and CFio346 are the rod-GVG edges.
If L is substantially larger than the length of the rod,
there cannot be any six-way equidistant configurations,
so these two component cannot be connected. Now, if
W is also substantially larger than the length of the
rod, the five-way equidistant configuration cannot exist
(Figure 4).

2.2 1-tangent edges

The rod-GVG defined above will not necessarily be
connected. Just like the rod-GVG in the planar case, we
use the point-GVG to define additional structures that
connect disconnected rod-GVG edge. These structures
are similar to the R-edges where the rod is “tangent”
to the point-GVG edge. More specifically, when C;, C;
and Cy define a point-GVG edge Fjj;, we presume that

e The rod is “tangent” to Fy;;, at r.

e At 7, du(r) < dy(r,) for all other points r, on

the rod, and for all three closest obstacles Cp,n =
i,7,k, i.e, the point r is the closest to all three ob-



stacles.
The second condition asserts that r; = r; = 7, where
ri,75 and rp are the closest points on the rod to each
obstacles [3].

Instead of calling this an R-edge. we term this struc-
ture the I-tangent edge because it is tangent to a one-
dimensional structure from the point-GVG. We can use
the same technique as in the planar case to construct R-
edge to construct this 1-tangent edge. The rod finishes
the tracing a 1-tangent edge when it (i) reaches a four-
way equidistant configuration, (ii) reaches an obstacle
boundary, or (iii) detects the cycle. A cycle in the GVG
is a disconnected edge diffeomorphic to S'. Note that
we consider only environments where the point-GVG is
connected, and thus the condition (iii) will not occur.

2.3 2-tangent edges

Consider two 1-tangent edges that terminate at
configurations equidistant to the same four obstacles.
These two end point configurations cannot coincide
with each other because we assume that the point-
equidistant faces transversally intersect each other. In
other words, two 1-tangent edges cannot intersect each
other. The set of four-way equidistant configurations
is two-dimensional and thus we need an additional con-
straint to define a one-dimensional structure that con-
nects the two 1-tangent edges.

Consider the rod-four-equidistant face CFj;y with 1-
tangent edge Rijr and R;; each terminating at configu-
rations in CFjjr; (boundedness of the workspace assures
this can happen). For R;jx, the rod lies in the tangent
space associated with Fj;r; restated, the rod simulta-
neously lies in the tangent spaces of F};, Fit, and Fjy.
Likewise, for R;;, the rod lies in tangent spaces Fjj,
Fy, and Fj. Note that in both cases, the rod lies in the
tangent space associated with Fj;. Therefore, as our
additional constraint, to travel from R;j; to R;; along
CFijri, the rod must remair in the tangent space of
F;;. The edge formed on CFjjy; with the additional con-
straint of staying in the tangent space of Fj; is termed a
2-tangent-edge because the rod lies in a two-dimensional
tangent space (as opposed to a one-dimensional tangent
space with the 1-tangent edge). Note that for CFjx,
there are four 1-tangent edges that terminate on the set,
and there can be six different 1-tangent edges on it.

As an example, the Figure 5 shows the case where Fj;
is a plane. Here, the rod is “tangent” to Ficiting,floor
when the rod is moving from ¢, to g3, and “tangent”
t0 Ffront,floor When moving from g; to g». Generally,
when the rod is tracing four equidistant configuration
from a configuration tangent to Fi;; to a configuration
tangent to Fji, it must be in tangent space of Fy,.

Now we describe the tangent condition for 2-tangent
edge R;; 1 more specifically, and demonstrate it is one-

Fig. 5. In figure (a), g1, g2, g3 and g4 represent four-way equidis-
tant configurations. Also they are terminal configurations.
of different 1-tangent edges. Figures (b), (¢) and (d) shows
2-tangent edges that connect some pairs of 1-tangent edges.

dimensional. First we need to define some additional
structures. We define the set of rod configurations ¢ in
CFj; that satisfy the conditions (i) ¢ is tangent to Fj;
(it) r; = r;, where r; and r; are the points on the rod
closest to each obstacles C; and C; as RCy;, i.e.,

RCyj = {q€d(RFy)):r € Fy and

(Z) 0< dz('l‘) < di(’l‘l) Vry € R(q) and

where, RF;; is the set of planes tangent to Fj; (which
is analogous to a tangent bundle of Fj;). We form the
2-tangent edge R;;/; by intersecting RC;; and CFijn,
i.e., sz/zk = RCU n CFijkl-

Note that RCU N C’Fijkz = RCi;; N Cijl As shown
in Appendix B, RCj; is three dimensional. Since CFjy
and RC;; are each three dimensional, R;;/y; is generally
one-dimensional by the pre-image theorem.

