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Abstract

We present a Bayesian approach to color constancy which utilizes a non-
Gaussian probabilistic model of the image formation process. The pa-
rameters of this model are estimated directly from an uncalibrated image
set and a small number of additional algorithmic parameters are chosen
using cross validation. The algorithm is empirically shown to exhibit
RMS error lower than other color constancy algorithms based on the
Lambertian surface reflectance model when estimating the illuminants
of a set of test images. This is demonstrated via a direct performance
comparison utilizing a publicly available set of real world test images
and code base.

1 Introduction

Color correction is an important preprocessing step for robust color-based computer vision
algorithms. Because the illuminants in the world have varying colors, the measured color
of an object will change under different light sources. We propose an algorithm for color
constancy which, given an image, will automatically estimate the color of the illuminant
(assumed constant over the image), allowing the image to be color corrected.

This color constancy problem is ill-posed, because object color and illuminant color are
not uniquely separable. Historically, algorithms for color constancy have fallen into two
groups. The first group imposes constraints on the scene and/or the illuminant, in order to
remove the ambiguities. The second group uses a statistical model to quantify the probabil-
ity of each illuminant and then makes an estimate from these probabilities. The statistical
approach is attractive, since it is more general and more automatic—hard constraints are a
special case of statistical models, and they can be learned from data instead of being spec-
ified in advance. But as shown by [3, 1], currently the best performance on real images
is achieved by gamut mapping, a constraint-based algorithm. And, in the words of some
leading researchers, even gamut mapping is not “good enough” for object recognition [8].

In this paper, we show that it is possible to outperform gamut mapping with a statistical
approach, by using appropriate probability models with the appropriate statistical frame-
work. We use the principled Bayesian color constancy framework of [4], but combine it
with rich, nonparametric image models, such as used by Color by Correlation [1]. The



result is a Bayesian algorithm that works well in practice and addresses many of the issues
with Color by Correlation, the leading statistical algorithm [1].

At the same time, we suggest that statistical methods still have much to learn from
constraint-based methods. Even though our algorithm outperforms gamut mapping on
average, there are cases in which gamut mapping provides better estimates, and, in fact,
the errors of the two methods are surprisingly uncorrelated. This is an interesting result,
because it suggests that gamut mapping exploits image properties which are different from
what is learned by our algorithm, and probably other statistical algorithms. If this is true,
and if our statistical model could be extended in a way that captures these additional prop-
erties, better algorithms should be possible in the future.

2 The imaging model

Our approach is to model the observed image pixels with a probabilistic generative model,
decomposing them as the product of unknown surface reflectances with an unknown il-
luminant. Using Bayes’ rule, we obtain a posterior for the illuminant, and from this we
extract the estimate with minimum risk, e.g., the minimum expected chromaticity error.

Let y be an image pixel with three color channels:(yr, yg, yb). The pixel is assumed to be
the result of light reflecting off of a surface under the Lambertian reflectance model. Denote
the power of the light in each channel by` = (`r, `g, `b), with each channel ranging from
zero to infinity. For each channel, a surface can reflect none of the light, all of the light,
or somewhere in between. Denote this reflectance byx = (xr , xg, xb), with each channel
ranging from zero to one. The model for the pixel is the well-known diagonal lighting
model:

yr = `rxr yg = `gxg yb = `bxb (1)

To simplify the equations below, we write this in matrix form as

L = diag(`) (2)

y = Lx (3)

This specifies the conditional distributionp(y|`,x). In reality, there are sensor noise and
other factors which affect the observed color, but we will consider these to be negligible.

Next we make the common assumption that the light and the surface have been chosen
independently, so thatp(`,x) = p(`)p(x). The prior distribution for the illuminant (p(`))
will be uniform over a constraint set, described later in section 5.3.

