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Abstract

This article details the SFX-EH architecture for handling sensing
failures in autonomous mobile robots. The SFX-EH uses novel ex-
tensions to the generate-and-test method to classify failures with only
a partial causal model of the sensor/environment/task interactions
for the robot. The generate-and-test methodology exploits the ability
of the robot as a physically situated agent to actively test assump-
tions about the state of sensors, condition of the environment, and
validity of task constraints. The SFX-EH uses the type of failure
to determine the appropriate recovery strategy: reconfiguration of
the logical sensor or logical behavior, recalibration of the sensor or
actuator, and corrective actions. The system bypasses classification
if all hypotheses lead to the same recovery strategy. Results of the
SFX-EH running on two robots with different sensor suites and tasks
are presented, demonstrating intelligent failure recovery within a
modular, portable implementation.

1. Introduction

Autonomous mobile robots, as well as other situated agents,
rely on robust sensing to control their actions. If their sens-
ing is faulty, the agent may “hallucinate” and respond inap-
propriately. Degradations in sensing result from a number of
sources, including random sensor errors, systematic sensor er-
rors, and occlusions. Robustness permits the sensing system
to either continue execution or allow graceful degradation in
the face of unexpected events. Examples of unexpected events
include: sensor malfunctions, environmental changes (e.g.,
the lights go out), and errant expectations (e.g., the robot has
a faulty plan). These unexpected events can also be referred
to assensing failures, because they can cause the sensing sys-
tem to misinterpret observations. Environmental changes and
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sensor malfunctions are largely exogenous events that are ex-
tremely difficult to statistically predict or to explicitly model
their impact on sensing.

Robust sensing consists of detecting a potential sensing
failure, confirming the failure and identifying its source, and
applying the appropriate recovery method. The issue of how
to detect sensing failures has received some attention. Cer-
tain types of sensing failures can be detected at the behavioral
layer (i.e., self-monitoring) (Ferrell 1993; Murphy and Arkin
1992) and/or the deliberative layer (i.e., global monitoring)
(Hughes 1993; Noreils and Chatila 1995). These detection
methods can be based on either the instantaneous sensor read-
ings or more sophisticated methods such as the time history
of signals, conflict with other sensors, and so on.

This article does not address fault detection; instead, it
addresses the issue of how to handle sensing failures once
they have been detected. Unlike detection, failure handling
remains largely uninvestigated, with two notable exceptions.
The trend exemplified by Payton and colleagues (1992) and
Ferrell (1993) has been to concentrate solely on the recovery
from sensing failures, ignoring any issues in classification.
These approaches attempt to use the failure as an index into
the recovery method, providing an immediate response. An
immediate response can be critical for time-dependent robot
missions. For example, a robot moving at a high rate of speed
(e.g., an intelligent highway vehicle) may not be able to sud-
denly stop during deliberation. Likewise, the time the robot
spends in hostile environments (e.g., Three Mile Island) may
also be a concern.

However, in general, detection of a failure does not nec-
essarily mean that the right response can be automatically
employed. For example, in Murphy’s (1991) work, three dif-
ferent problems that interfered with sensing in a security robot
(sensor drift, incorrect placement of the robot, sensor mal-
function) evinced that same symptom: a lack of consensus
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between the observations. The appropriate response to each
problem was significantly different (recalibrate the offending
sensor, rotate the robot until it reached the correct view, and
replace the damaged sensor with an alternative, respectively).
However, the correct response was known once the cause was
identified.

The cost of applying an inappropriate recovery strategy can
be high. The recovery method may take time to instantiate
(e.g., slew time to reposition sensors or initialize the software),
plus the time it takes for the detection mechanism to determine
that the recovery method has not fixed the faulty sensing. This
time could be more than it would take to explicitly categorize
the failure. During the time the wrong recovery method was
employed, the robot could continue to act on faulty sensor
information, exacerbating the potential for a mission failure.
Therefore, methods that can quickly classify sensing failures
are desirable.

As noted by Murphy and Hershberger (1996), classifica-
tion of sensing failures in autonomous mobile robots is similar
to, but has important differences from, automated diagnosis
problems in fields such as medicine and geology. Unlike those
domains that support full causal models of problems, it is im-
practical, if not impossible, to explicitly model all possible
failure modes in a mobile robot. Explicit modeling of the
interactions between sensors for known environments leads
to a combinatorial explosion as seen by Vander, Velde, and
Carignan (1984) and Weller, Groen, and Hertzberger (1989).
Developing these models assumes a priori knowledge about
the domain, which may not be available to robots explor-
ing unknown or partially known terrains. Using probabilistic
models of sensor failures has been dismissed, (1) because
of the difficulty of gathering or generating the large number
of necessary conditional probabilities, and (2) because low
probability failures may be rejected in favor of higher prob-
ability failures, and thus invoke incorrect recovery schemes.
While complete causal models are hard to obtain in robotics,
partial models may be more accessible. For example, reac-
tive and hybrid deliberative/reactive robots usually have im-
plicit task-specific information rather than complete models
of sensor/environment interaction. Constructing even a par-
tial model is challenging. Physically situated agents, such as
robots, are subject to environmental changes; the impact of
environmental changes on an agent has been shown to be dif-
ficult to model (Howe and Cohen 1990). Another important
difference between automated diagnosis and robotics stems
from the fact that sensing failure handling is not the primary
function of the robot. The primary function is to accomplish a
task. This leads to a concern over the time dedicated to excep-
tion handling, as noted earlier. It also implies that exception
handling must be integrated into the whole control system for
the robot.

Our approach to classification and recovery of sensing fail-
ures has been to extend the generate-and-test methodology
developed for medical diagnosis (Lindsay et al. 1980). The

generate-and-test method exploits the ability of the robot to
acquire new information by engaging its environment (i.e.,
active perception) (Bajcsy 1988). Under the generate-and-
test method, the robot generates hypotheses and tests about
the cause of the sensor failure, orders the tests to eliminate
redundancy and confounding effects, collects data, and deter-
mines the cause. The appropriate recovery method is linked
to the cause.

Our modifications to the generate-and-test methodology
allow it to operate with only a partial causal model of all the
possible failure modes, sensor relationships, and environmen-
tal influences. Much of this model is organized around the
sensors: environmental preconditions, sensor tests, and fail-
ure hypotheses. One key feature of our approach is that sen-
sors and their diagnostics are unaware of other sensors. This
modularity is essential to allow the classification and recovery
scheme to be ported to new robot platforms and tasks. An-
other feature of our approach is that the type of failure serves
to partition the search space associated with classification, re-
ducing the time associated with diagnosis. The methodology
further reduces execution time by skipping classification if
unnecessary, consistent with the “do whatever works” philos-
ophy of Payton and colleagues (1992) and Ferrell (1993). The
control scheme also provides for default recovery schemes if
the classification process is unsuccessful. These features ob-
viate problems with fine granularity and exhaustive search
associated with the generate-and-test method.

This article describes our approach and implementation on
two different robots, with both complementary and redundant
sensors. Our work has been partially presented in previous
papers (Murphy and Hershberger 1996; Chavez and Murphy
1993); this article is intended to provide a complete discussion
of the approach and implementation. New demonstrations
are offered, with more emphasis on recovery rather than just
classification. The article is laid out as follows. Section 2
provides a summary of related work in classifying sensing
failures. Section 3 contributes an overview of the theoretical
underpinnings of our approach. The implementation as the
Exception Handling component of the Sensor Fusion Effects
Architecture (SFX-EH) is detailed in Section 4. Section 5
attempts to describe the system in sufficient detail such that it
can be replicated on other hybrid deliberative/reactive mobile-
robot architectures. Demonstrations of the SFX-EH on two
mobile robots, one with complementary sensors and the other
with redundant sensors, are presented in Section 5, followed
by a discussion of the results in Section 6.

