PLANNING REPAIR SEQUENCES USING THE
AND/OR GRAPH REPRESENTATION OF ASSEMBLY PLANS

L. S. Homem de Mello
Dept. of Electrical and Computer Eng.
Camegie Mellon University
Piutsburgh PA 15213-3890

Abstract - Maintenance and repair are increasingly important functions in many
applications of bly robots in hazardous envi s such as space, undersea,
and nuclear power plants. Since it is impossible to predict which repair will be
needed, robots for these applications must have the intelligence to figure out the
sequence of tasks required to execute any maintenance job that may become
necessary. Previous work [4] introduced the AND/OR graph representation of
assembly plans and showed how it forms the basis for efficient planning algorithms
to be used within the highest level of control of an assembly workstation {1]. This
paper shows how a simple modification in the set of goal nodes of the AND/OR graph
allows its use in planning repairs such as the replacement of a part, or a
subassembly. It also shows an algorithm for the generation of all feasible sequences
for disassembly and reassembly of parts that will achieve a repair. This approach
has been demonstraded for an example of repair of space-based satellite equipment.

Maintenance and repair are increasingly important functions in many
applications of assembly robots in hazardous environments such as space,
undersea, and nuclear power plants.

Since it is impossible to predict which repair will be needed, robots for
these applications must have the intelligence to figure out the sequence of
tasks required to execute any maintenance job that may become necessary.
This ability is also important to enable the robot to recover efficiently from
unexpected events that may cause the execution of the repair to deviate
from a planned course of action.

The needs for fast response times, for flexibility to adapt to changing
conditions, and for the ability to recover from unexpected events render
domain-independent planning methods inadequate to use in real-time
applications such as maintenance and repair. Part of the limitation of
existing domain-independent planners stems from the add-delete list
representation of actions which drastically limits their use. Chapman 2]
reviews the literature on domain-independent planning and discusses the
limitations that stem from the representation used for actions. The
limitation of existing domain-independent planners also stems from the
formalisms used to represent plans. Early systems, such as HACKER [6],
used ordered lLists of actions to represent plans which left no flexibility for
adaptation to the conditions at execution time. STRIPS 3] used a tabular
form, called triangle table, which improves the capability to recover from
errors, but only within one fixed order of the actions. NOAH [5] and other
more recent systems (e.g. NONLIN (7] and SIPE [8]) represented plans as
partially ordered sequence of actions.

In previous work [4]}, it has been shown that the partial order formalism
cannot encompass all the orders of actions that will achieve the goals of a
plan; therefore it allows only a limited amount of flexibility to adapt to
changing conditions. In that work, the problem of planning the assembly of
one product was viewed as a backward search in the space of all possible
configurations of the set of parts that comprises the product. The backward
search suggested a decomposable production system and led to an AND/OR
graph representation of assembly plans which forms the basis for efficient
planning algorithms to be used within the highest level of control of an
assembly workstation [1). Figure 1 shows one space-based satellite
equipment, and figure 2 shows its corresponding AND/OR graph. Each node
in that graph is labeled by a set of letters corresponding to the initials of the
names of the parts that make up the node’s subassembly; for example, the
root node is labeled by F P M A 8 since it corresponds to the assembled
equipment.

The useful feature of the AND/OR graph representation for the assembly
problem is that it encompasses all possible assembly plans. Moreover, each
assembly plan corresponds to a solution tree from the node corresponding to
the final (assembled) product to the set of nodes corresponding to
subassemblies that contain one part only; the nodes in this set are referred to
as goal nodes. In real time, the intelligent robot can search the AND/OR
graph for the solution tree that is most suitable to prevailing conditions. In

1861

CH2555-1/88/0000/1861$01.00 © 1988 IEEE

A. C. Sanderson
Electrical, Computer, and Systems Eng. Dept.
Rensselaer Polytechnic Institute
Troy NY 12180-3590

MAIN
[ELECTRONIC BOX

Figure 2: AND/OR graph for the space-based satellite equipment

particular, if hyperarcs are associated to resource requirements such as
torque or gripper opening, the search may ignore those huperarcs whose
requirements are beyond the capabilities of available resources.

The same formalism can be used in maintenance and repair applications
where robots are expected 10 be able to carry out commands such as

replace <faulty-part> in <product>

autonomously.

The replace command is carried out in three phases:

1.a disassembly phase which consists of a a sequence of
disassembly tasks that releases the faulty part;

2. a replacement phase in which the faulty part is replaced; and

3.’a reassembly phase which consists of a sequence of assembly
tasks that reassembles the product.

Both di bly and bly sequences can be generated by
searching solution trees in the AND/OR graph. Of course, one can use a
sequence of tasks that disassembles the product completely in the
disassembly phase, and a sequence of tasks that assembles the product from
its individual parts in the reassembly phase. But very often there is no need
to completely disassemble the product, and it is possible to withdraw the
faulty part with just a few disassembly tasks. Such a shorter sequence of
tasks can be generated by searching solution trees in the AND/OR graph
provided that the set of goal nodes is changed. For the di bly phase,
the set of goal nodes includes the node whose subassembly is the faulty
part, and all the nodes whose sub 1blies do not in the faulty part,
since these subassemblies do not require further disassembly. Alternatively,
the set of goal nodes for the disassembly phase may include nodes
corresponding to subassemblies that do not contain the fanity part, as
before, plus nodes whose subassemblies contain the faulty part but
replacements for all the parts that make up these node’s subassembly are
available. The set of goal nodes for the reassembly phase includes the tip
nodes of the disassembly solution tree, except those that contain the faulty
part, plus the nodes that contain one part only and a replacement is
available.