The most difficult step is to construct a model for the surface reflectances in an image
containing many pixels:

Y = (y(1), ...,y(n)) (4)

X = (x(1), ...,x(n)) (5)

We need a distributionp(X) for all n reflectances. One approach is to assume that the
reflectances are independent and Gaussian, as in [4], which gives reasonable results but can
be improved upon. Our approach is to quantize the reflectance vectors intoK bins, and
consider the reflectances to beexchangeable—a weaker assumption than independence.
Exchangeability implies that the probability only depends on the number of reflectances in
each bin. Thus if we denote thereflectance histogramby (n1, ..., nK), where

∑
k nk = n,

then
p(x(1), ...,x(n)) ∝ f(n1, ..., nK) (6)

wheref is a function to be specified. Independence is a special case of exchangeability. If
mk is the probability of a surface having a reflectance value in bink, so that

∑
k mk = 1,



then independence says

f(n1, ..., nK) =
∏
k

mnk

k (7)

As an alternative to this, we have experimented with the Dirichlet-multinomial model,
which employs a parameters > 0 to control the amount of correlation. Under this model,

f(n1, ..., nK) =
Γ(s)

Γ(n + s)

∏
k

Γ(nk + smk)
Γ(smk)

(8)

For larges, correlation is weak and the model reduces to (7). For smalls, correlation is
strong and the model expects a few reflectances to be repeated many times, which is what
we see in real images. Whens is very small, the expression (8) can be reduced to a simple
form:

f(n1, ..., nK) ≈ 1
sΓ(n)

∏
k

(smkΓ(nk))clip(nk) (9)

clip(nk) =
{

0 if nk = 0
1 if nk > 0

(10)

This resembles a multinomial distribution on clipped counts. Unfortunately, this distri-
bution strongly prefers that the image contains a small number of different reflectances,
which biases the light source estimate. Empirically we have achieved our best results using
a “normalized count” modification of the model which removes this bias:

f(n1, ..., nK) =
∏
k

mνk

k (11)

νk = n
clip(nk)∑
k clip(nk)

(12)

The modified countsνk sum ton just like the original countsnk, but are distributed equally
over all reflectances present in the image.

3 The color constancy algorithm

The algorithm for estimating the illuminant has two parts: (1) discretize the set of all
illuminants on a fine grid and compute their likelihood and (2) pick the illuminant which
minimizes the risk.

The likelihood of the observed image dataY for a given illuminant̀ is

p(Y|`) =
∫
X

(∏
i

p(y(i)|`,x(i))

)
p(X)dX (13)

= |L−1|np(X = L−1Y) (14)

The quantityL−1Y can be understood as thecolor-corrected image. The determinant term,
1/(`r`g`b)n, makes this a valid distribution overY and has the effect of introducing a
preference for dimmer illuminants independently of the prior on reflectances. Also implicit
in this likelihood are the bounds onx, which require reflectances to be in the range of zero
and one and thus we restrict our search to illuminants that satisfy:

`r ≥ max
i

yr(i) `g ≥ max
i

yg(i) `b ≥ max
i

yb(i) (15)

The posterior probability for̀ then follows:

p(`|Y) ∝ p(Y|`)p(`) (16)

∝ |L−1|np(X = L−1Y)p(`) (17)



The next step is to find the estimate of` with minimum risk. An answer that the illuminant
is `∗, when it is reallỳ , incurs some cost, denotedR(`∗|`). Let this function be quadratic
in some transformationg of the illuminant vector̀ :

R(`∗|`) = ||g(`∗)− g(`)||2 (18)

This occurs, for example, when the cost function is squared error in chromaticity. Then the
minimum-risk estimate satisfies

g(`∗) =
∫

`

g(`)p(`|Y)d` (19)

The right-hand side, the posterior mean ofg, and the normalizing constant of the posterior
can be computed in a single loop over the grid of illuminants.

4 Relation to other algorithms

In this section we describe related color constancy algorithms using the framework of the
imaging model introduced in section 2. This is helpful because it allows us to compare all
of these algorithms in a single framework and understand the assumptions made by each.

