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Stereo by Intra- and Inter-Scanline Search Using
Dynamic Programming

YUICHI OHTA, MEMBER, 1EEE, AND TAKEO KANADE, MEMBER, 1EEE

Abstract—This paper presents a stereo matching algorithm using
the dynamic programming technique. The stereo matching problem,
that is, obtaining a correspondence between right and left images, can
be cast as a search problem. When a pair of stereo images is rectified,
pairs of corresponding points can be searched for within the same scan-
lines. We call this search intra-scanline search. Thisintra-scanline search
can be treated as the problem of finding a matching path on a two-
dimensional (2D) search plane whose axes are the right and left scan-
lines. Vertically connected edges in the images provide consistency con-
straints across the 2D search planes. Inter-scanline search in a three-
dimensional (3D) search space, which is a stack of the 2D search
planes, is needed to utilize this constraint.

Our stereo matching algorithm uses edge-delimited intervals as ele-
ments to be matched, and employs the above mentioned two searches:
one is inter-scanline search for possible correspondences of connected
edges in right and left images and the other is intra-scanline search for
correspondences of edge-delimited intervals on each scanline pair. Dy-
namic programming is used for both searches which proceed simul-
taneously: the former supplies the consistency constraint to the latter
while the latter supplies the matching score to the former. An interval-
based similarity metric is used to compute the score.

The algorithm has been tested with different types of images includ-
ing urban aerial images, synthesized images, and block scenes, and its
computational requirement has been discussed.

Index Terms—Aerial photo analysis, corresponding problem, depth
map, dynamic programming, stereo, three-dimensional computer
vision.

1. INTRODUCTION

TEREO is a useful method of obtaining depth infor-

mation. The key problem in stereo is a search problem
which finds the correspondence points between the left and
right images, so that, given the camera model (i.e., the relation-
ship between the right and left cameras of the stereo pair), the
depth can be computed by triangulation. In edge-based stereo
techniques, edges in the images are used as the elements whose
correspondences are to be found [2]-[4], [8]. Even though a
general problem of finding correspondences between images
involves the search within the whole image, the knowledge of
the camera model simplifies this image-to-image correspon-
dence into a set of scanline-to-scanline correspondence prob-
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lems. That is, once a pair of stereo images is rectified so that
the epipolar lines are horizontal scanlines, a pair of corres-
ponding edges in the right and left images should be searched
for only within the same horizontal scanlines. We call this
search intra-scanline search. This intra-scanline search can be
treated as the problem of finding a matching path on a two-
dimensional (2D) search plane whose vertical and horizontal
axes are the right and left scanlines. A dynamic programming
technique can handle this search efficiently [2], [3].

However, if there is an edge extending across scanlines, the
correspondences in one scanline have strong dependency on
the correspondences in the neighboring scanlines, because if
two points are on a vertically connected edge in the left image,
their corresponding points should, most likely, lie on a verti-
cally connected edge in the right image. The intra-scanline
search alone does not take into account this mutual depen-
dency between scanlines. Therefore, another search is neces-
sary which tries to find the consistency among the scanlines,
which we call inter-scanline search.

By considering both intra- and inter-scanline searches, the
correspondence problem in stereo can be cast as that of find-
ing in a three-dimensional (3D) search space an optimal match-
ing surface that most satisfies the intra-scanline matches and
inter-scanline consistency. Here, a matching surface is defined
by stacking 2D matching paths, where the 2D matching paths
are found in a 2D search plane whose axes are left-image
column position and right-image column position, and the
stacking is done in the direction of the row (scanline) number
of the images. The cost of the matching surface is defined as
the sum of the costs of the intra-scanline matches on the 2D
search planes, while vertically connected edges provide the
consistency constraint across the 2D search planes and thus
penalize those intra-scanline matches which are not consistent
across the scanlines. Our stereo matching uses dynamic pro-
gramming for performing both the intra-scanline and the inter-
scanline searches, and both searches proceed simultaneously.
This method reduces the computation to a feasible amount.

Our main task domain is urban aerial photographs which
contain tall buildings, roads, and trees. Images in other
domains are also used to show the performance of our stereo
algorithm,

II. Use OF INTER-SCANLINE CONSTRAINTS

As mentioned above, for a pair of rectified stereo images,
matching edges within the same scanline (i.e., the intra-scan-
line search) should be sufficient in principle. However, in
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practice, there is much ambiguity in finding correspondences
solely by the intra-scanline search. To resolve the ambiguity,
we can exploit the consistency constraints that vertically
connected edges across the scanlines provide. Suppose a point
on a connected edge u in the right image matches with a point
on a connected edge v in the left image on scanline ¢ as shown
in Fig. 1. Then, other points on these edges should also match
on other scanlines. If edges u and v do not match on scanline
t, they should not match on other scanlines, either. We call
this property inter-scanline consistency constraint. Thus, our
problem is to search for a set of matching paths which gives
the optimal correspondence of edges within scanlines under
the inter-scanline consistency constraints. Qur search space is
a 3D space which is a stack of 2D search planes for intra-scan-
line matching, and two searches are involved as shown in Fig.
2. One is for the correspondence of all connected edges in
right and left images, and the other is for the correspondence
of edges (actually, intervals delimited by edges) on right and
left scanlines under the constraint given by the former.

