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Abstract

Sparsely registering a face (i.e., locating 2-3 fiducial points) is considered a much easier task than
densely registering one; especially with varying viewpoints. Unfortunately, the converse tends to
be true for the task of viewpoint-invariant face verification; the more registration points one has
the better the performance. In this paper we present a novel approach to viewpoint invariant face
verification which we refer to as the “patch-whole” algorithm. The algorithm is able to obtain good
verification performance with sparsely registered faces. Good performance is achieved by not as-
suming any alignment between gallery and probe view faces, but instead tries to learn the joint
likelihood functions for faces of similar and dissimilar identities. Generalization is encouraged by
factorizing the joint gallery and probe appearance likelihood, for each class, into an ensemble of
“patch-whole” likelihoods. We make an additional contribution in this paper by reviewing existing
approaches to viewpoint-invariant face verification and demonstrating how most of them fall into
one of two categories; namely viewpoint-generative or viewpoint-discriminative. This categoriza-
tion is instructive as it enables us to compare our “patch-whole” algorithm to other paradigms in
viewpoint-invariant face verification and also gives deeper insights into why the algorithm per-
forms so well.
Keywords: Face Verification, Patch-Whole Modeling, Viewpoint Invariance.
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1 Introduction
Ideally, one would like to solve the problem of pose-invariant face recognition by representing
faces in 3D as pose variation is inherently linear rather than non-linear in 2D. Unfortunately, there
are many practical reasons why representing a face in 3D is often untenable. For example, one
may be attempting to recognize a face(s) from a image/video medium that is inherently 2D (e.g.,
internet, television, etc.). As a result there is an inherent need for accurate and robust view-point
invariant face recognition algorithms that can perform well with a single 2D image.

All face recognition algorithms require some degree of registration so as to normalized for
unwanted shape variation. In recent work Gross et al. [2004] demonstrated that improved face
recognition performance can be attained using dense registration (39−54 fiducial points depending
on the pose) rather than sparse registration (3 fiducial points located on the eyes and nose tip)
for the task of pose-invariant face recognition (see Figure 1). Similarly, Blanz and Vetter [2003]
demonstrated good performance using extremely dense offline registration (75, 972 vertex points
on laser-scan 3D images) and medium density registration (at least 7−8 fiducial points depending
on pose) with the online 2D images. A problem with both these approaches, however, is that
automatic dense registration of the face across view-points remains a very difficult task; making
most these algorithms still very reliant on manual registration.

Sparse registration (i.e., 2-3 fiducial points such as the eyes and nose) of the face is generally
considered an easier problem than dense registration. This can mainly be attributed to the nature
of the sparse points being located (i.e., eyes, nose, etc.) as they typically contain strong edges
and have a similar appearance across subjects. Techniques for sparse registration are more mature
than their denser cousins, and can now perform very well on frontal faces (see [Everingham and
Zisserman, 2006] for a review). Some sparse registration algorithms can now perform well across
viewpoints (see [Lucey and Matthews, 2006] for details). In this paper we present an algorithm
that is able to achieve good view-invariant face verification performance with sparse registration;
making the construction of an accurate automated pose-invariant face recognition system far more
feasible.

1.1 Categorizing Viewpoint Invariant Methods
Given that we are restricted to 2D appearance one can describe the task of face verification learning
in terms of estimating the likelihood functions,

p(xg,xp|ω), ω ∈ {C, I} (1)

where ω refers to the classes where the gallery view (xg) and probe view (xp) images are similar (C)
and dissimilar (I) in terms of subject identity. We shall refer to C and I as the client and imposter
classes respectively. There is no need in this formulation for subject labels, as we assume there is
only a single gallery and probe image per subject. The likelihoods in Equation 1 are learnt offline
from a finite world set. The world set contains a large number of subject faces representative of
the population of subject faces expected during verification, but are usually independent, in terms
of identity, to the subjects involved in the online verification process.

Techniques differ in literature on how one employs the likelihood functions in Equation 1 for
verification. In this paper we shall categorize these approaches in two ways:
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Figure 1: Examples of densely (left image) and sparsely (right image) registered face images. This paper
will be concerning itself with the challenging problem of viewpoint invariant face verification with sparse
registration.

