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Abstract

In this report we present an overview of our investigation into constructing
motion templates. We start with a successful implementation of elementary con-
cepts that worked well on previous projects, then proceed with a generalization
of that approach through a study of spatial distinctness of the same type of paths,
and finally present a further generalization that looks at all possible motions
through space.
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3. Introduction

Here we present some important results of our study in application of polynomial curvature
clothoid paths as applied to constructing motion templates. A simple application of these concepts
was done in the Simple Robot Simulator (SRS) as well as on other programs which used
technology developed in SRS.

In this presentation we mainly build on that work by introducing several key improvements that
make motion planning more efficient. We also discuss the results of a detailed investigation to
improve the quality of planning, for example with respect to resolution completeness and other
important qualities. 
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4. SRS Proof of Concept

The Simple Robot Simulator (SRS) featured a successful implementation of a lattice. It was an
explicit 3D memory array1, each cell of which was a graph node connected with other nodes with
edges. Only the edges that corresponded to feasible motions were kept in the graph. This
determination was based on the results of the Inverse Solution [4]. The algorithm for the creation
of the lattice was as follows:

Algorithm 1

for each 

for each 

for each  {

for each  {

if path :  exists and  then

create an edge between  and . 

create an edge between  and
 for any  such that  and

.

In this manner, all the edges between all the nodes were represented explicitly. Due to extensive
memory requirements, this algorithm could represent only a limited portion of C-space: the size of
the lattice was 25 by 25 ( =25), with 16 equal headings per node. The maximum outdegree
of the resulting search graph was 33.

Yet, the algorithm worked very well for getting the vehicle out of tight cul-de-sacs in natural
cluttered environments (see Fig. 1). Due to the limited size of the lattice, it was only able to make
local motion plans.

The drawbacks of that approach were memory requirements that required that plans were limited
to the immediate proximity of the vehicle. Of course, since all of the lattice was resident in
memory, the computation was fast.

1. Actually implemented as a 1D array for efficiency purposes.

xgoal

ygoal

θgoal

θinit

τ 0 0 θinit, ,( ) xgoal ygoal θgoal, ,( )→ κmaxτ
κmax≤

0 0 θinit, ,( ) xgoal ygoal θgoal, ,( )

xoffset yoffset θinit, ,( )
xgoal xoffset+ ygoal yoffset+ θgoal, ,( ) xoffset yoffset,( ) xgoal xoffset+ L latt ice≤
ygoal yoffset+ L latt ice≤

L latt ice



A Study of Polynomial Curvature Clothoid Paths for Motion Planning for Car-like Robots page viii.

5. Implicit Lattice
As an effort to overcome the memory limitation an idea was suggested that there was no real need
to copy the template everywhere in the lattice explicitly. Such a template could be assumed by the
searching algorithm to exist at any point in the lattice. Two benefits of this representation were:

• only the small template is stored in memory
• it becomes possible to search the infinite C-space

The first guess was to use the same template as was used in SRS. There is little doubt that such an
approach would work just as good as the one with the explicit lattice.

However, the size of the template used in SRS was completely arbitrary. It was largely dictated by
the memory requirements for explicit copying of this template in the lattice. Moreover, we felt that
there may be some limit to the required size of the template, so that

• there would be some practical explanation for the size of the template
• a template would be as large as is required to represent many more possible maneuvers than

the previous limited template could allow.

It was suspected that there must me some certain maximum size of the template, template horizon
, which can allow generation of all possible motions through workspace. This was based on an

intuitive argument that a path that connects initial and goal nodes, arbitrarily far apart, cannot go

Figure 1: Example Lattice Plan. A motion plan that gets the vehicle out
of the cul-de-sac has been automatically generated.

LH
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infinitely long without hitting a node on the way. When it does hit some third node, it can be
decomposed into sub-paths. It is then only necessary to keep only the two sub-paths in the template.
They can be concatenated in various ways to re-create the original path, as well as infinitely many
other paths. With this in mind, we started looking for the size of the template that would contain
all elementary paths that could recreate any motion through workspace.
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6. Minimal Set of Spatially Distinct Feasible Motions Using 
Inverse Solution

In this work we considered templates of various sizes in an effort to find such a lattice size so that
all of its paths could be decomposed. Thus, we were primarily interested in decomposing the paths
that ended on the perimeter of the template. If there are paths on the perimeter (by construction they
are the longest paths in the template) that cannot be decomposed, then  is certainly beyond the
size of this template. 

