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Abstract— Humanoid robots must be capable of interacting
with the world using their hands. A variety of humanlike robot
hands have been constructed, but it remains difficult to control
these hands in a dexterous way. One challenge is grasp synthesis,
where we wish to place the hand and control its shape to
successfully grasp a given object. In this paper, we present a data-
driven approach to grasp synthesis that treats grasping as a shape
matching problem. We begin with a database of grasp examples.
Given a model of a new object to be grasped (the query), shape
features of the object are compared to shape features of hand
poses in these examples in order to identify candidate grasps. For
effective retrieval, we develop a novel shape matching algorithm
that can accommodate the sparse shape information associated
with hand pose and that considers relative placements of contact
points and normals, which are important for grasp function. We
illustrate our approach with examples using a model of the human
hand.

Index Terms— Grasp synthesis, hands, shape matching

I. INTRODUCTION

Humanoids robots must be able to interact with the world

using their hands. As robot hands become more humanlike,

problems of grasping and manipulation become especially

challenging: the hand has a large number of degrees of

freedom, there are many constraints due to hand kinematics

and object geometry, and we would like to achieve results that

are high quality and also appear natural.

Many of these problems can be addressed by making use of

a database of successful grasps. Even though the hand has a

large number of degrees of freedom, many grasps have similar

hand shapes, and it may be easy to find an example grasp that

is a good match to the current problem. In addition, the grasp

database can be designed to contain only desirable examples—

for instance, we may wish to construct a database only from

grasps that are humanlike in character.

This paper presents a data driven algorithm for selecting

hand poses to grasp an object in a natural way. The key

insight presented in this paper is that when a grasp database

is available, grasping can be treated as a shape matching

problem (Figure 1). As intuition for why shape matching may

be an effective way to select a grasp from a database, consider

Figure 2, which shows the hand pose for a grasp of a mouse.

The shape of the inside surface of the hand gives us a great

deal of information about the shape of the mouse. If we find

a similar distribution of contact points and normals on the

Fig. 1. Grasp synthesis as a shape matching problem. Offline, the user creates
a database of hand poses. Online, a user or a program loads a query—a three-
dimensional model of the object to be grasped. The shape matching system
searches the database to find the hand poses that best match the query object.
Representative hand poses for this example are shown at the bottom of the
figure. The poses used are from a grasp of a mouse, a jelly jar, and a lightbulb
(left to right).

Fig. 2. Hand pose for the mouse grasp. The figure shows contact points
on the hand and object, and contact normals on the object surface. Note that
the inside surface of the hand contains a great deal of information about the
shape of the mouse. If similar features can be found on a new object, it may
be possible to use the same grasp for the new object.

surface of a different object, then we may be able to reuse the

hand pose from the mouse grasp to acquire the new object.

For example, this same grasp is used in the leftmost image on

the bottom row of Figure 1 to hold the spray bottle.

Shape matching is commonly used in other fields—

examples include object recognition in computer vision [14]

and example-based retrieval of geometric models in computer

graphics [21]. However, the use of shape matching for grasp

synthesis presents some new challenges. The primary chal-

lenge is that the hand surface gives us information about only

a portion of the object surface. Discriminative local features

are typically used to compensate for this problem (e.g., [8]).



However, our local features are not discriminative; they are

typically contact patches that are nearly planar and ellipsoidal

in shape.

In this paper, we present a novel algorithm that allows us to

overcome the problem of partial shape information that does

not contain discriminative local features. The main idea behind

our approach is to extract probabilistic samples of a global

shape function from the hand shape. If similar samples can be

located on an object surface, then the hand shape is a likely

match to this object surface. We tailor our solution to the

domain of grasp synthesis by making use of shape features

that contain contact normal information, which is important

for grasping.

Although our shape matching approach differs from previ-

ous work due to the characteristics of our problem, we believe

that the primary contribution of this paper is to show that

shape matching algorithms can be successfully used for grasp

synthesis.

II. BACKGROUND

Algorithms for grasp synthesis that consider complex hand

kinematics are typically procedural or rule-based [25], [15],

[9], [2], [3], [10]. These systems involve treating all or part of

an object as a primitive shape (e.g. box, cylinder, sphere) for

which a grasp synthesis strategy is available. This approach

is supported by classifications and taxonomies of observed

human grasps [26], [19], [4]. However, creating a rule-based

grasping system based on these classifications requires a

significant amount of skill on the part of the designer, and it

may not always be clear how to fit irregularly shaped objects

into a given classification system. Our goals in this paper are

to reduce the knowledge and tuning required of the algorithm

designer by (1) making use of a grasp database to capture

variation in hand shape both across and within families of

grasps, and (2) developing a shape matching algorithm that

allows an appropriate hand shape to be identified directly from

object geometry.