Viewpoint-Generative: The most common approach in literature [Beymer and Poggio, 1995,
Zhao and Chellappa, 2000, Gross et al., 2004, Blanz and Vetter, 2003, Blanz et al., 2005] for
viewpoint invariant face verification is to find a regression function between the gallery and probe
viewpoints in terms of their 2D appearance. One can then apply this regression function to generate
what the probe image’s appearance is from the gallery viewpoint. This concept can be written for-
mally in terms of the likelihood functions in Equation 1 where we take the conditional expectation
of xg with respect to the client likelihood function in Equation 1,

x̃g =

∫
xg

xgp(xg|xp, C)dxg (2)

so as to gain an estimate x̃g of what the claimant’s probe image xp looks like from the gallery view.
A simple nearest neighbor classifier is then used to gain a match-scorems of how similar the client
gallery image xg and the claimant’s estimate x̃g are in terms of some distance metric. Given that
we assume p(xg,xp|C) is Gaussian, the solution to Equation 2 can be explicitly found. As we
shall discuss in Section 4 we can equivalently frame this problem as a least-squares regression
problem [Bishop, 2006].

Viewpoint-Discriminative: Recently, another approach has become popular in literature [Kanade
and Yamada, 2003, Kim and Kittler, 2005]. This approach attempts to model what is discrimina-
tive between the client (C) and imposter (I) classes. This approach has some inherent advantages
over the viewpoint-generative approach as more emphasis is given to discrimination, rather than
the generation of a gallery view image from the probe view appearance1. We can express this
approach formally as attempting to estimate the match-score directly from the likelihoods in Equa-
tion 1 using Bayes rule,

ms = logP (C)p(xg,xp|C)− logP (I)p(xg,xp|I) (3)

1This idea shares many similarities with the seminal work of Vapnik [1999] in terms of the advantages of discrim-
inative over generative classifiers. However, in our work either discriminative or generative classifiers can be used
within the viewpoint-discriminative paradigm.
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where P (C) and P (I) are the priors for the client and imposter distributions respectively. In an
ideal world, this would be the optimal approach for performing viewpoint face verification as it
would realize the optimal Bayesian decision boundary between clients and imposters. In prac-
tice, unfortunately, such a strategy is too naive as one typically has no idea of the true likelihood
functions p(xg,xp|ω) or even their parametric form. As we shall discuss in Section 5, viewpoint-
discriminative methods vary based on their simplifying assumptions to realize a reasonable ap-
proximation to the decision boundary seen in Equation 3.

1.2 Contributions
In this paper we review and analyze viewpoint-generative and viewpoint-discriminative approaches
to face verification. Our paper is broken down as follows. In Section 4 we review common ap-
proaches for viewpoint-generative face verification. We make a contribution by demonstrating
how these various approaches are really variations on the same technique and demonstrate empir-
ically which variation performs best. In Section 5 we describe in detail viewpoint-discriminative
methods, reviewing and analyzing two approaches for face verification, namely the well known
viewpoint-differential [Moghaddam and Pentland, 1997, Kanade and Yamada, 2003, Kim and Kit-
tler, 2005] method as well as a naive approach we refer to as the viewpoint-joint method. We dis-
cuss their advantages and disadvantages, hypothesizing how particular elements of each approach
could be combined to make a more effective algorithm. In Section 6 we then review and analyze
existing patch-based variants of these approaches. Based on this analysis we propose a novel ap-
proach we refer to as the “patch-whole” method. Our method exhibits superior performance in
evaluations when compared to existing approaches in literature.

Compared to our previous work [Lucey and Chen, 2006], this paper performs a more exhaus-
tive evaluation and gives additional insights into what component of our algorithm is leading to
improved performance. The patch-whole algorithm that we present in this paper is quite different
to the one presented in [Lucey and Chen, 2006]. Specifically, we introduce the use of a regular-
ization term, within our patch-whole framework, to encourage generalization and abandon the use
of heuristically chosen feature compaction techniques (like the discrete cosine transform (DCT))
used previously. We also propose and analyze extensions to our patch-whole approach such as: (i)
balancing the energy between patch-whole pairs, (ii) employing a symmetrical match-score and
(iii) combining multiple patch-size models.

2 Related Work
Blanz et al. [2005] categorized viewpoint-invariant face recognition algorithms into two alter-
nate paradigms; namely viewpoint-transformed and coefficient-based. Viewpoint-transformed ap-
proaches essentially act in a pre-processing manner to transform/warp the probe image, based on
estimated pose parameters, to match the gallery image in pose. Coefficient-based recognition at-
tempts to estimate the lightfield [Gross et al., 2004] of the face (i.e. the face under all viewpoints,
or at least the face under the gallery and probe viewpoints) based on a single image; this is done for
both the gallery and probe image. Notable examples of viewpoint-transformed recognition can be
seen in the work of Beymer and Poggio [1995] as well as Zhao and Chellappa [2000]. Examples
of coefficient-based recognition can be see in the work of Gross et al. [2004] and Blanz and Vetter
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Figure 2: In this paper we demonstrate that good performance, which is robust to pose mismatch, can
be obtained by modeling the marginal distribution of gallery patch appearance og at position i with the
whole appearance of the probe image xp (note we employ the notation x for representing the whole facial
appearance, and o for representing patch appearance). We refer to this approach as our “patch-whole”
method.