2. Related Work

Our approach is most closely related to the sensing manage-
ment system of Weller, Groen, and Hertzberger (1989), which
uses local expert knowledge and modularity for sensing diag-
nosis. This provides a foundation for organizing our control
scheme around partial causal models. Our control scheme

 © 1999 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARNEGIE MELLON UNIV LIBRARY on August 10, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


384 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 1999

also incorporates aspects of recovery developed by Ferrell
(1993) and Payton and colleagues (1992). The extensions of
the generate-and-test strategy make use of general error de-
tection and recovery work from other AI domains, especially
planning (Doyle, Atkinson, and Doshi 1986; Hammond 1986;
Kolodner 1987; Lee, Barnes, and Hardy 1983; Simmons and
Davis 1987).

It is beyond the scope of this article to address the issues of
detecting failures, automated generation of hypotheses, and
diagnostic tests. We expect that our approach could be used
in conjunction with detection methods such as those used by
Ferrell (1993), Hughes (1993), Murphy and Arkin (1992),
and Noreils and Chatila (1995). Likewise, a means of gen-
erating diagnostics from a qualitative model such as that de-
scribed by Pearce (1988) would be a valuable addition. As
with many robot systems, the overall behavior of the SFX-EH
scheme is dependent on the often empirical understanding of
the knowledge engineer at implementation. While our system
mitigates the impact of unclassifiable failures with default re-
covery schemes (see Section 3.3), a more rigorous method of
capturing diagnostics is certainly desirable.

2.1. Sensing Management for Autonomous Mobile Robots

The work by Weller, Groen, and Hertzberger (1989) is one
of the strongest influences on our approach. Their efforts
deal directly with detecting and recovering from sensor er-
rors. Weller and colleagues’ sensor system is broken down
into sensor modules. Each module contains tests that verify
the input data, the internal data used in computation, and the
output data from the execution of the algorithms used to pro-
cess the raw data. Environmental conditions dictate whether
certain tests are to be performed or not. Error recovery is
handled by modifying the raw sensor data or the algorithms
that manipulate the raw data.

The primary advantages of this approach are that it empha-
sizes modularity and the use of local expert knowledge. This
local expert knowledge is one way of encoding the domain-
dependent information needed to streamline the exception-
handling process. However, this approach has a significant
disadvantage for a sensor-fusion application: it repairs excep-
tions by either modifying the raw sensor data or the sensor
data-processing algorithms. Adjusting invalid data is not an
acceptable method for recovery, mainly because there is no
obvious method for adjusting the invalid data. Furthermore,
the method should be expanded to include modification or
removal of the sensors themselves if they are malfunctioning.

Our approach is complementary to the sensing architec-
tures of Chen and Trivedi (1995) and Noreils and Chatila
(1995). Noreils and Chatila concentrate on detecting failures
by monitoring the motor behavior from the deliberative layer,
rather than on general classification and recovery issues. Chen
and Trivedi focus on the impact of sensing on planning, espe-
cially how to take advantage of new information, leaving the

issues of sensing failures largely unexplored. The SFX-EH
could be incorporated into these architectures.

2.2. Recovery from Sensing Failures in Robotics

Gini and Gini (1983) have addressed the issue of error diagno-
sis and recovery from the perspective of assembly and man-
ufacturing plans. Payton and colleagues (1992) have directly
addressed the issue of sensors in fault-tolerant autonomous
control of mobile robots, and demonstrated a system that
“does whatever works” for an underwater vehicle simulator.
The “do whatever works” approach monitors the output of
concurrent behaviors, rating their performance. If a behavior
is not producing the desired result, it receives a higher failure
rating. As the failure rating increases, a redundant behavior is
activated. The redundant behavior may use a complementary
or a redundant sensor, as well as actuators. The approach is
unconcerned with the cause of a particular behavior failure;
instead, the focus is on the timely insertion of a behavior that
can work. Another advantage of not identifying the failure
is that a sensor that has failed for one behavior may work
with another behavior, owing to different software, operating
range, and so on.

This approach has some shortcomings for our application.
It appears that it assumes that redundant behaviors have dif-
ferent sensors and actuators. In our system, many behaviors
control the same drive, steering, and sensor-effector actuators.
Therefore, it may be necessary to explicitly identify sensor
failures (which can be handled by substituting a new sensor)
from actuator failures (in which case, no change in sensor will
correct the problem). Also, a high degree of redundancy in
either the hardware or the software does not ensure that an
alternative behavior will necessarily work. Redundant phys-
ical sensors may fail if the environmental conditions change;
for example, if the lighting conditions are low, swapping to a
backup camera will not solve the problem, and valuable time
may have been lost slewing the camera into position and then
encountering a failure. Ferrell (1993) also notes that a hard-
ware failure that leads to poor performance in one behavior
may impact other behaviors which use that hardware. We add
that it may not be as easy to detect the impact on performance
in the other behavior, leading to a global degradation in robot
performance.

While our system is committed to classification, it incorpo-
rates aspects of the pragmatic “do whatever works” philoso-
phy from Payton and colleagues (1992) by “short-circuiting”
the classification process if all hypotheses lead to the same re-
covery method. This can be viewed as a “do whatever works,
if it doesn’t matter what the problem is” variation.

Our SFX-EH system originated with Chavez and Murphy’s
(1993) demonstration of a generate-and-test methodology for
failures in sensor fusion. It was designed for behaviors that
used multiple, concurrent sensors. The exception-handling
mechanism consisted of two modules: error classification
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and error recovery. The error-classification module gener-
ated hypotheses about the suspect sensor(s). It then tested
these hypotheses with data from the local concurrent sensors.
The error-recovery module could then replace the behavior
or repair the sensing “plan” (a net of concurrent sensors and
their fusion relationship) by pruning the failed sensor.

There are several major differences between the version of
SFX-EH reported on in this article, and the older version by
Chavez and Murphy (1993). First, the system can be used with
behaviors that have only one sensor. This requires a global
sensing manager that is aware of the sensing capabilities of the
robot outside of the individual behavior. The current system
is backwardly compatible with the old SFX-EH. Structurally,
the two major representations, the sensor-availability bitmask
and the exception-handling knowledge structure, have been
significantly expanded and improved.

Ferrell (1993) has recently detailed a fault-tolerant net-
work for Hannibal, a hexapod robot with over 100 physical
sensors. Our research was done independently, but shares
similar motivation and implementation details. Sensing fail-
ures are detected by a consensus monitor, which compares the
output of one sensor to equivalent logical or “virtual” sensors.
If a sensor reports a reading that is inconsistent with the con-
sensus, that sensor’s “pain” or injury level is excited. When
the pain level exceeds a threshold, its output is masked, or
suppressed.

Recovery from sensing failures takes four forms: retry,
recalibration, reconfiguration, and reintegration. Retrying a
sensor occurs naturally; since the pain activation does not im-
mediately reach the threshold, the sensor is repeatedly retried
until there is confidence that a failure exists. If the sens-
ing anomaly is temporary, it should be smoothed over by the
retries. A failed sensor may have a dynamic recalibration rou-
tine, which is applied. The effects of masking the failed sensor
may also lead to reconfiguration. In this situation, redundant
virtual sensors that were already operating assume complete
control. This idea is similar to the pruning of a malfunctioning
logical sensor from an execution net of concurrent equivalent
sensors (Chavez and Murphy 1993). A sensor may be rein-
tegrated if the consensus monitor determines that it is now
agreeing with its equivalent sensors. Our system shares with
Ferrell’s (1993) system the recalibration-, reconfiguration-,
and reintegration-recovery modes. The retry mode is assumed
to be the responsibility of the detection process, and is outside
the scope of this article.