A few methods have been used to combine the inter-scanline
search with the intra-scanline search. Henderson [9] sequen-
tially processed each pair of scanlines and used the result of
one scanline to guide the search in the next scanline. How-
ever, this method suffers in that the errors made in the earlier
scanlines significantly affect the total results.

Baker [2] first processed each pair of scanlines indepen-
dently. After all the intra-scanline matching was done, he used
a cooperative process to detect and correct the matching re-
sults which violate the consistency constraints. Since this
method, however, does not use the inter-scanline constraints
directly in the search, the result from the cooperative process
is not guaranteed to be optimal. Baker suggested the necessity
of a search which finds an optimal result satisfying the consis-
tency constraints in a 3D search space, but a feasible method
was left as an open problem.

A straightforward way to achieve a matching which satisfies
the inter-scanline constraints is to consider all matchings
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Fig. 3. 2D search plane for intra-scanline search. Intensity profiles are
shown along each axis. The horizontal axis corresponds to the left
scanline and the vertical one corresponds to the right scanline. Verti-
cal and horizontal lines are the edge positions, and path selection is
done at their intersections.

between connected edges in the right and left images. How-
ever, since the typical number of connected edges is a few to
several hundred in each image, this brute force method is usu-
ally infeasible. "

We propose to use dynamic programming, which is used for
the intra-scanline search, also for the inter-scanline search.
Dynamic programming [1] solves an N-stage decision process
as N single-stage processes. This reduces the computational
complexity to the logarithm of the original combinatorial
one. In order to apply dynamic programming, however, the
original decision process must satisfy the following two re-
quirements. First, the decision stages must be ordered so that
all the stages whose results are needed at a given stage have
been processed before then. Second, the decision process
should be Markovian: that is, at any stage the behavior of the
process depends solely on the current state and does not
depend on the previous history. It is not obvious whether
these properties exist in the problem of finding correspon-
dences between connected edges in stereo images, but we
clarify them in the following sections.

III. CORRESPONDENCE SEARCH USING DYNAMIC
PROGRAMMING

A. Intra-Scanline Search on 2D Plane

The problem of obtaining correspondences between edges on
right and left epipolar scanlines can be solved as a path finding
problem on a 2D plane. Fig. 3 illustrates this 2D search plane.
The vertical lines show the positions of edges on the left scan-
line and the horizontal ones show those on the right scanline.
We refer to the intersections of those lines as nodes. Nodes in
this plane correspond to the stages in dynamic programming
where a decision should be made to select an optimal path to
that node. In the intra-scanline search, the stages must be
ordered as follows: When we examine the correspondence of
two edges, one on the right and one on the left scanline, the
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edges which are on the left of these edges on each scanline
must already be processed. For this purpose, we give indexes
to edges in left-to-right order on each scanline: [0: M] on the
right and [0: N] on the left. Both ends of a scanline are also
treated as edges for convenience. It is obvious that the condi-
tion above is satisfied if we process the nodes with smaller in-
dexes first. Legal paths which must be considered are se-
quences of straight line segments from node (0, 0) at the upper
left corner to node (M, N) at the lower right corner on a 2D
array [0: M, 0: N]. They must go from the upper left to the
lower right corners monotonically due to the above-mentioned
condition on ordering. This is equivalent to the nonreversal
constraint in edge correspondence: that is, the order of
matched edges has to be preserved in the right and left scan-
lines. This constraint excludes from analysis thin objects such
as wires and poles which may result in positional reversals in
the images. A path has a vertex at node m = (m, n) when right
edge m and left edge n are matched.

The cost of a path is defined as follows. Let D(m, k) be the
minimal cost of the partial path from node k to node m. We
denote D(m, k) as D(m) when k is (0, 0). D(m) is the cost of
the optimal path to node m from the origin (0, 0). The cost of
a path is the sum of those of its primitive paths. A primitive
path is a partial path which contains no vertices and is repre-
sented by a straight line segment as shown in Fig. 3. It should
be noted that a primitive path actually corresponds to match-
ing of the intervals delimited by edges at the start and end
nodes rather than a matching of the edges themselves. Let
d(m, k) be the cost of the primitive path from node k to node
m. (Our actual definition of d(m, k) will be given in Section
IV-B.) Obviously, d(m, k) > D(m, k) and on an optimal path
d(m, k)= D(m, k).