[2003]. Figure 3 depicts a graphical relation between viewpoint-transformed and coefficient-based
paradigms. As we shall see in Section 4, both the viewpoint-transformed and coefficient-based
paradigms can be thought to be variations of the viewpoint-generative paradigm we proposed in
Section 1.1.

Although useful, the initial categorization of Blanz et al. does not satisfactorily describe all
paradigms in viewpoint-invariant face recognition literature. The viewpoint-differential paradigm,
as we refer to it, attempts to model the difference of gallery and probe images for clients and
imposters. This paradigm places more emphasis on learning what is important for good recogni-
tion across viewpoints, rather than good reconstruction of the face/lightfield. The work of Kanade
and Yamada [2003], and Kim and Kittler [2005] are notable examples of the viewpoint-differential
paradigm. Figure 3 depicts how this paradigm relates to the viewpoint-transformed and coefficient-
based paradigms proposed by Blanz et al., and the viewpoint-generative and viewpoint-discriminative
paradigms we proposed in Section 1.1.

3 Evaluation and Database
Verification is performed by accepting a claimant when his/her match-score is greater than or equal
to Th and rejecting him/her when the match-score is less than Th, where Th is a given threshold.
Verification performance is evaluated using two measures; being false rejection rate (FRR), where a
true client is rejected against their own claim, and false acceptance rate (FAR), where an impostor is
accepted as the falsely claimed client. The FAR and FRR measures increase or decrease in contrast
to each other based on the threshold Th. The overall verification performance of a system is
typically visualized in terms of a receiver operating characteristic (ROC) or detection error tradeoff
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Figure 3: This figure depicts our proposed taxonomy of paradigms within viewpoint-invariant face
recognition. One can see that the viewpoint-transformed and coefficient-based paradigms of [Blanz
et al., 2005] are subsumed under the viewpoint-generative paradigm; this shall be discussed in
more detail in Section 4. Viewpoint-differential techniques like those of Moghaddam and Pentland
[1997], Kanade and Yamada [2003] or Kim and Kittler [2005] are categorized under the viewpoint-
discriminative paradigm. We shall also propose a naive method in Section 5 which we refer to as
the viewpoint-joint approach. This approach shall form the central framework of our proposed
“patch-whole” method.

(DET) curve. A simple measure for overall performance of a verification system is found by
determining the equal error rate (EER) for the system, where FAR = FRR.

Experiments were performed on a subset of the FERET database [Phillips et al., 2000], specifi-
cally images stemming from the ba, bb, bc, bd, be, bf, bg, bh, and bi subsets; which approximately
refer to rotation’s about the vertical axis of 0o, +60o, +40o, +25o, +15o, −15o, −25o, −40o, −60o

respectively. In all experiments, gallery images stem from the frontal pose ba with probe images
stemming from all other view-points. The database contains 200 subjects which were randomly di-
vided into sets g1 and g2 both containing 100 subjects. The world set is used to learn any non-client
data-dependent aspects of the verification system. The evaluation set is used to obtain performance
rates for the verification system. The g1 and g2 sets were used interchangeably as the world and
evaluation sets. All images were geometrically normalized according to their eye and nose-tip
coordinates to give a cropped face image of 74× 64 pixels.

4 Viewpoint Generative Methods

4.1 Viewpoint-Transformed Methods
Given that we have a sparse registration of the face, a common approach [Blanz et al., 2005] in
literature has been to find the regression/transformation matrix W between offline probe Xp and
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gallery Xg view examples. One can solve for W typically by minimizing,

tr
[
(WXg −Xp)T (WXg −Xp)

]
+ α · tr

[
WTW

]
(4)

where α is a regularization factor that is employed so as to avoid over fitting. In this form we as-
sume that a unit bias has been appended to the probe example matrix Xp =

[
[xpT

1 , 1]T , . . . , [xpT
N , 1]T

]
containingN examples; no such bias is applied to the gallery example matrix Xg = [xg

1, . . . ,x
g
N ].

Note that each column vector in Xg and Xp corresponds to each other in terms of subject identity.
The solution to W is simply,

W = XgXpT (XpXpT + αI)−1 (5)

Typically the form of xg and xp, which are the column vectors making up Xg and Xp respectively,
have been holistic vectorized images of the face. The regularization factor α is estimated through
a cross-validation procedure.