2.3. General Error Recovery

Generate Test and Debug (GTD) (Doyle, Atkinson, and Doshi
1986; Simmons and Davis 1987) and CHEF (Hammond 1986)
are planning systems that use similar approaches to error re-
covery in the geological and cooking domains, respectively.
The GTD system uses a generate-and-test procedure supple-
mented with a debugger to repair denied hypotheses, creating

new ones. One interesting aspect of the GTD system is that
it challenges each of the assumptions made in the interpre-
tation. This is useful for sensor-fusion systems such as the
SFX, which use a static plan, because of their dependence
on assumptions. A static plan is one that is configured at
the beginning of a task and is not permitted to change dur-
ing execution. Perceptual systems that operate according to
a static plan tend to be efficient, but will produce errors if the
assumptions made during construction are violated.

The CHEF system is a case-based planner that operates in
the cooking domain. It generates plans for new situations by
altering stored plans that only partially match the present sit-
uation. The CHEF contains a plan-modification library that
constrains steps that can be substituted for existing steps. This
concept is useful because it suggests a way for exception han-
dling to rapidly recover from sensing failures by modifying
or repairing the current configuration, rather than by starting
over.

A weakness of both the GTD and CHEF systems is that
they rely heavily on domain-independent repair schemes and
knowledge. This type of knowledge is not readily available
in most sensor-fusion domains, where it is difficult to pre-
dict complex interactions between sensors. Furthermore, an
exception-handling module must be fast to restore sensing
as soon as possible. Domain-independent knowledge tends
to cause the handler to make many guesses until the cause
can be narrowed down and identified. Although it limits ex-
tensibility, basing exception handling on domain-dependent
knowledge appears to be a more-realistic choice.

Hanks and Firby (1990) have presented a planning archi-
tecture that addresses exception handling. This architecture
joins Firby’s RAP architecture with Hanks’s deliberation sys-
tem. The action component handles the execution of plans and
addresses exception handling for plan failures. Two types of
plan failures can occur: an atomic action fails, or there are no
applicable methods for an RAP corresponding to a plan step.
Hanks and Firby indicate that either an alternate method is
selected or the same method is run again. A plan step is re-
tried until satisfied, or until the system assures itself that no
available method can succeed. The system signals failure if
the same method is run twice in the same world state without
success. The failure is then passed up to the calling-plan step,
which then deals with it.

The contribution of Hanks and Firby’s (1990) approach
to sensor fusion is to have an exception-handling mechanism
propose a number of candidate “next steps,” and then select
one based on the satisfaction of preconditions for those steps.
One major drawback is that no formal error-classification
scheme is presented; the system recovers by either choosing
another method randomly whose preconditions are currently
satisfied, or by running the same method again. Given the
need for rapid recovery, it is preferable to modify the current
plan, thus saving the startup costs associated with instantiating
different sensors.
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3. The Approach

This section provides an overview of the two key components
of the SFX-EH: classification and recovery. Classification and
recovery assumes that an autonomous mobile robot accom-
plishes a task via independent behaviors. The robot may have
one or more equivalent behaviors, orlogical behaviors(Hen-
derson and Grupen 1990), capable of accomplishing the task.
Typically only one member of the set of logical behaviors is
instantiated at a time for a task. Each behavior consists of two
parts: a motor schema, which defines the pattern of motor ac-
tivity, and a perceptual schema, which supplies the necessary
perception. The perceptual schema component is treated as a
logical sensor(Henderson and Shilcrat 1984). Multiple logi-
cal sensors may exist which are compatible with a particular
motor schema for a behavior; the perceptual schema contains
the list of logical sensors for that percept.

Classification is based on the generate-and-test paradigm.
The basic algorithm has been extended to exploit the advan-
tages of a situated agent that can interact with its environment
as needed. The immediate objective of the SFX-EH is to
find an appropriate recovery strategy as quickly as possible
to continue the robot’s mission. Each hypothesis has an asso-
ciated recovery strategy. A recovery strategy can be directly
employed if all of the generated hypotheses have the same
recovery method. The recovery strategies fall into these cat-
egories: reconfigurationof either logical sensors or logical
behaviors,recalibration, or generalcorrective actions.

3.1. Classification: The Generate-and-Test Method

The basic generate-and-test algorithm is described by Rich
and Knight (1991) as the following:

1. generate a possible solution;
2. test to see if this is actually a solution by comparing

with the goal; and
3. if the solution is found, quit; otherwise, return to step 1.

The generate-and-test method can be cast as an exhaustive
search through all possible hypotheses that can be generated.
The amount of search is dependent on the size of the problem
space. If the problem space is large, then the generate-and-
test strategy can become quite time consuming. Heuristics
can be used to increase efficiency, but even then, overall ef-
fectiveness still may not be sufficient. A second disadvan-
tage of the original generate-and-test methodology is that it
requires a complete causal model. This would require the ex-
plicit enumeration of exogenous events, which by definition
are difficult to predict. Also, causal models of the interactions
between sensors and how their readings should correlate with
each other may or may not be readily obtainable.

Despite its weaknesses, especially the potential for being
time consuming, the generate-and-test method still offers ad-
vantages for sensor-exception handling. First, since it uses

an exhaustive search, it catches errors that occur infrequently.
Second, the generate-and-test method allows the robot to ac-
tively collect additional information. Because robotic behav-
iors generally are reactive in the sense of Brooks’s (1986)
work, their perception is limited to local representations that
are focused solely on the motor action. As a result, there
is usually not enough information available to a behavior to
locally isolate a failure cause. Active acquisition of addi-
tional information is critical to the success of error classifi-
cation. Third, the tests do not require redundant sensors—
information from other modalities can be used.

As noted by Murphy and Hershberger (1996), the SFX-EH
makes five novel extensions to the generate-and-test method
for classifying sensor failures in autonomous mobile robots.
First, the problem space is constrained by the symptom (e.g.,
missing observation, lack of consensus between multiple ob-
servations, highly uncertain evidence, etc.) to reduce the
search. This reduces the actual time spent in classification.
Second, the exception handler generates all possible hypothe-
ses and tests associated with a symptom at one time. Portions
of the tests associated with the hypotheses may be redundant,
and can be removed at this time. Cycles in the testing require-
ments can be detected as well. Third, the tests are ordered to
ensure correctness. If additional sensors are being used in
the tests to corroborate observations or verify the condition of
the environment, the sensors must first be tested (if possible)
to confirm that they are operational. Otherwise, confounding
may occur. Fourth, the list of tests is examined and redundant
tests are removed to speed up testing. Fifth and most impor-
tant, the list of hypothetical causes and tests are generated
from partial causal models of the sensors and the task. This
model is discussed in more detail below.

3.1.1. Partial Causal Models

The SFX-EH system does not have a single structure that
serves as the partial causal model. Instead, the knowledge
engineer takes the list of logical behaviors for a task (already
available for robot control) and the list of logical and physical
sensors (which contain local diagnostic tests) and constructs
a hypothesis library. The hypothesis library enumerates pos-
sible failure causes, and points to the appropriate sensor (and
tests) and to the recovery method. The hypothesis library does
go beyond manual encoding of knowledge; it infers when
it can use a redundant sensor as collaboration for a suspect
sensor. Note that each sensor-data structure contains only
knowledge about itself.

Modularity was an important consideration in the design
of the SFX-EH. To this end, the partial causal models are
local to each sensor. That is, the information about a sensor is
independent of information about another sensor. This allows
sensors and their associated models to be installed on new
robots or systems without incurring significant development
time building new simulation models of the system with the
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added sensor. Even with this concentration on information
local to each sensor, the global approach is not abandoned:
global interactions between sensors are inferred by the system
based on sensor preconditions.