ElKoura and Singh [7] use a data driven approach to animate

the hand for guitar playing. They use a database of human

grasps to filter results produced using an inverse kinematics

algorithm so that a natural coupling between joint angles is

expressed. Yamane and colleagues [32] make use of a database

to obtain full body posture for characters that are grasping and

moving objects, and others have used data-driven approaches

for tasks such as reaching, kicking, and locomotion (e.g.,

[31], [2], [12]). These systems work by identifying poses that

match constraints such as end effector position. Extending this

approach to work for grasps is challenging due to the large

amount of contact between the hand and object. This difficulty

motivated us to consider an alternative approach based on

matching the shape of the inner surface of the hand to the

geometry of the object.

Shape matching algorithms have been studied for related

applications. (See [24], [14], [28] for surveys of techniques

in these fields.) Most of these techniques, however, cannot

be applied directly to our problem, because they assume
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Fig. 3. Block diagram of the shape matching system. The online portion of
this algorithm contains four main steps: compute the object features, find the
hand poses that seem likely matches to this object, find good alignments of
these poses to the object surface, and cluster the results.

problem characteristics that are not applicable here. Some

techniques require information about the entire object, either

to measure global features (e.g. [24]) or to compare probability

distributions of features (e.g. [21]). We have only partial

information about shape available from the hand pose. Some

techniques require dense and discriminative information about

local features, such as may be available from range images

in cluttered environments (e.g., [11], [5]). We have very un-

interesting local features: contact points are often flat patches

on the object surface. Some techniques require registration /

alignment of objects or feature correspondence, for example

to build histograms characterizing the space occupied by the

object [1]. We have no a priori way to align the query object

to a hand pose.

In this paper, we combine and modify ideas from two

bodies of work. First, we take inspiration from work on

shape descriptors that probabilistically sample a global shape

function (e.g. [21], [20]). This type of descriptor gives us

information about how points on the surface are distributed

with respect to one another. We adapt the descriptors used

in previous work to provide more detailed information about

contact normal distribution, which is important for grasping.

Second, we take inspiration from work on partial matching.

In particular, we use a representative descriptor technique (i.e.,

a nearest neighbor search) to determine whether hand pose

features can be found in the query object (e.g. [8], [17]). We

modify this technique so that the descriptors are not based on

local features but instead are based on a sample of a global

shape function. We also introduce a weighting term to capture

the intuition that some features are more important than others.

III. SHAPE MATCHING FOR GRASP SYNTHESIS

Figure 3 shows a block diagram of our system. The input

to the system is a geometric description of an object—the

query object. The first step of the algorithm is to compute

a collection of features that will be used to match the object

against different hand poses. A hand pose database is available,

and a similar feature set has been computed (offline) for each

hand pose. There are then three main steps to the algorithm:

(1) find the best hand poses to match the query object by

comparing object features to hand pose features, (2) align these

poses to the object geometry to obtain a set of possible grasps,

and (3) cluster results into a few representative grasps. In this

section we will talk about these three steps, beginning with

our definition of the feature set we use here.



Fig. 4. We compute a three-dimensional feature value for pairs of points
on the object or hand surface. This feature value consists of the distance d

between points, and the angles θ1 and θ2 between the surface normals and
the line passing through both points.

A. A Feature Set for Grasps

Our goal in choosing a feature set is to find a representation

of object geometry that will allow us to quickly determine

whether a given grasp can be matched to some portion of the

object surface. In particular, we would like the feature set to

capture important information about the relative configurations

of contact positions and contact normals in the grasp.

We begin with an oriented point representation for both the

hand pose and the object geometry. For the hand pose, the ori-

ented point representation is just the set of contact points and

normals taken from the grasp. For the query object, random

sample points on the surface are identified using the sampling

algorithm outlined in [21], and normals at those points are

determined based on local surface geometry. The feature sets

are computed from these oriented point representations.

Fig. 5. Feature set for the softball. This figure shows 1% of the features
actually used in our system.
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Fig. 6. (Left) Hand shape for the softball grasp. (Right) Feature set for the
hand pose in this grasp. This figures shows half of the features available from
the hand pose.