When one wants to match online a client’s gallery image xg with a claimant probe image xp,
one performs two steps:

1. Synthesize the gallery view from the probe image xp:

x̃g = W[xpT , 1]T (6)

2. Then measure the distance between the synthesized gallery image x̃g and the true gallery
image xg:

ms = d(xg, x̃g) (7)

where ms is the match-scored used for verification. For the purposes of this paper we shall
be using a Euclidean distance.

We should note that the regression matrix can be expressed in terms of the offline probe im-
ages W = AXpT . One can then replace all dot products in Equation 4 with kernel opera-
tions k(x,y) and then attempt to solve for A (see Bishop [2006]) in a non-linear space. For
the purposes of this paper, however, we shall restrict ourselves to only the linear case.

4.2 Coefficient-Based Methods
Given a sparse registration of the face, another common approach [Blanz et al., 2005] is to perform
coefficient based pose-invariant face recognition. Typically, this approach performs PCA on the
offline probe view examples Xp and gallery view examples Xg where the column vectors in each
matrix correspond to the same subject. We then obtain a compressed coefficient representation of
both views,

C = V[XgT ,XpT ] (8)

where V is the ensemble of eigenvectors from the PCA process and C is the ensemble of compact
coefficients corresponding to the subject identities in the columns of Xg and Xp. Note, the offline
gallery and probe means have been subtracted from the columns of Xg and Xp.

When one wants to match online a client’s gallery image xg with a claimant probe image xp,
one typically performs three steps:
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1. Estimate the joint compressed coefficient cp for the claimant’s probe image,

cp = D(D + βI)−1V[x̃gT
,xpT ]T (9)

where D is the diagonal eigenvalue matrix corresponding to the eigenvectors in V, and β is
a regularization factor. Note that x̃g is estimated from xp through the view-point transformed
method in Equation 6. Both x̃g and xp have had their offline means removed before applying
Equation 9. The regularization factor β is estimated through a cross-validation procedure.

2. Estimate the joint compressed coefficient cg for the client’s gallery image by applying Equa-
tion 9 again, except using the real xg and the estimated x̃p via Equation 6.

3. Then measure the distance between the client’s gallery coefficient cg and the claimant’s
probe coefficient cp:

ms = d(cg, cp) (10)

where ms is the match-scored used for verification. For the purposes of this paper we shall
be using a Euclidean distance.

The inclusion of the regularization factor β in Equation 9 can be understood if we assume that
all appearance vectors x contain Gaussian2 noise such that,

x ∼ N (Vc, βI) (11)

where c is the compact appearance vector and V is the mixing matrix (typically a matrix of eigen-
vectors estimated through a PCA process). The inclusion of this Gaussian noise is useful for
generalization as it is tantamount to synthetically generating hundreds of training examples. The
maximum a posteriori (MAP) solution to c given x, V and β is given in Equation 9. For a full
derivation of Equation 9 please refer to [Bishop, 2006, Blanz and Vetter, 2003].

In our experiments we found coefficient-based methods to outperform viewpoint-transformation
methods. Coefficient-based approaches make sense over viewpoint-transformed approaches as
they provide a principled method for performing the summation,

ms = d(xg, x̃g) + d(x̃p,xp) (12)

given that we assume the feature compaction process of applying V is lossless and we are using
a Euclidean distance measure. The summation in Equation 12 is useful as it can cancel out any
biases or errors stemming from transforming in one direction (i.e. transforming from the gallery
to probe view, or vice-versa). We have also found that setting appropriate regularization factors
for both α and β necessary to achieve good performance.

4.3 Experiments
To emphasize the importance of regularization in viewpoint-generative methods, and the advan-
tage of coefficient-based methods over viewpoint-transformed we present verification results in

2Note, we will be usingN (µ, Σ) to denote a multi-dimensional Gaussian distribution with mean µ and covariance
matrix Σ.
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Figure 4: Results demonstrate that the coefficient-based method, given suitably chosen regulariza-
tion factors, outperforms the viewpoint-transform method for the task of face verification. Note a
coefficient-based method with no regularization is included (denoted by the *) for completeness.
Results were evaluated on set g1, using set g2 as the world set.