The R;;/1; can be constructed by tracing the roots of

s
G@ = | (b, Dig)
(ri —r)(@)

Here, the first three elements ensures the four-way
equidistance. The fourth element forces the two clos-
est points on the rod to C; and C; to be the same and
thus specifies the orientation of the rod. Since sensors
can easily provide distance information and determine
the closest points on the rod to the closest obstacles,
the 2-tangent edge can be readily constructed without
a prior information.
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3 Accessibility

The rod accesses the rod-GVG (and hence the rod-
HGVG) via four gradient ascent operations: the first
three use a fixed orientation gradient VD;(z) that di-
rects the rod to increase distance to an object C; while
maintaining its orientation; the last gradient ascent op-
eration uses the full gradient V.D;(z) which is derived in
the Appendix. The first three gradient ascent operations
implicitly define a function H® : 8 x [0,1] & CFyn
that is analogous to the H mapping which enables a
rod to access the planar rod-GVG. First, while main-
taining a fixed orientation, the rod moves away from
its closest obstacle (i.e., ¢(t) = VD;(c(t))), then while
maintaining double equidistance and a fixed orienta-
tion, the rod moves away from the two closest obsta-
cles until it reaches triple equidistance (ie., é(t) =
w1, or; VDi(e(t)), where 71, cr; is the projection
operator), and then while maintaining triple equidis-
tance and a fixed orientation, the rod moves away from
the three closest obstacles until it reaches four-way
equidistance (i.e., ¢(t) = 71, o, VDilc(?))).

Finally, we define another mapping HJ : CFj1; —
Rij ke U CFijram that moves the rod away from the four
closest obstacles, using the full gradient,

('(t) = WTc(t)CFijleDi(c(t))

This step terminates at either of the following : (i)
five-way equidistance, i.e., a rod-GVG edge, or (ii) a 2-
tangent edge (proof appears in Appendix C). Once the
rod has accessed the rod-HGVG, it can then begin in-
crementally constructing the rod-HGVG using the pre-
viously defined numerical techniques. If the rod-HGVG
is connected, then numerically constructing it ensures
complete exploration of a connected component of the
rod’s configuration space.

4 Connectivity

We will demonstrate that if the point-GVG is con-
nected, then there exists a path between two rod config-
urations ¢1, g2 € R® x 5?2 if and only if there exists a path
between two rod configurations ¢f, ¢3 on the rod-HGVG
in R% x §2. Note that ¢}, g5 are the “projected” config-
urations onto the rod-HGVG from ¢, ¢> via a mapping
HJoH?: R x 52 x[0,1] - rod-HGVG.

The H® mapping is analogous to a retraction and is
defined in a similar fashion as H in the planar case. In
R3 x %, we will take a similar approach as the planar
case to “make” H® continuous; here, we define junction
regions that are J;;;; and the connections among them
are the 1-tangent edges Ry, the set of rod configura-
tions tangent to the point-GVG edge CFjjy.

A junction region Jyjy is the pre-image of C'Fyjz; un-
der H® : R® x $* x [0,1] & CFyjp,. Again, H? is implic-
itly defined by a sequence of three fixed-orientation gra~
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dient ascent operations. Note that 6(q) = 8(H?(q,1))
and #(q) = ¢(H?3(q,1)) and using a similar approach as
in [3], H?® can be shown to be continuous in each junc-
tion region J;jx. Therefore, C'Fyjy is a two-dimensional
retract of Jijg. In fact, if the rod is “small” enough,
CFyjp is diffeomorphic to a two-sphere, S%. At this
point, we can infer that if the point-GVG is connected in
R?, then there exists a path between ¢; and gz in R® x §2
if and only if there exists a path between H3(gy,1) and
H3(gs,1) in the union of 1-tangent edges R;j;x and rod-
four-equidistant faces CFjg;.

We have not defined a roadmap yet because CFijx
has two dimensions, not one. To define a one-
dimensional structure on C'Fjjx;, we define another map-
ping HJ: CFijkl — Rij/kl UCFijklm- This function is
also implicitly defined via a gradient ascent operation.
From Section 3, we showed that once the rod achieves
four-way equidistance, continued gradient ascent (full
gradient ascent) brings the rod either to a two-tangent
edge R;j/p or arod-GVG edge CFijrim-

If the rod is “small” enough, then this last gradient
ascent operation brings the rod only to a two-tangent
edge. If the rod is “large” enough, the two-spheres
CFyjp and CFyjypy, intersect anid form an edge CFijuim
and gradient ascent could bring the rod to a five-way
equidistant configuration (but can also bring the rod to
a 2-tangent edge). If the rod is even larger (or obsta-
cles are appropriately shaped), a rod-meet-point occurs
when three two-sphere intersect.

