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Abstract

Visual tracking is a class of correspondence-based motion analysis concerned
with desciibing the evolution of image features through a motion sequence
This paper presents a novel solution to the tracking problem with two major
components: a 2D deformaiion model that constrains the interpretation of
motion, and a set of energy-based match criteria that specily image features
to be used in tracking An important property of our formulation is that is
interactive— the user guides the system to a starting point, from which it
solves a series of local optimization problems. This results in fast and flexible
operation over a wide class of image motions We give experimental results
for two real-world image sequences.



1 Introduction

This report presents a fiexible, interactive system for model-based image
tracking. It is based on an underlying deformation model that captures
the change in shape and position of a region of pixels over a sequence of
images. A variety of energy-based match criteria are emploved to connect
the deformation model to image data. We develop an estimation algorithm
for deformation parameter recovery and demonstrate its performarnce on two
real-world image sequences. Qur aigorithm has been implemented in a system
that runs at interactive speeds on a low end graphics workstation.

Their are four major sections in this paper. First, we describe and moti-
vate the tracking problem. Second, we present the mathematical framework
and implementation of our solution In the third section we contrast our
approach to previous vision research in motion. In the fourth, we present the
results of applying owr system to two real image sequences

2 Motivation

One of the most basic characteristics of our world is the way it changes
with time. Computer vision has a rich history of techniques for analyzing
the time-varyving image field produced by a dynamic scene. We address a
particular type of correspondence-based motion analysis, that we terrn visual
iracking. Fundamentally, the tracking problem consists of identifying regions
in an image which correspond to interesting structures in the imaged scene,
and following them across an image sequence The trajectories of the image
teatures provide basic information about the kinematic behavior of structuies
in the scene.

Two practical examples of tracking problems considered in this paper
are 3D object tracking and cell structure kinematic analysis. In Section 5
we describe the application of our system to sample problems in these two
domains. In the paragiaphs that tollow, we give a brief overview of these two

" problem areas and the motivation for our research.

In a typical 3D object tiacking scenario, a 10bot employs a camera to
monitor the position of moving objects in its environment. This requizes
identifying a group of pixels in an image that cortespond to an interesting
object, and following these pixels thicugh a motion sequence Two sample



problem domains are autonomous navigation of vehicles in traffic [5], in which
object tracking of adjacent vehicles is vital for collision avoidance, and visual
robot servoing [17], in which robot end-effector velocity is contzolied to match
that of a reference object in the scene. .

A second application of visual tracking occurs in medical imaging. The
dvnamic behavior of cell structures gives important clues about their bio-
logical tunction Quantitative fluorescence microscopy is a promising tech-
nology for measuring chemical and molecular dynamics within living cells,
that draws on the fields of fluorescence chemistry, biochemistry, spectioscopy,
and image processing [16]. The basic approach is to engineer flourescent hi-
ological materials that can be incorporated into the normal structure of a
living cell. Dynamic cell behavior can then be recorded by illuminating the
cell with specific wavelengths of light and capturing the emitted light with
a video camera Sophisticated image processing techniques are necessary to
turn this raw video data into measurements of specific cell parameters [3]
As an 1mtial approach to this important problem, we are employing tracking
techniques to measure cell stiucture kinematics.

3 Tracking Problem

The essential components of the tracking problem are the image features
selected for tracking, the model employed to describe their motion, and the
algorithm that computes model parameters fiom an image sequence. Ow
choices in these areas 1eflect our four major system objectives:

1. Flexibility In order to address the markedly different types of im-
age motion that result from the two tracking problems desaiibed above,
out formulation must encompass a variety of image features and mo-
tion models, and allow the user to tailor his choice to the application
Flexability in specification is achieved by separating the model of image
deformation from the match criteria, and developing a general frame-
work for each.

2. Interactive Capability In order to be truly flexible, our system
must allow a user to interact with the model on the fly and adapt its
behavior to the problem. Thus we leave the issue of initial feature
selection to the user, who can employ his special knowledge of the
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application. The energy-based iformulation we present allows us to
include the user interface to the model in the same {ramework as the
match criteria.

3. Speed Our ultimate goal is to track image features at frame rate
(30 frames/sec for NTSC video), thereby following the change in the
image at the rate at which 1t is occurring. The system we desciibe
in this paper is operating at interactive speeds on a Silicon Graphics
Personal Iris

4. Focus of Attention One important benefit of an interactive ap-
proach is that the user can focus the attention of the system to specific
areas it the timage, in contrast to general motion techniques which must
perform computations at every pixel. The corresponding reduction in
computational overhead is the primary reason we believe we can reach
frame rate speeds without specialized hardware.