Independent, Gaussian reflectancesThe previous work most similar to our own is by
[10] and [4]; however, these methods are not tested on real images. They use a similar
imaging model and maximum-likelihood and minimum-risk estimation, respectively. The
difference is that they use a Gaussian prior for the reflectance vectors, and assume the
reflectances for different pixels are independent. The Gaussian assumption leads to a sim-
ple likelihood formula whose maximum can be found by gradient methods. However, as
mentioned by [4], this is a constraining assumption, and more appropriate priors would be
preferable.

Scale by max The scale by max algorithm (as tested e.g. in [3]) estimates the illuminant
by the simple formula

`r = max
i

yr(i) `g = max
i

yg(i) `b = max
i

yb(i) (20)

which is the dimmest illuminant in the valid set (15). In the Bayesian algorithm, this
solution can be achieved by letting the reflectances be independent and uniform over the
range 0 to 1. Thenp(X) is constant and the maximum-likelihood illuminant is (20). This
connection was also noticed by [4].

Gray-world The gray-world algorithm [5] chooses the illuminant such that the average
value in each channel of the corrected image is a constant, e.g.0.5. This is equivalent to the
Bayesian algorithm with a particular reflectance prior. Let the reflectances be independent
for each pixel and each channel, with distributionp(xc) ∝ exp(−2xc) in each channelc.
The log-likelihood for̀ c is then

log p(Yc|`c) = −n log `c − 2
∑

i

yc(i)
`c

+ const. (21)

whose maximum is (as desired)

`c =
2
n

∑
i

yc(i) (22)



Figure 1: Plots of slices of the three dimensional color surface reflectance distribution
along a single dimension. Row one plots green versus blue with 0,0 at the upper left of
each subplot and slices in red whose magnitude increases from left to right. Row two plots
red versus blue with slices in green. Row three plots red versus green with slices in blue.

Color by Correlation Color by Correlation [6, 1] also uses a likelihood approach, but
with a different imaging model that is not based on reflectance. Instead, observed pixels
are quantized into color bins, and the frequency of each bin is counted for each illuminant,
in a finite set of illuminants. (Note that this is different from quantizingreflectances, as
done in our approach.) Letmk(`) be the frequency of color bink for illuminant`, and let
n1 · · ·nK be the color histogram of the image, then the likelihood of` is computed as

p(Y|`) =
∏
k

mk(`)clip(nk) (23)

While theoretically this is very general, there are practical limitations. First there are train-
ing issues. One must learn the color frequencies for every possible illuminant. Since
collecting real-world data whose illuminant is known is difficult,mk(`) is typically trained
synthetically with random surfaces, which may not represent the statistics of natural scenes.
The second issue is that colors and illuminants live in an unbounded 3D space [1], unlike
reflectances which are bounded. In order to store a color distribution for each illuminant,
brightness variation needs to be artificially bounded. The third issue is storage. To reduce
the storage of themk(`)’s, Barnard et al [1] store the color distribution only for illuminants
of a fixed brightness. However, as they describe, this introduces a bias in the estimation
they refer to as the “discretization problem” and try to solve it by penalizing bright illu-
minants. The other part of the bias is due to using clipped counts in the likelihood. As
explained in section 2, a multinomial likelihood with clipped counts is a special case of the
Dirichlet-multinomial, and prefers images with a small number of different colors. This
bias can be removed using a different likelihood function, such as (11).

5 Parameter estimation

5.1 Reflectance Distribution

To implement the Bayesian algorithm, we need to learn the real-world frequenciesmk of
quantized reflectance vectors. The direct approach to this would require a set of images
with ground truth information regarding the associated illumination parameters or, alter-
nately, a set of images captured under a canonical illuminant and camera.

Unfortunately, it is quite difficult to collect a large number of images under controlled
conditions. To avoid this issue, we usebootstrapping, as described in [9], to approximate
the ground truth. The estimates from some “base” color constancy algorithm are used as
a proxy for the ground truth. This might seem to be problematic in that it would limit any
algorithm based on these estimates to perform only as well as the base algorithm. However,
this need not be the case if the errors made by the base algorithm are relatively unbiased.