Now, D(m) can be defined recursively as

D(m) = min {d(m,m - i)+ D(m - i)}

{i}
D(0)=0

where m = (m,n),i = (i,j),0 <i< m,

0<j<n,itj#0,0=(0,0).
Vector i = (i, j) represents a primitive path coming to node m.
When i = 0, the primitive path is horizontal, as shown at (a) in
Fig. 3. It corresponds to the case in which a visible part in the
left image is occluded in the right image. When j = 0, the
primitive path is vertical, as shown at (b). When i > 1 and/or
j>1, the primitive path skips or ignores i - 1 and/or j -1
edges on the right and/or left scanlines as shown at (c) in the
figure. Such a path corresponds to the case where some edges
have no corresponding ones on the other scanline because of
noise.

The iteration starts at m = (0, 0) and computes D(m) for
each node m in ascending order of m. At each node the primi-
tive path i that gives the minimum is recorded. The sequence
of primitive paths which gives D(M) at node M = (M, N) is
the optimal path.

6))

B. Computational Cost for Intra-Scanline Search

The number of primitive paths which should be examined on
a 2D search plane to compute D (M) by (1) is O(M 2N ?): the
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number of nodes in the search plane is O(MN), and at each
node we should examine O(MN) primitive paths. Actually,
we can limit the maximum disparity allowed in the matching.
When the ratio of the maximum disparity to the width of the
image is d(<1), the number of nodes to be examined becomes
d X M X N. Furthermore, we can limit the number of edges
which can be skipped by a primitive path; it is unusual to skip
many edges at a time. When this limit is 7, the number of
primitive paths examined at each node is about 1%, Thus,
the number of primitive paths to be examined is d X M X
N X I’ In the stereo images we have used in the experiments,
d is about 0.05-0.2, M and N are about 5-90 in average, and /
is set to 5. Thus, the number of primitive paths examined on
each scanline ranges from about 70 for our simplest images to
7 X 103 for our most complicated ones.

As seen in Fig. 3, the elements that are actually matched in
our algorithm are the intervals between edges rather than the
edges themselves as in Baker’s [2]. This difference is mainly
reflected in the difference of the definition of the cost func-
tion d(). Our cost is based on the similarity of the intensities
on right and left intervals, while Baker’s is defined based on
the similarity of edges such as contrast and orientation. As to
the representation of the search plane, there are no essential
differences between the two; both can handle the cases for
occlusions and/or noise edges. However, by using intervals as
the matching unit, it is not necessary to treat an edge as a
doublet to cope with occlusions; an interval is equivalent to a
pair of half edges which face each other. When there are N
edges, there are N - 1 intervals while doublets give 2 X N
half edges. This simplifies the representation of the search
plane and has an advantage when dealing with complex images.

C. Inter-Scanline Search in 3D Space

The problem of obtaining a correspondence between edges
under the inter-scanline consistency constraints can be viewed
as the problem of finding a set of paths in a 3D space which is
a stack of 2D planes for intra-scanline search. Fig. 4 illustrates
this 3D space. The side faces of this space correspond to the
right and left images of a stereo pair. The cost of a set of
paths is defined as the sum of the costs of the individual paths
in the set. We want to obtain an optimal (i.e., the minimal
cost) set of paths satisfying the inter-scanline constraints. A
pair of connected edges in the right and left images make a set
of 2D nodes in the 3D space when they share scanline pairs.
We refer to this set of 2D nodes as a single 3D node. The opti-
mal path on the 2D plane is obtained by iterating the selection
of an optimal path at each 2D node. Similarly, the optimal set
of paths in the 3D space is obtained by iterating the selection
of an optimal set of paths at each 3D node. Connected edges,
3D notes, and sets of paths between 3D nodes are illustrated
in Fig. 4.

As described in Section II, the decision stages must be or-
dered in dynamic programming. In the intra-scanline search,
their ordering was straightforward; it was done by ordering
edges from left to right on each scanline. A similar considera-
tion must be given to the inter-scanline search in 3D space
where the decision stages are the 3D nodes. A 3D node is
actually a set of 2D nodes, and the cost at a 3D node is com-
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Fig. 5. Connected edge u, is on the left of u,.

puted based on the cost obtained by the intra-scanline search
on each 2D search plane. This leads to the following condi-
tion: When we examine the correspondence of two 3D nodes
(i.e., two connected edges), one in the right and one in the left
image, the connected edges which are on the left of these two
connected edges in each image must already be processed. . A
connected edge u, is said to be on the left of u,, if all the
edges in u, are on the left of those in u; on the scanlines
which u, and u, share. The “left-of  relationship is transitive;
i there is a connected edge u; and u, is on the left of u3 and
us is on the left of u,, then u, is on the left of u, (if #, and
u, share any scanlines). Fig. 5 illustrates this concept. The
order of two connected edges which do not satisfy both the
relations in Fig. 5 may be arbitrarily specified. We assign an
ordering index from left to right for every connected edge in
an image. This ordering is possible without contradiction
when a connected edge never crosses a scanline more than
once and when two connected edges never intersect each
other. Our edge-linking process which will be explained in
Section IV is devised so that it does not produce such cases.
Now we will present how the cost of a 3D path is defined.
Suppose we assign indexes [0: U] to connected edges in the
right image, and [0: V] in the left. The left and right ends of
an image are treated as connected edges for convenience: the
left ends are assigned index 0. Let u = (u, v) be a 3D node
made by a connected edge u in the right image and a con-
nected edge v in the left image. Let C(u) be the cost of the
optimal set of paths which reach to the 3D node u. The cost
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C(u) is computed as follows:

C(#) = min
{1} 1550

+ C(u - i(1); 1)}
C(0) =0,i.e.,C(0;)=0 forall ¢

where u = (u,v),i(t) = (i(¢),j(®)),
0<i(t)<u,0<j(t)<v,

i(2) +j(r) # 0. (2

Here, ((u; £) is the cost of the path on scanline # in the optimal
set; that is, C(u) = Zf(i')s(u) C(u; t),and D(m, k; t) is the cost
of the optimal 3D primitive path from node k to node m on
the 2D plane for scanline . A 3D primitive path is a partial
path between two 3D nodes on a 2D search plane and it has no
vertices at the nodes belonging to a 3D node. So a 3D primi-
tive path is a chain of 2D primitive paths and an intra-scanline
search is necessary to obtain the optimal 3D primitive path on
a 2D plane between two given 3D nodes. The function I(u;¢)
gives the index of a 2D node belonging to the 3D node u for
scanline . The numbers s(¥) and e(u) specify respectively the
starting and ending scanlines between which the 3D node u
exists. The cost C(u) is minimized on the function i(f). A 3D
node u - i(¢) gives the start node of the 3D primitive path on
scanline . The inter-scanline constraint is represented by i(z).
For example, if i(¢) is independent of i(z - 1), there are no
constraints between scanlines and the search represented by
(2) becomes equivalent to a set of intra-scanline searches
which are performed independently on each scanline. Intui-
tively, #(f) must be equal to i(z - 1) in order to keep the con-
sistency constraint.

The iteration starts at # = (0, 0) and computes C(u) for each
3D node u in ascending order of u. At each 3D node the i(f)’s
which give the minimum are recorded. The sequence of 2D
primitive paths which forms the 3D primitive path is also re-
corded on each scanline. The set of paths which gives C(U) at
the 3D node U = (U, V) (which is the 3D node formed by the
right ends of stereo images) is obtained as the optimal set.

It should be noted that when there are no connected edges
except for the right and left sides of the images, the algorithm
(2) works as a set of intra-scanline searches repeated on each
scanline independently. In this sense, the 3D algorithm com-
pletely contains the 2D one.

{DU(u; 1), I(u - i(1); D; t

D. Computational Cost for Inter-Scanline Search

The number of 2D primitive paths which should be exam-
ined in the 3D search space to compute C(U) by (2) can
be estimated to be 0(TU2V2M N 2), where T stands for the
number of scanlines in the images, U and V are for the num-
bers of connected edges in the right and left images, and M and
N for the (average) numbers of edge points in one scanline
in the right and left images, respectively. This estimate is ob-
tained as follows: the number of 3D nodes in the search space
is O(UV), at each 3D node we should examine O(UV') sets of
3D primitive paths, each set has O(T) paths, and each 3D
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Fig. 6. Three cases for consistency constraint.

primitive path requires O(M 2N ?) computation for intra-scan-
line search. Therefore, compared with the case of 2D search,
the search in 3D space requires U 2 X V? times more compu-
tation. Although this may seem to be a prohibitive amount
of computation, the situation is much better for four main
reasons.

First, a connected edge is much shorter than T for most
cases. If we let the average length be @ X T(a < 1), then the
average number of connected edges crossing a scanline is a X
U in the right image and @ X V in the left image. The number
of 2D nodes which are made by those edges is a> X U X V.
Because there are T scanlines, the total number of 2D nodes
which belong to a 3D node is > X UX VX T. Second, we
can limit the allowable disparity range in the matching as we
did in the intra-scanline search. This reduces the number of
nodes to d X a> X U X V X T where d(<1) is the fraction of
the maximum disparity to the width of the image. Third, in
order to find the best i(z), we can use the beam search tech-
nique [10]; on the first scanline s(n), we should examine
every 3D primitive path and select W paths from the best. On
many of the succeeding scanlines it is necessary to examine
only W paths because i(?) is usually equal to i(z - 1), and the
average will come to W. The total number of 3D primitive
paths examined in the 3D search is now d X EXUX VX
TXW.

The final reason is that the search plane for each 3D primi-
tive path is usually much smaller than the whole 2D plane for
intra-scanline matching. When there are M (or N) edges on a
scanline and @ X U (or ¢ X V) of them belong to connected
edges, the average number of edges between two neighboring
connected edges is M/aU (or NfaV'). Most 3D primitive paths
are searched on this small area. The number of 2D primitive
paths examined in it is (M X N X I?)/(@* X U X V), where I
is the limit of the number of edges which can be skipped.
Thus, the total number of 2D primitive paths to be examined
is estimated as d X TX WX M XN X I*. This is only W
times that of the 2D search shown in the previous section and
W is typically set to five. In the discussion above, we always
took the lower bounds in our estimation, and therefore the
actual value can be somewhat higher. However, the estimation
suggests the search can be performed with a feasible amount of
computation even by the 3D search algorithm.