Our solution to the tiacking problem consists of three parts: 1notion
model, match criteria, and estimation algorithm. The motion model, called
a patch, is a deformable sheet with mass, that is allowed to change shape
m a constrained manner. It is connected to the images through the match
criteria, a set of energy functions on the image that exert forces on the sheet,
causing it to follow the motion The user initializes the tracking system hy
positioning a patch on an area of the image and selecting the match crieria
As each new image is acquired, the estimation algorithm computes the patch
model parameters that best explain the motion in the new frame. Therefore,
a sequence of images generates a sequence of optimization problems. In the
subsections that follow, we describe each of the above parts in more detail and
explain how they succeed as a whole in achieving our performance objectives

3.1 Patch Model and Optimization Framework

The function of the patch model is to describe the deformation of a variable-
sized region ol an image. The patch itself is a two dimensional sheet, whose
shape i1s described by a parametiic function w(q,r) that maps meterial co-
ordinates, r = [u,v]’, to image coordinates. q is a vector of state variables

b =]al,a2,. ,an] defines an n-element column vector, and b* denotes its transpose



that determine the shape and position of the patch. If x = {z,¥] is a point
in image coordinates, then the relation x = w{q,r} 0 < (u,v) <1 defines a
region of pixels in the image. Furthermore, if the states are functions of time,
then x(t) = w(q(t),r) describes a time-varying pixel deformation that can
be used to model image motion. Therefore, the patch serves two purposes:
it defines the set of pixels being tracked, and it constrains the interpretation
of their motion. The advantage of the patch framework 1s that a motion
model can be specified independently of the choice of features for recovering
the motion.

We restrict ourselves to deformations that can be described by polynomi-
als in material coordinates In this case, the state variables are polynomial
coeflicients, To obtain a mapping that is linear in these variables, we write:

x = Rp (1)

where R is a matrix formed from the elements of q, and p is a vector func-
tion of material coordinates. In a fizst order model, for example, R is a
homogeneous transtormation matrix end p = [w,v,1]. In this case, the
patch is an affine transformation of the unit square, and its state variables
consist of four coefficients of rotation/scaling/shearing and two of transla-
tion Alternatively, a second order model can be easily obtained by letting
p = [u®, v* uv,u,v,1] and adding six more state variables.

Within this framework, the estimator’s goal is to generate a sequence
of state vectors, §;, one for each image, that best describe the motion in
the sense of being the local minimum of a set of objective functions In the
next subsection, we desciibe some sample match criteria and their associated
objective functions In the remainder of this subsection, we develop the
optimization framework that leads to the estimation algorithim.

Consider the problem of finding the vector § that is a local mininmum of
some function V(q). A standaid class of numerical solutions to this prob-
lem, know as Steepest Descent Methods [4], involve iteratively solving the
equation

= 2)

The above equation can be viewed as a dynamic model for the patch, driven
by the forcing function —4V/9q. For many optimization problems, including
our patch model, Equation 2 exhibits a scaling problem [4]. The difficulty is



that the forcing function is allowed to affect all of the parameters equally,
m spite of the fact that a differential change in some of the parameters, like
rotation, may have a much stronger effect on image coordinates than a change
in others, such as transiation Stability may be improved by introducing a
weighting matiix that normalizes the generalized foice by adjusting it to
the scales of its parameters. The desired normalization can be accomplished
using a mass matriz, which in physical systems expresses the relationship
between force and acceleration By assigning mass to points in the patch
model, we can apply standard methods of classical mechanics to derive its
mass matiix and equations of motion.

A physical patch model with mass possesses both kinetic and potential
energy The potential energy, V{q), of the patch consists of the objective
functions that constrain its shape and location, and insure that the equilib-
rium state of the patch dynamic system 1epresents a local solution to the
minimization problem The kinetic energy. T(q}, describes the physical be-
havior of the patch in response to forces, and influences the path it follows
to the minimum The physical patch model bears a strong resemblance to
the physical animation models desciibed in [19], although the energy fune-
tions have a different interpretation. An additional side effect of providing a
“physical” patch model is that human intuition about the behavior of every-
day physical systems can be exploited in designing the user intertace to the
model [18] _ .

