
Learning to Detect Partially Labeled People 
 

Yaron Rachlin1, John Dolan2, and Pradeep Khosla1,2 

Department of Electrical and Computer Engineering, Carnegie Mellon University1 

Robotics Institute, Carnegie Mellon University2 

rachlin@ece.cmu.edu, jmd@cs.cmu.edu, pkk@ece.cmu.edu  
 
 

Abstract 
 

Deployed vision systems often encounter image 
variations poorly represented in their training data. 
While observing their environment, such vision systems 
obtain unlabeled data that could be used to compensate 
for incomplete training. In order to exploit these 
relatively cheap and abundant unlabeled data we present 
a family of algorithms called λMEEM. Using these 
algorithms, we train an appearance-based people 
detection model. In contrast to approaches that rely on a 
large number of manually labeled training points, we use 
a partially labeled data set to capture appearance 
variation. One can both avoid the tedium of additional 
manual labeling and obtain improved detection 
performance by augmenting a labeled training set with 
unlabeled data. Further, enlarging the original training 
set with new unlabeled points enables the update of 
detection models after deployment without human 
intervention. To support these claims we show people 
detection results, and compare our performance to a 
purely generative Expectation Maximization-based 
approach to learning over partially labeled data. 
 
1. Introduction 
 

Mobile robots and automated surveillance systems that 
rely on computer vision algorithms typically face an 
abundance of unlabeled data and a relatively small sample 
of labeled data. Even if labeled data are available in 
sufficient quantities during the training phase of an 
algorithm, operating conditions may change after system 
deployment, creating a need to retrain the system by 
augmenting its previous training set with new data. If an 
algorithm is able to take advantage of the unlabeled data 
the system collects, the retraining may be automated, 
forestalling the need for additional human intervention. 
To achieve these ends, we introduce a set of algorithms, 
λMEEM, which can exploit unlabeled data to improve 
detection performance. 
λMEEM algorithms combine discriminative learning 

and estimation of the generative probability distribution 
of the data [1]. Our experiments indicate that by 
combining discrimination and prediction, λMEEM 

algorithms can outperform a strictly discriminative 
method in classification, and a strictly maximum 
likelihood approach in prediction. In this paper we 
demonstrate the efficacy of λMEEM in learning to detect 
people using partially labeled data. 

In our semi-supervised scenario we provide the 
learning algorithm with significant quantities of unlabeled 
data collected passively by a moving camera. A user 
labels a fraction of the data to indicate to the algorithm 
the class memberships of interest. λMEEM is then used to 
fit a people detection model to these data. We do not seek 
to compete with state of the art people detection systems. 
Instead we choose a simple feature set and detection 
model in order to focus on the challenges associated with 
learning over partially labeled data. We compare our 
results to a purely generative Expectation Maximization 
(EM) [2, 5] based approach. 

To explore the intuition behind concurrently learning 
a generative and discriminative model, consider the 
average probability of error of a classifier. 

 
      ( ) ( , ) ( | ) ( )P error P error x dx P error x P x dx= =∫ ∫  
 

The probability of error is a function of two terms, the 
probability of the data and the probability of making an 
error over the data. Typically we do not know ( )P x  or 

( | )P error x . While generative models seek to accurately 
characterize ( )P x , discriminative models attempt to 
minimize ( | )P error x . During training, if the generative 
and discriminative models share parameters, λMEEM 
weaves together these two types of learning. The 
probabilities estimated by the generative model reweight 
the exemplars used in discriminative learning, such that 
mistakes on points likely to occur under our generative 
model receive increased emphasis, while mistakes over 
unlikely points receive decreased emphasis. Analogously, 
the discriminative model weights the exemplars so that 
points assigned to a class are emphasized by the 
generative model corresponding to that particular class. 