E. Consistency Constraints in Inter-Scanline

Using the term 3D node defined in the previous section, we
can describe the inter-scanline consistency constraints as fol-
lows: For any 3D node, either all corresponding 2D nodes are
the vertices on the set of paths in the 3D search space, or none

of them are the vertices on the set of paths. We need to repre-
sent this constraint as the relation between i(z) and i(f - 1) in
(2). To do this, let us consider the example in Fig. 6. Suppose
we are trying to obtain a set of 3D primitive paths which reach
to node u. In order to satisfy the consistency constraints
above, all the starting points of these paths should be the same
3D node;i.e., i(f) =i(t - 1) (case 1). The cases when the start-
ing point is a different 3D node are shown as case 2 and case 3
in the figure. In case 2, a new 3D node appears at scanline ¢
and the starting point changes to the new one. Of course, it is
possible that the starting point does not change to the new 3D
node. This will happen if the cost of the paths having vertices
on the 3D node is higher than the cost of the paths not having
vertices on it. In case 3, the 3D node u - (¢ - 1) disappears
on scanline ¢ and the starting point is forced to move else-
where.

Let us denote the 3D node u - i(t), from which the 3D
primitive path starts and reaches to the 3D node # on scanline
t, by frm (u; t). Then the following rules should be satisfied
in each case.

case 1: frm(u;t) = frm (u;t - 1)
case 2: frm(frm(u;t);t) = frm(u; t - 1)
case 3: frm(u; 1) = frm(frm(u; t - 1);¢ - 1). (3

The rules in case 2 and case 3 require that the decision at 3D
node u depends on decisions at preceding 3D nodes. Un-
fortunately, a decision system with such a property is not
Markovian as described in Section I, and therefore there is no
guarantee of obtaining an optimal solution by using dynamic
programming. This means that if we search for a solution using
dynamic programming with those rules, the result might be
poorer than that of the 2D algorithm.

In order to assure optimality in dynamic programming, we
modify the rules in (3) as follows.

case 1; frm(u;t)=frm(u;t- 1)
case 2: frm(u;t) = frm (u;t - 1)
case 3: frm (u;t) < frm (u;t- 1). 4)

The new rule for case 2 requires that the new 3D node on
scanline ¢ be on the right of the 3D node that is the starting
point on scanline ¢ - 1. For a case 3, the new starting node on
scanline ¢ should be on the left of that on scanline # - 1. It
should be noted that though the new rules are always satisfied
when the rules in (3) are satisfied, the converse is not true.
Thus, under the new rules, the consistency constraint might
not be satisfied at all places. In other words, the constraints
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Fig. 7. Operators for edge detection. Results from operators of differ-
ent sizes are combined.

represented by the rules in (4) are weaker than those of (3).
However, since we can expect to obtain an optimal solution
in dynamic programming, we can expect better results by the
3D search algorithm than by the 2D search algorithm.

1V. IMPLEMENTATION

Implementation of the stereo algorithm which has been pre-
sented requires a method of detecting edges and linking them,
and a definition of similarity measures for edge-delimited
intervals. This section briefly describes the method and the
definition which we actually used in our implementation and
testing.

A. Detection, Linking, and Ordering of Edges

In stereo after rectification has been done, only edges run-
ning across the scanlines are useful for obtaining correspon-
dence. We detect the positions of edges by differentiating an
intensity profile along a scanline. The peaks and valleys in the
first derivatives whose absolute values exceed a threshold are
extracted as edge locations. We use several operators with dif-
ferent sizes to compute the first derivatives, as shown in Fig.
7, and the results obtained by these operators are combined.
Because the smaller operators can locate edges more accurately
than larger ones, edge positions located by smaller operators
are given priority. That is, edge positions extracted by a larger
operator are adopted only when no edges are extracted by
smaller ones within the range covered by the larger operator.
This prevents an edge from being detected more than once at
slightly different positions by operators of different sizes.

The linking process links the edge positions into connected
edges. An edge running nearly horizontally presents a diffi-
culty, because it is detected as a set of positions which are
apart on consecutive scanlines and linking them into a con-
nected edge is not easy. Thus, we also detect the vertical edge
positions by using operators rotated by 90 degrees from those
in Fig. 7 and the linking process uses both horizontal and
vertical edge positions to obtain connected edges. We adopt
only the connected edges which are longer than a threshold,
while shorter ones are kept as isolated edges. Both are used in
the stereo matching.

