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Abstract

In this report we present an overview of our investigation into conistguct
motion templates. We start with a successful implementatiolewfeatary con-
cepts that worked well on previous projects, then proceed with a geatoali

of that approach through a study of spatial distinctness of the same typlesof pa
and finally present a further generalization that looks at all Iplessnotions

through space.
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3. Introduction

Here we present some important results of our study in applicatigolghomial curvature

clothoid paths as applied to constructing motion templates. A simpleaipii of these concepts
was done in the Simple Robot Simulator (SRS) as well as on ptbgrams which used
technology developed in SRS.

In this presentation we mainly build on that work by introducing severalrkpgovements that
make motion planning more efficient. We also discuss the resultslefaded investigation to
improve the quality of planning, for example with respect to resolution edemgss and other
important qualities.
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4. SRS Proof of Concept

The Simple Robot Simulator (SRS) featured a successful implatitentf alattice. It was an
explicit 3D memory array each cell of which was a graph node connected with other nodes with
edges. Only the edges that corresponded to feasible motions were képt gnaph. This
determination was based on the results of the Inverse Solution [4dlddréhm for the creation

of the lattice was as follows:

Algorithm 1
for eachx,,
for eachy g,
for eachey,, {
for eache,,;, {
if patht : (0, 0,8;) ~ (Xgoat Ygoar Ogoa) EXIStS andmax[s Kmax then

create an edge betweem0,6,,,)  aRgha; Ygoar Ogoal

create an edge between (X, ¢ser Yofrset Oinit) and
(Xgoal+ Xoffset ygoal+ Yofset egoal) for any (Xoffset’ yoffset) such that Xgoal+ xoffsetS I‘Iattice and

ygoal+ yoffsetS I-Iattice '

In this manner, all the edges between all the nodes were repdesgplieitly. Due to extensive
memory requirements, this algorithm could represent only a limitedpatiC-space: the size of
the lattice was 25 by 251(,4ice  =25), with 16 equal headings per node. The mazinmggree
of the resulting search graph was 33.

Yet, the algorithm worked very well for getting the vehicle out of tighitde-sacs in natural
cluttered environments (see Fig. 1). Due to the limited size of the latticas ibrly able to make
local motion plans.

The drawbacks of that approach were memory requirements that retyait@thns were limited
to the immediate proximity of the vehicle. Of course, since alheflattice was resident in
memory, the computation was fast.

1. Actually implemented as a 1D array for efficigmurposes.
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Figure 1: Example Lattice Plan. A motion plan that gets the vehicle out
of the cul-de-sac has been automatically generated.

5. Implicit Lattice

As an effort to overcome the memory limitation an idea was sugbgstethere was no real need
to copy the template everywhere in the lattice explicitly. Sueimplate could be assumed by the
searching algorithm to exist at any point in the lattice. Two benefits of this refatse were:

* only the small template is stored in memory
* it becomes possible to search the infinite C-space

The first guess was to use the same template as was use8.ift&Re is little doubt that such an
approach would work just as good as the one with the explicit lattice.

However, the size of the template used in SRS was complebéiagy. It was largely dictated by
the memory requirements for explicit copying of this template ifattiee. Moreover, we felt that
there may be some limit to the required size of the template, so that

* there would be some practical explanation for the size of the template
» a template would be as large as is required to represent nmaaypossible maneuvers than
the previous limited template could allow.
It was suspected that there must me some certain maximuof siwetemplatetemplate horizon
Ly, which can allow generation of all possible motions through workspace. This was based on a
intuitive argument that a path that connects initial and goal nodesaghpifar apart, cannot go
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infinitely long without hitting a node on the way. When it does hit sonrd tiode, it can be
decomposed into sub-paths. Itis then only necessary to keep only the tpailssiin the template.
They can be concatenated in various ways to re-create the origimghpavell as infinitely many
other paths. With this in mind, we started looking for the size ofetimplate that would contain
all elementary paths that could recreate any motion through workspace.
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6. Minimal Set of Spatially Distinct Feasible M otions Using
| nver se Solution

In this work we considered templates of various sizes in an effort to fihdadattice size so that
all of its paths could be decomposed. Thus, we were primarily iredriesttiecomposing the paths
that ended on the perimeter of the template. If there are pats pertmeter (by construction they
are the longest paths in the template) that cannot be decomposed, therrtairis/deyond the
size of this template.