The hypothesis space searched by the generate-and-test al-
gorithm for sensor-fusion exception handling is constrained to
a finite number of built-in candidate-error hypotheses. These
hypotheses are constructed at the time the system is integrated
with all of its sensors, and are written by the person design-
ing the system. However, as is seen in Section 4, these hy-
potheses may be either coarse- or fine-grained, reflecting the
designer’s level of understanding about the problem domain.
The ability of one sensor to test a failure hypothesis about
another sensor is inferred, similar to the GTD system (Sim-
mons and Davis 1987), where the debugger challenges the
preconditions of the sensor for the behavior. Note that in
this application, the challenge is part of the initial hypothesis-
generation step rather than a debugging step. Examples of
preconditions are sufficient ambient light (do both cameras
show equivalent lighting?) and adequate power supply (are
the ultrasonics underpowered?).

3.2. General Categories of Failures

The SFX-EH system considers three general categories of fail-
ures: sensor malfunctions, environmental change, and errant
expectations. These failures are described below.

3.2.1. Sensor Malfunctions

Sensor malfunctions manifest themselves as erroneous or
missing data. Detection of erroneous data requires domain-
specific knowledge in the form of the properties of the individ-
ual sensors. The error-classification module relies on the use
of diagnostic routines to determine which sensor, if any, has
malfunctioned. The sensor-diagnostic routines determine the
correct functionality of the sensors. Because the perceptual
process is waiting for a response from the diagnostic routines,
the diagnostic routines must be responsive. In general, it is
more important to have adequate routines that respond rapidly
than highly accurate routines that respond slowly.

3.2.2. Environmental Change

Environmental change is an unanticipated change in the envi-
ronmental state which negatively affects the performance of
a set of sensors. Because a sensor operates at maximal effi-
ciency within a limited band of values for each environmental
property that impacts that sensor’s performance, a change in
the value of an environmental property can significantly re-
duce the performance of specific sensors.

For sensor-fusion exception handling, “relevant” environ-
mental changes affect the performance of a configuration of
sensors observing a percept. Therefore, the perceptual system
must be able to reconfigure its sensors if an environmental
change renders a configuration useless. The primary diffi-

culty is detecting which “relevant” environmental change has
occurred.

Environmental change is detected by comparing the cur-
rent value of an environmental attribute to the value (or range
of values) in which the affected sensors perform well. If there
is no match, then an environmental change has occurred that
has degraded the affected sensors’ performance. The envi-
ronmental attribute values for “good” sensor performance are
stored asenvironmental preconditions. Challenges (reveri-
fication) of the environmental preconditions determine if an
environmental change has occurred.

Checking for environmental change may require additional
sensing. The additional sensing is performed by spawning
off another perceptual process which directs the required ad-
ditional sensing to determine the current value of an envi-
ronmental attribute. The spawned perceptual process must
involve only a single sensor type, or else the perceptual sub-
system has the potential to fall into a disastrous recursive
loop, caused by recurring state failures and fusion requests
to investigate environmental changes. Because the original
error occurred within sensor fusion, it is not logical to utilize
additional fusion to diagnose the error.

Determination of applicable environmental attributes re-
quires a significant amount of domain-specific knowledge.
Knowledge of the behavior of the specific sensors mounted
on the robot and of the environment that the robot will operate
in is required. Utilization of domain-specific knowledge in-
creases the complexity in the design of the environmental pre-
conditions, but allows for more efficient execution, because
environmental attributes are not checked for values that will
never be encountered within the robot’s domain (environment
of execution).

3.2.3. Errant Expectation

If neither a sensor malfunction nor an environmental change
is discovered, then errant expectation, the third cause of a
sensor-fusion failure, is assumed. An error in expectation
means that the percept that the robot is attempting to locate is
not there because: (1) it moved or changed configuration, or
(2) the robot is not actually located where it thinks it is.

Recovery from errant expectation is beyond the scope of
both the exception-handling mechanism and the perceptual
subsystem. Errant expectation is a planning problem, and
requires intervention by the planner. In order for the planner
to replan intelligently, information must be obtained from the
perceptual subsystem to provide assistance. Both the interface
between the perceptual system and the planner and recovery
from errant-expectation errors are outside the scope of this
paper, and are suggested as future work.

3.3. Recovery: Categories of Recovery Strategies

Once the sensing failure is classified, recovery is straightfor-
ward, since the logical sensor and behavior scheme explic-
itly represents equivalences between sensing processes. The
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search for an alternative degenerates to a table lookup. If the
sensing failure is due to either a malfunction or an environ-
mental change, error recovery attempts to replace the logical
sensor with an alternative. The alternative must satisfy any
new preconditions discovered by the classification process.
For example, if the reason for a sensing failure with a video
camera is because the ambient lighting is extremely low, then
a logical sensor using a redundant video camera is not con-
sidered. If there is no viable alternative logical sensor, the
error-recovery process declares a mission failure, and passes
control to the planner portion of the robot.

The recovery strategies are:reconfigurationby keeping
the basic motor behavior but substituting an alternative logi-
cal sensor, and reconfiguration by replacing the entire behav-
ior with a new logical behavior;recalibration of the sensor
or actuator; andcorrective actions. In the case of reconfigu-
ration, the short-term recovery strategies check to see if the
physical sensor for the candidate alternative logical sensor or
behavior is operating prior to actual instantiation to prevent
new failures. Recalibration is accomplished by routines local
to a sensor, similar to that discussed by Ferrell (1993). One
example of a recalibration routine is to realign the pan actu-
ator for a camera, which may slip over time or be knocked
aside. A novel recovery strategy is to attempt a corrective ac-
tion. Corrective actions are stored as routines local to a logical
sensor. They are particularly useful for situations where the
failure classification is ambiguous or an alternative logical
sensor or behavior is not available. For example, a camera
lens may become streaked with mud, covered by debris, and
so on. Reconfiguration may be impossible, because there are
no alternatives. Recalibration may not be able to compensate
for occluded or distorted images; indeed, there may be no test
for this case, even if a hypothesis exists. In these situations,
the system may employ a corrective-action routine such as
shaking the camera in an attempt to fix the (unknown) prob-
lem. If the corrective action works, the robot can continue
with the task. If the action does not work, the robot is no
worse off than before, because there was no reconfiguration
or recalibration option available.

In the case of successive failures, it may be advantageous
to retry a logical sensor that has previously failed, as dis-
cussed by Ferrell (1993). If the hardware has failed, it may be
due to a loose connection, which has fortuitously improved.
Likewise, the environment may have become more favorable.
Therefore, a previously failed logical sensor may be consid-
ered by the recovery strategy. The sensor is tested with the
test that it failed; if it passes, it is reinstantiated.

4. Implementation

This section describes the implementation of the SFX-EH.
The two robots on which it has been tested are described in
Section 5. The SFX-EH software is all written in C++ to

facilitate modularity and portability. However, the mecha-
nisms could have been written in CLOS. Section 4.1 briefly
reviews the CSM architecture. The SFX-EH specifics are
then given in Section 5.1, consisting of an overview of the
exception-handling mechanism followed by detailed descrip-
tions of important exception-handling components.

4.1. Architecture Overview

The CSM architecture is a hybrid deliberative/reactive archi-
tecture focusing on the integration of sensing with action. It
is called thesensor-fusion effectsarchitecture (SFX). Figure 1
shows a simplified version of it that was used for this work.
Information about the complete architecture is presented in
an earlier work (Murphy and Mali, forthcoming). Thede-
liberative layer handles all activities that require knowledge
about the robot’s task. It consists of two main components:
thetask managerand thesensing manager. The task manager
runs and manages the behaviors. The sensing manager allo-
cates and maintains sensing resources, and is the focus of this
research.

