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Abstract

One goal of grasp selection for robotics is to choose contact points
that guarantee properties such as force- or form-closure. Many ef-
ficient algorithms have been developed to address this problem, but
most of these algorithms focus on grasps having a minimal number of
contact points. Increasing the number of contacts can dramatically
improve the quality and flexibility of grasps that are constructed.
However, computation time becomes a problem, as grasp synthesis
algorithms that can be generalized to an arbitrary number of con-
tacts typically require time exponential in the number of contacts.
This paper presents an efficient algorithm for synthesis of many-
contact grasps. The key idea is to geometrically construct families
of grasps around a single example such that all grasps within a fam-
ily meet user-specified design goals. We show that our construction
technique can be used to form force-closure grasps, partial force-
closure grasps, and grasps above a quality threshold. Our approach
requires time polynomial in the number of contacts, making it fea-
sible to handle grasps with relatively large numbers of contacts.
Results are shown for three-dimensional grasps with friction having
five to twelve contacts and specialized for a variety of tasks. We have
used this approach to design grasps for a robot hand and quasi-static
manipulation plans for a humanoid robot.

KEY WORDS—grasping, grasp synthesis, example-based
grasping, enveloping grasps, grasp quality, contact regions

1. Nomenclature

Problem size
N = number of contacts in a grasp
L = number of unit wrenches used in a contact model
H = number of half-spaces bounding a convex hull
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Indices
n = index used for contacts
l = index used for wrenches in a contact model
h = index used for half-spaces

Contact wrenches (Section 4)
ŵl(c) = a unit wrench available at contactc, normalized

for unit force normal to the surface
Y (c) = 6xL matrix containing unit wrencheŝwl(c)

α =Lx1 vector of coefficients;Y (c)α is a valid unit wrench
at c if α ≥ 0 and||α||L1 = 1

Grasps and grasp families (Sections 5–7)
gn = contactn of an example grasp
G = example grasp, the set of unit wrenches available at

all contacts:G = {ŵ1(g1), . . . , ŵL(gN)}
CHorig(G) = the convex hull of wrenches inG:

ConvexHull{ŵ1(g1), . . . , ŵL(gN)}
n̂h = half-space normalh, normalized using theL2 norm

in IR6

dh = distance from the origin of half-spaceh in direction
n̂h

εh = replacesdh to create half-spaces tailored to a given
task (Sections 5–7)

ε = vector containing allεh values:ε = [ε1 . . . εH ]T,
determined by the task (Section 7)

W(G, ε) = set of grasps “similar” toG givenε, defined as
{c1, . . . , cN : cn ∈ Wn(G, ε), n = 1, . . . , N}

Wn(G, ε) = set of all contacts “similar” to contactgn given
ε, defined as

⋂L

l=1 Wn,l(G, ε)

Wn,l(G, ε)=set of all contacts “similar” to contactgn when
a single wrencĥwl(gn) is considered

CHnew(C) = convex hull of unit wrenches in new grasp:
C ∈ W(G, ε) −→ CHnew(C) ⊇ CHeps(G, ε)

(Section 6)
CHeps(G, ε) = volume contained by the convex hull of

unit wrenches of any grasp inW(G, ε) (Section 6)
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β = minimum quality of a new grasp expressed relative to
the example; determinesεh (Section 7)

Contact targets (Section 8)
Pj([n̂hdh]T) = exterior of half-space boundaryh projected

onto a given plane
P(Wn) = contact regionWn projected onto a given plane
Pj,3D([n̂hdh]T) = exterior of half-space boundaryh

projected into 3D Cartesian space, given an expected
normal

P3D(Wn) = contact regionWn projected into 3D Cartesian
space, given an expected normal

2. Introduction

For many human grasps, the hand conforms closely to the
object surface (Figure 1). The fingers may wrap around the
handle of a hammer, wrench, or other tool, contact the sides
and bottom of a heavy mug, or provide support along the
bottom of a basket or bowl. Synthesizing grasps similar to
these real-world examples requires considering large areas of
contact between the hand and object or, as an approximation,
a large number of point contacts. Even in more traditional
robotics settings, having a large number of contacts may be
useful. In fixture design, for example, additional contacts may
provide flexibility in contact placement when feasible contact
areas are highly constrained.

Synthesis of grasps having large numbers of contacts re-
mains a challenge, however. When the goal is to produce an
optimal grasp, fast constructive solutions are not yet available
for grasps having more than four contacts. Global optimiza-
tion requires time exponential in the number of contacts and
becomes increasingly impractical as the number of contacts
grows. Local optimization may have problems with local min-
ima and relies on a good initial guess.

This paper explores an alternative to grasp optimization.
Instead of providing a function that should be optimized, we
provide a single example of a successful grasp and synthesize
only grasps that preserve properties of that example. Proper-
ties that can be preserved easily using our approach include
force-closure, partial force-closure, and force-based quality
measures such as those described by Kirkpatrick, Mishra,
and Yap (1990), Li and Sastry (1987), and Zhu, Ding, and
Li (2001). We use these quality measures to quantify the goal
that a new grasp be “almost as good as the example”, and
show how families of grasps can be constructed to meet this
goal.

Figures 2 and 3 show some of our results. In Figure 2,
the left column shows an example grasp composed of eight
hard-finger contacts with friction. Our algorithm, outlined in
Figure 4, constructs a family of grasps from the example and
can project these results onto any object geometry to form tar-
get contact regions as shown. The role of the example grasp is
to determine the locations of the contact regions. To illustrate

the effect of changing the example grasp, Figure 3 shows re-
sults for a four-contact grasp as the example moves up the side
of the object. The families of grasps shown in Figures 2 and 3
preserve the property that grasps within each family must be
at least 90% as good as the example for supporting the object
against gravity, using the quality metric of Zhu, Ding, and
Li (2001). The absolute quality of the results depends on the
quality of the example. Quality guaranteed for grasps in Fig-
ure 3(C), for instance, is only 53% as high as that guaranteed
for grasps in Figure 3(A). However, if the user has provided
the example in Figure 3(C) because he wishes the robot to
grasp near the top of the basket, then the grasps constructed
around this example may in practice be very good solutions.

The idea of creating grasp families is not new (e.g., Nguyen
1988; Ponce et al. 1997), and computation of contact regions
is useful for accommodating errors and constraints in contact
placement. For example, the problem of placing two hands to
achieve eight contact points on an object is very highly con-
strained, and having large target regions such as those shown
in Figure 2 can help make it possible to meet those constraints.
However, existing techniques for computing contact regions
require time exponential in the number of contacts and have
not been presented for a number of contacts larger than four.
By constructing a family of grasps around an example, we
are able to construct contact regions in time polynomial in
the number of contacts, making this idea more practical for
many-contact grasps.

Preliminary versions of this work appeared in Pollard
(1996) and Pollard and Hodgins (2002). The major theoreti-
cal contribution of the current paper is to quantify the results
of our construction technique (Section 6); we can now state
precisely what properties of the example grasp are preserved
in our approach and use this result to tailor grasp families to a
specific task. The major practical contributions are to present
an extension to partial force-closure (Section 7.3), a more el-
egant and efficient algorithm for computing contact regions
(Sections 8.2 and 8.3), a discussion of algorithm complexity
(Section 9), and a variety of more sophisticated examples than
in our previous work (Section 10). Possibly most interesting
is the new algorithm for computing contact regions, which
allows contact point selection to be formulated as a feature
detection problem and opens up the possibility of using vi-
sion or other sensing to locate good contact points when object
geometry is not known.