A principled method for characterizing template sizes became necessary. We defined two terms:

• template radius -- it is simply the width and height of the template (both equal), 
• angle radius -- a measure of the number of discrete headings in the template, ; to define it,

let us first look at the peculiarities of heading discretization.

6.1 Heading Discretization
In the process of discretizing continuous poses, it will be quite beneficial to use special angles for
heading angles. If the goal is to get from the origin to a cell that is away three cells and up two
(see the figure below), then it is important for the system to produce the result that can get the
robot there on a straight path. Therefore, the angles of discretization should be , where 
is spacing between cells in y and x direction, and for symmetry is desired to be equal, and  and 
are coordinates of a cell in discretized space. Hence, we define the notion of angle radius: it is the
maximum value of  and  above. For a given angle radius there is a certain number of discreti-
zation angles (Fig. 2).

It is worth noting that this approach to heading discretization has some interesting properties. In
particular, the number of discrete headings grows exponentially with angle radius (see Fig. 3).

When  we have only one angle between 0 and 45 degrees (26.6 deg.); when  there
are 3 angles. We can predict that with increasing  the value of discretized headings will also
decrease quite quickly. Indeed, as we see in Fig. 4 that shows the value of a half of the maximum
heading interval as a function of angle radius.

As we see here, after the angle radius increases over 5, the discretized heading values decrease
quite slowly. This is one of the observations that prompted us to make a conclusion early on that
whereas increasing template radius was clearly beneficial for path elimination (see Section 6.2),
the increase in angle radius was not. Almost no improvement can happen since discretized values
change so little.
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Figure 2: One of the useful headings. It is important for a motion planning
algorithm to be able to generate straight paths whenever possible.
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Another observation in support of this conclusion is that the number of headings, hence the total
number of nodes in the template grows dramatically with the increase in angle radius. The added
computational difficulty is not worth the gain.

In the case of uniformly spaced headings (as was done in SRS) the same arguments apply, as the
increase of the number of headings is also exponential (think of 2, 4, 8, 16, etc.) and the discretized
values that this process produces behave in the same way as demonstrated in Fig. 4.

6.2 Analysis of Path Proximity to Nodes
Once we reached some conclusions about the convenient discretization of the C-space, we wanted
to verify our intuition that the longer the paths are, the more likely they are to cross other nodes in
the template. We employed the following algorithm.
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Algorithm 2

For each path in the template

First, find the closest node, , record its coordinates and distance 

Move  along the path, calculate the new  .

If it is smaller, continue iterating

Else, we are departing this node, use previous  as the minimum distance to

Repeat move 

Repeat for other nodes along the path

Keep a minimum of such distance to any node, 

For  the -norm was used (Euclidean distance). This algorithm is illustrated in the Fig.
5. To understand the utility of this algorithm, consider a path whose minimum distance to any node
is 0. This means that the path is perfectly aligned to a node along its way. In this case it is reasonable
to eliminate this path from the lattice because it is composed from two sub-paths, that must already
exist in the lattice because they are smaller than the original path and by construction the template
includes all paths that start and end on the templates nodes and are within the template radius.

With these principles, a comprehensive study of such minimal distances to any node has been
undertaken for paths ending on template perimeter. The results for a template of angle radius 2 are
summarized in the graph in Fig. 6.

In particular, we see that for lattice radii of over 10 (quite small!) all paths come to within 20% of
template node spacing ( ). In other words, if we set the node tolerance to 20% (i.e. the path “hits

xnode ρ xpath xnode,( )
ds ρ xpath xnode,( )

ρ
xnode

ds

ρmin

Figure 5: Illustration of the algorithm for calcula ting the path’s minimum 
distance to any node. Orange highlights denote Euclidean distances to the nodes
along the path. The minimum such distance is sought.