The reactive, or behavioral, layer is responsible for exe-
cuting the behaviors according to the plan. Each behavior
is divided into two schemas: aperceptual schema(PS) and
a motor schema(MS). The motor schema controls actuators
(i.e., drive and steering motors) based on information about
the world provided by the perceptual schema. Each perceptual
schema is responsible for providing this information reliably
to its corresponding motor schema. Toward this end, each PS
has a list of logical sensors that it can choose from. This list is
called thepercept model. The logical sensor represents one or
more real sensors coupled with a processing algorithm. The
algorithm can process the sensor data into a form common to
the logical sensors in the percept model, giving them equiv-

Fig. 1. Overview of the CSM SFX architecture.
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alent interfaces to the perceptual schema, and thus yielding
interchangeability.

4.2. Exception-Handling Control Schema

Robust sensing in the reactive layer is made possible by the
exception-handling control schema implemented in the sens-
ing manager. The basic process of handling exceptions is
shown in Figure 2. When a perceptual schema or any of
its subcomponents detects anexception, or a potential sens-
ing failure, it sends information about it in the form of an
exception-handling knowledge structure(EHKS) to theerror
handlerin the sensing manager. If the exception can be clas-
sified, the type of the error is sent to theerror-recoveryunit.
The error-recovery unit either requests the task manager to
instantiate different behaviors (if the current behaviors are no
longer viable), or it passes information about which sensor is
unusable back to the perceptual schema. In the second case,
the perceptual schema consults its list of possible sensor con-
figurations and requests a new one from thesensor-allocation
manager. Finally, if none of the requested sensors are avail-
able and usable, the perceptual schema sends abehavior fault
to the task manager. In the case where the error handler can-
not classify the exception, anerrant expectationis sent to the
task manager, signifying that the perceptual system appears
to be working and a plan failure should be considered.

4.3. The Exception-Handling Knowledge Structure

The exception-handling knowledge structure (EHKS) merits
further discussion because it plays a key role in diagnosing
failures: keeping track of where faults are detected. Figure 3
shows the three fields of the EHKS and what they contain in
two different situations. In Figure 3a, a problem has been

Fig. 2. The basic exception-handling process.

detected in the execution code forperceptual schema 1. This
implicates all the sensors that were providing input at the time
of the fault, as shown by the gray area. For example, if sonar
and visual input are both being used by a PS, and they begin
to show an inconsistency with each other, either one may be
at fault. In Figure 3b, a problem has been detected insensor
1. In this case, only sensor 1 is implicated. The system has no
knowledge about which perceptual schema is associated with
the fault, nor is such knowledge necessary. For example, if a
camera stops sending a valid video signal, it does not matter to
the diagnostic system how the video was being used. Creation
of an EHKS occurs at each place in the system where faults are
detected. For example, when a loss of video signal is detected
in the camera-sensor object’s code, an EHKS is created with
only a pointer to the camera-sensor object. The EHKS is then
thrown to the sensing manager, and error handling is initiated.

Once the sensing manager’s error-handling function is
called with an EHKS, it must first generate a list of sensors
that are suspected to have caused the problem. If the failure
was detected by the sensor object (a bad video signal, for ex-
ample), the sensor field of the EHKS will have a pointer to the
only sensor that is suspect—the one that detected the failure.
If the failure happened in code unique to the logical sensor, it
will create an EHKS with a pointer to the logical sensor. In
this case, the suspect sensor list becomes a list of all sensors
used by the logical sensor that detected the problem. Sim-
ilarly, if the perceptual schema signaled the fault, all of the
sensors from all of the logical sensors being used by the PS
will be in the list.

4.4. Hypotheses
The list of suspect sensors gives the system a way of pruning
the search space of possible causes of the problem (or hy-
potheses). At system startup, a global list of hypotheses (the
hypothesis library) is created. Most hypotheses are manually
coded at the time of adapting the software to a new platform,
and refer to specific sensor and test objects, but some are more
generic. Later, during error handling, a list of candidate hy-
potheses is generated from the hypothesis library using the
suspect sensor list. These hypotheses are then tested by run-
ning tests of the physical sensors. The subsequent recovery
from the error is described in Section 4.5.

4.4.1. The Hypothesis Library

The hypothesis library stores hypotheses about failure modes
of sensors. To avoid finding and storing information about all
possible failure modes, hypotheses are only programmed for
failure modes that it is useful to be able to distinguish between.
For example, there are many things that could cause the video
signal from a camera to be interrupted, but distinguishing
between them is unnecessary, because the only way to recover
from any of them is to give up on that camera and try to use
another sensor.
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Fig. 3. The EHKS connections in two different situations: when a fault was detected in the perceptual schema (a); and when
a fault was detected in the sensor code itself (b).

The hypothesis library is represented as a list of hypothe-
ses. There are two types of hypotheses: regularhypotheses,
andenvironmental change hypotheses. Each regular hypoth-
esis contains an evaluation function, pointers to sensors, tests,
and a recovery method. Each hypothesis also provides a list of
sensors that would become unusable if it were true (itsaffected
sensorlist). For regular hypotheses, this usually contains the
one sensor that the hypothesis is concerned with. For envi-
ronmental change hypotheses, this list usually contains all the
sensors of a given type, i.e., “vision.” Tests are used by the
evaluation functions to determine the truth or falsehood of
the hypothesis. Environmental change hypotheses are listed
first in the hypothesis library to avoid being masked by other
simpler hypotheses.

4.4.2. Hypothesis Generation and Testing

Because all hypotheses for a given system are explicitly listed
at startup, the hypothesis-generation portion of the error-
handling function need only prune the list down to hypotheses
that could possibly be true, given the error. This is done by
listing all hypotheses with affected sensors in the suspect sen-
sor list generated from the EHKS.

Testing each possible hypothesis is the next task for the
error handler. The ordering of the hypothesis library simpli-
fies this to finding the first hypothesis that evaluates to true.
Each evaluation function computes a logical combination of

test results, such as “test 1 passed and test 2 failed,” which im-
plies the truth of the hypothesis in question. Only those tests
that are needed to find a true hypothesis are run, and each of
these is run only once for a given sensing-failure episode. In
the case where a hypothesis runs tests on multiple sensors,
such as an environmental change hypothesis, thecorroborat-
ing sensors are first validated by running a hardware test for
each. If no hypotheses evaluate to true, the sensing manager
sends an errant expectation to the task manager.

This whole process of testing hypotheses can be short-
circuited if the recovery methods of all possible hypotheses are
the same. This is demonstrated in a simple way on Clementine
2 when there is a problem with the sonar. Because there is only
one hypothesis about the sonar,Sonar_Broken_Hyp, there is
no need to test it. The recovery method, which switches out
the sonar-based behavior and switches in the vision-based
behavior, is run immediately.

4.5. Error Recovery

If the hypothesis-testing code finds a true hypothesis, or if
the testing is short-circuited, the sensing manager attempts to
recover from the sensing failure. Recovery has two stages.
The first stage is to mark all the sensors in the hypothesis’s
affected-sensor list as “bad.” This prevents these sensors
from being used again by any behavior without first getting
retested. The second part is to run the recovery method stored
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with the hypothesis. In some cases, this second step will be
empty, since the sensor getting marked “bad” will cause the
PS to try to allocate another one. In cases where a percep-
tual schema has only one possible input sensor, which is now
marked “bad,” it may ask the task manager to deactivate this
behavior and possibly activate another (i.e., reconfiguration).
In other cases, such as reconfiguration or corrective action,
the recovery method may be able to fix the problem with the
sensor (by shaking a camera to remove obscuring debris, for
example). At that point, the recovery method must reset the
status of the sensor to “good.”