To dernive the dynamic equations of the patch, we use a modified form of
Lagrange's equations [7], in whick the normal time derivative of 9T/9¢ is
ommitted, leading to a first order, rather than second order, dynamic system
The equation of motion is given by:

or oI -V)

-_— = 0

g dq
To obtain a disciete dynamic model, material coordinates are sampled over
a grid and a mass m; is assigned to each discrete image point x;. We then
have

1 i
T = aZﬂléX?Xi
<
Now, wiiting Dquation 1 in a more useful form, we obtain

x; = Alq 3)



where

| p: O
A@-—{O le

and q is the usual state vector. Note that if p is an n-vector, then A is a
2n % 2 matiix Since A; is not a function of time, we have point velocity

i = Alg
and kinetic energy
l— .
T = 5 > omig AALG
or 1
T = é'c'liMC'l
where M is a constant symmetric block diagonal mass matrix
M= maai=|"
B : TR0 m

with submatrix
. ¢
m = Z miP:P;
;

It follows trivially that

or
E
and 57
dq =0
leading to the dynamic equation
My=-S0 )

Comparing Equation 4 to Equation 2, we see that the only difference is
the presence of the mass matrix, M. To obtain the conditioning matrix, we
invert M and move it to the right hand side of Equation 4



3.2 Match Criteria

The right hand side of Equation 4 can be viewed as a generalized force, acting
in parameter space to drive the system to an operating point at which the
potential energy, or alternatively the objective function, is at a minimum
The objective function specifies the match criteria, and determines how the
patch responds to the image data In general, the total potential energy V
is a sum of objective functions, each of which derives from a specific image
feature. The main advantage of this formulation is that the user can tailor
his choice of image features to the problem without altering the deformation
model.

In our implementation of this framework, we have focused on two energy
functions, which we describe below The first is termed blob energy, and
1t measures squated intensity error between groups of pixels in two images
A Dblob 1s a window on the patch that connects it to a group pixels in the
underlying image, and piovides a basic region tracking capability Each blob
contains a set of stored pixels, and can compute the intensity eitor between
these pixels and the set of pixels it “sees™ as a result of the current patch
state Specifically, if qo denotes some initial position of the patch in image
Iy, then

Vila) = Sllo(w(r, o))~ I(w(r,, ) 5)

3

is the blob objective function for the current image The state estimate that
minirnizes V¥, gives the deformation of the patch in image I which is localiy
best 1n an RMS sense in tiacking a group of pixels between frames.
A second useful objective function is the simple spring potential defined
by
Vi = ks — (6)

If x, is a function of material coordinates, then Equation 6 describes the
scenario in which the spring is affixed to the paich at one end, and either the
image o1 a mouse at the other If x; is a function of a second set of material
~coordinates, then V; models a spring constraint between two patchs, that can
be used for simple coordinated motion tracking.

The above two examples are by no means exhaustive. A large variety of
image features can be emploved for motion interpretation, and our energy-
based formulation piovides a simple framework for incorportating them into
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our estimator. We are currently investigating the use of contour-based ob-
jective functions related to those described in [9].

3.3 Estimation Algorithm

The primary value of Equation 4 is that it reduces the optimization probiem

for the patch to the simulation to equilibrium of a first order dynamic system.

The numerical methods literature is filled with techniques for performing this

simulation [10] For our implementation, we obtained a simple estimation

algorithm by applying Euler’s method to Equation 4, resulting in the update
equation: o

R S 1YY ~

T =q - Mo {7)

whete p is the step size. As stated earlier, this is equivalent to a steepest
descent algorithm with conditioning matrix M™%

The algorithin is applied to image sequences in the following manner: in
the first image, the user positions the patch over some region of interest,
thereby initializing the patch state to some gy The user then selects from
a menu of image features, such as blobs and springs, and constiucts the ob-
jective function. As the images are processed sequentially, the final state
estimate from the :th image is taken as the initial starting point in tracking
the (¢ + 1}th image. For each new image, Equation 7 is simulated to equi-
librium, resulting in an estimate §; of patch state that represents the best
local match to the given initial region of pixels. The result of applying this
algorithm to m images is a set of state vectors, qp 10 qum_y, that describe the
-evolution of the patch with time.

4 Previous Work

The most important characteristic of the tracking problem is its description
of motion in ferms of correspondences between image features. Concern
for the perceptual identity of features in motion [15] is what distinguishs
. correspondence-based motion pioblems, of which tracking is an example,
from gradient-based approachs such as optical flow [8]. A second difference
is the temporal scale of the problem. Optical flow computation, for example,
is a local operation in time. It is useful because the instantaneous velocity



in an image at a single time instant has a meaningful interpretation. The
position function for an image featuie, on the other hand, is only meaningful
over a time wnterval, and so the tracking problem is global in time.