A principled method for characterizing template sizes became necessaryingd tieo terms:

« template radius -- it is simply the width and height of the template (both eq&al),

« angleradius -- a measure of the number of discrete headings in the tenmpjate defirte it,
let us first look at the peculiarities of heading discretization.

6.1 Heading Discretization

In the process of discretizing continuous poses, it will be quite beneficial to usd apgtes for
heading angles. If the goal is to get from the origin to a cellishavay three cells and up two
(see the figure below), then it is important for the system to peotheresult that can get the
robot there on a straight path. Therefore, the angles of discretightiald beatang@ , Whera

is spacing between cells in y and x direction, and for symmetry ieddsibe equdf, and and
are coordinates of a cell in discretized space. Hence, we dedimetion ofangle radius. it is the
maximum value oh aneh above. For a given angle radius there is a certdiarrafrdiscreti-
zation angles (Fig. 2).

It is worth noting that this approach to heading discretization has suaresting properties. In
particular, the number of discrete headings grows exponentially with angle radiugy(s®e F

WhenRr, = 2 we have only one angle between 0 and 45 degrees (26.6 deg.R when there
are 3 angles. We can predict that with increasing the value oétiied headings will also
decrease quite quickly. Indeed, as we see in Fig. 4 that shows the@faloaf of the maximum

heading interval as a function of angle radius.

As we see here, after the angle radius increases over 5, thetigést heading values decrease
quite slowly. This is one of the observations that prompted us to makechusion early on that
whereas increasing template radius was clearly beneficiplatbrelimination (see Section 6.2),
the increase in angle radiwas not. Almost no improvement can happen since discretized values
change so little.
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Figure 2: One of the useful headings. It is important for a n
algorithm to be able to generate straight paths whenever possible
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Figure 4: Discretized heading values vs. Angle Radi  us.

Another observation in support of this conclusion is that the number of hedu#ngs, the total
number of nodes in the template grows dramatically with the ireiaangle radius. The added
computational difficulty is not worth the gain.

In the case of uniformly spaced headings (as was done in SRS) theugsarments apply, as the
increase of the number of headings is also exponential (think of 2, 4, 8,.1éndtthe discretized
values that this process produces behave in the same way as demonstrated in Fig. 4.

6.2 Analysisof Path Proximity to Nodes

Once we reached some conclusions about the convenient discretizatierCe$pace, we wanted
to verify our intuition that the longer the paths are, the more likely &re to cross other nodes in
the template. We employed the following algorithm.
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Figure 5: lllustration of the algorithm for calcula ting the path’s minimum
distance to any node. Orange highlights denote Euclidean distances to the nodes
along the path. The minimum such distance is sought.

Algorithm 2

For each path in the tenplate
First, find the cl osest node, Xnode’ record its coordi nates and di st ance p(Xpath' Xnode)
Move d§ a! ong the path, cfal cul f'ite thg new p(xpath Xnodd -
If it is smaller, continue iterating
El se, we are departing this node, use previous p as the nmininmmdistance to

Xnode
Repeat nove ds

Repeat for other nodes along the path

Keep a mini num of such distance to any node, P,

For p(x;,x,) theL, -norm was used (Euclidean distance). This algorithnussrdted in the Fig.
5. To understand the utility of this algorithm, consider a path whosemmidistance to any node
is 0. This means that the path is perfectly aligned to a node alovayiti this case it is reasonable
to eliminate this path from the lattice because it is compasedtivo sub-paths, that must already
exist in the lattice because they are smaller than the orpatialand by construction the template

includes all paths that start and end on the templates nodes and are within the tadipkate

With these principles, a comprehensive study of such minimal disttm@s/ node has been
undertaken for paths ending on templasemeter. The results for a template of angle radius 2 are
summarized in the graph in Fig. 6.