4.5.1. Sensor Allocation

If the failed sensor is not actually fixed by the recovery
method, there is one final step in handling a sensing fail-
ure: allocating a new sensor. When a sensor in use is marked
“bad” and the perceptual schema using it remains active, the
PS must attempt to allocate another sensor to replace it. The
process of allocating a sensor starts when a PS tries to use a
“bad” sensor. The PS makes a list of all the sensors (good or
bad) that it can use, with the most-preferred sensors listed first.
The list is passed to the sensing manager’sRequest_Sensor()
function. Calling this function has three possible outcomes:

• A “good” sensor is available, and is allocated and re-
turned.

• No “good” sensors are available, but a “bad” sensor
has started working again, which is detected by re-
running whichever test first detected the failure. The
sensor is marked “good,” allocated, and returned. In
this case, the entire “good” list is first checked, and
only after no good sensors are found are the bad sen-
sors tested. Furthermore, bad sensors are not retested
more than once during a given period of time. This pre-
vents “thrashing”—a state in which the system rapidly
switches back and forth between multiple failing sen-
sors. Future versions of the SFX-EH will include a
frequency-of-failure measurement that can be used to
further reduce the potential for thrashing.

• No sensors are available or none pass their tests. In this
case, abehavior faultis generated, since the behavior
requesting one of these sensors presumably cannot run
without any sensors.

The allocation mechanism implemented to date is a simple
one, in which a sensor can only be allocated to one PS at a
time, and the first PS to claim a given sensor has exclusive
rights to it until that PS voluntarily gives it up. There are
many possible improvements to this scheme, some of which
are discussed in Section 6.

The sensor-allocation function uses a simple data structure
to keep track of sensor allocations, called the sensor allocation
table. This table stores a mapping from perceptual schemas
to sensors. A list of perceptual schemas is kept, and with

each entry a list of allocated sensors is stored. An additional
list of sensors keeps track of which sensors are not allocated
to anything and are thus available for use. When a PS is
deactivated, it relinquishes all of its allocated sensors.

When this process of handling a sensing failure is com-
plete, the robot is using a repaired sensor or a replacement
sensor, a behavior has been changed, or the program has halted
because no sensors remain to perform the task. In any of these
cases, the failure has been handled as gracefully as possible.

5. Demonstrations

The SFX-EH system was demonstrated on two mobile-robot
platforms. These were Clementine 2 (C2), a Power Wheels
toy jeep with a 100-MHz Pentium PC attached (Fig. 4a), and
Clementine, a Denning/Branch MRV-4 powered by a 66-MHz
486 PC (Fig. 4b). Clementine 2 has a panning color camera
mounted in the center of the vehicle, and a panning sonar in
the front. Clementine has two color cameras mounted facing
front and back (180◦ apart). The demonstrations showed the
SFX-EH quickly classifying and recovering from errors on
robots with complementary and redundant sensors.

5.1. The C2 Demonstration

The implementation on Clementine 2 demonstrated comple-
mentary sensors being used to insure robust sensing. It also
served to exercise the library, to show some more-advanced
recovery methods, and to show the portability of the system to
new platforms. This section first describes the code specific
to the implementation on C2, then presents the results of the
demonstration.

5.1.1. Demonstration-Specific Code for C2

The test domain for the C2 demonstration was hall-following.
There were two behaviors: a visual hall-following behavior
and a sonar-based hall-following behavior, each of which had
one available sensor (see Fig. 5). Only one of these behaviors
is needed at a time, and either should suffice for the majority
of the hallway used. Therefore, if one sensor should fail, the
robot needs another way to complete its task, so a recovery
method tells the task manager to suspend the current behavior
and instantiate the other one to complete its task.

The visual hall-following behavior uses a camcorder
mounted on a panning mast to see the baseboards of the
hallway walls, which are dark on a light background. The
sonar-based hall-following behavior uses a sonar mounted on
a panning motor attached to the front bumper of the robot.

The tests, hypotheses, and recovery methods used in the
demonstration on C2 are shown in Figure 6. The lines between
the tests and the hypotheses show how theevaluate()functions
of the hypotheses work. For this demonstration, all of the
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Fig. 4. Clementine 2 (C2), a Power Wheels jeep with one
camera and one sonar (a); and Clementine, a Denning/Branch
MRV-4 with two cameras (b).

Fig. 5. Tests, hypotheses, and recovery methods for Clemen-
tine 2 (actuator tests are not shown).

evaluation functions were conjunctions of their corresponding
test results.

The first hypothesis shown is thesonar brokenhypothesis,
which is classified as a sensor malfunction. Since it is the
only hypothesis related to the sonar, it is the only one gener-
ated when a sonar problem is detected. Therefore, the testing
process is short-circuited, and the recovery method can be run
immediately. In this case, the recovery consists of switching
to the visual hall-following behavior. The sonar test is only
run when the sonar sensor is marked “bad” from a previous
problem but is needed because of a problem with the visual
behavior. The mechanism for retesting a sensor that is marked
“bad” is described in Section 4.5.1.

Thecamera brokenhypothesis is similar to the sonar bro-
ken hypothesis, and is also a sensor malfunction, but test
short-circuiting cannot happen because when the camera is
the suspect sensor, all five vision-based hypotheses are gen-
erated and there are three different possible recovery methods.

The lights outhypothesis is of particular interest, because
it is an environmental change hypothesis. As explained in
Section 4.4.1, an environmental change hypothesis has no
specific sensors to test; instead, it tests all the sensors of a
given type. In this case, it tests all visual sensors with the
brightness test.

Thecamera lens obscuredhypothesis (a sensor malfunc-
tion) is associated with a more complicated test scenario. For
its evaluation to succeed, the camera test must pass, the bright-
ness test must pass, and the toes-visible test must fail. The
toes-visible test works by looking for the drawing of a foot
which is attached to the back of the computer. Theshake cam-
era recovery method then shakes the camera back and forth
via the panning motor in an attempt to dislodge whatever is
blocking the lens. For the demonstration, a cloth was draped
over the camera, and the shaking typically cleared the lens
after the first or second try.

The camera misalignedhypothesis (another sensor mal-
function) depends on the camera working and the toes-visible
test passing, but the camera-alignment test failing. (The
camera-alignment test works by comparing the angle turned
to see the foot with 180◦.)

In the case where the lines of the baseboards are no longer
visible or are not there at all, the robot cannot use vision to
navigate. This situation is presumed by thelines gonehypoth-
esis when the toes are visible, the camera is properly aligned,
and the lines are still not visible. This is classified as an en-
vironmental change hypothesis. In this case, the recovery
method is the same as when the camera is broken or the lights
are out. In all of these situations, vision is inappropriate, and
the robot falls back to the sonar-based behavior.

In addition to the above hypotheses, there is also a pair of
actuator-failure hypotheses:sonar-pan failureandcamera-
pan failure. Each has a corresponding test that commands a
simple pan motion and measures the response. These tests and
hypotheses are difficult to demonstrate on the robot, because
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Fig. 6. Tests, hypotheses, and recovery methods for C2.

they are triggered by real hardware problems internal to the
panning-motor controllers. Because of this and because they
do not serve to demonstrate any otherwise novel feature of
the system, they are not shown in the diagrams or mentioned
elsewhere.

5.1.2. C2 Demonstration Results

This section shows the C2 robot being exposed to various
failures and then recovering as it travels down the hall. The
process of each recovery is explained in detail.