Fig. 7. Feature set for the book. This figure shows 1% of the features actually
used in our system.
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Fig. 8. (Left) Hand pose for the book grasp. (Right) Feature set for the hand
pose in this grasp. This figure shows half of the features available from the
hand pose.

A variety of considerations drove our particular choice of

a feature set that differs from those already available in the

literature. First, global features cannot be computed due to

the sparse shape information available from hand pose. For

example, aligning the “center of mass” of the hand pose with

the center of mass of the object would not make sense. Second,

local feature information is not helpful here, as regions of

contact between the hand and object are typically devoid of

discriminatory features such as edges, corners, and areas of

high curvature. Third, features that are important are not nec-

essarily those that are visually salient or visually discriminative

as discussed by Shilane and colleagues, for example [27].

Instead, we want to capture how contact points and normals are

distributed relative to one another in three-dimensional space,

because this distribution of contacts is what allows us to create

a solid grasp.

Because of these considerations, we develop a feature set

based on random samples of pairs of contact points, and we

include distance and normal information about each sampled

pair. Specifically, we store for each pair of contact points a

three-dimensional value that includes the distance between the

points and the angles formed between the surface normals and

the line passing through those points (Figure 4). This feature

value is similar to that used by Ohbuchi and colleagues [20],

but contains an extra dimension to locate the normals relative

to the line between the contact points (not just relative to each

other). Example feature sets are shown in Figures 5 and 6,

which illustrate feature sets for a softball and for the hand pose

when the hand is grasping the softball. Note that although the



D database size = number of hand poses

Pi set of features for hand pose i

Pi,k feature k of hand pose i, represented [d θ1 θ2]
T

Qi set of features for object i

Qi,k feature k of object i

C(Pi) count of features for hand pose i

C(Qi) count of features for object i

NN(A, b) nearest neighbor to b in feature set A

α weights angular vs. linear terms in features

TABLE I

DEFINITION OF TERMS.

hand pose feature set is more sparse than that of the softball,

it captures its overall shape very well.

For good discriminatory power, we require that these feature

sets differ substantially for different objects. As one example,

Figures 7 and 8 show the feature sets for a book and for a

grasp of that book. In this example, note that the feature set

for the hand pose captures only a portion of the information

contained in the feature set for the book. Yet this information

is sufficient to distinguish this grasp from the softball grasp.

B. Matching Hand Pose to Object

We compare a hand pose and a query object using their

feature sets. For a matching hand pose, we expect all features

present in the hand feature set to appear in the object feature

set, while the converse is not generally true. We therefore use a

representative descriptor approach for evaluating a match [17],

[8].

The representative descriptor approach is designed for com-

paring a partial shape such as that obtained from a range image

to a complete shape (a geometric model). The quality of the

match is based on the average distance from features in the

partial shape to their nearest neighbors in the complete shape.

In this case, we compute distance from hand pose i to object j.

This distance E is expressed as follows, where Table I contains

notation for this section.

E =
1

C(Pi)

C(Pi)
∑

k=1

Dist(Pi,k − NN(Qj , Pi,k)) (1)

Dist(x) =
[

d2 + α2θ2
1 + α2θ2

2

]
1

2 (2)

The first expression is just distance from each feature k in hand

pose i to its nearest neighbor on object j, averaged over all

hand pose features Pi,k. The distance metric Dist is designed

to provide a reasonable weighting between linear and angular

values. In our case, we use α = 1cm/rad.

Although initial results were promising, this distance expres-

sion was not good enough. In particular, it would sometimes

identify matches that were unacceptable because the object

lacked certain key features (e.g., a place to put the thumb

for the book grasp). To address this problem, we introduce

a scheme to weight feature values more highly if they are

relatively plentiful on the grasped object and relatively rare in

other hand poses. The weighted distance from hand pose i to

object j is

Ew =
1

wi C(Pi)

C(Pi)
∑

k=1

wi,k Dist(Pi,k − NN(Qj , Pi,k)) (3)

where the normalizing term wi is the sum of all weights for

hand pose i:

wi =

C(Pi)
∑

k=1

wi,k (4)

and the weight for feature k of hand pose i is computed as

wi,k =
matchCount(Qi, Pi,k)

∑D
l=1 (matchCount(Pl, Pi,k))

(5)

The numerator of this equation is a count of the number of

times a feature similar to Pi,k is found on object i, where

object i is the object that was originally grasped using hand

pose i. We check only a portion of the object surface, selected

during construction of the database, as shown in Figure 11.