3. Background

Grasp synthesis, defined as finding a set of contact points on
a given object geometry, can be achieved either through op-
timization or using a constructive algorithm. When optimiza-
tion techniques are used, the search space is the space of posi-
tions ofN contacts on an object surface for someN . Optimiza-
tion criteria vary. For example, Li and Sastry (1987) optimize
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Fig. 1. Many typical grasps take advantage of extended areas of contact between the hand and object. Abstracting these grasps
as sets of point contacts would require a large number of contacts.

Fig. 2. Our algorithm converts an example grasp into an equivalence class of grasps that can be projected onto any object
geometry. (A), (B) An example with eight hard-finger contacts and a friction coefficient of 1.0. (Contacts on the opposite side
mirror those shown.) (C), (D) Results for the basket based on this example. The task is to support the object against gravity,
and the resulting grasps are “90% as good as the example”, as defined in Section 4. (E), (F) Results for the bowl, based on
the same example and quality requirement.
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Fig. 3. An example grasp defines the roles of the contacts, and contact regions are constructed around the example. This figure
shows how results for a four-contact grasp vary as the contact location of the examples changes. In each figure, contacts on the
opposite side mirror those shown, and the contact model, coefficient of friction, and task are the same as those for Figure 2.
As in Figure 2, each grasp family represents grasps that are at least 90% as good as the example used to define that family.

W (G,   )ε

Target contact regions

Geometry of new object

Task definition

Relative quality β Example grasp G

Compute    to preserveε
relative quality β ε

ε
about grasp G, based on 

Construct grasp family

(Section 7) (Section 5)

Project W onto
object surface

(Section 8)

Fig. 4. Block diagram of our grasp synthesis algorithm.

a task-dependent quality measure, where task requirements
are described with ellipsoids in force/torque space; Marken-
scoff and Papadimitriou (1989) minimize compressive forces
required to support a polygon against gravity, assumed to act
out-of-plane; Mantriota (1999) minimizes the friction coeffi-
cient required for a grasp. Zhu, Ding, and Li (2001) and Zhu
and Wang (2003) optimize for tasks described as convex poly-
topes in force/torque space. Lin, Burdick, and Rimon (2000)
maximize stiffness of a compliant grasp. Mirtich and Canny
(1994) describe algorithms for finding optimal grasps effi-
ciently for two- and three-finger grasps.

In work closest to ours, Ponce, Stam, and Faverjon (1993),
Ponce and Faverjon (1995), Ponce et al. (1997), and Chen and
Burdick (1993) describe algorithms for optimizing the sizes of

independent contact regions for two-to-four-fingered grasps.
Van der Stappen, Wentink, and Overmars (2000), Liu (2000),
and Li,Yu, and Tsujio (2002) describe a variety of techniques
to compute all force-closure grasps for two-dimensional (2D)
grasps. Optimal independent contact regions could be ex-
tracted from the results of their algorithms using the approach
described in Ponce et al. (1997).

Early constructive algorithms for grasp synthesis are due
to Nguyen (1988), who presents algorithms to synthesize
grasps with two to four fingers. Mishra, Schwartz, and Sharir
(1987) point out that, for almost any object with a piecewise
smooth surface, force/torque vectors corresponding to fric-
tionless contact at all points on the object surface positively
span IR6, which is sufficient to guarantee force-closure. The
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trick then is to filter the set of possible contacts down to a
small set that also has this property. In their paper, Mishra,
Schwartz, and Sharir show that for polyhedra withF triangu-
lar faces, an(F + 6)-contact frictionless force-closure grasp
can always be constructed and iteratively pruned to a force-
closure grasp with not more than 12 contacts. Other construc-
tive approaches appear in the area of non-prehensile manipu-
lation (e.g., Mason 1986; Peshkin and Sanderson 1988; Trin-
kle and Paul 1990; Donald, Jennings, and Rus 1997; Erdmann
1998;Akella and Mason 1998; Lynch and Mason 1999; Zhang
and Goldberg 2002) where a sequence of partial force-closure
“grasps”, possibly with sliding contacts, is used to reconfigure
an object.

Our paper is focused on grasps with many contacts. We
define many-contact grasps as those with more than the mini-
mum number of contacts required for force-closure. For force-
closure in three dimensions with hard-finger contacts, a mini-
mum of seven frictionless contacts are required (Markenscoff,
Ni, and Papadimitriou 1990); fewer than seven force/torque
vectors cannot positively span IR6. For hard-finger contacts
with friction, a minimum of three contacts are always re-
quired; with two such contacts, moments about the axis con-
necting contact points cannot be resisted. Some objects re-
quire a minimum of four hard-finger contacts with friction,
and four are always sufficient (Markenscoff, Ni, and Papadim-
itriou 1990). For us, then, many-contact grasps are those hav-
ing eight or more frictionless contacts or five or more contacts
with friction.

Most constructive grasp synthesis algorithms focus on
grasps with a minimal number of contacts, or, in the case
of Mishra, Schwartz, and Sharir (1987), the number of con-
tacts at which their algorithm terminates, which may often
be a true minimum. It is not clear how to extend these algo-
rithms to many-contact grasps except in the trivial case where
an acceptable grasp with the minimum number of contacts is
constructed and additional contacts are added afterward.

In contrast, optimization approaches can often be extended
easily to many-contact grasps. However, the optimization
takes place in a space exponential in the number of contacts;
each contact can be placed anywhere on an object surface.
Many optimization approaches involve placingN contacts
on N planar surfaces. Here, optimization may involve non-
linear equations (e.g., Markenscoff and Papadimitriou 1989)
or an exponential number of constraints (e.g., Ponce et al.
1997). Zhu, Ding, and Li (2001) point out that if the task
is described as a convex polytope in force/torque space, the
problem of finding a single best grasp can be expressed as a
linear optimization problem inO(N) variables. A suitable set
of N planar surfaces must also be selected, however, and the
number of combinations from which to choose is exponential
in N .

Our paper contributes a constructive technique for grasp
synthesis that works for any number of contacts and has run-
ning time polynomial in the number of contacts. Our paper

builds on the ideas of Ponce et al. (1997) and others to syn-
thesize independent contact regions. In contrast to previous
work, however, we make use of an example grasp and con-
struct results that preserve closure properties of that example.
This use of an example makes a polynomial time algorithm
possible. Our grasps are not in general optimal, but they can
be constructed to meet user-specified quality bounds.

In our work, we assume that contact position targets are an
appropriate end goal of a grasp synthesis process. An alterna-
tive view to generating contact targets is to generate a strategy
that will capture or cage the object (Trinkle, Abel, and Paul
1988; Harada and Kaneko 1998; Kaneko, Hino, and Tsuji
1997; Rimon and Blake 1999; Gopalakrishnan and Goldberg
2002).

A number of researchers, motivated by observation of hu-
man grasping behavior, have explored the use of grasp tax-
onomies and behavior-based systems for grasping (Cutkosky
and Howe 1990; Bekey et al. 1993; Iberall 1997). One diffi-
culty with such systems is to understand when a given grasp-
ing behavior will work and to tune it for a specific object
geometry. To address this problem, Kang and Ikeuchi (1994,
1995) present a procedural algorithm for adapting an observed
human grasp to the different kinematics of a robot hand. Our
algorithm provides an alternative and more general solution;
it can be used in conjunction with a behavior-based approach
to provide contact targets as regions that guarantee a high-
quality grasp can be formed.