Outside of a classification setting, one can obtain 
insight about concurrently learning discriminative and 
generative models by examining unsupervised learning. 
Consider K-means and EM, two algorithms widely used 
to find structure in unlabeled data. While K-means is 



viewed as a clustering algorithm, the EM algorithm seeks 
to find a probabilistic model that maximizes the 
likelihood of the data. The relationship between K-Means 
and EM is well known [3]. Consider the case of EM 
applied to a Gaussian mixture model. While seeking 
parameters that maximize data likelihood, EM iteratively 
calculates the soft responsibilities/contributions of each 
Gaussian component to each data point. In contrast, K-
means assigns hard responsibilities by partitioning the 
data points via a Euclidean distance metric. Assuming 
this form of responsibility, along with restrictions on the 
component priors and covariance matrices, demonstrates 
that K-means is a specialized form of EM. The restriction 
on the responsibilities required to convert EM to K-means 
states that only one component in the mixture of 
Gaussians should be responsible for any data point. K-
means therefore focuses on partitioning the observed 
data, an inherently discriminative task, while EM attempts 
to make the data probable, a generative approach. 

The difference between EM and K-means suggests a 
new framework for fitting models to data based on the 
relationship between partitioning the observed data and 
making the observed data likely. This paper presents such 
an algorithmic framework. EM lies at one extreme and 
makes the data probable, while a discriminative 
counterpart, Minimization of Error (ME), lies at the 
opposite extreme and seeks to find a decision-maker that 
partitions the data with minimum probability of error. 
Between the two extremes there exist an infinite number 
of convergent algorithms, called λMEEM, of which a 
generalization of K-means is one example. 

The theory underlying λMEEM is explained in section 
2. We introduce our detection model and feature sets in 
section 3. Section 4 contains experimental results. 
 
2. λMEEM Algorithms 
 
2.1 Introduction 
 

In this section we introduce the λMEEM family of 
algorithms. We begin by reviewing relevant work in 
learning over partially labeled data, and defining the 
appropriate notation. We then introduce the 
discriminative ME algorithm, and review the generative 
EM algorithm. By combining the objective functions of 
ME and EM we obtain the MEEM algorithm. We then 
demonstrate that the manner in which the two objective 
functions are combined can be generalized to yield a set 
of algorithms called λMEEM. Detailed derivations can be 
found in [1]. 

Learning over partially labeled data is an active area of 
research in the machine learning community. Seeger [4] 
provides a detailed survey of learning over partially 

labeled data. Miller and Uyar [5] treat class membership 
as a latent variable and apply EM to learn by maximizing 
a joint likelihood function over both labeled and 
unlabeled data. This allows them to fit separate latent 
variable models to separate classes, and to utilize partially 
labeled data, but is not an inherently discriminative 
approach. Nigam, McCallum, Thrun, and Mitchell [6] 
apply EM to train a naïve Bayes classifier where the class 
membership is viewed as the missing data. Superior 
performance is demonstrated by learning over both 
labeled and unlabeled data. This approach is also not 
inherently discriminative in nature. Jaakkola and Haussler 
[7] combined discriminative and generative learning to 
obtain superior classification performance by utilizing a 
generative model trained over partially labeled data to 
estimate a Fisher Kernel, which they then used to train a 
Support Vector Machine (SVM). Beyond their use of the 
non-probabilistic SVM as a discriminative model, their 
approach differs from ours in that their estimation of the 
generative model is decoupled from the discriminative 
model. In our approach, the discriminative and generative 
models regularize each other during training. 

 
2.2 Notation 

 
The observed data 1{ ,..., }NV V V=  is generated by 

sampling from mutually exclusive binary hidden/latent 
variables 1{ ,..., }KH H H=  with associated probabilities 

1{ ,..., }, 1K kπ π π π= Σ = . A generative model, 
parameterized by , where ,G Gθ π θ∈  describes the 
probability distribution of the observed data ( | )GP V θ . 

Each point iV V∈  belongs to some class 
1{ ,..., }m MC C C C∈ = . We define a class to be a subset of 

generative latent variables. There exists some function 
A , furnished by the user, that assigns each class to a 

subset of latent sources, : 2HA C → . A  is not restricted 
to mapping classes to disjoint sets of latent variables.  

If the data set V contains no information about the 
class membership of the observed points we refer to it as 
unlabeled. If labels indicating class membership 
accompany some/all of the data points nV V∈  the data 
sequence is considered partially/fully labeled.  