The denominator contains a count of the number of times a

feature similar to Pi,k is found in any hand pose. In other

words, wi,k is high when the feature is relatively common on

the grasped object and/or when it is uncommon in other hand

poses.

We can make a Bayesian argument for this weighting func-

tion. Let P (posei) indicate the probability of encountering the

current hand pose i. Let P (featurei,k) indicate the probability

of encountering the current feature Pi,k. Then the probability

that hand pose i is a good match for object j based on finding

the current feature Pi,k on object j can be expressed as

P (posei|featurei,k) =
P (featurei,k|posei)P (posei)

P (featurei,k)
(6)

In weighting term wi,k, we estimate P (featurei,k|posei) by

counting the number of times the feature appears on the

object originally grasped using this hand pose. P (posei) can

be considered uniform and we ignore it. P (featurei,k) is

estimated by counting the occurrences of that feature over all

hand poses.

The function matchCount used in computing weight wi,k

can be expressed as follows:

matchCount(A, b) =

C(A)
∑

k=1

isMatch(Ak, b) (7)

with

isMatch(Ak, b) =

{

0 Dist(Ak − b) > ε
1 Dist(Ak − b) ≤ ε

}

(8)

A match is counted if the distance between corresponding

features is less than a value ε. In our experiments, ε is set to

10% of the maximum distance between features in the hand

pose under consideration.

In some cases, there may be many ways in which an object

can be grasped. To narrow these options, we have implemented

a very simple mechanism to allow the user to provide some



Fig. 9. It is not enough to identify matching hand poses. We must also find
an alignment of the hand pose to the object surface.

Fig. 10. A single triangle, called the Basic Partial Frame, is used to find a
candidate set of alignments of hand pose to object surface. The Basic Partial
Frame is created from three contact points selected from the hand pose.

guidance for the shape matching process. In particular, the user

can select the portion of the object to be grasped, such as the

object regions highlighted in Figure 11. Only surface points

within the selected region will be considered during the shape

matching process.

C. Pose Alignment and Clustering

Once a hand pose is selected from the set of candidates,

it must be aligned to the object shape. The shape matching

algorithm described above identifies likely hand poses (those

with minimum distance values Ew in Equation 3), but it does

not compute an alignment of hand pose to object surface.

The goal of the alignment process is to find a transformation

to be applied to the hand pose so that the contact points in

the hand pose are brought into correspondence with points on

the object having similar normals (Figure 9). Our alignment

process has two parts. First, we narrow the set of transforms

by identifying good alignments for a single triangle from the

hand pose. Then, for each of these candidate transforms, we

check all other contact points from the hand pose, discarding

transforms that result in a poor match for any one of those

contacts. Finally, we cluster the results. The next paragraphs

provide more detail.

1) Finding Candidate Transforms: In the first step of the

alignment process, coordinate transforms are collected by

finding good matches between a triple of points from the hand

pose and triples of points on the object. We indicate a triangle

formed by three contact points on the hand pose p1, p2, p3

as a Basic Partial Frame, as shown in Figure 10. For the

Basic Partial Frame, we compute edge lengths ei and angles

γi between the normals ni and the triangle normal nf . All

triangles from the object surface are then tested for a match to

this frame. Matching triangles must have edge lengths within

value εe and angles within value εγ , where εe = 0.5cm and

εγ = 0.5rad in our experiments. All matching triangles are

recorded and passed on to the next step.

Fig. 11. (Left) New objects tested using our algorithm. (Right) Objects in
our database. The highlighted “partial objects” on the right hand side show
the regions of those objects that were grasped to form the hand pose database.

Fig. 12. Skeleton used to obtain poses from motion capture data. All joints
were assumed to be ball joints for the purpose of pose capture.

2) Pruning Poor Transforms: Once a number of candidate

transforms are generated using the Basic Partial Frame, each

of these transforms is examined to test whether it represents

a plausible grasp. All contact points are first transformed by

aligning the corresponding triangles, and the pose is checked to

see whether there are good matches for all contact points on the

object surface. For each contact point, its nearest neighbor on

the surface of the object is identified, and the entire transform

is discarded if the distance from the contact point to the object

surface is greater than value εd, or the angle between the

contact normal and the object surface normal is greater than

value εn, with εd = 1cm and εn = 1rad in our experiments.