Figure 4. One can see in these results that employing suitably chosen regularization factors, and
employing a coefficient-based method over viewpoint-transformed leads to the best results. It is
interesting to note that these results are in direct contradiction to the results seen by Blanz et al.
[2005] in their comparison of viewpoint-transformed and coefficient based methods. One reason
for this difference could stem from how Blanz et al. formulated their viewpoint-transformed and
coefficient-based methods. Specifically, Blanz et al. used pre-existing state of the art frontal face
recognizers with their viewpoint-transformed method, and only a simple nearest neighbor classifier
with the coefficient-based method. One could argue that this introduced a major bias towards the
viewpoint-transformed method. Additionally, the dataset they conducted their evaluation on con-
tained less viewpoint variation than our dataset (±45o compared with ±60o), which could also be
a factor as the major difference in performance between methods can be seen at the more extreme
viewpoints.

5 Viewpoint-Discriminative Methods
Viewpoint-discriminative methods can be described as approaches that encourage better general-
ization of the likelihood functions p(xg,xp|ω), where ω ∈ {C, I}, in terms of the decision bound-
aries they realize from applying Bayes rule in Equation 3. In this section we will look at a variety
of strategies for encouraging this generalization.
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5.1 Viewpoint-Joint Methods
As discussed in the introduction, in theory it would be optimal to use the raw holistic appearance
vectors xg and xp to estimate the actual joint likelihood functions in Equation 1 and then obtain
match-scores through the application of Equation 3. In practice, however, this approach leads
to very poor performance due to: a) the unknown parametric form of the the joint likelihood
functions, and b) the finite nature of the offline world set. Fortunately, the bias seen in the likelihood
functions towards the offline world set can be alleviated somewhat through the employment of a
regularization factor during estimation. This results in the following approximation3,

p(xg,xp|ω) p(cg, cp|ω) (13)

where,
cq = Dq(Dq + βI)−1Vqxq (14)

given that q ∈ {g, p}, Vq is the matrix of eigenvectors and Dq is the diagonal matrix of corre-
sponding eigenvalues for offline world set examples stemming from view q. In Equation 14 we
assume the offline mean for view q has been subtracted from xq. One can then apply Bayes rule in
Equation 3 to obtain a match-score for verification. This approach while giving reasonable results
is very sensitive to the correct selection of β. As per our previous approaches, β is selected through
a cross-validation procedure.

5.2 Viewpoint-Differential Methods
A number of approaches have been employed in literature in order to estimate the 2D appearance
likelihoods in Equation 1. One of the most well known has been the intra-personal (i.e. client) and
extra-personal (i.e. imposter) approach of Moghaddam and Pentland [1997]. In this approach the
authors attempt to model the differential appearance between probe and gallery images xp and xg,
in order to make the approximation,

p(xg,xp|ω) p(xg − xp|ω) (15)

from the offline examples present in the world set. These likelihoods are attempting to model the
holistic face appearance for both the client (ω = C) and imposter classes (ω = I). As pointed
out by Moghaddam and Pentland, there is an inherent advantage in modeling the differential ap-
pearance, rather than joint appearance, of the client and imposter classes as the differencing step
reduces the variation of the pattern being modeled.

It has been reported [Moghaddam and Pentland, 1997] that techniques centered around linear
discriminant analysis (LDA), like those seen in the Fisherface [Belhumeur et al., 1997] algorithm,
can obtain similar performance to Moghaddam and Pentland’s approach. LDA based approaches
employ a similar paradigm to the approach of Moghaddam and Pentland, in terms of differential
appearance, although they are not framed within a strict probabilistic framework. Approaches
centered around variants of LDA, have recently reported good performance on the problem of

3It should be emphasized that we are attempting to approximate the output of the likelihood function for the
purposes of classification, not the generative distribution itself. To make this difference clear, we use the to denote
our approximation.
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Figure 5: Comparison of results between the viewpoint-joint, viewpoint-differential and
coefficient-based methods. Results demonstrate that there is benefit in modeling the whole joint
appearance (i.e. the viewpoint-joint and coefficient-based methods), especially in the presence of
a large viewpoint mismatch (i.e. greater than 40o). Differential approaches still receive good per-
formance in the presence of small viewpoint mismatch. Results were evaluated on set g1, using
set g2 as the world set.

pose mismatched face recognition [Kim and Kittler, 2005].
For the experiments in this paper, we will be assuming the client and imposter classes of the

differential appearance likelihood in Equation 15 are modeled through a normal distribution. These
distributions are estimated within a subspace, found using PCA, that preserves all major modes of
extra-personal variation. Constraining the distribution to lie within this subspace ensures that the
covariance matrix, describing the client and imposter classes, is not rank deficient. A match-score
is then obtained through the application of Bayes rule found in Equation 3.