A decision function : ( , )D V Cθ → , described by 
parameters { , }G Dθ θ θ= , proposes a class label for each 
unlabeled data point nV . Assume that we know that a 
latent variable kH  is responsible for generating the 
unlabeled observation nV . The decision function D  is 
considered to be in error if the class membership it 
proposes is inconsistent with the latent variable kH . 
Inconsistency between the set of proposed class labels 
and the generating latent variable is determined via the 
A function. We define an error function E  that embodies 

this definition. 
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For labeled data, we can evaluate our error function 

directly by examining the consistency of kH  with the true 
class membership via the A  function. Access to the true 
class label allows us to bypass assigning class 
membership via the decision-maker. 

 
2.3 Minimization of Error (ME) 

 
The Minimization of Error (ME) algorithm [1] finds 

model parameters that maximize the probability of not 
making an error on the observed data: 

 
(2)                       arg max ( 0 | , )P E V

θ
θ=   

 
This objective function is difficult to maximize directly 
due to the complex nature of the underlying parameter 
space, and in the case of unlabeled data, because we don’t 
know the true class label. Instead one can derive a lower 
bound, which yields an iterative alternating maximization 
algorithm for objective function (2). We derive this lower 
bound by introducing latent variables and corresponding 
class memberships over the data. Latent variables are 
introduced by marginalizing in an EM-like manner, while 
class memberships are introduced by choosing a function 
A  that maps class labels to a subset of the latent 

variables. Introducing latent variables enables the 
evaluation of error over unlabeled data points. Given that 
a particular latent variable occurs we can compare it to 
the class membership proposed by the decision-maker via 
A . If this latent variable corresponds to the class 

proposed, then the decision-maker is considered to be 
correct. One can therefore think of the probability of 
being in error over a data point as the probability of being 
generated by a latent variable inconsistent with the 
proposed class membership. 

One marginalizes over the latent variables by 
introducing a probability distribution over these variables, 

( )q H . Jensen’s inequality is then applied with respect to 
this distribution to obtain the desired lower bound. 
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The lower bound derived in (3), ( ( ), )q H θ∆ , is a function 
of two disjoint sets of parameters, θ  and ( )q H . θ  
represents the generative and decision model parameters, 

and ( )q H  is a probability distribution over the latent 
variables. In a manner analogous to EM, maximizing ∆  
with respect to the distribution over the hidden variables 
is referred to as an E step, while maximizing with respect 
to the parameters θ  is referred to as an M step. By 
iterating between the two steps one can maximize the 
lower bound∆ . The E step and its optimal solution, as 
well as the M step, are shown below. 
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Though the ME algorithm maximizes a lower bound of 
the true objective function, it also monotonically 
maximizes this function. Since the true objective function 
is bounded above, and given that the objective function is 
monotonically non-decreasing under this algorithm, 
convergence is guaranteed. 

 
2.4 Combining ME and EM to yield λMEEM 

 
ME’s derivation parallels the derivation of EM. The 

objective function of the EM algorithm seeks to make the 
observed data as likely as possible given the model: 
 
(5)                          arg max ( | )P V

θ
θ  

 
Consider an objective function that seeks to maximize 

the joint probability of the data and of not making an 
error in classifying the data. 
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This objective function is equal to maximizing the 
objective function of ME (2) multiplied by EM’s 
objective function (5). An algorithm called MEEM 
maximizes this joint objective function [1]. If one 
assumes the generative model to be a mixture model and 
the observations to be independent, this algorithm 
corresponds to a generalized form of K-means. 

 In order to explore the relationship between 
maximizing the likelihood of the observed data and the 
probability of not making an error over these observations 
the following set of objective functions is proposed [1].  

 
(7)        arg max ( 0 | , ) ( | ) , [0,1]P E V P Vλ λ

θ
θ θ λ1−= ∈  



Though this set of objective functions departs from a 
strictly probabilistic setting, the particular manner in 
which we relate the probability of the data and the 
probability of not making an error over the data preserves 
the convexity of ME and EM, allowing us to derive a 
family of convergent algorithms that co-learn 
discriminative and generative models called λMEEM. 
The parameter λ controls the characteristics of the 
objective function. λ=0 corresponds to EM and seeks to 
maximize data likelihood, while λ=1 corresponds to ME 
and seeks only to minimize errors over the data. 
Intermediate λ-valued objective functions seek to learn 
the probability of the data and minimum error decision 
models. By setting λ=0.5 we see that MEEM is also a 
member of this family of algorithms. These algorithms 
are summarized below. 

