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Abstract

If two solids A, B have surface contacts we say that
A fits B. Such a fitting relationship in an assembly
implies that the relative location of the bodies belongs
to a coset of the (common) symmelry group of ihe
mating feature pair. When a symmetry group is con-
tinuous, there are infinitesimal displacements which
will preserve the relationship. Assembly of two bod-
ies normally involves the establishment of successively
more constraining relations, many of which are fitting
relations. The continuous topological siructure of the
associated group determines possible directions of as-
sembly at any state in the assembly process. In order
1o accommodate to errors, it is necessary to choose a
stiffness matriz appropriale to a given assembly siate,
which will allow the robot to comply with wrenches
normal to the possible assembly directions. In this
paper we show how io derive such matrices from e
computational geometric representation of the mating
feature symmetry group.

1 Introduction

The output of assembly planning is an assembly task
specification that instructs a human being, a robot or
a group of robots how to assemble a designed product.
Here how to includes but is not limited to specify:

e kinematic consirainis: specification of contacts
among assembly components;

o temporal constraints: specification of the partial
order of assembly operations;
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o physical consiraints: force, speed and possibly,
guidance of forseeable error-recovery.

Much current work in assembly planning focuses on
the representation of all the possible sequences of an
assembly: De Fazio and Whitney [5] generate all the
possible assembly sequences from a liaison diagram
through a question-answer process which serves to
establish precedence constrainis on the liaisons; this
work is an improved version of Bourtjault [2] in terms
of the number of questions being asked. Homem de
Mello and Sanderson(7] present a representation for
assembly plans using AND/OR graphs derived by
finding recursively the feasible subsets of an assem-
bly (subassembly) . Wolter [14] proposed an implicit
representation consiraint graph from which one can
derive the feasible assembly plans when necessary.

One must realize that the ordering of assembly op-
erations depends strongly on the geometry of assem-
bly components and the kinematic constraints im-
posed among these components. Fundamentally, the
spatial legality consiraint — no two bodies occupy the
same volume of Euclidean space at the same time —
has to be obeyed. In order to check legality one has to
be able to compute the relative positions of assembly
bodies, not only when the bodies are in their final con-
figuration but also while they are being moved into
those configurations. k

The RAPT system developed by Popplestone, Am-
bler and Bellos [1, 4] infers the positions of bodies
from specified symbolic spatial relationships between
features of bodies. The original implementation of
RAPT mapped these relationships into a set of al-
gebraic equations via constraint propagation. Thus
the final task becomes that of simplifying and solving
symbolically a set of algebraic equations— a time-
consuming process. A subsequent re-implementation
of RAPT [4] used tabulated solutions to standard cy-
cles and chains of relationship to achieve better per-



formance, at some sacrifice of generality.

Hervé[6] showed how to apply the theory of contin-
uous groups to the kinematic analysis of mechanisms.
Popplestone[12] showed how group theory could be
used in the treatment of spatial relations occurring in
RAPT. Thomas and Torras [13] implemented Hervé’s
group-theoretic approach to treat spatial relation-
ships using symbolic methods.

Liu [8] has developed a geometrical representation
of symmetry groups that allows the computation for
the relative positions of bodies in assemblies without
requiring symbolic computation. Thus the conceptual
elegance of group theory has been given a computa-
tionally tractable realization. We have experimented
with the theory embodied in an assembly planning
system X3 [8, 9]. A3 uses solid models of the bodies
occurring in the task to generate a set of task speci-
fications for robotic assembly. If it finds an assembly
to be non-feasible the designer can be informed about
which parts need modification. Otherwise, a set of
precise assembly task specifications is generated.

If two solids A, B have surface contacts we say that
A fits B. Such a fitting relationship in an assembly
implies that the relative location of the bodies be-
longs to a coset of the (common) symmetry group of
the mating feature pair. When a symmetry group
is continuous, there are infinitesimal displacements
which will preserve the relationship. Assembly of two
bodies normally involves the establishment of succes-
sively more constraining relations, many of which are
fitting relations. The continuous topological struc-
ture of the associated group determines possible di-
rections of motions in an assembly at any state in the
assembly process. In order to accommodate to errors,
it is necessary to choose a stiffness matrix appropri-
ate to a given assembly state, which will allow the
robot to comply with wrenches normal to the possi-
ble assembly directions. We show here how to derive
matrices expressing task-specific compliance from a
general computational representation of the mating
feature symmetry group — the characteristic invari-
ants.