For the sake of discussion, lets assume the rod is
“small” enough so no two-sphere intersect with each
other. In other words, lets assume there are no rod-GVG
edges and rod-meet-points on the rod-four-equidistant
faces. If HJ were continuous on a rod-four-equidistant
face, then the two-tangent edges would form a retract
of the rod-four-equidistant faces and we are done.

Alas, this is not the case. Instead, we define another
cellular decomposition on CFj;r; where each cell is de-
noted J;;/r and is defined by the pre-image of Ryj/u
under the HJ mapping. For each cell J;;/;, HJ is con-
tinuous and therefore R;;/1; is a one-dimensional retract
Of JU / k-

The remaining challenge is to establish that the two-
tangent edges “link up” properly. This is easily shown
because each end point of the 1-tangent edges coincides
with the end point of three different 2-tangent edges.
Consider the 1-tangent edge R;j; it has two types of
end points: a boundary configuration and a four-way
equidistant configuration (i.e., equidistant to C; in ad-
dition to Cj, C; and Cy.) Consider the end point that
is four-way equidistant. By definition of the 1-tangent
edge, its end point is tangent to the point-GVG edge
Fiji, which means that the end point is also tangent to



Fig. 7. Rod-HGVG in an square box. In this example the rod-
HGVG does not exist, and junction regions are connected by
1-tangent edges

the point-two-equidistant faces Fy;, Fj, and Fig. There-
fore, this end point also belongs to the 2-tangent edges
Rijsnt, Rjgya and Ry 5. This shows that three of the
six 2-tangent edges connect. By repeating this argu-
ment for the other combination of 1-tangent edges and
2-tangent edges, one can easily see how all of the 2-
tangent edges link up.

5 Simulation Result

We performed a computer simulation using the
algorithm described in this paper. Figures 6
and 7 shows the complete rod-HGVG in simple
environments. For more simulation results, see
http://voronoi.sbp.ri.cmu.edu.

6 Conclusion

This paper introduces a roadmap called rod hier-
archical generalized Voronoi graph for a rod-shaped
robot operating in a three-dimensional space. The rod-
HGVG is defined in terms of workspace distance infor-
mation, which sensors can easily provide. Using work
space distance information, we can prescribe a sensor-
based incremental method to achieve motion planning
without constructing the configuration space. This is
important for sensor based planning because we can-
not construct configuration space without knowing the
workspace first. Moreover, even when we have configu-

ration space representation, it is still difficult to measure

the distance in configuration space than in workspace.
The rod-HGVG has three components : (i) rod-GVG

edges, which are five-way equidistant, (ii) 2-tangent
edges, which are four-way equidistant and (iii) 1-tangent
edges, which are three-way equidistant.

The first contribution of this paper is the piece-wise
retract: we defined an exact cellular decomposition of
the rod’s configuration space where in each cell, called
a junction region, we defined a retract that makes mo-
tion planning in the junction region trivial. We then
use the point-GVG to connect the retracts of each junc-
tion region, which is the second contribution of this pa-
per. We were able to use connectivity of a structure
defined in the robot’s workspace to infer connectivity
properties of the robot’s configuration space. In other
words, when connectivity of the point-GVG represents
the connectivity of the works space, then connectivity of
the rod-HGVG represents the connectivity of the rod’s
configuration space.

In general the point-GVG is not connected in R?, so
future work will use the point-HGVG to connect the
junction regions. We started with the point-GVG only
to achieve a tractable subgoal. We also defined a piece-
wise retract on CFjj to guarantee connectivity of the
rod-HGVG. This relied on H.J being continuous, which
due to space limitations, was not detailed in this paper;
a rigorous proof should be demonstrated.