Two issues we ignore in this paper are second-order effects
and the kinematics of the mechanism that will grasp the ob-
ject. Force-closure is a first-order effect and our algorithms do
not consider local curvature. Second-order analysis can pro-
vide insight into the stability of the grasp with respect to ex-
ternal perturbations (e.g., Rimon and Burdick 1998a, 1998b).
The kinematics of the mechanism actually determine whether
force-closure and other properties of a grasp are achievable
(Bicchi 1995). Although this issue is extremely important, it
is outside the scope of this paper. We do argue, however, that
constructing a space of grasps around a successful example
may help to ensure that contact positions and required contact
forces on similar objects are achievable simply because the
kinematic configuration of the mechanism will be similar in
the two grasps. For example, if the objects in Figure 2 are ap-
proximately the same size as the basket in the photograph, a
robot hand with capabilities similar to the human hand should
be able to both reach and apply appropriate forces in the con-
tact areas shown.

An overview of grasping research, including work in grasp
synthesis, can be found in Bicchi (2000).

4. Grasp and Force-Closure Preliminaries

In this section we present definitions for grasps, tasks,
force-closure, and grasp quality that are used in this paper.
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Definitions for terms introduced in this and other sections are
provided in the nomenclature.

DEFINITION 1. A grasp is a set of contacts.

DEFINITION 2. A contact is a location on an object surface,
along with information about contact type and local surface
properties as required to compute the space of wrenches that
can be applied to the object at that location.

We assume that the space of wrenches available at a contact
c can be approximated as a linear combination ofL extremes
and we defineY (c) as the 6× L matrix of those extremes:

Y (c) = [
ŵ1(c)ŵ2(c) . . . ŵL(c)

]
(1)

whereŵl(c) is normalized so that its component of force nor-
mal to the surface is equal to 1. A valid unit wrenchŵ at c
can be expressed as a linear combination of extremes where
coefficients sum to 1:

ŵ = Y (c)α α ≥ 0, ||α||L1 = 1. (2)

This linear model can be used for frictionless point contacts,
hard-finger contacts with friction, soft-finger contacts, and
any other contact model where the set of available wrenches
is convex.

For many tasks, a force-closure grasp is desired.

DEFINITION 3. Force-closure is the ability to resist any ex-
ternal wrench with positive forces at the contacts.

We state one proposition that we will use (see, for example,
Mishra, Schwartz, and Sharir 1987).

PROPOSITION1. A grasp can achieve force-closure if and
only if the wrench space origin is in the interior of the convex
hull of the set of contact wrenches available from the grasp.

We define a task as follows.

DEFINITION 4. A task is a set of wrenches that must be ap-
plied to the grasped object.

The set of wrenches that make up a task may be designed
to obtain a desired outcome such as turning a screwdriver, and
it may also include an additional set of wrenches to make the
grasp more robust to uncertainty and able to resist external
disturbances.

The definition of grasp quality used in this paper is as
follows.

DEFINITION 5. Grasp quality is the reciprocal of the sum
of magnitudes of contact normal forces required to achieve
the worst case wrench in a task set.

This definition of grasp quality is based on the notion that
the “effort” required for a grasp is related to the sum of mag-
nitudes of contact normal forces as expressed, for example,
in Kirkpatrick, Mishra, andYap (1990), Li and Sastry (1987),
and Zhu, Ding, and Li (2001). As a specific illustration of

this idea, we compare the quality of the grasps in Figures 2
and 3. The quality of the example grasp in Figure 2 is 0.99,
meaning that the sum of magnitudes of contact normal forces
to support a 1 kg object is (1/0.99) N = 1.01 N.1 The grasps in
Figures 3(A)–(C) do not have points of support on the bottom
surface of the object, and their quality measures are lower:
0.55, 0.48, and 0.29 respectively. The lowest quality grasp is
that of Figure 3(C). In this grasp, the contact points are far
from the object center of mass, which is near the base of the
basket. Here, the sum of magnitudes of contact normal forces
required to support a 1 kgobject is (1/0.29) N = 3.4 N, more
than three times that of the example in Figure 2.

5. Constructing Families of Grasps from a Single
Example

This paper explores an approach for generating families of
grasps from a single example. As a simple illustration of the
idea, consider the problem of planning a three-fingered fric-
tionless grasp of a disk in two dimensions (Figure 5). Only
pure forces can be applied to this object with frictionless con-
tacts; no torques can be generated about the object center of
mass. An equilibrium grasp of the disk can be formed from a
set of contacts if the forces at those contacts positively span
IR2. Suppose we wish to create a collection of contact regions
such that placing each contact anywhere in its region guaran-
tees this property. In the absence of any other requirements,
these regions can be made equal in size and evenly distributed.
One such set of regions is shown in Figure 5. Most of the re-
sulting grasps are not optimal, but they do meet the given
design goal.

The regions in Figure 5 were constructed by selecting a set
of three evenly distributed forces to fix the coordinate frame
and growing regions around this example to be as large as pos-
sible while still guaranteeing that any triple of forces formed
from the regions would positively span IR2. This construction
can be done in time polynomial in the number of contacts,
and any number of contacts can be accommodated. Figure 6
shows similar constructions for four- and five-contact grasps
of a frictionless disk. For clarity, a single region is highlighted
in each case. Figure 6 shows that one advantage of having
more contacts is increased flexibility in contact placement.
This flexibility can help to accommodate variability in object
geometry and constraints due to kinematics of a robot hand.

The process implied in Figures 5 and 6 can be extended to
the full six-dimensional (6D) wrench space and made to work
for any given example grasp such as that shown in the left col-
umn of Figure 2. The remainder of this section describes our
technique for creating a family of grasps from a single ex-
ample, adapted from Pollard (1996) and Pollard and Hodgins
(2002). For reference, Figure 7 provides a 2D illustration of
the construction process.

1. The result is not exactly 1 N in part because we allow for some variation
in object orientation (see the description of the gravity task in Section 10).
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Fig. 5. Equally sized, evenly distributed, independent contact regions for a three contact grasp. (A) Example with evenly
distributed contact points. (B) Regions in a 2D force space. (C) Regions in a 2D position space. Selecting one contact force
within each region in B or one contact point within each region in (C) guarantees that forces span IR2 and an equilibrium
grasp can be formed. One possible equilibrium grasp is shown in (C).
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Fig. 6. Construction geometry for equally sized, evenly distributed contact regions for three-, four-, and five-contact grasps.
Only one region is highlighted in each case. Region size, along with flexibility in placing contact points, grows with the number
of contacts in a grasp.

Suppose we are given an example graspG havingN con-
tactsg1, . . . , gN . Wrenches available at each contact are rep-
resented as a linear combination ofL extremes. The exam-
ple, then, can be represented as the collection ofNL extreme
wrenchesŵl(gn):

G = {
ŵ1(g1), . . . , ŵL(gN)

}
. (3)

We assume that thêwl(gn) span IR6, although they may not
positively span IR6.