3) Clustering the Results: At the end of the alignment

process, there may be many possible grasps available for a

single hand pose and object. These grasps are automatically

clustered for effective presentation to the user. We use K-

means clustering [6], with the number of clusters selected

using the criterion proposed in Krzanowski and Lau [13].

Clustering was performed on the transformation used to align

the hand pose to the object surface. We experimented with

a variety of different subspaces that can be formed from

this transformation and found that for our problem the most

intuitive results were produced when clustering in the nine-

dimensional space (the 3x3 matrix) representing the rotation

portion of this transformation.

IV. THE GRASP DATABASE

We illustrate our results with a database consisting of 17

hand poses obtained from motion capture data. Objects that

were grasped to form the database are shown in Figure 11.

Grasps of these objects were captured using a Vicon optical



motion capture system, with motion capture data fit to the

hand skeleton model shown in Figure 12 to determine the pose

of the hand. Geometric models for the objects were created

manually for each of the objects grasped. For each hand pose,

contact regions were selected manually, and the normals at

those contact points were obtained by taking the normal from

the closest point on the object surface.

V. RESULTS

We first tested whether our matching algorithm would select

appropriate grasps for the objects used to form the database.

The motivation behind this experiment is that if our algorithm

does not work on the original data, then we must conclude

that our feature set is not sufficiently discriminative.

Figures 13 and 14 show results from this initial experiment.

Figure 13 illustrates results using the unweighted distance E
from Equation 1, and Figure 14 illustrates weighted results

using distance Ew from Equation 3. Hand poses 1 through 17

are shown on the x-axis, and query objects 1 through 17 are

shown on the y-axis. The list of objects is:

• 1-Softball, 2-Baseball, 3-SmallBall, 4-SauceJar, 5-

Mug, 6-JellyJar, 7-MilkJar, 8-LargeBook, 9-CD, 10-

CokeBottle, 11-LightBulb, 12-WaterBottle, 13-Drill, 14-

BubbleGun, 15-Phone, 16-RemoteControl, 17-Mouse

So, for example, column 15, row 15 represents the hand pose

from the phone grasp compared to the object geometry of the

phone, and column 10, row 15 represents the hand pose from

the coke bottle grasp compared to the object geometry of the

phone. All of these results are run with the user highlighting

the relevant region of the object to consider. For example, for

the drill geometry, the user selected the handle of the drill

as shown in Figure 11 and other parts of the drill were not

considered. In these two figures, a purely white cell would

represent zero distance. The diagonal terms are not exactly

zero due to errors in estimating contact positions from the

motion capture data and due to discrete sampling of points on

the object surface. This experiment shows that the weighting

term used in Equation 3 is effective for pruning spurious

matches.

Our second set of experiments was to find good matches

for objects that were not in the database. We selected

three objects of moderate complexity for this experiment: 1-

MouthwashBottle, 2-Sander, and 3-SprayBottle. Figures 15

and 16 illustrate results for these three objects. Figure 15

contains results of searching for matches using the entire object

geometry. Figure 16 contains results in a similar format when

the user has highlighted the portion of the object to be grasped.

Only results using weighted metric Ew are shown.

Table II shows the number of alignments and the number

of clusters returned for the three new objects in each of the

conditions tested. For example, the top section of the left

column shows alignments for the mouthwash container when

the entire object was considered. The five best matching hand

poses based on their feature sets were the mug, phone, mouse,

coke bottle, and softball poses. The mug pose resulted in

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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baseball−2

small ball−3

sauce jar−4

mug−5

jelly jar −6
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Fig. 13. Evaluation using the unweighted distance metric E (Equation 1).
All hand poses in the database are compared to all of the objects for which
grasps were collected. Lighter colors indicate lower values of E, or closer
matches. A perfect discriminator would have white boxes on the diagonal and
black everywhere else.
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Fig. 14. Evaluation using the weighted distance metric Ew (Equation 3).
All hand poses in the database are compared to all of the objects for which
grasps were collected.