2 Group Theory and Spatial
Reasoning

Assembly involves moving bodies around, which re-
quires us to have some way of representing their loca-
tions. When a rigid body is moved the distance be-
tween any two points on it remains unchanged, lead-
ing us to consider mappings of R® onto R® which
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preserve distance, i.e. isometries’. Isometries which
preserve the handedness of axes are said to be proper,
thus reflections are not proper isometries. The proper
isometries form a subgroup of the Euclidean group,
called the proper Euclidean group, which we shall de-
note by £+,

2.1 Symmetry Groups

Let us now define formally the concept of a symmetry
of aset SCR3:

Definition 1 Let S C R3. Theng € £t isa a
proper symmetry of S if and only if g(S) = S.

We denote the set of all the proper symmetries of
S C R® by Gs. It is easy to show that Gs C £t isa
subgroup of £. Furthermore, if we move a set-feature
in space by applying a rigid-transformation to it, then
we transform its symmetry group into a conjugate
group by using the associated inner-automorphism as
stated in the following proposition (its proof can be
found in [8]):

Proposition 1 If G is the symmeiry group of S C
R3 then for any rigid transformation a in £¥,aGa™?!
is the symmelry group of a(S).

This is one of the reasons why the application of
group theory to assembly is relevant.

2.2 The Canonical Subgroups of £+

Conjugation of subgroups determines an equivalence
relation on subgroups. It is therefore appropriate to
choose a particular representative of each equivalence
class to be a canonical subgroup. This choice can
be made systematically and rationally. We have seen
(proposition 1) that when an isometry g is used to re-
locate a feature, its symmetry group is conjugated by
g. Recall that the Constructive Solid Geomelry ap-
proach expresses body shapes using relocated primi-
tive shapes. This correspondence provides a basis for
computing the symmetry group of a primitive body
feature — an algebraic set, defined by irreducible poly-
nomials, containing a face of the solid. We attach a
symmetry group, the canonical symmetry group, to
each un-relocated primitive feature of a CSG modeller
by table-lookup. We can then conjugate the canoni-
cal symmetry group to obtain the symmetry group of
any relocated primitive feature occurring in a body
model. Some important canonical subgroups of £+

1Due to space limit, interested readers please refer to [10]
for some basic algebra concepts used in this paper.



Table 1: Some Important Subgroups of £+

Canonical Definition
Groups
[ Gia {1} i
SO(3) {rot(i, f)rot(j, o)rot(k, $)|6,0,¢ € R}
0(2) {rot(k,f)rot(i,n7)[f € R,n € N}
50(2) {rot(k,6)|6 € R}
Day, {rot(k, 2x/n)rot(i, mr)jm,n € N'}
Cn {rot(k,27/n)[n € N}
7! {trans(0, 0, z)|z € R}
T? {trans(z, y,0)|z,y € R}
7° {trans(z,y, z)|z,y,2 € R}
[ {trans(0, 0, z)rot(k, f)rot(i, n~)|
neN,0,z € R}
Gair_eyt {trans(0, 0, z)rot(k, )|z,6 € R}
Gplane {trans(z, y, 0)rot(k, )|z, 3,0 € R}
Gacren(P) {trans(0, 0, z)rot(k, 2zx/p)|z € R}
[ {trans(0, 0, z)rot(i, nx)|[n € N,z € R}

are listed together with a specification of their mem-
bers in Table 1. The first row of the table is the
identity group, below it come a collection of pure ro-
tation groups, then a collection of pure translation
groups and finally groups which contain both rota-
tions and translations.

2.3 Spatial Relations from Symmetry
Groups

Suppose B; and B; are two bodies making contact
through primitive features Fy (of B;) and F; (of Bz)
whose respective symmetry groups are Gr,, G, and
which are located in their respective body coordinate
systems by isometries fi and f;. By the definition of
symmetries (Definition 1) it is clear that if we move
B or B; by a member of the symmetry groups Gr,
or Gp, the relationship between the features is pre-
served. The fits relation is particularly constraining:
if Fy, F fit, then their symmetry groups are identical
Gr, = GF,. I the isometries I, specify the loca-
tions of bodies B;, B in the world coordinate system,
then l;llg is the location of B; relative to Bs,

;'L € /1iGrf7t = GRS} (1)

Condition 1 is the simplest kind of relation in which
two bodies are related by fitting one pair of primitive
features.
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2.4 Group Intersections

Typically contacts between bodies in an assembly oc-
cur between multiple primitive features. Consider,
for example the case of a peg in a blind hole where
the two bodies By, B; have a fitting contact between
two pairs of primitive features: the bottom planer
surfaces and the cylindrical surfaces. This multiple
fitting relationship can be viewed as a single fitting
relationship between a pair of compound features. A
compound feature Feomp of body B is a set of primitive
features F; of B. It is proven [8] that the symmetry
group of a compound feature Feomp is the intersection
of the symmetry groups of those primitive features of
which Feomp is composed, given that the Fis are all
distinct — an easy condition to be satisfied.