The construction process begins with a volume in IR6, the
convex hull of all of theŵl(gn). This volume is significant
because it captures the closure properties ofG and is a first
step in constructing many force-based quality measures. We
will represent this volume,CHorig, as a collection of half-
spaces, each expressed as an outward pointing normaln̂h and

a distance from the wrench space origindh.2

2. Although theŵl (gn) are physical quantities, i.e., force/torque vectors, for
the purposes of this construction they are considered to be points in a 6D
Euclidean space. The first three dimensions are the force vector, normalized
to have magnitude 1, and the last three dimensions are the torque vector. We
make this switch from the space of wrenches to IR6 to develop a definition of
grasp families preserving closure properties of the example, and in Section 8
we describe how these results are then mapped back to physically achievable
wrenches for a given object. Because theŵl (gn) are considered to be points
in IR6, constructingCHorig is meaningful, half-space normalsn̂h have unit

magnitude using theL2 norm in IR6, and we will use the standard inner
product in IR6 (e.g.,(ŵ · n̂) = ∑6

i=1 wini ). Although treating a wrench as a

point in IR6 may seem questionable because torque directions are compared
directly to force directions, our results are not affected by this assumption;
they rely on comparing capabilities of a new grasp to those of an example,
and the outcome of this comparison does not change with choice of wrench
space origin or with unit of measure of distance.
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Fig. 7. A 2D example construction of regionsWn(G, ε). (A) A frictionless example graspG consisting of five contact
wrenches. (B)CHorig is the convex hull of these contact wrenches. Half-space boundaries are also shown. (C)CHeps is
constructed fromCHorig by moving each half-space boundaryh to distanceεh from the origin. The region of acceptable
wrenchesŵ(cn) is an intersection of exterior half-spaces ofCHeps . (D) Each such region can be mapped to a set of contact
points on an object (Section 8) to obtain target contact regionsWn(G, ε). Grasps in the familyW(G, ε) have one contact in
each of these regions.

CHorig(G) = {
[

n̂1

d1

]
,

[
n̂2

d2

]
, . . . ,

[
n̂H

dH

]
}

= ConvexHull(G).

(4)

To represent the connection between half-space boundaries in
CHorig and wrencheŝwl(gn), we define index setρn,l so that
h ∈ ρn,l implies that the half-space boundaryh passes through
point ŵl(gn).

ρn,l(G) = {h : (ŵl(gn) · n̂h) = dh}. (5)

For each half-spaceh, we choose someεh to reflect the re-
quirements of the task. Choosingεh = dh will match capabil-
ities of the example grasp, but if the example is unnecessarily
strong in certain directions, settingεh to a value less thandh

will allow greater flexibility in contact placement. Details on
settingεh can be found in Section 7.

Let ε = [ε1 . . . εH ]. Based onCHorig(G), ρn,l(G), and task
variablesε, we define an equivalence class of graspsW(G, ε)

as a set of regionsWn(G, ε), one for each contact, as follows:

W(G, ε) = {c1, . . . , cN : cn ∈ Wn(G, ε), n = 1, . . . , N}
(6)

Wn(G, ε) =
L⋂

l=1

Wn,l(G, ε) (7)

Wn,l(G, ε) = {
cn : ∃αl s.t.

(
(Y (cn)αl) · n̂h ≥ εh

)
∀h ∈ ρn,l, αl ≥ 0, ||αl||L1 = 1

}
.

(8)

For any grasp in the setW , contactcn is meant to correspond
directly to the contactgn in G. In other words, the role of con-
tactcn is defined by the set of wrenchesŵ1(gn), . . . , ŵL(gn)

from the example grasp. The valid region for contactcn is
constructed as the intersection ofL regionsWn,l, one for
each wrench extremêwl(gn), l = 1, . . . , L. RegionWn,l is
based on the intersection of exterior half-spaces associated
with ŵl(gn) (i.e. half-spaces indexed byρn,l) after those half-
spaces have been adjusted along their normals to distancesεh;
some unit wrench available at contactcn must fall within this
intersection. Sections 6 and 7 show how this particular defini-
tion makes it possible to control closure and quality properties
of all grasps inW(G, ε).

In the frictionless case,L = 1 and subscriptl is not needed,
resulting in the following expression for contact regionWn,
which is much cleaner and is illustrated in Figure 7(D):

Wn(G, ε) = {
cn : ŵ(cn) · n̂h ≥ εh ∀h ∈ ρn

}
(frictionless case only).

(9)

6. Properties of Grasps in a Given Family

Given the construction technique in Section 5, what can we
say about grasps inW? The main result of the paper is the
following proposition.

PROPOSITION2. Suppose we are given graspC having con-
tacts{c1, . . . , cN} and grasp familyW(G, ε) constructed as
in eq. (6).

From eq. (4),CHorig(G) is the convex hull of the unit
wrench extremes ofG:
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CHorig(G) = ConvexHull{ŵ1(g1), . . . , ŵL(gN)}
= ([n̂1d1]T, . . . , [n̂HdH ]T

)
.

(10)

We defineCHnew(C) as the convex hull of the unit wrench
extremes ofC:

CHnew(C) = ConvexHull
{
ŵ1(c1), . . . , ŵL(cN)

}
. (11)

Let CHeps(G, ε) be the intersection of all half-spaces hav-
ing normalsn̂h and distancesεh:

CHeps(G, ε) = {[n̂1ε1]T, . . . , [n̂HεH ]T}. (12)

Then, if graspC is in grasp familyW(G, ε), CHnew(C)

containsCHeps(G, ε):

C ∈ W(G, ε) −→ CHnew(C) ⊇ CHeps(G, ε).

(13)

A proof sketch can be found in Appendix A. This proposi-
tion describes the volumeCHeps(G, ε) in IR6 (possibly empty)
that is contained within the convex hull of contact wrenches
of any grasp in the familyW(G, ε). This volume is shown for
a 2D example in Figure 7(C).

7. Meeting Design Goals

BecauseCHeps in eq. (12) is determined by the values ofεh,
properties of grasps inW(G, ε) can be controlled through
careful selection of these parameters.

7.1. Force-Closure

By Proposition 1, grasps inW will be force-closure if the con-
vex hull of the contact wrenches available from any grasp in
W contains the origin in its interior. By Proposition 2, it is suf-
ficient thatCHeps in eq. (12) contain the origin in its interior.
This goal is achieved by setting the following constraint:

εh > 0 h = 1, . . . , H . (14)

Any small number can be used for allεh to ensure that force-
closure is possible for all grasps inW(G, ε).

7.2. Grasp Quality

A force-closure grasp is not necessarily a desirable grasp, as
it may result in large internal forces to counter small external
wrenches. Referring to Definition 4, suppose we are given
a taskT described as the convex hull ofK pointssk: T =

ConvexHull(s1, . . . , sK). For this task, by Definition 5, the
quality of the example grasp is

Q(G) = H

min
h=1

(
dh

max(0, maxK
k=1(sk · n̂h))

)
(15)

(see also Zhu and Wang 2003).
To obtain new grasps with quality at leastβQ(G), we set

εh as follows:

εh = βQ(G) max
(
0, maxK

k=1(sk · n̂h)
)

h = 1, . . . , H .

(16)

Using Proposition 2, we can show easily thatC ∈ W(G, ε)

and eq. (16) imply that

Q(C) ≥ βQ(G). (17)

Now suppose the task is not known. We note that eqs. (15)
and (16) imply thatεh ≤ βdh for any taskT . As a result, we
can also obtain grasps with quality at leastβQ(G) by setting

εh = βdh h = 1, . . . , H . (18)

Equation 18 is intriguing because it shows that contact forces
can be bounded relative to an example without measuring
those forces and without knowing anything about the task.
However, using eq. (16) when the task is known may result
in larger contact target regions corresponding to directions
where the example grasp is unnecessarily strong.