The algorithm REPLACE-PART for generating all complete sequences of
tasks to replace a part with a given set of resources is shown in figure 3. It
first generates all sequences of tasks for withdrawing the faulty part. For
each of these sequences, it generates all sequences of tasks for reassembling
the product. The algorithm operation consists in set the goal nodes for each
type of search and actually searching the AND/OR graph using algorithm
SOLVE-ASSEMBLY shown in figure 4. Algorithm SOLVE-ASSEMBLY
takes as input a node corresponding to a subassembly, checks whether it is a
goal node, and, if not, spawns descendent feasible tasks to be solved by
algorithm SOLVE-TASK shown in figure 5. Algorithm SOLVE-TASK, in
tum, takes as input one task, and hands back to SOLVE-ASSEMBLY all the
solution trees in which the hyperarc leaving the root node cormresponds to
that task. These algorithms have been implemented in COMMON LISP
and have been tested in planning repair of space-based equipment.

In practice, one needs to select one sequence among all those that are
feasible. This selection involves a trade-off between speed of plan
generation, and the qualify of the plan generated, where the quality is
measured by some criterion used to compare plans. Further exploratory
research on criteria to compare plans and on search algorithms is currently
under way. The important fact is that the AND/OR graph representation of
assembly plans constitutes a compact representation of all possible
sequences of disassembly and reassembly of parts that will achieve a repair;
therefore it allows one to explore the space of all possible plans.

procedure REPLACE-PART(part product resources)
begin

Sequences < NIL

set data structures used in testing whether a node is goal for searching
disassembly sequences

dseq ¢« SOLVE-ASSEMBLY (product DISASSEMBLY resources)

while dseq is not empty do
begin

set data structures used in testing whether a node is goal for searching
reassembly sequences that follow the first sequence in dseq
aseq « SOLVE-ASSEMBLY (product ASSEMBLY resources)
while aseq is not empty do
begin
add to sequences the concatenatation of the first sequence in dseq
and the first sequence in aseq
withdraw the first sequence from aseq
end
withdraw first sequence from dseq
end
return sequences
end

Figure 3: Algorithm REPLACE-PART

procedure SOLVE-ASSEMBLY(a m resources)
if GOALP(a) is TRUE return trivial solution tree containing only node a
task-list < list of tasks that are descendants of a in mode m
n-solutions « NIL
while task-list is not empty do
begin
task < FIRST(task-list)
if FEASIBLEP(task m resources) do
begin
t-solutions « SOLVE-TASK(task m resources)
while ¢-solutions is not empty do
begin
n-solutions < UNION(n-solutions ((a task FIRST(t-solutions))))
t-solutions « TAIL(t-solutions)
end
end
end
return n-solutions
end

Figure 4: Algorithm SOLVE-ASSEMBLY

procedure SOLVE-TASK(t m resources)
node-list « list of nodes that are descendants of ¢
list-of-node-solutions « NIL
while node-list is not empty do
begin
node < FIRST(node-list)
node-list « TAIL(node-list)
node-solutions ¢ SOLVE-ASSEMBLY (node m resources)
if node-solutions is NiL return NiL
list-of-node-solutions < UNION(list-of-node-solutions node-solutions)
end
return MULTIPLY(list-of-node-solutions)
end

Figure 5: Algorithm SOLVE-TASK

Acknowledgements

This research was supported in part by Conselho Nacional de
Desenvolvimento Cientifico e Tecnol6gico (Brazil); in part by Jet
Propulsion Laboratory, California Institute of Technology; and in part by
The Robotics Institute, Carnegie Mellon University. Part of this research
was conducted in the summer of 1987 while L. S. Homem de Mello was at
the Machine Intelligence Group of the Electronics and Control Division, at
Jet Propulsion Laboratory. He thanks the members of the Group for helpful
discussion; the satellite example was supplied by Wayne Zimmerman.

References

[11 A. J. Barbera. An Architecture for a Robot Hierarchical Control
System. U.S. Government Printing Office, Washington D.C., 1977.
National Bureau of Standards. Special Publication 500-23.

[2] D. Chapman. Planning for Conjunctive Goals. Artificial Intelligence
32(3):333-377, July, 1987.

[3] R.E. Fikes et al. Leaming and Executing Generalized Robot Plans.
Artificial Intelligence 3:251-288, 1972.

[4] L. S. Homem de Mello and A.C. Sanderson. AND/OR Graph
Representation of Assembly Plans. In AAAI-86 Proceedings of the
Fifth National Conference on Artficial Intelligence, pages 1113-1119.
American Association for Artificial Intelligence, Morgan Kaufmann
Publishers, 1986.

[5S] E.D. Sacerdoti. A Structure for Plans and Behavior. Elsevier North-
Holland, 1977.

[6] G. J. Sussman. A Computer Model of Skill Acquisition. Elsevier,
1975.

[7] A. Tate. Generating Project Networks. In Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, pages
888-893. August, 1977.

[8] D. E. Wilkins. Domain-independent Planning: Representation and
Plan Generation. Artificial Intelligence 22(3):269-301, April, 1984.