5.3 Experiments
In Figure 5 one can see a performance breakdown of algorithms representing the three methods
discussed thus far, namely (i) coefficient-based, (ii) viewpoint-joint and (iii) viewpoint-differential.
The viewpoint-transformed method was omitted from this analysis as the approach is just a vari-
ant of the coefficient-based method. The coefficient-based method obtains the best performance
overall, in comparison to the viewpoint-joint and viewpoint-differential algorithms.

In Figure 6, we conducted an additional experiment where we tested the performance of all
three algorithms for the situation where the gallery image is “badly” misaligned with the probe im-
age. We synthetically created this misalignment by performing a 180o circular shift on the gallery
image in the x and y directions. An example of this synthetic misalignment can be seen at the
bottom of Figure 6. It must be emphasized, for these experiments, that the circular shift operation
was applied to both the offline and online gallery images; requiring the likelihood functions for all
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Figure 6: Demonstration of how algorithms that model joint appearance, such as the coefficient-
based and viewpoint-joint methods, are less prone to the effects of “bad” alignment between gallery
and probe images. All results in this figure were carried out on misaligned gallery images. Refer
to Figure 5 for the aligned performance of the algorithms. Note that there is minimal difference in
performance between the aligned and misaligned experiments for the algorithms that model joint
appearance. However, there is a catastrophic drop in performance for the viewpoint-differential
algorithm for the misaligned experiment.

three algorithms to be re-estimated. Interestingly, there was no noticeable degradation in perfor-
mance for the coefficient-based and viewpoint-joint algorithms, whereas the viewpoint-differential
algorithm suffered catastrophic degradation in comparison to the original results seen in Figure 5.

An immediate observation one can make about the experimental results in Figures 5 and 6 is
that any algorithm that relies on modeling differential appearance intrinsically relies on “some
level” of alignment between the gallery and probe images. As pose mismatch increases, the
alignment of gallery and probe images tends to degrade; resulting in poorer verification perfor-
mance. We should also point out that the coefficient-based approach significantly outperforms the
viewpoint-joint approach in Figure 5. This poor performance demonstrates some of the intrinsic
problems in attempting to model the raw joint likelihoods for the client and imposter classes.
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Figure 7: In this paper we will be using a patch-based representation of the face such that x =
[o1,o2, . . . ,oR−1,oR].

6 Patch Variants

6.1 Differential-Patch
Recently, Kanade and Yamada [2003] proposed an effective extension to the holistic viewpoint-
differential approach of Moghaddam and Pentland. This extension is centered around the decom-
position of a face image into an ensemble of sub-image patches x = {o}Rr=1. An example of
this decomposition can be seen in Figure 7. This decomposition was motivated by hypothesized
deficiencies in holistic appearance-based template matching. In holistic template matching, if we
use the whole face region for comparison, it is not easy to take into account changes in appearance
due to pose differences, because the appearance in a different part of a face changes in a different
manner due to its complicated three-dimensional shape (e.g. the nose). By treating the face as
an ensemble of independent patches we can, to some extent, circumvent this problem by learning
how the discrimination of each local region of the face varies as a function of pose. Kanade and
Yamada [2003] proposed gaining distributions based on the “sum of squared differences” (SSD),
however in a recent evaluation [Lucey and Chen, 2006] we demonstrated that better performance
can be obtained by making the following approximation based on the actual patch values,

p(xg,xp|ω) 
R∏

i=1

p(og
i − op

i|λωi
) (16)

The parametric form of λ is assumed to be a multidimensional Gaussian distribution. A 2D discrete
cosine transform was used to preserve the 32 most energy preserving dimensions in each patch.
This dimensionality reduction was performed so as to ensure the covariance matrices are well
ranked.

6.2 Patch-Whole Methods
Although giving good performance, it was demonstrated in Section 5 that viewpoint-differential
methods suffer an inherent drawback. Specifically, any algorithm that relies on differential ap-
pearance, whether at the holistic or patch level, intrinsically relies on “some level” of alignment
between the gallery and probe images. As pose mismatch increases, the alignment of gallery and
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probe images tends to degrade; resulting in poorer verification performance.
To overcome this limitation we propose to make an alternate approximation that is not reliant

on differential appearance,

p(xg,xp|ω) 
R∏

i=1

p(og
i,x

p|λωi
) (17)

where og
i refers to an image patch, at position i, within the gallery image, xp refers to the whole

appearance of the probe image and λ refers to the parametric form of the distribution (Gaussian).
We refer to this approach as the patch-whole method. An immediate questions arises however
when inspecting Equation 17: why is there any benefit in estimating these likelihoods in a piece-
wise patch fashion? We propose there are two main benefits to our patch-whole method. First, our
approach enables us to employ the advantages of a patch-based representation for recognition. In
a similar manner to the patch-based differential method developed by Kanade and Yamada our ap-
proach allows one to learn how the discrimination between each local region of the gallery image
and the whole probe image varies as a function of pose. Second, unlike Kanade and Yamada’s ap-
proach our method does not assume any alignment between the probe and gallery image; allowing
for improved performance in the presence of large pose mismatch.