7.3. Partial Force-Closure Grasps

The construction techniques presented in the paragraphs
above can also be used when the example is not force-closure,
but instead has the property of partial force-closure over a
wrench setG

′
(Bicchi 1995). For synthesis of partial force-

closure grasps, we make use of the following variation of
Proposition 2.

LEMMA 1. Suppose we are given graspC
′

having con-
tacts{c1, . . . , cM} and grasp familyW(G

′
, ε) constructed as

in eq. (6), except withCHorig(G
′
) also containing the zero

wrench:

CHorig(G
′
) = ConvexHull{ŵ1(g1), . . . , ŵL(gM), 0}
= {[n̂1d1]T, . . . , [n̂HdH ]T}.

(19)

We defineCHnew(C
′
) as the convex hull of the unit wrench

extremes ofC
′
and the zero wrench:

CHnew(C
′
) = ConvexHull

{
ŵ1(c1), . . . , ŵL(cM), 0

}
. (20)

LetCHeps(G
′
, ε) be the intersection of all half-spaces hav-

ing normalsn̂h and distancesεh:

CHeps(G
′
, ε) = {[n̂1ε1]T, . . . , [n̂HεH ]T}. (21)
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Let

ρzero = {h : dh = 0}. (22)

Suppose

εh = 0 ∀h ∈ ρzero. (23)

Then, if graspC
′
is in grasp familyW(G

′
, ε), CHnew(C

′
)

containsCHeps(G
′
, ε):

C
′ ∈ W(G

′
, ε) −→ CHnew(C

′
) ⊇ CHeps(G

′
, ε).

(24)

Proof sketch. From G
′
, we create an exampleG =

{ŵ1(g1), . . . , ŵL(gM), 0, . . . , 0} with 0 repeatedL times, to
be used in Proposition 2. Matching this Lemma to Proposi-
tion 2, we haveN = M + 1, andCHorig(G) = CHorig(G

′
).

Because all facets containinĝwl(gN) = 0 pass through the
origin, we know that index setρN,l points only to half-space
boundaries containing the origin, or

dh = 0 ∀h ∈ ρN,l, (25)

which implies thatρN,l ⊆ ρzero. Given eq. (23),εh can be
replaced with0 in the expression forWN,l:

WN,l(G
′
, ε) = {

cN : ∃αl s.t.
(
(Y (cN)αl) · n̂h ≥ 0

) ∀h ∈ ρN,l,

αl ≥ 0, ||αl||L1 = 1
}
. (26)

It follows that 0 is an acceptable substitute for all of
the wrenchesY (cN)αl = ŵl(cN), which implies in turn
that CHnew(C

′
) is an acceptable substitute forCHnew(C).

By Proposition 2, then,CHnew(C
′
) containsCHeps(G, ε).

BecauseCHorig(G) = CHorig(G
′
), it is also true that

CHeps(G, ε) = CHeps(G
′
, ε). It follows thatCHnew(C

′
) con-

tainsCHeps(G
′
, ε), completing the proof. �

Using the construction in Lemma 1, we can generate grasps
having partial force-closure over the same wrench set as the
example by using

εh = 0 ∀h ∈ ρzero εh > 0 ∀h /∈ ρzero.

(27)

Arbitrary tasks can be handled by settingεh as in eq. (16)
as long as

max
(
0,

K
max
k=1

(sk · n̂h)
)

= 0 ∀h ∈ ρzero. (28)

Equation 28 states that the task must have zero component in
any direction in which the example cannot apply wrenches;

in other words, the example must be capable of achieving the
task.

Situations where the task is unknown can be handled by
settingεh = βdh as described in eq. (18). Parameterdh is
zero forh ∈ ρzero by definition, preserving the requirement of
eq. (23).

8. Incorporating Object Geometry

Grasp familyW(G, ε) (eq. (6)) is expressed in a manner in-
dependent of object geometry. The equation

W(G, ε) = {c1, . . . , cN : ci ∈ Wn, n = 1, . . . , N} (29)

describes all possible combinations of contacts that can be
generated from a given example using our construction tech-
nique. This section describes three ways to filter such a set
of grasps through an object’s geometry: (1) sample the object
surface and test contact points for inclusion inWn; (2) map
constraints boundingWn onto planar patches of an object sur-
face; (3) map constraints boundingWn into three-dimensional
(3D) Cartesian space.

8.1. Sampling the Object Surface and Testing for Inclusion
in Wn

With any object, even one with a complex curved surface, a
sample and test approach can be used to identify contact re-
gions. This technique was used for the examples shown in
Figure 2. The entire object surface is sampled, and each sam-
ple point is tested for inclusion inWn(G, ε), n = 1, . . . , N .
Given contactcn, and with reference to eq. (8), the problem
of determining whethercn ∈ Wn can be specified as follows:

find Lx1 vector of coefficientsαl and parameter

νn,l to maximizeνn,l such that
(30)

(Y (cn)αl) · n̂h ≥ εhνn,l ∀h ∈ ρn,l (31)

αl ≥ 0 (32)

||αl||L1 = 1. (33)

Then from eq. (7):

cn ∈ Wn ⇐⇒
(

L

min
l=1

νn,l

)
≥ 1. (34)

This problem description states that there must be some unit
contact wrench available atcn (i.e., some valid value forαl)
such that all half-space constraints are met or exceeded by
this wrench (i.e.,νn,l ≥ 1 for all l = 1, . . . L).
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Fig. 8. (A) Contact regions for an eight-contact frictionless grasp of an octahedron. Example contact points are shown as
spheres. The back view of contact points and regions is identical to the front view, and grasps shown are guaranteed to be
capable of achieving force-closure (eq. (14)). (B) Sampling versus 2D mapping comparison in the frictionless case. The two
algorithms produce the same results when there is no friction.

In the frictionless case,cn ∈ Wn can be determined more
easily. From eq. (9) and Figure 7:

cn ∈ Wn ⇐⇒ ŵ(cn) · nh ≥ εh ∀h ∈ ρn. (35)

In this case, at each sample point on the frictionless surface
the contact wrencĥw(cn) is formed and tested for inclusion
in Wn by checking just a few 6D dot products.

Figure 8 shows results for an eight-contact grasp of an
octahedron when contacts are frictionless. Figure 9 shows
results for the octahedron using the same example grasp, but
with coefficient of friction set to 0.5.

8.2. Mapping Constraints Bounding Wn onto an Object
Surface

If the object consists of planar surfaces, a mapping algorithm
can be used to find contact regions on each surface. This al-
gorithm is perhaps more elegant than the sample-and-test ap-
proach of Section 8.1 because it avoids a brute force sampling
of the surface. It will obtain contact regions more quickly than
a sample-and-test approach if the object is composed of large
planar faces.

The basic idea is to project the 6D half-space constraints
that defineWn(G, ε) directly onto the planar surface, avoiding
the need to sample that surface as in Section 8.1. Referring
to eq. (8), regionWn,l consists of a collection of half-space
constraints in the form(ŵ(cn) · n̂h) ≥ εh. If ŵ(cn) were a
linear function of position on a planar surface, then these half-
space constraints could be projected easily onto the surface,
and their intersection would form a patch on that surface.