Ordering of connected edges is done by the following four
processes. First, connected edges which run across the same
scanline are locally ordered from left to right. This is done
independently on each scanline. Fig. 8(a) illustrates this order-
ing. Second, a graph representing this local order is generated
as shown in 8(b). Nodes in the graph are the connected edges
and directed arcs show the local ordering between them.
Third, for each node, the maximum number of arcs from the
leftmost node to that node is assigned. Such numbers are
shown on the left shoulder of each node in the figure. If a
connected edge crosses a scanline more than once or if two
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Fig. 8. Ordering of connected edges. (a) Connected edges and their
local orders. (b) Global ordering.

connected edges cross each other, loops are formed in the
graph and the maximum number goes to infinity. Our linking
process was designed, therefore, not to make such connected
edges. Finally, we order the connected edges by the ascending
order of their maximum numbers of arcs. The ordering among
the connected edges which have the same maximum number is
arbitrary, and we have assigned smaller indexes to those which
are found earlier when scanning the image from top to bot-
tom. The ordering indexes assigned in this way are shown
with circled numbers in Fig. 8(b).

B. Metrics for Similarity Measure

The computation of cost in our search algorithm is based on
the cost of a primitive path on the 2D search plane. We define
the cost of a 2D primitive path as the similarity between inter-
vals delimited by edges in the right and left images on the same
scanline. If we let @, - -a, and b, - - - b; be the intensity
values of the pixels which comprise the two intervals, then the
mean and variance of all pixels in the two intervals are com-
puted as

£ )

1/1 % 1
'"=3(;Z“f*7

i=1 j=1
k

Sk g e mrrem) o
=1 J=1

In the definition above, both intervals give the same contri-
bution to the mean m and variance ¢° even when their lengths
are different. The cost of the primitive path which matches
these intervals is defined as follows: '

Cp= 0> Vk? + 2. (6

Intuitively, the meaning of this cost definition can be ex-
plained as follows. The pixels in two intervals which are
matched to each other are assumed to have come from a homo-
geneous surface in the 3D scene and must have similar intensi-
ties. That is, their variance should be small. If we consider a
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Fig. 9. Primitive paths for occlusion. Cost of a horizontal/vertical path
is defined based on those of dotted paths.
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Fig. 10. Mapping function for the cost of a horizontal/vertical path.

cluster in a feature space formed by those intensity values, the
variance may be called within-class variance. As described in
Section III-A, some edges may be ignored in the matching pro-
cess. Ignoring an edge means that two intervals separated by
that edge are merged. Therefore, the intra-scanline search
which uses (6) as the cost of a primitive path tries to find
simultaneously the division of a scanline into segments and
the matching between those segments to form an optimal set
of clusters which minimizes the sum of class within-class
variances.

Occlusion has not been considered in the definition of (5).
As illustrated in Fig. 9, a horizontal or vertical path means
that the interval marked with X is left unmatched and it can
be considered as the consequence of avoiding the two paths
drawn with dotted lines. Therefore its cost should be defined
as a function of the costs of those two alternative, imaginary
paths. When we denote the variances for those two paths by
0} and o? [computed by the second formula of (5)], the
cost of a vertical (horizontal) primitive path (i.e., the cost of
occlusion) is defined as follows:

Coce = k Xf((07 + 03)/2; th). (7)

Here, k is the length of the primitive path, th is a threshold,
and f is a function as shown in Fig. 10. When (02 +0d)2is
small, the function f gives a high cost, and when (o2 + 03/2is
large, the function f gives a low cost. The minimum value of
[is determined by th.

V. EXPERIMENTAL RESULTS

This section discusses the results obtained when we applied
our stereo algorithm to images from various domains including
synthesized images, urban aerial images, and block scenes.

A. Synthesized Images

We first applied our stereo algorithm to the synthesized
stereo image pair shown in Fig. 11 which is from Control Data
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(b)

Fig. 11. The “CDC” stereo pair of synthesized images.
image. (b) Left image.

(a) Right

Corporation (CDC), and which has been used by Baker [2].
The image size is 256 X 206 pixels. We extracted every posi-
tion where the intensity changes as edges, and Fig. 12 shows
the edges thus extracted. Some edges in this image have very
weak contrast; that is, the difference of intensity is only one
gray level, and it is impossible to distinguish them from pseudo
edges due to digitization. Our stereo algorithm can ignore the
pseudo edges when they do not correspond to any edges in
the other image. Actually, however, we found that almost all
pseudo edges in the right and left images do match because the
images are synthetic. Fig. 13 displays the connected edges ob-
tained from Fig. 12. The number attached to each connected
edge indicates its ordering index.
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Fig. 12. Edges extracted from the images in Fig. 11. Only the edges
extracted by horizontal operators are displayed. (a) Right image.
(b) Left image.

Fig. 14 illustrates a typical matching path obtained on a 2D
search plane. The positions of connected edges are indicated
by thicker lines and their indexes are attached. The thinner
lines indicate isolated edges. The path shown by solid lines is
the path obtained by the 3D search and the path shown by
dotted lines is the one obtained without using the inter-scan-
line constraint (i.e., only by the 2D search). Note that using
the inter-scanline constraint in the 3D search space results in a
path which passes the 3D nodes (41, 42) and (50, 44).