Ideally, we would like to demonstrate this on a robot
blimp. This work is a step towards the ultimate goal
of sensor based planning for an articulated multi-body
robot. The next step is to consider two rod robots, and
then an n-rod robot.
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Fig. 8. World and Body coordinate system for the Rod
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Appendix
A Rod Gradient

Here, we derive the rod distance gradient. In Fig.
8, X, Y and Z denote the world coordinate frame, and
X, Yr and Z, denote the body fixed coordinate frame
on R (the rod). Let (z,y,2)" be the origin of the body
fixed coordinate frame, and 8, ¢ be the orientation of
the body fixed coordinate frame with respect to world
coordinate frame. Let ¢ be the closest point on the ob-
stacle C; to the robot and r be the closest point to C; on
the robot. Finally let (a,b,c)” be the coordinate of r in
body fixed coordinate frame. Then the world coordinate
of r is
x +acosfcosp — bsinf + ccosfsinp
y +asinfcosy + bcosf + csinfsin

z—asing + ccosp

r=

Then, following similar steps to the two dimensional
case [3], the first three components of the distance gra-
dient are

oD 0D 8
[6].—5) ay’ 05} il(‘l) [(re = 2), (ry 2 — )]

The remaining two rotational components are

—¢y), (r

oD 1 Cp — Ty aS0Cy + bCH + cS0Sp
—_—= cy—ry |,| —aCOCp+ bSO — cCHSp
80 Di(a) < c. -1, 0 >
oD 1 Cz — Tz aClSyp — cCOCyp
— = e < cy =71y |,| aS8Sp+cSOCe >
9 Dilq) cz — 72 aCyp +cCop

B Dimension of RC;;

In this section, we show that RCy; is three-
dimensional. Note that for any rod configuration ¢ €
CFy, R(g) N Fy; is not empty, and without loss of gen-
erality, we assume that R(q) N F}; is zero dimensional,
Le., a single point. For rod configurations in RCj;,
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ri = 15 = R(q) N F;;. We call that point the “con-
tact point” and simply denote it as r. We define the
constant distance curve cvi;(Q) on Fy; as the set of all
points on Fj; that have distance Q2 to Cj, i.e.

cvi; (Q) = {z € Fy; : d;(z) = Q}.

Now we consider the contact condition and dimension-
ality of RCj;, in two separate cases, depending on the
contact point r for each rod configurations: (I) d;(r) is
at local mininum of the distance on Fj; to C; on Fjj.
(II) otherwise.

LEMMA B.1 For rod configuretions in CFy; that are
tangent to Fy; and r; = r;, such that di(r;) is not a
local minimum of the distance (i.e., Case II above), (a)
the contact point v must be either an end point P or Q,
or (b) the rod must be in the tangent space of cvi;(d;(r))
and the contact point can be an interior point of the rod.
Also, when the rod satisfies case (II) above, the rod has
one degree of freedom in this set when the contact point
is fized.
Proof: Note that, in a neighborhood about the origin
of Treviz, Trevij(di(r)) separates the T,.Fj; into two re-
gions, such that all the points in one region have dis-
tance less than d;(r) to C;, and the points in the other
region have greater distance. for case (a), by hypoth-
esis, the rod lies in a line that transversally intersects
Trevii(di(r)). So, if r # P,Q, the rod itself intersects
Trevij(di(r)) in its interior. So loosely speaking, P and
@ are on opposite sides of Th.cvy;(d;(r)).

Let’s define a set L;(Q), such that

Li(Q) = {z € R : di(z) = Q}.

This set is a two dimensional manifold in R*. Note that
cvii(d;(r)) can be seen as the intersection of L;(d;(r))
and Fj;. Because the rod intersects T,cvi;(d;(r)) at r
and 7 is on Ly{(d;(r)), the rod must “poke” into L;(d;(r)).
This contradicts the condition that the point r is the
closest point on the rod to each obstacles. So the rod
cannot intersect the cv;;(d;(r)) in its interior, i.e., the
intersection must occur at a rod’s end point P or Q,
when the intersection in transversal.

If the rod “touches” cv;; at P or Q (case (a)), the
rod cannot translate, but can rotate around the con-
tact point as long as it ”stays” on the tangent space
T, Fi;. When the rod is “tangent” to cv;; (case (b)), the
rod cannot change its rotation, but translate along its
length. Therefore, when the contact point is fixed on
F;j, the rod has one degree of freedom in each cases.
Because Fj; is two dimensional, the rod has three de-
grees of freedom in RC;;. Figure 9 describe this case. B

LEMMA B.2 For case (i) above, the contact point can
be one of the interior points on the rod, and the rod has
two degrees of freedom at each configuration in this set.
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Fig. 9. Figure(a) :The rod configuration ¢ touches Fj; at r,

which is not a local minimum, and the rod is also tangent
to cv;;(d;(r)). The three degrees of freedom that rod has
are: (i) it can slide along its length (q1) (ii) it can move
“on” cv;;(d;(r)), maintaining tae tangent condition to it (g2).
and (iii) it can slide normal to its length and become tangent
to cv;j(di(r) + €) (g3). Figura(b) :The rod configuration g
touches Fj; at r, which is not a local minimum, and the rod
touches cv;;(d;(r)) at Q. The three degrees of freedom that
the rod has are: (i) it can rotate around @ on the tangent
plane (g1). (ii) it can move “on” cv;;(d;(r)) (¢g3) and (iii) it
can move on Fyj, to cvij(di(r)) +£(ga).

d;(r)

Fig. 10. When the rod touches F;; at local minimum r, the rod

has three degrees of freedom in the set R;;. g is the original
configuration. Then it can slide along its length (q1), it can
rotate around 7 (g2) and it can slide without rotation so that
it becomes tangent to cv;(di(r) + £) (g3).