The difficulty is that a non-trivial contact model does
not have a single wrencĥw(cn) available at a given contact

point. Wrenchŵ(cn) can be any linear combination of basis
wrenchesY (cn)αl whereαl ≥ 0 and||αl||L1 = 1.

Our solution is to sample this space of wrenches and ac-
cumulate results over the set of samples. Suppose we takeJ

samples of the space of wrenches available at a given contact.
Each samplêwj (cn) can be parametrized by its location(u, v)

on the surface patch. The force component ofŵj (cn) does not
depend onu or v, and the torque component varies linearly
with u andv, and soŵj (cn) can be written as

ŵj (cn) = ŵj (u, v) = wj,0 + uwj,u + vwj,v. (36)

Given eq. (36), each half-space constraintŵj (cn) · n̂h ≥ εh

can be projected onto the 2D surface to obtain:

(ŵj,0 · n̂h) + u(ŵj,u · n̂h) + v(ŵj,v · n̂h) ≥ εh. (37)

We call this projectionPj([n̂hdh]T).
For a single samplej , the projection ofWn,l onto the planar

surface is the intersection of results for all active constraints
h ∈ ρn,l (eq. (8)). We take the union of results over allJ

samples. Linear combinations of samples are also acceptable,
and so we take the convex hull of this result. We call this patch
P(Wn,l):

P(Wn,l) = ConvexHull


 J⋃

j=1


 ⋂

h∈ρn,l

Pj ([n̂hdh]T)





 . (38)

From eq. (7), we take the intersection over alll friction cone
extremes to get the final patch for contactn, defined by re-
gionWn:
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Fig. 9. (A) Contact regions for an eight-contact grasp with friction. Example contact points are shown as spheres. The back
view of contact points and regions is identical to the front view shown. The coefficient of friction is 0.5, the task is a unit
ball in wrench space, and grasps shown are guaranteed to be at least 40% as good as the example. (B) Sampling versus 2D
mapping comparison in the case with friction. The 2D mapping is a conservative approximation when there is friction.

P(Wn) =
L⋂

l=1

ConvexHull


 J⋃

j=1


 ⋂

h∈ρn,l

Pj ([n̂hdh]T)





 .

(39)

Figures 8 and 9 show comparisons between sample and
2D mapping results for hard-finger contact without and with
friction, respectively. Sample points are shown as hexagons,
and the 2D mapping results are shown as a solid colored region
beneath the hexagons.

In the case with friction, the mapping computed using this
approach is conservative for two reasons. First, the friction
cone is approximated as a friction pyramid. The sample and
test approach of Section 8.1 also uses this approximation. Sec-
ondly, a contact point on the planar surface may meet all con-
straints for regionWn and yet not be captured byP(Wn). This
is because the intersection of the projections of two half-space
constraints onto a planar surface follows a non-linear path on
the surface when contact wrenches are linearly interpolated
between two extremeŝwj1(cn)andŵj2(cn). Equation 39 makes
a linear approximation of this path with the convex hull oper-
ation. This approximation is conservative, and it is typically
quite good, as can be seen by comparing the sampling and
projection approaches in Figure 9. It becomes worse when
the friction cone is large, when the number of samples is very
sparse, or when the surface normal of the new object is far
from that of the example grasp. In all cases, results can be
made as good as desired by adding more wrench space sam-
plesj to the union operation in eq. (39), including samples in
the interior. (Our results used six samples on the boundary of
the friction cone.)

8.3. Mapping Constraints Bounding Wn into Cartesian
Space

An interesting and very simple variation on mapping contact
regionWn onto a planar surface is to map this contact region
into 3D space. Given an expected surface normalf̂ , sample
wrenches can be written as a linear function of world coordi-
nates(x, y, z). Half-space constraints can then be projected
into 3D space in a manner analogous to eq. (37), resulting in

(ŵj,0 · n̂h) + x(ŵj,x · n̂h) + y(ŵj,y · n̂h) + z(ŵj,z · n̂h) ≥ εh.

(40)

We call this projectionPj,3D([n̂hdh]T). Contact regionn, de-
fined byWn, can then be expressed as

P3D(Wn) =
L⋂

l=1

ConvexHull




J⋃
j=1


 ⋂

h∈ρn,l

Pj,3D

([n̂hdh]T
)


 .

(41)

In the frictionless case,P3D(Wn) is the infinite extrusion along
f̂ of the 2D surface projectionP(Wn) for any planar surface
with the same normal. This result reflects the fact that a fric-
tionless contact wrench does not change as the surface moves
in the direction of its normal. If results for a range of surface
normalŝf are intersected or if there is a more complex contact
model, projectionP3D(Wn) will be finite.

A projection of contact regionWn into 3D space is useful
when object geometry is not known in detail. Given an es-
timate of object center of mass, eq. (41) describes where in
space to look for a geometric feature having surface normalf̂ .
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Table 1. Algorithm Complexity for NNN Contacts, LLL Wrench Extremes in the Contact Model, JJJ Wrench Samples in the
Contact Model (Possibly Including Interior Samples),HHH Half-Spaces inCHCHCHorigorigorig,KKK Wrench Extremes in the Task Model,
SSS Samples on the Object Surface, and FFF Planar Faces in the Object Surface

Current paper Computeε O((NL)4 + HK) (including computingCHorig)
ComputeW(G, ε) Constant time (ifCHorig is available)
Compute regions (sampling) O(NLS) linear optimization problems inO(L) variables
Compute regions (projection) O(FN(LJH log(LJH)))

Zhu, Ding, and Li (2001) Complete algorithm O(F N) linear optimization problems inO(NLK)

variables

9. Computational Complexity

Referring to Figure 4, the grasp synthesis algorithm has three
parts: (1) compute parameterε; (2) compute grasp family
W(G, ε); (3) mapW onto the surface of a new object to ob-
tain contact regions. Here we show that all parts are polyno-
mial in the number of contactsN (Table 1) and we compare
the complexity of this algorithm with the elegant competing
technique of Zhu, Ding, and Li (2001).

Computingε is trivial unless we are preserving a force-
based quality value as in Section 7.2. In this case, the convex
hull CHorig(G) must be computed to obtain parametersdh and
n̂h in eqs. (15) and (16). ComputingCHorig(G) requires time
O((NL)4) for the giftwrapping algorithm in six dimensions
(Preparata and Shamos 1985) withN the number of contacts
andL the number of samples in the contact model. Given
a task represented withK wrench extremes, timeO(HK)

is also required to set values forεh onceCHorig has been
computed (eqs. (15) and (16)). FamilyW(G, ε) is constructed
as part of the computation ofCHorig and requires no additional
computation time.

To mapW onto an object surface, the sample and test ap-
proach in Section 8.1 requires solvingO(NLS) linear opti-
mization problems, whereS is the number of samples taken
of the object surface. (See eqs. (30)–(34).) Each linear opti-
mization problem hasL + 1 variables; the simplex algorithm
theoretically requires time exponential inL (but notN ), and
in practice is much faster.

To map W onto an object surface using the projec-
tion approach in Section 8.2 requires computation time
O(FN(LJH log(LJH))). GivenF planar faces on the ob-
ject, each of these must be tested for inclusion in allN regions
Wn. The various intersection and union operations performed
on the 2D facet require time proportional toa loga, where
a = LJH . TheLJH term derives from the maximum ofH
half-space constraints that must be projected onto the surface,
the union overJ samples and intersection overL samples
(eq. (39)). All operations on the planar facet are either convex
hull construction or half-space intersection, resulting in the
log term in the expressionLJH log(LJH).