In particular, we see that for lattice radii of over 10 (quite smallpatts come to within 20% of
template node spacing ( ). In other words, if we set the node tolerance ta0¥%e(path “hits
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Figure 6: Summary of the minimum distance to any no de study. This graph shows the percentage
of the paths that have a particular value of minimum distance to any node, expressed as a percentage
of 2D spacing between template nodes, given a particular template radius (here same as lattice radius).

the node” by approaching it inside this tolerance), then all of the g@nirpaths in the template
can be eliminated. This is a powerful conclusion. It means that édwopt the above tolerance,
then the template horizon we have been seeking is only 10. We can copyletdef this size
at every node in the lattice and thereby obtain any possible motion through workspace.

But before we can declare that we should understand a). whether theteleoaece igood
enough, and b). whether we can indeed concatenate two sub-paths and reproduicgtdlepath.
Addressing the second question seemed a natural approach, and it isegres&uction 6.3.
However, it is important to realize tha the two questions aegekl The tolerance of 0% is
certainly good enough, because by the argument in the beginning of this seetwamn always
find the two required sub-paths. However, most likely such a tolerance cannbidedainless
we are willing to work with extremely large template radii.

Also, a non-zero tolerance would suffice and we would still be aldininate all perimeter paths
if we were willing toinsert specialconnection nodes by choosing convenigaty, 6, k) for such
nodes. They would be the ending points of the first sub-paths and the startisgptietsecond
sub-paths. However, inserting extra nodes violates the regularity ehtipéate and invalidates all
of its useful properties.

However, itmay still be possible to eliminate some perimeter paths undersbhengption of a non-
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zero tolerance and without inserting extra nodes. We may get luckptlzpérimeter path, there
exist two sub-paths in the template that, when concatenated, wilbteaaother path that has the
same initial and goal poses as the original path and that witiidar, or notspatially distinct from

the original path. Théebesgue measure is utilized in determining the spatial distinctness [6], or
in other words the measure of distinctness in the unsigned areabdheewo paths. However,
unlike in the first two path elimination scenarios, here the existeha pair of eliminating sub-
paths is not guaranteed. Section 6.3, however shows that it is stillpdesipractically important
templates.

Yet another approach is possible through understanding the scale dependémeeabbve
discussion of tolerances. Consider an example where the sizevehibke is 100cma = 20cm
then 20% of that is only 4cm. Intuitively, this tolerance seemaltevell within the precision of
mechanical vehicle control. Thus, if the path ideally takes the vetunteoff from the node, then
almost certainly the vehicle will be able to drive exactly throdghrtode (it may end up there
anyhow due to inaccuracy of control). The only exception is when the idealpzdly utilizes
the maximum curvature of the vehicle, in which case if we @il e original path at the node
in question, then the vehicle most likely will end up slightly off fromgbal node. As long as this
final error is within an acceptable tolerance (or the sameeiigghis maneuver is successful. The
only caution is that in concatenating infinitely many such “inaccug#is, the terminal error will
grow without bound.

6.3 Obtaining a Minimal Set of Paths

We obtained the minimal set of spatially-distinct paths by elinmgahe paths that were not
distinct. We were able to obtain some remarkable results wghptbcess. In some fairly large
templates R; >10 ), we were consistently able to eliminate over 988atbs (i.e. thousands of
paths). Fig. 7 shows some successful examples of such path elimination.