Although useful, the raw application of Equation 17, in comparison to existing methods, still
obtains poor verification performance. However, a number of steps can be taken to additionally
boost the performance of our patch-whole method.

6.2.1 Regularization

A major problem with the raw approach in Equation 17 stems from the finite nature of the of-
fline world set used to estimate the likelihood functions. Specifically, the likelihood functions in
Equation 17 are too biased towards the offline world set, rather than the online evaluation set.
This problem is similar to the regularization problem seen in Section 5.1 for estimating the joint-
holistic likelihood functions. We can lessen this bias by assuming that both og

i and xp are affected
by some Gaussian noise with isotropic variance β. We can then obtain MAP estimates of compact
appearance vectors cg

i and cp such that,

p(og
i,x

p|λωi
) ≈ p(cg

i , c
p|λωi

) (18)

where cg
i and cp are estimated from og

i and xp respectively through the application of Equation 14
(see Section 5.1) by letting xq ∈ {og

i,x
p}. Separate eigenvector Vq and eigenvalue Dq matrices

are estimated for each representation. Admittedly, different regularizing factors can be used for og
i

and xp, but for simplicity we chose to use the same factor β for all representations. Results for
varying β can be seen in Figure 8 for the specific viewpoints of bb (+60o) and be (+15o). For
both sets g1 and g2, and both viewpoints, one can see that there is an inherent benefit in choosing
a non-zero regularization factor. There is an especially large jump in performance for the be pose
mismatch, giving a good indication of how especially biased the non-regularized distributions of
smaller pose mismatches were to the offline world set.
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Figure 8: This figure depicts verification performance as a function of a regularization factor β
(see Equation 4) for two pose mismatches, specifically: a) viewpoint bb (+60o) and, b) viewpoint
be (+15o). For completeness we have also included verification performance for when β = 0
(i.e. no regularization). One can see that employing a non-zero β increases performance for both
pose mismatches and across both evaluation sets g1 and g2. Interestingly, the advantage of the
regularization factor β seems to be much greater for smaller (i.e. viewpoint be) rather than larger
(i.e. viewpoint bb) pose mismatches.

6.2.2 Energy Normalization

When learning the dependencies between cg
i and cp there may be problems stemming from there

being less energy in the compact patch cg
i than the compact holistic vector cp due to their differing

sizes. To alleviate this problem we employed a normalization procedure. Specifically, we ensured
that both compact appearance vectors cg

i and cp have unit norm before gathering statistics. The
advantage of this strategy can be seen in Figure 9 where we can see verification performance
for Normalized, and Raw compact features. One can see across both sets g1 and g2 there is an
inherent benefit in power normalizing the gallery-patch and probe-whole compact features.

6.2.3 Symmetrical Match-Score

An additional refinement to our patch-whole method can be made by employing a symmetrical
match-score. In Equation 17 we denote a likelihood function where the gallery image is decom-
posed into patches and the probe image is treated as a whole. Let us denote the match-score from
this evaluation as −→ms. In principle, there is no reason why the operation in Equation 17 cannot be
reversed, that is the probe image is decomposed into patches and the gallery image is treated as a
whole. Let us denote the match-score obtained from these reverse-likelihood functions as←−ms.

As discussed in Section 4.2 for the viewpoint coefficient-based method, where there was a def-
inite advantage in averaging match-scores stemming from warps/transformations in two directions
(i.e., from gallery view to probe view and vice-versa). Borrowing upon this concept we propose
that such an approach can be applied to our patch-whole method such that,

ms = −→ms+←−ms (19)

where we refer to ms as our symmetrical match-score. Results for this approach can be seen

15
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Figure 9: This figure depicts a comparison, in terms of Equal Error Rate (EER), between Nor-
malized and Raw gallery-patch and probe-whole compact features. One can see that their is an
inherent benefit in power normalizing these compact features as demonstrated by the results at: a)
viewpoint bb (+60o) and, b) viewpoint be (+15o). Experiments were carried out using a 16 × 16
size patch. This normalization procedure aids verification performance by balancing the energy
contained in the probe-whole appearance vector with the smaller gallery-patch. Results were eval-
uated on set g1, using set g2 as the world set.
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Figure 10: This figure depicts a comparison between two asymmetric match-scores and the sym-
metrical match-score for the patch-whole algorithm. Results across both evaluation sets indicates
an advantage in employing the symmetrical match-score. All experiments were carried out using
a patch size of 16 × 16. Results in (a) were derived by evaluating on set g1 and employing g2 as
the world set. Results in (b) were obtained by swapping evaluation and world sets.

in Figure 10 in comparison to the asymmetric match-scores −→ms and ←−ms. One can see there is a
definite advantage in employing the symmetrical over asymmetrical match-scores.