We compare this result to the algorithm presented in Zhu,
Ding, and Li (2001). The algorithm in Zhu, Ding, and Li

(2001) is suitable for finding either a single optimal grasp or
a set of grasps exceeding a quality measure similar to that
described in Section 7.2. To find a globally optimal solution,
the algorithm in Zhu, Ding, and Li (2001) requires solving
O(F N) linear optimization problems in(NLK+1) variables.
TheO(F N) term arises because all combinations ofN faces
(F chooseN ) must be tested to guarantee that a solution is
globally optimal.

Practically, when the object has few facesF , the algorithm
in Zhu, Ding, and Li (2001) may be faster than that presented
here. For an eight-contact grasp of an octahedron, for example,
our algorithm requires computing a 6D convex hull and then
projecting each target contact region onto the eight planar
faces. The complete running time for our implementation is
50 s on a 1.6 GHz machine.3 In contrast, for this same problem,
if we know that there must be one contact on each of the eight
planar faces, the algorithm in Zhu, Ding, and Li (2001) would
require solving a single linear optimization problem in 193
variables.4

As the number of faces increases, however, our algorithm
will scale much more gracefully than that in Zhu, Ding, and
Li (2001), or any other global optimization approach that re-
quires finding the best set ofN planar faces. For example, the
bowl in Figure 2 has 820 faces. For this problem and with the
same parameters as the octahedron example, our algorithm
requires 11 min to compute contact target regions. However,
for the algorithm in Zhu, Ding, and Li (2001), the complexity
of selecting the bestN faces results in an unwieldy solution;
5 × 1018 (820 choose eight) combinations of faces must ei-
ther be examined or somehow discarded in searching for a
globally optimal solution. For objects with smooth surfaces,
the authors suggest that a local search technique may be more
effective (Zhu and Wang 2003), although they also show that
such an approach is, of course, subject to the problem of local
minima, and results depend on the starting point of the search.

Like the approach of Zhu, Ding, and Li (2001), our ap-
proach is a global one, and it considers the entire surface of
the object.The primary advantage of our approach is that com-

3. This example assumed eight hard-finger contacts with friction (N = 8). It
used a friction pyramid approximation with six extremes (L = 6) and a task
approximation with four extremes (K = 4).
4. The number of variables isNLK + 1, with N = 8, L = 6, andK = 4.
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Fig. 10. Effect of task variation in the eight-contact grasp of the octahedron. The regions on the back of the object are
reflections of the regions on the front about a plane parallel to the image plane and passing through the object center of mass.
The contact model is hard-finger contact with coefficient of friction 0.5, and grasps shown are guaranteed to be at least 80%
as good as the example. (A) Wrench space ball task. (B) Gravity task. (C) Rotation task.

putation time is polynomial in the number of contacts, with
computation time growing more gracefully with the number
of contacts and complexity of the object surface. What makes
our polynomial time algorithm possible is the availability of
an example grasp and the decision to produce not a single op-
timal grasp, but a set of grasps that are similar to the example
and exceed a given quality measure. In cases where an appro-
priate example is available from experience or observation,
our approach may be more practically useful for constructing
grasps having many contacts.

10. Results

One of the main features of the algorithm presented in this
paper is the ability to meet a variety of task goals. As an
example of this capability, Figures 10 and 11 show contact
regions for three different tasks: (1) the wrench space ball task,
where nothing is assumed to be known about the directions
of task wrenches; (2) the gravity task, represented as a range
of force vectors within an angle of 20◦ about vertical; (3) a
rotation task such as pouring, represented as the force vectors
for the gravity task, swept through a 90◦ rotation from vertical
to horizontal.

In general, regions become larger in directions that are not
important for a task. For the rotation task, the octahedron is
tipped to the left in the view shown, and the mug is tipped
so that the handle rotates upward. The value of the desired
relative quality measure determines region size, as illustrated
in Figure 12 for the wrench space ball task.

Forming an acceptable grasp with many contacts is easier
in some ways than forming a grasp with a minimal number of
contacts, in the sense that contact region size will grow with

the number of contacts. In fact, if there is a very large number
of contacts, randomly placing them on the object surface may
often produce a good grasp. Figure 13 compares our use of
the contact regions to random contact placement. Results are
for the five-contact grasp of the mug and the rotation task. The
plot on the left shows the distribution of the quality measure
(Definition 5) for randomly generated grasps for two cases. In
the first case (solid line), grasps were generated by selecting
one point randomly within each contact region. In the second
case (dashed line), grasps were generated by placing each
point randomly on the object surface. The plot on the right
shows the fraction of all samples exceeding quality measures
ranging from 0 to 1.4. In the first case (solid line), the lower
bound for the contact regions was quality 0.6, and all grasps
that were generated with one contact point in each region
exceed this bound. In the second case (dashed line), quality
measures range from zero to 1.3, and 15% of grasps do not
have a non-negative quality measure, indicating that they are
not adequate to perform the rotation task. On the other hand,
it is interesting to note that more than 30% of the time, the
randomly generated grasps do exceed the quality measure
specified for this task. Of course, the distributions of contacts
produced by these grasps will not in general be similar to the
example and may be unacceptable for reasons not captured
by this quality metric.

In Section 7.3 we described how non-force-closure grasps
could be handled. Neither the gravity nor the rotation task re-
quire force-closure grasps. Thus, we can form contact regions
for these tasks even when the example grasp is not force-
closure. Figure 14 shows results for a 12-contact frictionless
grasp of the octahedron and the gravity task. When there is
no friction, the example grasp is clearly not force-closure, as
pure forces in the upward direction cannot be resisted.
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Fig. 11. Effect of task variation on a five-contact grasp of a mug. The contact model is hard-finger contacts with coefficient
of friction 1.0. (A), (B), (C) Example grasp. (D), (E), (F) Regions for the wrench space ball task, with grasps guaran-
teed at least 80% as good as the example. (G), (H), (I) Regions for the gravity task, with grasps guaranteed at least 80%
as good as the example. (J), (K), (L) Regions for the rotation task, with grasps guaranteed at least 115% as good as the example.

We used early versions of this approach to plan grasps
for a robot hand and to create manipulation plans from a
human demonstration for a humanoid robot (Figure 15). In
both cases we take advantage of the ability to adapt exam-
ples to new geometries; the example grasp and manipulation
plan are obtained from objects that are geometrically simpler
than the ultimate target objects. Details of these experiments
are given in Pollard (1996) and Pollard and Hodgins (2002),
respectively.

11. Discussion

In this paper we have shown that a family of grasps can be
derived from an example and expressed as a set of indepen-
dent contact regions. The focus of the paper is on grasps hav-

ing a relatively large number of contacts. Advantages of this
construction technique are computational efficiency, flexibil-
ity in contact placement, and ability to preserve closure and
quality properties of an example grasp. In exchange for these
advantages, we give up optimality. This technique does not
in general produce minimal force grasps, or maximal contact
regions. However, a space of grasps can be constructed that
exceed a user-specified measure of grasp quality.