Proof: Let’s call the set of rcd configurations that sat-
isfy case (i) as R}j. This is a subset of RC;;. In this
case, L;(d;(r)) N Fy; is a single point , which means that
these two surfaces contact at a single point 7, and share
a common tangent plane at that point. Then, while the
rod satisfies this condition, the rod is free to move on
that plane, as long as r € R(g). That means that the
rod has'two degrees of freedom in this set Rgp i.e. this
set has two degrees of freedom. Because this set R}; is
subset of R;j, the rod configuration in the set R} has
at least two degrees of freedom in the set R;;. Now,
let’s consider whether there are any additional degrees
of freedom for the rod in the set R;;. Because the dimen-
sion of the set R}j is two, if the rod has any additional
degrees of freedom in R;;, the movements in those direc-
tions will move the rod outside of the set R};, but not
outside of the R;;. And of course those movements must
be independent from the movement we already consid-

(r) +

ered. Recall that when the rod configuration belongs to
Rij— R};, the rod must be “tangent” to cuv;;(d) for some
value of d. Now if the rod moves outside the set R},
ﬁje distances to C; and C; increase. Let’s denote that
the new distance as d;(r) 4+ €. Then, from the continu-
ity of the distance function the cv;;(d;(r) +¢€) is a closed
curve around the point r. The rod must be “tangent” to
this curve, and there are only two point on that curve
where the tangent is parallel to the rod. That means
that the rod has (only) one more additional degree of
freedom (which moves the rod outside of the R}, thus
makes the rod lost contact at r, but still the rod stays
in R;;) at the given configuration in R};. Thus the rod
has three degrees of freedom in this case. (Figure 10) B

C Accessibility Proof

In this section, we demonstrate that a rod starting at
a four-way equidistant configuration will access either
(i) a rod-GVG edge or (ii) a 2-tangent edge via full
gradient ascent of distance to the four closest obstacles.
Proving case (i) is trivial. Now, we prove case (ii),
i.e., the gradient ascent will eventually direct the rod
onto the R;;/y when there are no five-way equidistant
configurations. Figure 11(a) shows a rod configuration
which intersects SSj; nontraversally. Consider the
plane formed by the rod vector PQ and the vector rycy.
Then let the global coordinate frame be located such
that (i) the origin is located on P, (ii) the X and Y axes
are on the plane formed by PQ and ric;. Then the Z
axis of the global coordinate frame is perpendicular to
that frame. In this frame, the rod configuration is at
(0,0,0,0,0) and the body fixed coordinate of the r is
(a,0,0) with some positive value a. Note that in this
coordinate system, the § component of the gradient ro-
tates the rod “in” the plane, ane the ¢ component of the
gradient rotates the rod out of the plane. We interested
in the 6 component, which for the obstacle Cy, is 25t =
El(—q) ([ceg —rE,cl —r¥, 017, [ay sin b, ~ay, cos 9,O]T§.
Then, the two vectors (cf — r&,¢f — r£,0)T and
(agsin@, —ag cos,0)7 are parallel. So 8D,/89 has
positive value, and that means that the angle between
the tangent plane on SSy; and the rod increases as a
result of gradient ascent. Now do the same analysis
with r;¢;; the vector r;¢; is in the “opposite” direction
of (axsinf, —ag cosf,0)T and the coordinate value of
a; is larger because r; is on the other side of 5Sy;.
This means that the gradient for C; has a negative
component of %E;i on plane defined by PQ and rc,

. 8Dy s 8D [e22] :
with larger value than %5k, ie., St > 25k, This

decreases the angle between the tangent plane and the
rod. Thus, the angle between the tangent plane and
the rod will decrease during the gradient ascent, forcing
the rod to become tangent.

998



6, —ayj cos )

a8
sin 6, —a; cos 6)

(@

Fig. 11. The rod is two-way equidistant to obstacles Cj, and C;j.
The rod intersects SSi! transvesally. In second figure, the
rod is shown on the plane defined by PQ and ryci. Also in
this figure r;¢; is on the same plane, but in general it will be
on different plane,
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