QOur definition of the tracking problem and its proposed solution difler
{rom conventional correspondence-based motion work [1, 14] in two impor-
tant wavs: the use of an explicit 2D model for constraining motion, and the
interactive nature of our solution. Our deformable patch is clearly related to
the 3D object models presented in [11, 12]. However, most motion techniques
employ 1mplicit constraints on motion, rather than explicit models. An ex-
ample is the smoothness constraint for optical flow, introduced in [8]. The
only exception in the literature is in the case of rigid body motion, where 3D
motion of world points between image frames can be characterized by eight
paramters of rotation and translation [14] Two other examples of the use of
explicit 3D models in rigid body motion are [6, 13]

There are many cases, however, in which the rigid body motion assump-
tion is not appropriate. There are even cases, such as the actin experiments
we discuss in Section 5, in which an explicit 3D model is undesirable. In gen-
eral, our 2D deformation model has two main advantages over conventional
motion techniques: robustness and speed By describing the motion of a re-
gion of pixels with a simall number of parameters, we obtain robustness. This
is in contrast to the optical flow problem, in which the number of unknowns
(two at each pixel) far outweighs the available measurements The second
advantage of our modei 1s that it restricts our focus to a region of pixels,
allowing us to perform fewer computations and track at higher fiame rates
Other systems emploving a window-based approach are desciibed in [2, 5].
An advantage of ouwr method, however, is that it does not require specialized
Lhardware to run at interactive speeds.

The second difference between our work and previous attempts at motion
analysis is the inferactive natwe of our solution. As described in [9], one of
the main advantages of an interactive approach is that it frees the system
from making the arbitrary high-level decisions often required for successtul

Jow-level interpretation. In owr framework, for example, if the user knows
that a scene contains only translational motion, he can easily add a constraint
to the model causing it to prefer pure translation. Or if he knows that a
scene produces strong intensity contours, he can incorporate them into the
objective function and impiove tracking It can be very difficuit for a general
vision system to infer these image properties, and failure to do so may lead



to incorrect low-level interpretations,

5 Experiments

We have implemented our system on a Silicon Giaphics Personal Iris 41)-20
workstation, and applied it to two sets of real-world motion data In the first
sequence, some frames of which are given in Figure 1, a single patch model
with four smaller blobs tracks a coffee mug which is rotating, translating, and
zooming Each of the blobs tiies to track the 1egion of pixels it covered in
the first frame of the sequence Ii is interesting to note the giaceful failure of
the blob in the lower left coiner of the patch, when the pixels it was following
dissapeared from the scene in the final few f1ames. The patch as a whole was
able to track the scene correctly.

The second set of data, shown in Figure 2, was taken from a growth stimu-
lation experiment performed at the Center for Flourescence Research (CRF)
at Camnegie Mellon University [16]. It depicts the formation and transport
of actin fibers in a single Swiss 3T3 cell. The patch model successfully tracks
the cell nucleus, in spite of the fact that it fades into the background.

6 Conclusion and Future Work

We have described an interactive approach to visual tracking that exhibits
the desirable properties of flexibility, speed, and robustness. At the heart
of our solution is an energy-based deformable model that constrains motion
interpretation, but permits user-directed application to a variety of scenarios

Extensions of our work could proceed along two lines First, as discussed
in Section 4, estimator performance is linked to the local intensity structure of
the image [t would be desirable to find an analytic relationship between the
intensity pattern and estimator convergence Also, the numerical methods we
currently employ should be augmented to include second order techniques [4]
~and analyzed for stability and convergence. In addition to further analysis,
it would be interesting to experiment with additional match criteria, such as
contour information, and extensions of the implementation to second order
deformations.

We would like to thank the Image Understanding group at CMU for use
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of the Calibiated Imaging Laboratory, in which the first motion sequence
was obtained. We are also grateful to Michel Nederlof and Kevin Ryan of
the CFR for providing the actin data
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Figure 1: Mug Sequence: a patch model with four blobs was applied to a 13
frame sequence consisting of a rotating, translating, and zooming mug.

Figure 2: Actin Sequence: a Swiss 3T3 cell, injected with a flourescent analog

of actin, responds to growth stimulus over a 22 frame sequence. A patch with
a single blob (not shown) tracks the nucleus.
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