For constructions that preserve grasp quality (Section 7.2),
we have assumed that the sum of magnitudes of contact nor-
mal forces represents grasp effort. However, in most circum-
stances all contacts are not equivalent. For example, contact
on the distal link of a finger will typically be weaker than
contact at a more proximal link. One trivial extension to our
algorithm is to assign a weight to each contact to obtain a more
accurate measure of grasp effort. A more thorough extension
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Fig. 12. Effect of quality variation in the eight-contact grasp of the octahedron. The view from the opposite side of the object
is identical. The contact model is hard-finger contact with coefficient of friction 0.5, and regions are shown for the wrench
space ball task. Grasps guaranteed at least (A) 80%, (B) 60%, and (C) 40% as good as the example.
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Fig. 13. (A) Distribution of quality values. Five-contact grasps of the mug are randomly generated by placing one contact in
each region (solid line) or by placing each contact randomly on the object surface (dashed line). (B) Percentage of samples
with quality exceeding values ranging from 0 to 1.4.

would better take into account finger kinematics, including
coupling between contacts on a single finger and the relative
independence of different fingers. This is one topic of future
work.

Our results depend on the choice of example. For the mug,
for instance, the example is a good one for supporting the
object against gravity (Q(G) = 1.11), and large regions are
obtained for a quality measureQ(C) ≥ 0.8Q(G) ≥ 0.89.The
example is a poor one for the wrench space ball task, however
(Q(G) = 0.022), and even with the very small quality mea-
sureQ(C) ≥ 0.8Q(G) ≥ 0.018, where contact forces may
be more than 50 times the magnitude of some task wrench,
regions obtained are small.

The dependence of results on the example raises the ques-
tion of how to create a good one. Can an example be chosen
automatically? The best example may be one that results in

large contact targets for a given object geometry and task.
Alternatively, we may wish for a single example to provide
large contact targets for a class of objects. The observation
that grasps can be classified into relatively few types (e.g.
Cutkosky and Howe 1990) suggests that a small library of
examples may be sufficient. Finding good examples automat-
ically is another topic of future research.

The idea of processing an example to find contact geometry
targets in Cartesian space was only touched upon in this paper.
We are also investigating the possibility of developing suites
of feature detectors that can be used both to choose contact
points and to select between examples when object geometry
is not known but features can be sensed.

To move toward a more practical use of these results, we
would like to revisit the reach-to-grasp problem given a set of
contact target regions and investigate techniques for control-
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Fig. 14. 12-contact frictionless grasp of the octahedron with the gravity task. (A) View of entire grasp. (B) Close-up of one
face. Contacts are placed at the same locations on each of the four lower faces. The example grasp is not force-closure, and
grasps generated with one contact in each region are not force-closure, but they are adequate for supporting the object against
gravity.

Fig. 15. (A) The plan for manipulating this object was adapted from motion capture of a person manipulating a box of similar
size. (B) This grasp of the airplane was identified based on an example seven-contact grasp of a cylinder. In both cases,
the creation of target contact regions from the example (as opposed to finding a unique optimal grasp) was important for
accommodating the kinematic constraints of the robot.

ling task forces once the object has been grasped. Of particular
interest are situations that are dynamic (as in Chevallier and
Payandeh 1997) or where there is a large amount of uncer-
tainty. Having examples of successful grasp and manipulation
strategies may make possible interesting new approaches in
these areas as well.

Appendix A

Sketch of proof for Proposition 2. Given a new graspC ∈
W(G, ε), supposeCHnew(C) does not containCHeps(G, ε).
Choose some pointp in CHeps that lies outsideCHnew. Choose
some hyperplaneF boundingCHnew that does not containp
in its interior. Let the half-space constraint represented byF

be [n̂d]T. Based on this constraint and our assumptions, the
following are true:

q · n̂ ≤ d ∀q ∈ CHnew (42)

ŵl(cn) · n̂ ≤ d l = 1, . . . , L, n = 1, . . . , N (43)

p · n̂ > d. (44)

These equations state respectively that all pointsq of CHnew

are contained within the given half-space, all wrench extremes
of graspC, ŵl(cn), are contained within the given half-space
(because they are contained inCHnew(C)), and pointp is not
contained within the given half-space.

Find a vertexŵ = ŵi (gj ) in CHorig(G, ε) that maximizes
ŵ · n̂. AssumeCHorig has only simplicial facets (true if̂wl(gn)

are in general position). There will be at least six facets of
CHorig containingŵ. Choose any six of them so that their
normals span IR6.5 Denote these six facets with index setρ

′
j,i

⊆

5. There will always be at least one such set, becauseCHorig is not degen-

erate; we assume the set ofŵl (gn) spans IR6 (Section 5).
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ρj,i . Computeŵ
′
so that

ŵ
′ · n̂h = εh ∀h ∈ ρ

′
j,i

. (45)

Wrenchŵ
′
is the intersection of the hyperplanes bounding the

six half-spaces[n̂hεh]T for h in ρ
′
j,i

.

PROPOSITION3. No portion ofCHeps lies beyondŵ
′
in the

n̂ direction.

Proof sketch. We know that

n̂h · n̂ ≥ 0 ∀h ∈ ρ
′
j,i

. (46)

Otherwise,ŵ
′
would not be the extreme onCHorig that is the

greatest distance in thên direction. It follows that the inter-
section of interior half-spaces[n̂hεh]T for h ∈ ρ

′
j,i

is a convex
cone with apex at̂w

′
and pointing away from̂n. However,

half-space constraints[n̂hεh]T boundCHeps , and all ofCHeps

must fall within this cone. Therefore, no portion ofCHeps lies
beyondŵ

′
in then̂ direction, completing the proof of Propo-

sition 3.�
Becauseŵ

′
is an extreme ofCHeps in the n̂ direction

(Proposition 3),p ∈ CHeps (by definition), and with refer-
ence to eq. (44), we can state that

(ŵ
′ · n̂) ≥ (p · n̂) > d. (47)

Because contactcj of the new grasp is contained in region
Wj , it is also contained withinWj,i , and eq. (8) implies that

∃αis.t.
(
(Y (cj )αi) · n̂h ≥ εh

) ∀h ∈ ρ
′
j,i

, αi ≥ 0,

||αi ||L1 = 1.
(48)

Let ŵcj
= Y (cj )αi for some valid value ofαi .

PROPOSITION4. ŵcj
is contained withinCHnew(C).

Proof sketch. Y (cj ) is defined as the set of unit wrenches
available at contactcj . By definition of CHnew(C) =
ConvexHull(C) = ConvexHull{ŵ1(c1), . . . , ŵ1(cj ), . . . , ŵL

(cj ), . . . , ŵL(cN)}, all basis wrenches ofY (cj ) are contained
in CHnew(C). By constraints onαi in eq. (48),ŵcj

lies in the
convex hull ofŵl(cj ) and so it is also contained inCHnew(C).
�

Now from eq. (48) and the definition of̂wcj(
ŵcj

· n̂h ≥ εh

) ∀h ∈ ρ
′
j,i

. (49)

Becausênh · n̂ ≥ 0 for all h in ρ
′
j,i

(eq. (46)), eq. (49) states
that contact wrencĥwcj

is contained in a convex cone based at
ŵ

′
and pointing in the direction of̂n. The closest such wrench

within this cone and in thên direction isŵ
′
and so

(ŵcj
· n̂) ≥ (ŵ

′ · n̂) ≥ (p · n̂) > d, (50)

implying thatŵcj
is beyond facet[n̂d]T and so it is not con-

tained inCHnew(C). This contradiction with Proposition 4
completes the proof. �
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