Fig. 15 is a perspective view of edges which are matched in
the 3D search space. Fig. 16 shows the disparity map. The
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Fig. 13. Connected edges obtained from Fig. 12. The numbers at-
tached are ordering indexes. (a) Right image. (b) Left image.

map is registered in the coordinates of the right image; that is,
each pixel position in the right image is assigned its disparity
value. The higher the elevation, the darker the tone that is as-
signed. The black mat shows the regions where the disparity
could not be obtained because of occlusion. For those points
which do not correspond to edges, the disparity is assigned by
interpolation. The following simple interpolation scheme is
used. On each scanline, a linear interpolation is done between
neighboring edge positions where the disparity is obtained. That
is, the linear primitive paths which run from corner to corner
on the 2D search plane shown in Fig. 3 or Fig. 14 illustrate the
interpolation scheme. It should be noted that we did not
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Fig. 14. A typical matching path on a 2D search plane. This is for
scanline 207 of images in Fig. 11.

Fig. 15. A perspective view of matched edges obtained fom Fig. 12.
Viewed from lower left corner.

Fig. 16. Disparity map for the “CDC” stereo pair (Fig. 11). This map
is registered in the right image coordinates. Higher elevation is dis- : . s
played darker. The totally black mat areas indicate those for which Fig. 18. The “Pentagon” stereo pair of urban aerial images. (a) Right
disparity was not obtained. image. (b) Left image.
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Fig. 19. Edges extracted from the images in Fig. 18. (a) Right image.
(b) Left image.

apply any smoothing operation to the disparity maps which
are displayed in this paper. Fig. 17 is an isometric plot of the
disparity map of Fig. 16.

B. Urban Aerial Images

The stereo algorithm has also been applied to aerial photo-
graphs of the Washington, DC, area. The first stereo pair is
“Pentagon” and the second one is “White House.” They have
been rectified using the camera models which were computed
by Gennery’s program [7] using manually selected point pairs.

Figs. 18-20 show the original stereo pair, edges, and con-
nected edges for the ‘Pentagon” scene, respectively. The
image size is 512 X 512 pixels and the intensity resolution is
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Fig. 20. Connected edges obtained from Fig. 19. The numbers at-
tached are ordering indexes. (a) Right image. (b) Left image.

8 bits. The number of edges extracted is about 40 000 in each
image. The number of connected edges is about 400 in each
image. Fig. 21 (a) and (b) show the disparity maps obtained
by 2D search and 3D search, respectively. These maps are reg-
istered in the left image coordinates. We can see that the de-
tailed structures of the roof of the building and the bridge over
the highway are clearly extracted. Fig. 22 displays an iso-
metric plot of the disparity map.

Fig. 23 emphasizes the difference between the two disparity
maps obtained by 2D search and 3D search. Many local mis-
matches on the roof of the building in Fig. 21 (a) are corrected
in 21(b). We also counted the number of positions where the
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Fig. 21. Disparity map obtained for the “Pentagon” stereo pair (Fig.
18). Both are registered in the left image coordinates. Notice that
the detailed structures of the building roof and the bridge over the
highway (upper right corner) have been recovered. (a) Result of 2D
search. (b) Result of 3D search.

Fig. 22. An isometric plot of the disparity map of Fig. 21 viewed from Fig. 24. The “White House” stereo pair of urban aerial images. (a)
lower left corner. Right image. (b) Left image.
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Fig. 25. Edges extracted from the images in Fig. 24. (a) Right image.
(b) Left image.

consistency constraint, described in (3), is not satisfied. It is
372 in the 2D search and 27 in the 3D search. These numbers
quantitatively show a significant improvement achieved by the
3D search algorithm. The reason why the inconsistency is not
completely removed in the 3D case is that we used “‘weaker”
rules (4) for the constraint as described earlier.

The image in Fig. 24 is the “White House” stereo pair. This
example is an interesting and difficult one because it includes
both buildings and highly textured trees. Fig. 25 and 26 show
the edges and connected edges, respectively. Many connected
edges are obtained around the building while few are obtained
in the textural part. The disparity maps obtained by the 2D
and 3D search algorithms are shown in Fig. 27. Since the
maps are registered in the right image coordinates, the dispar-
ity values for pixels on the right wall of the central building,
which is visible in the right image but occluded in the left, are
undetermined. Fig. 28 shows the differences between the two
maps. Considerable improvements can be observed at the
boundaries of buildings. In the textural part, the two algo-
rithms provide approximately the same results. The number
of inconsistencies in the result of the 3D search is 32 while
that in the 2D search is 436.
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Fig. 26. Connected edges obtained from Fig. 25. (a) Right image.
(b) Left image.

C. Block Scenes

We also applied our program to block scenes (obtained by
courtesy of Dr. G. Medioni of the University of Southern
California). Actually, these images are not exactly rectified;
there are discrepancies of a few scanlines between corre-
sponding point pairs, but we ignored them in the following
experiments.