Camera Misalignment

The first failure, shown in Figure 7, shows the camera mount
being misaligned and the robot recovering. This could happen
in applications where there are low overhead obstacles that
bump the camera, such as tree or shrub limbs, or the ceiling
of a crawlspace in a rubble pile. For the demonstration it was
knocked to the side by hand (Fig. 7b). If this happens while
the visual behavior is operating, as in Figure 7, the visual
hall logical sensor stops detecting any lines, and throws an
exception. The sensing manager’sHandle_Error()function
is called, and the process of handling the error begins.

Figure 8 shows details of the process of handling the error.
The box at the far left shows that the list of candidate hypothe-
ses is generated from the suspect sensorcamera, as described
in general in Section 4.4.2. The table in the figure shows the
incremental execution of the tests as each hypothesis is evalu-
ated. Tests are only shown in the table in the step where they
are first run because subsequent hypothesis evaluations use
their results without rerunning them. The box at the far right
shows that the recovery method for thecamera misaligned
hypothesisconsists only of realigning the camera.

(a) (b)

(c) (d)
Fig. 7. Camera misalignment and recovery: normal camera
operation (a); camera knocked sideways (b); toes-visible test
passing (c); and a return to normal camera operation (d).
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Fig. 8. Handling a camera misalignment: candidate hypothesis list generation, hypothesis evaluation, and recovery.

Lost Video Signal

Figure 9 shows what happens when the robot loses its video
signal while using the visual follow-hall behavior. This is a
common problem on C2 and other robots, typically caused by
video cables working loose or camera batteries running low,
but also potentially caused by destruction of the camera itself.
For the demonstration, the video cable was simply unplugged
from the camera.

Figure 10 shows the process of recovering from the loss of
the video signal. Notice that only one test was needed to find
a valid hypothesis, because of the incremental evaluation of
the test results.

Sonar Failure

Figure 11 shows the results of the sonar failing to detect return
signals when using the sonar follow-hall behavior. This fail-
ure can happen when the robot moves into an area with cloth-
covered office partitions or another sound-absorbing material,
or when it moves out of a hallway and into a large open area.
In this case, the sonar transducer was simply covered with a
cloth.

Figure 12 shows how the system handles the sonar fail-
ure. Because there is only one candidate hypothesis, there
is only one possible recovery method, and the testing pro-

Fig. 9. Camera-hardware failure and recovery: the camera’s
video cable is unplugged (a); sonar behavior takes over (b).
(The camera turns to the side to indicate it is not in use.)

cess is short-circuited. When the recovery method consists
of switching to a different behavior, the new behavior is re-
sponsible for making sure its sensor is operational. In the
case shown, the camera was in working condition, but it was
still labeled “bad” from its previous failure. The perceptual
schema within the visual hall-follow behavior detected that
its current sensor (the camera) was labeled “bad,” and called
Request_Sensor() in the sensing manager. As there were
no replacement sensors for the visual hall-follow behavior,
Request_Sensor() reran the test, which caused the camera’s
“bad” status (Camera_HW_Test). In this case, the test passed,
because the video cable had been plugged back in; so the vi-
sual behavior was able to continue. If the problem had not
been fixed, there would have been no behaviors with work-
ing sensors available, and a behavior fault would have been
signaled to the task manager.

Camera Lens Obscured

Figure 13 shows how the robot reacts when its camera lens
becomes obscured. This could happen from dust, sand, or
mud getting on the lens, or even a piece of equipment or
garbage falling on the camera. For the demonstration, a shirt
was dropped over the camera.

The process of recovery is shown in Figure 14. The shirt
did not block enough light for the camera-brightness test to
fail, and instead the toes-visible test failed, confirming the
camera-obscured hypothesis. The shake-camera recovery
method works by driving the camera panning motor back and
forth through 250◦ of rotation twice per second. It does this
for six shakes, then pans the camera looking for the image of
the toes. If it does not find them, it shakes the camera again,
giving up after four tries. If it does find them, it realigns the
camera, labels it “good,” and returns.

5.2. Clementine Demonstration

The SFX-EH software was also implemented on Clemen-
tine, a Denning/Branch MRV-4 mobile robot, to show how
redundant sensors are handled. For the demonstration, there
was one behavior: track-target, with two identical color video
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Fig. 10. Handling a lost video signal: candidate-hypothesis list generation, hypothesis evaluation, and recovery.

Fig. 11. Sonar failure and recovery: normal sonar operation (a); cloth absorbs many sonar pulses (b); and camera behavior is
activated (c).

Fig. 12. Handling a sonar failure: candidate-hypothesis list generation, hypothesis evaluation, and recovery.

Fig. 13. Camera cover-up and recovery: normal camera operation (a); shirt is placed over the camera (b); toes-visible test fails
(c); shake-camera recovery method runs (d); and camera lens has been uncovered, so robot resumes following the hall (e).
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Fig. 14. Recovery when the camera lens is obscured: candidate-hypothesis list generation, hypothesis evaluation, and recovery.

cameras mounted on the robot. One faced forward and the
other backward, as shown in Figure 4b. Because Clementine
can drive either forward or backward, and because the head
with the cameras turns with the wheels, she can use either cam-
era as a forward-facing camera. The track-target behavior had
a percept model with two logical sensors, one for each real
camera. At any given time it would use one of these to track
a square purple target and drive toward it. When the cam-
era in use was damaged or somehow obscured, it switched
to the remaining camera by turning 180◦ and reversing the
drive-motor direction.

5.2.1. Clementine Demonstration-Specific Code

The hypotheses, tests, and recovery methods used for the
demonstration on Clementine are shown in Figure 15. The
first hypothesis is an environmental change hypothesis:lights
out. For it to be true requires that both cameras fail their tests.
In this case, it is important that it be evaluated before the
other hypotheses, because both of the other hypotheses use
subsets of its test results. There are not separate video signal
tests and brightness tests in this implementation, because of
a limitation in the video hardware. Instead, our camera tests
simply check the average pixel intensity of the images, and
serve both purposes. The recovery method for the lights out
hypothesis must throw a behavior fault to the task manager,
as there are no other sensors for the track-target behavior to
use.

The twocamera brokenhypotheses (sensor malfunctions)
are nearly identical to their counterpart on the C2 system.
Each has one test for input, and each has the same recovery
method: switch to the other sensor. In this arrangement how-
ever, the recovery does not need to activate and deactivate
behaviors. Since the Handle_Error() function marks the af-
fected sensor “bad,” and the PS will notice that a sensor in
use is bad and request a new one, the recovery method does
not actually need to do anything.

5.2.2. Clementine Demonstration Results

This section shows the robot Clementine undergoing failures
and recovering as it moves toward its target. The process of
recovering from each failure is described in detail.

Single Camera Failure

Figure 16 shows what happens when Clementine’s active cam-
era is covered with a box while tracking its target. The recov-
ery process is shown in Figure 17.

Target not in View

Figure 18 shows the robot responding to a situation where
the target has moved out of view. This failure corresponds to
any failure where the low-level behavior is not programmed
to handle the situation at hand. The track-target behavior on
Clementine is only programmed to handle situations where
the target is in view, so an error is detected.

The testing and recovery process is shown in Figure 19.
This time, both camera tests pass, but since this situation does
not correspond to any known hypotheses, an errant expecta-
tion is sent to the task manager. The task manager in this case
holds knowledge indicating that errant expectations from the
track-target behavior should trigger a small pan of the camera,
exposing it to a different field of view. This is repeated until
the track-target behavior finds the target.

Dual Camera Failure

Sometimes both cameras will fail simultaneously, or one will
fail while the other is inoperative. Possible causes of this
type of failure are environmental changes, such as lights be-
ing turned out or the sun going down, or multiple hardware
failures. This was demonstrated on Clementine by unplug-
ging both cameras’ video cables.