However, as stated above, the existence of convenient sub-paths is nategaarand so it
occured sometimes that paths could not be eliminated with the above approach. Ad catess
seemed to indicate that the inverse-solution trajectory generator sonaehked the capability to
generate the required sub-paths. Sometimes it was related to the fact thifitlaépath already
operated at the limits of the maximum allowable value of curv@ersFig. 8). In other instances,
the reason was less clear. Later it was determined thatdsyirej non-zero curvature at the
connection point, it was possible to achieve many more eliminations. Howkes always
remained at least one or two perimiter paths (out of thousandsstithebuld not be eliminated.
It was necessary to resort to operating with fairly high template radii in ordehieve complete
elimination. Certainly, a good question to ask is whether we actually needed thosepsdtasral

Also let us keep in mind that this work was intended to be an improveme3RRS lattice, so we
continued to only consider the paths that started and ended on nodes. Theapatbsot start
and end on the nodes do not make much sense in this context. However, iwénd-gmiution
approach of the next section, it is very difficult to find paths that actually end exactly @ node
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Figure 7: An example of successful path elimination

. The original path is red, the two eliminating

sub-paths are magenta and blue. In either case, two sub-paths happened to exist in the template so
that a). they could be concatenated to produce a path with the same initial and final pose as the

original, and b). the produced path was not spatially distinct from the original .

The only available path between two nodes P I

Exact solution: path over max. curvature b

Figure 8: Elimination fails because the original path operate s at near maximum

curvature .
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7. Forward-Solution Approach

This approach is centered around generating all possible steering fuactibdsing much of the
above analysis in order to obtain a minimal set of spatially distees$ible motions. By
disengaging from the cubic polynomial curvature paths we hope to achiever greaerality
(notably resolution-completeness). Since no constraints are implidu @teiering functions we
consider, outside of the inherent differential constraints of physitatles, we can assert that a
result obtained in this fashion will necessarily be applicabléd phgsical vehicles. This reasoning
guarantees resolution-completeness: if there exists a path thatle walm take, then such a path
is considered by this approach (because all paths are).

As a matter of practical concern, it is very hard to enumerate all pogsithis through space. By
representing all feasible steering functions as branches of,amMeewvere only able to enumerate
branches of depth at most 9 or 10 on modern hardware (given branching f&jtdfigf 9 shows

a projection of an example tree that has been pruned after the entire treeateas(arghout any
pruning the tree in breadth-first manner as it is grown by elimmigagdundant branches that hit
the same node (obviously useless motions), we were able to get s dé@bout 30 (same
branching factor), as shown in Fig. 10.

One issue that comes up in generating this type of trees is théndsathat manage to align
themselves at a heading that is outside of any reasonable tolestinodss (that define “hitting”
a node heading-wise). By simply keeping zero curvature, such branches canecdotever
without ever hitting a node.

However, this will no longer be a problem if we require that alhgpatart and end at nodes,
something that made a lot of sense in the inverse-solution approaslredhirement wilhot
detract resolution-completeness properties of this curvature treaudse by definition of

B T T T T

T T
Toutput.txet? using 3i4

-5 1 1 1 1 1 1
a 1 g 3 ¢ = L} 7

Figure 9: An workspace projection of an example cur  vature tree. This tree
was obtained by keeping a number of most separated branches.
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Figure 10: A projection of a curvature tree pruned during growing. This tree  was

pruned as it was grown by discontinuing growing branches that “hit” a node exactly and
eliminating the redundant branches that hit the same node, but less precisely.

resolution-completeness the states and are considered thdosasoene smalle  (a
mapcell).

If we do make such a requirement, then, besides further decreassigetiod the tree, the main
benefit of this approach over the inverse-solution one appears to tie ability to contain all

possible paths that connect initial and goal nodes, compared to théhaittessntains only unique
solutions, optimal in some sense.

__.//
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Figure 11: An example path template.

This template was obtained by pruning
the paths from the curvature tree.
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With this in mind, the problem of proving that the inverse-solution gengpatas that are very
similar to what naturally emerges from the curvature tree doegppetr to have much sense, since
each path generated by the former corresponds to a homotopic equivadssaef gplaths created
by the latter.