ρ x1 x2,( ) L2

∆



A Study of Polynomial Curvature Clothoid Paths for Motion Planning for Car-like Robots page xiii.

the node” by approaching it inside this tolerance), then all of the perimeter paths in the template
can be eliminated. This is a powerful conclusion. It means that if we adopt the above tolerance,
then the template horizon we have been seeking is only 10. We can copy the template of this size
at every node in the lattice and thereby obtain any possible motion through workspace.

But before we can declare that we should understand a). whether the above tolerance is good
enough, and b). whether we can indeed concatenate two sub-paths and reproduce the original path.
Addressing the second question seemed a natural approach, and it is presented in Section 6.3.
However, it is important to realize tha the two questions are related. The tolerance of 0% is
certainly good enough, because by the argument in the beginning of this section, we can always
find the two required sub-paths. However, most likely such a tolerance cannot be achieved unless
we are willing to work with extremely large template radii.

Also, a non-zero tolerance would suffice and we would still be able to eliminate all perimeter paths
if we were willing to insert special connection nodes by choosing convenient  for such
nodes. They would be the ending points of the first sub-paths and the starting points of the second
sub-paths. However, inserting extra nodes violates the regularity of the template and invalidates all
of its useful properties.

However, it may still be possible to eliminate some perimeter paths under the assumption of a non-
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zero tolerance and without inserting extra nodes. We may get lucky that for a perimeter path, there
exist two sub-paths in the template that, when concatenated, will generate another path that has the
same initial and goal poses as the original path and that will be similar, or not spatially distinct from
the original path. The Lebesgue measure is utilized in determining the spatial distinctness [6], or
in other words the measure of distinctness in the unsigned area between the two paths. However,
unlike in the first two path elimination scenarios, here the existence of a pair of eliminating sub-
paths is not guaranteed. Section 6.3, however shows that it is still possible for practically important
templates.

Yet another approach is possible through understanding the scale dependence of the above
discussion of tolerances. Consider an example where the size of the vehicle is 100cm, ;
then 20% of that is only 4cm. Intuitively, this tolerance seems to fall well within the precision of
mechanical vehicle control. Thus, if the path ideally takes the vehicle 4cm off from the node, then
almost certainly the vehicle will be able to drive exactly through the node (it may end up there
anyhow due to inaccuracy of control). The only exception is when the ideal path already utilizes
the maximum curvature of the vehicle, in which case if we still split the original path at the node
in question, then the vehicle most likely will end up slightly off from the goal node. As long as this
final error is within an acceptable tolerance (or the same mapcell), this maneuver is successful. The
only caution is that in concatenating infinitely many such “inaccurate” paths, the terminal error will
grow without bound.

6.3 Obtaining a Minimal Set of Paths
We obtained the minimal set of spatially-distinct paths by eliminating the paths that were not
distinct. We were able to obtain some remarkable results with this process. In some fairly large
templates ( ), we were consistently able to eliminate over 98% of paths (i.e. thousands of
paths). Fig. 7 shows some successful examples of such path elimination. 

However, as stated above, the existence of convenient sub-paths is not guaranteed, and so it
occured sometimes that paths could not be eliminated with the above approach. All of these cases
seemed to indicate that the inverse-solution trajectory generator somehow lacked the capability to
generate the required sub-paths. Sometimes it was related to the fact that the original path already
operated at the limits of the maximum allowable value of curvature (see Fig. 8). In other instances,
the reason was less clear. Later it was determined that by allowing non-zero curvature at the
connection point, it was possible to achieve many more eliminations. However, there always
remained at least one or two perimiter paths (out of thousands!) that still could not be eliminated.
It was necessary to resort to operating with fairly high template radii in order to achieve complete
elimination. Certainly, a good question to ask is whether we actually needed those several paths. 

Also let us keep in mind that this work was intended to be an improvement on SRS lattice, so we
continued to only consider the paths that started and ended on nodes. The paths that do not start
and end on the nodes do not make much sense in this context. However, in the forward-solution
approach of the next section, it is very difficult to find paths that actually end exactly on nodes.

∆ 20cm=

RT 10>
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Figure 7: An example of successful path elimination . The original path is red, the two eliminating
sub-paths are magenta and blue. In either case, two sub-paths happened to exist in the template so
that a). they could be concatenated to produce a path with the same initial and final pose as the
original, and b). the produced path was not spatially distinct from the original .