Figure 20 shows the process of diagnosing a dual camera
failure. The lights-out hypothesis is found to be true. The
true cause of the failure, simultaneous hardware failures, was
not modeled, but because the recovery method would have
been the same, it was not necessary. The recovery in this case
was to send a behavior fault to the task manager, because the
visual target-tracking behavior cannot work without video in-
put. The task manager then stopped the robot and terminated
the program because the target-tracking behavior was the only
one available. In a more-involved application, the task man-
ager might select a different behavior to accomplish the same
goal, or select a different goal to pursue.
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Fig. 15. Tests, hypotheses, and recovery methods for Clementine.

Fig. 16. Camera 1 failure and recovery: normal camera 1 operation (a); camera 1 covered with a box (b); switching to camera
2 (c); and resumption of tracking with camera 2 (d).

Fig. 17. Handling a single camera failure: candidate-hypothesis list generation, hypothesis evaluation, and recovery.

Fig. 18. Recovery when the target is not in view: initially, camera 1 cannot see the target (a); the robot turns until the target is
seen (b); and the robot proceeds toward the target (c). The target is in the middle of the right edge of each photo.

Fig. 19. Recovering when the target is not in view: candidate-hypothesis list generation, hypothesis evaluation, and recovery.
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Fig. 20. Handling a dual camera failure: candidate-hypothesis list generation, hypothesis evaluation, and recovery.

6. Conclusions

This article has demonstrated how the SFX-EH architecture
can classify and recover from sensing failures. The demon-
strations highlight the advantages and limitations of the mod-
ified generate-and-test methodology, and of the current SFX-
EH implementation.

The extended generate-and-test approach has several ad-
vantages. It requires only a partial causal model of the sen-
sors, task, and environment. This makes the technique useful
for autonomous mobile robots that are operating in partially
known or unknown terrains, where it is impossible to extrap-
olate all possible exogenous events. It also allows the do-
main knowledge to be partitioned into more maintainable and
portable modules. The knowledge of hypotheses, tests, recal-
ibration routines, and corrective actions specific to a sensor
can be stored with that sensor. Sensors are not aware of the
presence of other sensors; relationships such as the ability of
one sensor to corroborate the other are inferred by the SFX-
EH from common preconditions. The SFX-EH was demon-
strated on robots with complementary and redundant sensors,
reinforcing the generalizability of this technique.

A practical advantage of our implementation of the
generate-and-test method is that it allows the hypotheses to
be at several levels of granularity. A hardware problem with a
physical sensor (e.g., framegrabber not responding) or an un-
specified environmental event (e.g., lighting is not sufficient
for cameras) can be identified. In the latter case, it is impor-
tant to note that the robot has no notion that the lights have
been turned off, only that something in the environment has
changed which impacts all sensors using visible light above a
certain threshold. This information could be used by a higher
cognitive agent in the robot to reason about the contravening
state of the world, but that is a separate, parallel activity from
recovery at the reactive level.

Another advantage of the SFX-EH is that the classification
process can be short-circuited, similar to that described by
Payton and colleagues (1992), reducing the time spent on
problem solving. It should be noted that in our experience,
the actual execution of the tests and recovery strategy took up
almost all of the time associated with the sensing failure. This
suggests that the system could afford to spend more time in
the hypothesis and test-generation phase to reduce the number

(or resources) of the tests. This is an area we are currently
investigating.

The SFX-EH supports a broad range of recovery strate-
gies: reconfiguration, recalibration, and corrective action.
The demonstrations in this article were by no means com-
plete; for example, we expect that more sophisticated recali-
bration routines and corrective actions could be designed for
other tasks. It is worth noting that recalibration and correc-
tive actions are critical recovery methods for robots with a
small number of general-purpose sensors. These types of
robots may not have much physical redundancy, and so re-
establishing sensing quality, rather than just ignoring it, is
important. There is no guarantee that a sensor will recover by
itself, and repeatedly retrying a sensor may just waste valu-
able time and resources on a computationally bound robot
such as a planetary rover. There is also no guarantee that a
sensor will have a recalibration routine for the specific fail-
ure. Therefore, general corrective actions (such as shaking
the camera) are useful for attempting to re-establish adequate
sensing, and also serve as default recovery methods when the
results of hypothesis generation and testing are ambiguous.

Although not discussed in this article, the SFX-EH control
scheme is suitable for logical sensors that fuse observations
from multiple sensors (sensor fusion). The original version of
SFX-EH (Chavez and Murphy 1993) was developed for sen-
sor fusion, where there were several concurrent sensors for the
same behavior. This simplified error detection allowed one
sensor to guide the recalibration of another sensor, and the re-
covery strategy was essentially eliminating the faulty sensor
from the fusion mix. The current version of SFX-EH is back-
wardly compatible. However, since single sensor/behavior
systems are more common in practice, we have concentrated
on them in this article. Another expected advantage of the
SFX-EH approach is that it can be extensible to other situated
agents, such as intelligent process controllers in manufactur-
ing. We are currently transferring this research to process
controllers for the power industry, where remote sensors are
used to monitor power transmission and consumption.

The SFX-EH will encounter situations where it cannot re-
solve the sensing failure, either because it cannot classify the
problem and/or no recovery strategy exists. This requires
the advent of a higher cognitive agent, with more general
problem skills and the ability to redefine the robot’s mission,
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possibly preempting tasks that use the failed behaviors and
logical sensors. At this time, SFX-EH does not have such a
higher cognitive agent; instead, the robot just halts and waits
for the user. The role of a human supervisor in those situa-
tions where the exception-handling process fails “upward” has
been investigated (Murphy and Rogers 1996; Rogers, Mur-
phy, and Ericson 1997). The approach in those efforts is to
treat the robot as a physically situated agent and the human
as the cognitive agent. A third computational agent, the intel-
ligent assistant, is added to facilitate visual problem solving,
hypothesis management, and recovery for the human.

The SFX-EH also has significant limitations. First, it does
depend in part on the designer’s domain knowledge. It is more
general than Ferrell’s (1993) or Payton’s (Payton et al. 1992)
systems, but it is not domain-independent. Another limitation
of the SFX-EH system is that it assumes that a sensing failure
has only one cause. Multiple events could transpire to produce
a single symptom. The SFX-EH would recover based on the
first cause it could identify, and then the recovery method
might fail due to the other causes. The sensing-allocation
table would keep track of the identified failures, but there is
currently no mechanism to combine previous failures with
current ones to imply new hypotheses. Finally, the SFX-EH
system assumes that all sensors are available for use in testing.
In a robot performing concurrent behaviors, this may not be
true, and some mechanism is needed to coordinate sensing
allocation.

We are researching many improvements to the SFX-EH
system. One thrust is concentrating on reducing the time
spent in classification. One approach is to exploit any avail-
able knowledge about the frequency of failures. The generate-
and-test algorithm currently used does not rank the hypothe-
ses by the probability of occurrence. This is both a strength
and weakness: it is advantageous in that the search generates
and considers all hypotheses, allowing extremely infrequent
problems to be identified. However, in a system where the
time available for problem solving is limited, the generate-
and-test method may introduce unnecessary delays that could
be prevented by ranking the hypotheses. The second thrust is
focusing on the issues in sensor allocation. Sensor allocation
must redirect resources to the exception-handling activities
without jeopardizing the other behaviors. Sensor allocation
must also participate in the recovery process. We are incorpo-
rating allocation routines into the sensing-manager module of
the SFX-EH. The sensing manager is responsible for noticing
when sensors have overlapping but not identical functionality,
and how to exploit this; e.g., a laser rangefinder can serve as
an image device and a range sensor.
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