As before, we cannot directly maximize the objective 
function (7) and therefore we derive a lower bound which 
will yield a tractable solution. 

 

(8)      , ( ), ( )

arg max ( 0 | , ) ( | )

( 0, | , )arg max ( ) log
( )
( , | )                  (1 ) ( ) log

( )
( ( ), ( ), )

q H q H

P E V P V

P E H Vq H dH
q H
P V Hq H dH

q H
q H q H

λ λ

θ

θ

θ θ

θλ

θλ

θ

∆ Γ

1−

∆
∆

Γ
Γ

∆ Γ

=

=
≥

+ −

= Λ

∫

∫
  

 
The λMEEM lower bound concurrently evolves two 

probability distributions over the hidden variables, 
( )q H∆  and ( )q HΓ . ( )q HΓ  describes the likelihood that 

a hidden variable generated the data. ( )q H∆  incorporates 
information about the classification decisions induced by 
the decision model by  describing the likelihood of the 
data given that a class membership has been determined 
and thus a subset of the hidden variables has been 
categorically ruled out. These two posterior distributions 
are combined in a weighted manner, allowing one to 
integrate aspects of both distributions. A likelihood-based 
posterior can soften the hard partitions of a classification-
based posterior. 

We can prove that maximizing the λMEEM lower 
bound also maximizes the true objective function. The 
optimal E steps, and the M step are described below.  
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To ground the discussion of this set of algorithms we will 
examine their application to specific generative and 
discriminative models. 

2.5. Mixtures of Gaussians 
 

We apply λMEEM to a mixture of a mixture of 
Gaussians (MMOG) and a maximum a posteriori (MAP) 
classifier. From a generative perspective, an MMOG is 
equivalent to a simple mixture of Gaussians, though from 
a discriminative perspective we model each class with a 
separate mixture of Gaussians. Assume data points are 
independently sampled from a mixture of a mixture of K 
Gaussians. 
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Assume each class corresponds to a disjoint subset of 
latent variables by defining the following A  function: 

( 1) 1( ) { ,..., }i i K i KA C H H− ⋅ + ⋅= . Finally, assume that the 
decision maker D  takes the form of a MAP classifier. 
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The full derivation of the E-step for this model is 

omitted due to space limitations. The M step was 
performed using conjugate gradient descent over 
constrained parameters. Constraints on the covariance 
matrix parameters and mixing weights were necessary in 
order to ensure that the Gaussian probability distributions 
proposed by the algorithm were well defined.  
 
3. Person Detection Model 
 
3.1 Introduction 
 

To provide a context for the evaluation of the use of 
partially labeled training data when training an 
appearance-based people detection model we develop a 
simple statistical people detection framework. We did not 
attempt to construct a state of the art detection system, 
examples of which are presented in [8, 9], but one that 
demonstrates good detection performance through the 
incorporation of partially labeled data in the training 
process. 

 
 3.2 Detection Model 

 
Our object detection framework is based on a model 

which captures the statistics of a feature vector computed 
at each pixel. The color values at each pixel comprise our 
feature set. Taking RGB pixel values, we convert these 
values to CIE LAB space, and then discard the intensity 



Figure 2. We obtained the image on the left from our test set, and plotted pixel-wise plots of the ratio of the person to background model 
probabilities. Black pixels indicate low ratios, and white pixels indicate high ratios. The models were trained using the data plotted in figure 1a. The 
EM-based model ratios are shown in the middle. The λMEEM model based ratios are shown on the right. As can be seen in these plots, λMEEM 
induces sharper partitions between the person and background models than the EM-based models. 

information. Though color forms a poor feature space, 
particularly given the well-known color constancy 
problem [10], we chose to use it in order to maintain the 
simplicity of our detection model. By choosing a simple 
feature set we seek to focus solely on the learning 
algorithm. 