Figure 8: Elimination fails because the original path operate s at near maximum 
curvature . 
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7. Forward-Solution Approach

This approach is centered around generating all possible steering functions and doing much of the
above analysis in order to obtain a minimal set of spatially distinct feasible motions. By
disengaging from the cubic polynomial curvature paths we hope to achieve greater generality
(notably resolution-completeness). Since no constraints are implied on the steering functions we
consider, outside of the inherent differential constraints of physical vehicles, we can assert that a
result obtained in this fashion will necessarily be applicable to all physical vehicles. This reasoning
guarantees resolution-completeness: if there exists a path that a vehicle can take, then such a path
is considered by this approach (because all paths are).

As a matter of practical concern, it is very hard to enumerate all possible paths through space. By
representing all feasible steering functions as branches of a tree, we were only able to enumerate
branches of depth at most 9 or 10 on modern hardware (given branching factor of 5). Fig. 9 shows
a projection of an example tree that has been pruned after the entire tree was created (without any
pruning the tree in breadth-first manner as it is grown by eliminating redundant branches that hit
the same node (obviously useless motions), we were able to get to depths of about 30 (same
branching factor), as shown in Fig. 10.

One issue that comes up in generating this type of trees is the branches that manage to align
themselves at a heading that is outside of any reasonable tolerances of nodes (that define “hitting”
a node heading-wise). By simply keeping zero curvature, such branches can continue forever
without ever hitting a node.

However, this will no longer be a problem if we require that all paths start and end at nodes,
something that made a lot of sense in the inverse-solution approach. This requirement will not
detract resolution-completeness properties of this curvature tree, because by definition of

Figure 9: An workspace projection of an example cur vature tree. This tree
was obtained by keeping a number of most separated branches.
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resolution-completeness the states  and  are considered the same for some small  (a
mapcell).

If we do make such a requirement, then, besides further decreasing the size of the tree, the main
benefit of this approach over the inverse-solution one appears to lie in the ability to contain all
possible paths that connect initial and goal nodes, compared to the latter that contains only unique
solutions, optimal in some sense.

x x ε+ ε

Figure 10: A projection of a curvature tree pruned during growing. This tree was
pruned as it was grown by discontinuing growing branches that “hit” a node exactly and
eliminating the redundant branches that hit the same node, but less precisely.

Figure 11: An example path template. This template was obtained by pruning
the paths from the curvature tree.
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With this in mind, the problem of proving that the inverse-solution generates paths that are very
similar to what naturally emerges from the curvature tree does not appear to have much sense, since
each path generated by the former corresponds to a homotopic equivalence class of paths created
by the latter.

Nevertheless, it should still be possible to do a similar path elimination analysis as was done for
inverse-solution paths. We accomplished this by first pruning all paths that do not terminate exactly
on lattice nodes. The termination tolerance was reduced to make sure only the paths that approach
a node exactly are preserved. This eliminated a majority of paths in Fig. 10. The paths that
remained were limited to a template radius of several nodes. In this manner we obtained the
template quite similar to what we got from the inverse approach (pictured in Fig. 11). This is a very
important result as it shows that the forward approach produces very similar results as the inverse
approach.
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8. Conclusion

We have presented several important results of our study in application of polynomial curvature
clothoid paths. Notably, we defined the notion of template horizon, the smallest size of a template
of elementary motions that contains all “ingredient” paths to recreate all other feasible paths. The
argument of existence of such a horizon is hinged on a particular choice of planning discretization
(map cell size) and maximum curvature of the robot. We contend that a variety of real-word
applications satisfy this condition. In addition we verified that limiting ourselves to the inverse
solution paths (two-point boundary value solutions) we do not sacrifice the resolution
completeness of our algorithm. This verification was accomplished by using a forward solution
approach, where we enumerate all possible paths expressed as arbitrary curvature functions.

Future work mainly involves searching for a more efficient processing of clothoid paths. We would
also like to efficiently re-generate the template with changing vehicle model parameters (e.g.
maximum curvature). This would allow us to use this concept on a robot traveling at higher speeds:
the template would adapt to the changing vehicle dynamics.
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