GFeom, = ni GFi

To express the relative positions of a pair of fitted
solids requires the common symmetry group GF.,..,
of the contacting features, and t¢ find GF,,,,, one has
to compute the group intersection (); Gr,. There-
fore computing group intersection efficiently becomes
a crucial step for us in order to use symmetry ‘group
approach in assembly planning.

2.5 Characteristic Invariants — A ge-
ometric Representation of Sym-
metry Groups

Let us now consider how to represent symmetry
groups and how to compute their intersections using
the method of characteristic invariants.

The basic idea of characteristic invariant method is
to associate with each group some geometric entities
which are both invariant under the group actions and
characteristic of the group?.

The fact that £+ = T350(3) = {irt € T3 r €
SO(3)} is a semi-direct product of 7% and SO(3), has
led us to examine a family of subgroups of £* called
TR groups, which are the groups G = TR C £t
where T is a translation subgroup and R is a rotation
subgroup. The separation of rotations and transla-
tions has enabled us to use two types of invariants for
a TR subgroup, namely translational invariants Te
and rotational invariants Rg.

The translational invariant 7g is defined to be the
T-orbit of the origin 3o, i.e. T¢ = {t(s0)| for all ¢ €
T}.

3In [11] we proposed the idea but because the choice of
characteristic invariants had a certain arbitrariness, it led to
difficulties in extending that work beyond a limited class of

groups.




The rotational invariant R¢ is a pair (F,P), where
F is the fixed-point-set of R and P is the pole-set of
R. Thus ¥ = T({z|z € R3,r(z) = 2,7 € R}). To
find the poles of a rotation group R we first conjugate
R by a translation ¢ so that the conjugate group R,
is a canonical rotation group — a subgroup of SO(3)
centered at the origin. Each pole is a point on the unit
sphere, together with an integer indicating the order
of the stabilizer group, i.e. the number of different
non-trivial rotations that leave the point fixed. The
pole-set Pr of R is defined to be a set of pairs (p, n)
where p is a pole and n € N U {00}, i.e.

Pr ={(pn)lp € So,n = |RE| > 1}

where |R?| is the order of the stabilizer subgroup of
R, at p. See Figure 1 for some examples of rotational
invariants.

R 3. P
s0(3) .s,
(p.0ow)
Rf-?’ .S,
. 2)
so
(.ot
' ©.4)
Cy S,
S,

r 4

Figure 1: Examples for the fixed point set Fr and
pole-set Pg of some rotation subgroups R.

The translational invariant of the canonical plane
group Gplane = T2SO(2) happens to be the sub-
vector space coincident with the X-Y plane. The
fixed-point-set F is all of 3-space, and the poles are

{((Os 0, 1)1 0), ((0’ 0, _l)v 0)}
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Figure 2: The outline of the TR group intersection
algorithm

It has been proven in [8] that there exists a one-to-
one correspondence between TR groups and the set
of characteristic invariants. Thus it justifies the use
of characteristic invariants.

2.6 Computing Group Intersections

Based on the theorems proven in [8], a TR group
intersection algorithm using characteristic invariants
has been implemented. The diagram of the algo-
rithm is shown in Figure 2. The current version
of the algorithm has asymptotic time complexity
O(n?) + Op(blog® bloglogh) where n is the finite
number of poles, and Op(blog? bloglog b) is the order
of magnitude for computing the greatest common di-
visor under the bitwise computation model. The only
case where the algorithm behaves O(n?) is when both
groups are dihedral groups. However this case can be
taken care of by using generator representations for
the poles of dihedral groups.

Two TR groups G; and G are intersected as fol-
lows:



e Map each group to its invariants, G, —

(TGURGI): G; — (TGnRGa)'

¢ Perform some simple geometric computations
upon the invariants 7¢,,Re,, Te, and Ra,), to
find a new pair of invariants (7g,nG,: Ra.nG,)-
Eg. (Talnc‘ =Te, Nn7Tg,.

e Map this pair back to the intersected group
G1NGa.