Fig. 29 shows the “arch” stereo pair. The image size is
512 X 512 pixels. Fig. 30 displays the perspective view of
the matched edges. The disparities of the edges on the sphere
in front of the blocks and on the small block behind the arch
are correctly obtained.
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Fig. 27. Disparity map obtained for the “White House” stereo pair
(Fig. 24). Both are registered in the right image coordinates. (a) Re-
sult of 20 search. (b) Result of 3D search.

Fig. 29. The *“‘arch™ stereo pair of a block scene. (a) Right image.
(b) Left image.
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(b)

Fig. 30. Perspective views of matched edges for the “arch” stereo pair.
(a) View from lower left corner. (b) View from lower right corner.

Fig. 31 shows another block scene “Rubik,” whose image
size is also 512 X 512 pixels, and Fig. 32 shows the extracted
edges. The disparity range for this image is about 20 percent
of the image width. The numbers of edges and connected
edges are approximately 5000 and 90, respectively, in each
image. Though there are fewer edges than in the aerial images,
the number of inconsistencies in the result of the 2D search is
269, which is almost the same as that in the aerial images. Most
inconsistencies occurred on the object Rubik Cube where re-
petitive patterns cause many ambiguities. In the 3D search,
however, the inconsistencies are reduced to 36. Fig. 33 dis-
plays the perspective view of the matched edges.

D. Summary of the Experiments

Table 1 summarizes the experiment of the stereo algorithm.
It shows the image size, the number of edges extracted in each
image, the number of connected edges obtained in each
image, the disparity range used in the search, the number of in-
consistencies that occurred in the 2D and 3D search, and the
CPU time of VAX11/780 required to obtain the whole dis-
parity map.

As seen from the table, the CPU time varies from one image
to another. Perhaps the most complicated image pair is the
“Pentagon,” where the left image has an average of 90 edges on
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Fig. 31. The “Rubik” stereo pair of a block scene. (a) Right image.
(b) Left image.

each scanline. It takes 52 mn for the 2D search algorithm and
858 mn for the 3D search algorithm to obtain a disparity map.
The “Rubik” image pair has the largest disparity range. It is
about 20 percent of the width of the images. The simplest
image pair “arch” requires only 2 mn for the 2D search or 7
mn for the 3D search.

VII. CoNCLUSION

In this paper, we have described a stereo algorithm which
searches for an optimal solution in a 3D search space using dy-
namic programming. We have applied the algorithm to various
domains including synthesized images, urban aerial images,
and block scenes. Perhaps one of the major reasons that our
algorithm works well for such a wide domain of images is as
follows. For images which contain long connected edges such
as linear structures in urban scenes, our 3D search scheme
works effectively to enforce the consistency constraint. When
images do not contain long connected edges, our stereo algo-
rithm reduces to the ordinary 2D search which works effi-
ciently to match isolated edges within each scanline pair. In
other words, when inter-scanline constraints are available, our
algorithm fully utilizes them, otherwise it works as the 2D
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Fig. 32. Edges extracted from the images in Fig. 31. (a) Right image.
(b) Left image.
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Fig. 33. Perspective views of matched edges for Fig. 32. (a) View from
lower left corner. (b) View from lower right corner.

TABLE 1
SUMMARY OF THE RESULTS OF THE EXPERIMENTS
CDC Pentagon White House Arch Rubik
Image Size 206 X 256 512 x 512 388 x 388 512 X 512 512 X 512
(columns X rows)
Number of Edges 7809, 7678 39719, 45809 21867, 25381 2657, 2611 5221, 5497
(right, left)
Number of Connected 140, 143 398, 356 130, 155 36,32 87,96
Edges (right, left)
Disparity Range 35 (17%) 2014%) 35 (9%) 51 (10%) 97 (19%)
(pixels, % of width)
Inconsistency 86, 20 372,27 436, 32 14,2 269, 36
(2D search, 3D search)
CPU Time (mn) 19, 321 52,858 50, 739 2,7 11,87

(2D search, 3D search)

search. This feature will be less obvious in segment-based al-
gorithms, such as in [11], which depend heavily on the con-
nectivity of edges.

Table I shows that the 3D search achieves roughly 113 error
rate at the cost of computation which is ten times as much as
the 2D search. For some images containing a large number of
edges, it requires a much longer processing time than the

method in which inter-scanline constraints are applied in a
post-processing fashion [2]. However, we can argue that im-
plementation of the algorithm on parallel hardware would
reduce the processing time drastically, and then use of the 3D
search for better results would be easily justified. If, for ex-
ample, one can get a computational speed of 10® times faster,
then even the most complex example in our experiments needs
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less than 1 mn to finish the 3D search. Implementation on
parallel hardware is easier when algorithms are simple and
uniform. That is the case for our 3D search algorithm which is
a combination of two searches by dynamic programming. Ac-
tually, VLSI implementation of the dynamic programming
algorithm is an existing technique in speech recognition [12].
Implementing our stereo algorithm on a systolic array proces-
sor [5] and on a semantic network array processor [6] is cur-
rently being investigated.
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