Nevertheless, it should still be possible to do a similar pathreltran analysis as was done for
inverse-solution paths. We accomplished this by first pruning all paticgatimat terminate exactly
on lattice nodes. The termination tolerance was reduced to makenbutke paths that approach
a nodeexactly are preserved. This eliminated a majority of paths in Fig. 10. Thes plaat
remained were limited to a template radius of several nodebisirmanner we obtained the
template quite similar to what we got from the inverse appr@mctured in Fig. 11). This is a very
important result as it shows that the forward approach produces very similarasgbksinverse

approach.
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8. Conclusion

We have presented several important results of our study in applicdtpolynomial curvature
clothoid paths. Notably, we defined the notion of template horizon, the snsatiestf a template
of elementary motions that contains all “ingredient” paths to rexzadbother feasible paths. The
argument of existence of such a horizon is hinged on a particular ch@iegoing discretization
(map cell size) and maximum curvature of the robot. We contenchthatiety of real-word
applications satisfy this condition. In addition we verified that Iimgitourselves to the inverse
solution paths (two-point boundary value solutions) we do not sacrifice t@utien
completeness of our algorithm. This verification was accomplished hyg asforward solution
approach, where we enumerate all possible paths expressed as arbitrary curvdtans.func

Future work mainly involves searching for a more efficient processialgthioid paths. We would

also like to efficiently re-generate the template with changingcieeimodel parameters (e.g.
maximum curvature). This would allow us to use this concept on a robelitigaat higher speeds:
the template would adapt to the changing vehicle dynamics.

A Study of Polynomial Curvature Clothoid Paths Kéotion Planning for Car-like Robots page Xix.



9. References

[1] P. Cheng, E. Frazzoli, S. LaValle, “Improving the performance of samphsgd planners by
using a symmetry-exploiting gap reduction algorithm,” in Proc. of the IREEInt. Conf. on
Robotics and Automation, 2004.

[2] P. Cheng, S. LaValle, “Resolution completeness for sampling-basezhmtanning with dif-
ferential constraints,” submitted to the International Journal of Robotics Res2a04.

[3] D. Hsu, J.-C. Latombe, R. Motwani, “Path planning in expansive configurgt@ces,” in
Proc. of the IEEE/RSJ Int. Conf. on Robotics and Automation, 1997.

[4] A. Kelly and B. Nagy, "Reactive nonholonomic trajectory generatiorparametric optimal
control,”" in International Journal of Robotics Research, vol. 22 (7-8), 2003.

[5] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Press, Boston, 1991.

[6] S. LaValle, Planning Algorithms, Online: http://msl.cs.uiuc.edu/planning/index.html.

[7] S. Lindermann, S. LaValle, “Current issues in sampling-based mplaoming,” in P. Dario,
R. Chatila, ed. Proc. of the Eighth Int. Symp. on Robotics Research, $prert, Berlin,
2004.

[8] S. Lindermann, S. LaValle, “Incremental low-discrepancy lattiethods for motion plan-
ning,” in Proc. of the IEEE/RSJ Int. Conf. on Robotics and Automation, 2003.

[9] M. Pivtoraiko and A. Kelly, “Generating motion templates for comsée motion planning in
discrete configuration spaces,” submitted to the IEEE/RSJ Int. Coiobatics and Auto-
mation, 2005.

[10]J.H. Reif, “Complexity of the mover’s problem and generalizationg?tat. of the 20th IEEE
Symp. on Foundations of Computer Science (FOCS), pages 421-427, 1979.

[11]A. Scheuer, Th. Fraichard, “Planning continuous-curvature paths fokeaohots,” in Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1304-1311, Nov. 1996.

[12]A. Scheuer, Ch. Laugier, “Planning sub-optimal and continuous-curvaturefpatzs-like
robots,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots andi@gsf®. 25-31, Oct.
1998.

[13]Z. Schiller, “Dynamic motion planning of autonomous vehicles,” in IEE&3actions on
Robotics and Automation, vol. 7, no. 2, April 1991.

[14]D.H.Shin and S. Singh, “Path Generation for Robot Vehicles Using Composite Clothoid Seg-
ments,” Technical Report CMU-RI-TR-90-31, Robotics Institute, Carridgln University,
December, 1990.

A Study of Polynomial Curvature Clothoid Paths Kéotion Planning for Car-like Robots page xx.



| ndex

Index