WHOLE OBJECT PARTIAL OBJECT

Mouthwash Mouthwash
5-Mug 399 (4) 17-Mouse 0 (-)
15-Phone 15 (4) 6-JellyJar 218 (4)
17-Mouse 2 (-) 15-Phone 8 (-)
10-CokeBottle 380 (4) 5-Mug 360 (4)
1-Softball 721 (2) 10-CokeBottle 11 (4)

Sander Sander
5-Mug 3 (-) 1-Softball 31 (4)
4-SauceJar 8 (-) 5-Mug 2 (-)
1-Softball 59 (2) 17-Mouse 0 (-)

SprayBottle SprayBottle

15-Phone 4 (-) 15-Phone 0 (-)
17-Mouse 13 (4) 13-Drill 0 (-)
6-JellyJar 163 (4) 12-WaterBottle 243 (7)

11-Lightbulb 13 (3)

TABLE II

RESULTS FOR THREE NEW OBJECTS. (LEFT) THE ENTIRE OBJECT SURFACE

WAS USED. (RIGHT) A PORTION OF THE OBJECT WAS SELECTED. BOTH

ALIGNMENTS AND CLUSTERS (IN PARENTHESES) ARE SHOWN. HAND

POSES WITH 8 OR FEWER ALIGNMENTS WERE NOT CLUSTERED.
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Fig. 15. Test of three new objects against the hand pose database. The entire

object was considered. The figure shows weighted results, using Ew .
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Fig. 16. Test of three new objects against the hand pose database. Only a

portion of the object was considered. The figure shows weighted results, using
Ew .

399 valid alignments with the object surface, which could

be grouped into 4 clusters based on orientation of the hand

pose. When only a portion of the mouthwash container was

considered, the best matching hand poses were from the

mouse, jelly jar, phone, mug, and coke bottle grasps. Although

the mouse grasp was best in terms of its feature set, no valid

alignments could be found on the object surface. In other

words, even though similar features to all pairs of points in

the grasp could be found on the object surface, none of these

matching pairs led to a complete matching grasp.

Figure 17 shows some of the final results of our algorithm.

Each row shows all cluster results where a single hand pose

matches the given object. For example, the top row shows

the median cluster representative for each cluster matching the

coke bottle pose to the mouthwash object.

VI. DISCUSSION

This paper describes a shape matching algorithm for synthe-

sizing humanlike enveloping grasps that is inspired by work

in geometric model matching. We have described an approach

that handles the specific challenges of applying shape matching

to grasp synthesis. The availability of partial information is

handled using a representative descriptor approach, and the

lack of good local features is handled by probabilistically

sampling a global shape function. We introduce a novel global

shape function that emphasizes the relations between relative

positions and normals of pairs of oriented points and we

introduce a mechanism to weight features relative to one

another to improve hand pose selection.

Our results show that this algorithm can find very good

matches between the hand and the object surface. In fact, we

were surprised at the variety of good matches found using

our small database of 17 grasps. As an interactive tool, this

system is useful as-is, because the user can select the desired

grasp from among the possibilities presented by the system.

However, many of the grasps seem unintuitive—the hand is

grasping the object “backwards” or “upside down” or is not

grasping a tool in the manner necessary to complete a task.

Objects such as tools may require customized shape matching

algorithms (e.g., see Miyata et al. [16]), and future work

includes exploring the use of task based quality metrics (e.g.,

[22]).

The results shown in Figure 17 are not refined in any way.

We have set the problem up as a database retrieval problem,

and so the resulting grasps will typically not achieve exact

contact with the object surface. However, in our results, the

matches have hand configurations that follow the object surface

quite closely, and the additional cleanup that is required should

not be difficult. Automating this cleanup process is another

area of future work.

To use this algorithm with a robot hand, we must have a

grasp database specific to that hand. For hands that are nearly

humanlike (e.g. the Gifu Hand [18], [29] and the Shadow

Hand [30]), we have had good preliminary success mapping

captured human grasps directly to the robot kinematics using

the algorithm by Zordan and Horst [33], which works by using

artificial forces to draw virtual markers on the hand toward

measured marker positions at each frame of the motion capture

sequence. To achieve the selected grasps, a suitable control

algorithm must be designed. We have had success at extracting

simple controllers for grasping based on human motion capture

data [23] and plan to combine the controller from that work

with the grasp synthesis algorithm described here to produce a

more complete grasping system for humanlike robotic hands.

In general, we believe that the strength of our algorithm is in

identifying a set of plausible grasps based only on object shape.

Our primary emphasis for the future will be to provide more

effective ways to prune these grasps, refine them, and present

them to the user for consideration or provide a mechanism to

automatically select the single most likely match for use by a

robot.
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