Our training set contains a set of pictures taken from a 
moving camera in an indoor environment. Looking 
through the images, we selected several patches in the 
image and labeled them as ‘person’ or ‘background.’ A 
partially labeled color data set is shown in figure 1a. 
From these data we can see that in our color feature space 
the ‘person’ and ‘background’ classes overlap 
significantly. Furthermore, the multimodal locations of 
the labeled points suggest that the underlying class 
conditional probability distributions are not Gaussian in 
nature.  

In our model, the distribution of values in the feature 
space is modeled using a mixture of axis-aligned 
Gaussians. We use nine Gaussians to model the person 
class and an additional nine Gaussians to model the 
background class. Using λMEEM we fit these models to 
the data. A λ=0.2 λMEEM model and its corresponding 
decision boundary are shown in figure 1. The value λ=0.2 

was chosen using cross validation. From an initial 
examination of figure 1b the manner in which a λMEEM 
solution differs from a conventional EM-based mixture of 
Gaussians solution is not obvious. To highlight this 
difference we used EM [5] over the same partially labeled 
data to fit an identical type of model from the same initial 
point. Using a test image, we plotted at each pixel the 
ratio of the probability of a person to the probability of 
background. The results are shown in figure 2. λMEEM 
induces sharper class partitions than EM, and produces 
lower per pixel error rates as shown in figure 4. 

To move from a pixel-based model to a person-based 
model we assume that the probability that a particular 
pixel was generated by a person as opposed to the 
background is determined not only by the pixel, but also 
by its neighbors. A neighborhood is defined as a rectangle 
centered at each pixel. Within this rectangle we assume 
that all pixels were generated independently by either the 
‘person’ or ‘background’ model. Given some 
independence assumptions we compute the class 
membership of highest posterior probability for the center 
pixel. Figure 3 shows the ratio of the posterior of the 
‘person’ to ‘background’ class for each pixel, and the 
corresponding people detection results for a test image. 

Figure 1. Plot (a) shows our partially labeled data. Blue circles correspond to unlabeled points, green diamonds to points labeled as ‘background,’ 
and red squares correspond to points labeled as ‘person.’ Plot (b) displays a λMEEM solution to the data in plot (a). Red squares indicate training 
points classified as people, and green diamonds indicate points classified as clutter. The ellipsoids indicate the one-standard-deviation contours 
of the Gaussians. The dot at the center of the ellipsoids indicates the mean. Ellipsoid color indicates class membership. Plot (c) demonstrates the 
decision boundaries induced by these Gaussians. Green regions correspond to parts of the color space classified as background, and red 
regions indicate portions of the color space classified as people. 

(a) (b) (c) 



Figure 3. The image on the left was obtained from our test set. The image in the middle shows the ratio of the person class to background class 
posterior probabilities at each pixel. The image on the right displays the resulting person detection. 

4. Data Augmentation Experiments 
 

In figure 4 we summarize a set of experiments where 
we added unlabeled pixels to a set of thirty labeled pixels. 
Using our enlarged data sets we trained a people detection 
model using both an EM approach [6] and λMEEM. We 
used cross validation to determine a good choice of λ for 
each training set. The best lambda value decreased as the 
fraction of labeled data decreased, but always remained 
above 0. Though for both algorithms adding unlabeled 
data improves classification performance, λMEEM 
consistently achieves a lower error rate than EM on our 
test set. It is important to note that generalization 
performance does not improve monotonically with 
additional unlabeled data points for either algorithm. 

 

 
 

Figure 4. Variation in error rates over a test set for EM and λMEEM as 
a function of the number of unlabeled points added to thirty labeled 
points. Error bars were obtained using the Hoeffding inequality with a 
95% confidence interval. 
 
5. Conclusions 

 
λMEEM algorithms can effectively exploit the 

abundance of unlabeled data available in vision 
applications such as people detection. Further, these 
algorithms can outperform purely EM based approaches 
to learning over partially labeled data. In the future we 

hope to apply λMEEM algorithms to sophisticated 
detection models, and to develop an approach to choosing 
λ beyond cross validation. We also hope to explore the 
non-monotonic effect on performance of augmenting our 
training set with additional unlabeled points. 
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