In essence, this final pair of characteristic invariants
{F,P} sufficiently represents the intersected group
itself. Thus the representation by characteristic in-
variants of TR groups G = TR has an efficient im-
plementation algorithm, where T and R can be finite
or infinite, discrete or continuous. This algorithm has
been used in X3 to compute symmetry groups of the
boundary models from the solid modeller PADL2 (3].

8 Stiffness from characteristic
invariants

In this section we derive stiffness matrices for the task
of moving a body B; which has a feature mated to
a feature of a body B;. Typically this will be to
establish additional mating features — e.g. pushing
a wheel along a shaft until it meets a shoulder.

In the next two sub-sections we give the stiffness
matrices for canonical rotational and translational
subgroups. In the last sub-section we explain how
to combine these into a single stiffness matrix for a
general sub-group of the Euclidean group.

3.1 Rotational Stiffness

The rotational degrees of freedom are determined by
the pole-set of the group. Only poles of order co con-
tribute degrees of freedom — poles of finite order cor-
respond to discrete symmetries, so that there are no
corresponding infinitesimal displacements.

The only rotation subgroups of £+ which contain
infinite order poles are SO(2), O(2) and SO(3). The
first two have an antipodal pair of poles of order oo,
and the latter is characterized by the complete sphere
(Figure 1).

We introduce two stiffness coefficients, kr¢ and kqq.
k.¢ specifies the stiffness in the directions in which
there are rotational degrees of freedom, and is thus
expected to be large.

kqq specifies the stiffness in the direction in which
there are torque degrees of freedom, i.e. in which
torques can be exerted. This stiffness should be small.
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Table 2: Rotational Stiffness Matrices
P CPec Kp

kg O O

0 0 ky O
( 0 0 tq)

kg 0 O
( Y o )

0 0 Ky

ke O 0

0 ke O

0 0 ket

Table 3: Translational Stiffness Matrices

-l

Pole-pair

Unit-sphere

Tc Ky
( k 1 0 0 )
Point 0 &k ;y 0
0 0 Kk
k 1 0 0
Line ( 0 k y 0 ‘)
0 0 ki
key 0 O
Plane 0 ky O
0 0 kg
ke O 0
3 0 ky O
0 0 kg

How small depends upon (a) the possible orientation
error and (b) the maximum torque that may be im-
posed during the given phase of assembly.

Table 2 shows the stiffness matrices for the poles of
canonical rotation groups.

3.2 Translational Stiffness

As in the rotational case, only the continuous aspects
of the translation group are relevant. The transla-
tional invariant in this case can be (a) a point, (b)
a line (c) a plane, or (d) the whole of real 3-space,
giving rise to the stiffness matrices shown in Table 3.
Here ky is the stiffness in directions in which force
can be exerted, and ki, is the stiffness in directions
in which translation is possible.

3.3 Combining Stiffnesses

Given a TR group G = TR we can express it as a
conjugate of a canonical TR group TcR,, i.e. G =



aT.R.a~!. Let Ky and K be the translational and
rotational stiffnesses for T, R. derived above. Then
the 6 x 6 stiffness matrix for the group G is
Ky 0 T
J 0 Kp J
Here J is the Jacobian of the coordinate transfor-
mation corresponding to the conjugating element a.

4 Summary

Not all robotic assembly problems can be solved at
the high level of abstraction of group theory: how-
ever our approach provides an intermediate level of
abstraction between such highly abstracted work as
that of de Fasio and Whitney, and a low-level geomet-
ric treatment. This approach is able to handle much
of the mass of kinematic detail that obscures those
parts of an assembly problem which are essentially
kinematically hard.

In assembly planning, the temporal constraints in
terms of operations on assembly components are de-
termined through a thorough investigation of the
shapes and contacts in the assembly. The information
accumulated in this process, in turn, provides part of
the precise task specification in terms of kinematic
constraints. The interesting transition described in
this paper is a mapping from an instantiated kine-
matic constraint (represented as a symmetry group
of the mating feature pair) to certain physical con-
straints which can guide a force compliant robot dur-
ing the execution of an assembly task. We are cur-
rently applying the result on a Zebra ZERO robot
in our lab — a small robot equipped with 6 axes
force/moment sensor and a stiffness mode.
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