16



6 8 10 12 14 16 18 20 22 24 26 28
0

5

10

15

20

Patch Size (pixels)

EE
R

 (%
)

Set g1
Set g2
Set g1 ! Combined
Set g2 ! Combined

(a) Viewpoint bb (+60o)

6 8 10 12 14 16 18 20 22 24 26 28
0

5

10

15

20

Patch Size (pixels)

EE
R 

(%
)

(b) Viewpoint be (+15o)

Figure 11: This figure depicts verification performance as a function of patch-size across two
viewpoints, specifically: a) bb (+60o) and b) bb (+15o). One can see that there is an advantage in
combining multiple patch-representations within the patch-whole framework.

6.2.4 Patch-Size

An obvious question to ask when employing any patch-based computer vision technique is: what
size patch is optimal? In Figure 11 we give an empirical answer to this question by evaluating
our patch-whole method over a variety of patch sizes. From this figure one can see there is no
one optimal patch-size, although in our experiments patch-sizes of 16 − 20 pixels seemed to give
the best overall results. In Figure 11 we also obtained performance for when we combine the
match-scores from a variety of patch sizes such that,

ms =
∑
sz

ms(sz) (20)

where ms(sz) is the match-score obtained for patch size sz, resulting in the final match-score ms.
This combination strategy is similar to the product rule mentioned in the classifier combination
work of Kittler et al. [1998]. We tested other strategies for combination such as the sum, min and
max rules but found empirically the product rule to perform best. One can see in Figure 11 that the
combined method obtains performance equal to, and in one case superior to, individual patch size
match-scores.

6.3 Comparison
For completeness we have conducted a comparison between the leading techniques mentioned in
this paper and our own patch-whole method with extensions. One can see in Figure 12 that our al-
gorithm outperforms leading viewpoint-generative (i.e., coefficient-based method) and viewpoint-
discriminative (i.e., patch-based differential method) by a substantial margin across all poses and
both evaluation sets. An important thing to note from this result is that the viewpoint-discriminative
paradigm is now substantially outperforming the viewpoint-generative paradigm. This result is
consistent with our philosophy to viewpoint-invariant face verification, in that both the client and
imposter statistics should be used to gain optimal performance. Viewpoint-generative methods
suffer from an inherent drawback as they only rely on the client statistics.
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Figure 12: This figure depicts a comparison between leading viewpoint-generative and viewpoint-
discriminative methods and our own patch-whole method. Across all poses and both evaluation
sets one can see that our approach substantially outperforms other leading methods. Results in
(a) were derived by evaluating on set g1 and employing g2 as the world set. Results in (b) were
obtained by swapping evaluation and world sets.

7 Conclusions
In this paper we have proposed a novel approach, which we refer to as the “patch-whole” algorithm.
This approach is able to deliver good face verification performance for faces that have only sparse
registration. This approach has two advantages. First, it makes no assumption about the alignment
between the gallery and probe image pairs; allowing it to deal with large pose mismatch. Secondly,
it allows for a richer modeling of the joint appearance by decomposing the gallery image into an
ensemble of statistically independent patches. Our approach out-performed all other approaches
tested in our experiments. The performance of our algorithm in large pose mismatch was especially
encouraging.

To fairly compare our approach to what exists in literature we have also devised a taxonomy
for categorizing viewpoint-invariant face recognition algorithms. Broadly, we can categorize an
algorithm as being viewpoint-generative or viewpoint-discriminative. Through this categorization
we make a number of additional contributions to viewpoint-invariant face recognition, namely:

• Demonstrating that the viewpoint-transformed and coefficient-based approaches of Blanz
et al. [2005] are really just variants on the same approach. Empirically we demonstrated that
the coefficient-based approach is slightly superior to the viewpoint-transformed approach.

• Differential methods (i.e., techniques that rely on taking the difference between gallery and
probe images) have a distinct disadvantage when being employed for viewpoint-invariant
face recognition. This disadvantage stems from the assumed alignment between the gallery
and probe images during the differencing procedure. As a result we demonstrate empirically
that methods that do not assume such a strict alignment outperform differential methods
significantly.
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