We used approximately 2300 randomly selected JPEG images from news sites on the web
for bootstrapping, consisting mostly of outdoor scenes, indoor news conferences, and sport-
ing event scenes. The scale by max algorithm was used as our “base” algorithm. Figure
1 is a plot of the probability distribution collected, where lighter regions represent higher
probability values. The distribution is highly structured and varies with the magnitude of
the channel response. This structure is important because it allows our algorithm to disam-
biguate between potential solutions to the ill-posed illumination estimation problem.

5.2 Pre-processing and quantization

To increase robustness, pre-processing is performed on the image, similar to that performed
in [3]. The first pre-processing step scales down the image to reduce noise and speed up
the algorithm. A new image is formed in which each pixel is the mean of anm by m
block of the original image. The second pre-processing step removes dark pixels from the
computation, which, because of noise and quantization effects do not contain reliable color
information. Pixels whoseyr + yg + yb channel sum is less than a given threshold are
excluded from the computation.

In addition to the reflectance prior, the parameters of our algorithm are: the number of
reflectance histogram bins, the scale down factor, and the dark pixel threshold value. To set
these parameters values, the algorithm was run over a large grid of parameter variations and
performance on the tuning set was computed. The tuning set was a subset of the “model”
data set described in [7] and disjoint from the test set. A total of 20 images were used, 10
objects imaged under 2 illuminants. (The “ball2” object was removed so that there was no
overlap between the tuning and test sets.) For the purpose of speed, only images captured
with the Philips Ultralume and the Macbeth Judge II fluorescent illuminants were included.

The best set of parameters was found to be:32 × 32 × 32 reflectance bins, scale down by
m = 3, and omit pixels with a channel sum less than8/(3× 255).

5.3 Illuminant prior

To facilitate a direct comparison, we adopt the two illuminant priors from [3]. Each is
uniform over a subset of illuminants. The first prior,full set, discretizes the illuminants
uniformly in polar coordinates. The second prior,hull set, is a subset offull set restricted
to be within the convex hull of the test set illuminants and other real world illuminants.
Overall brightness,̀r + `g + `b, is discretized in the range of 0 to 6 in 0.01 steps.

6 Experiments

6.1 Evaluation Specifics

To test the algorithms we use the publicly available real world image data set [2] used
by Barnard, Martin, Coath and Funt in a comprehensive evaluation of color constancy
algorithms in [3]. The data set consists of images of 30 scenes captured under 11 light
sources, for a total of 321 images (after the authors removed images which had collection
problems) with ground truth illuminant information provided in the form of an RGB value.

As in the “rg error” measure of [3], illuminant error is measured in chromaticity space:

`1 = `r/(`r + `g + `b) `2 = `g/(`r + `g + `b) (24)

R(`∗|`) = (`∗1 − `1)2 + (`∗2 − `2)2 (25)
The Bayesian algorithm is adapted to minimize this risk by computing the posterior mean
in chromaticity space. The performance of an algorithm on the test set is reported as the
square root of the averageR(`∗|`) across all images, referred to as the RMS error.



Table 1: The average error of several color constancy algorithms on the test set. The value
in parentheses is 1.64 times the standard error of the average, so that if two error intervals
do not overlap the difference is significant at the 95% level.

Algorithm RMS Error for Full Set RMS Error for Hull Set
Scale by Max 0.0584 (+/- 0.0034) 0.0584 (+/- 0.0034)
Gamut Mapping without Segmentation 0.0524 (+/- 0.0029) 0.0461 (+/- 0.0025)
Gamut Mapping with Segmentation 0.0426 (+/- 0.0023) 0.0393 (+/- 0.0021)
Bayes with Bootstrap Set Model 0.0442 (+/- 0.0025) 0.0351 (+/- 0.0020)
Bayes with Tuning Set Model 0.0344 (+/- 0.0017) 0.0317 (+/- 0.0017)

Bayes with Tuning Set Model
Bayes with Bootstrap Set Model

Gamut Mapping with Segmentation
Gamut Mapping without Segmentation

Scale by Max

0.030 0.035 0.040 0.045 0.050 0.055 0.060

RMS error

Full Set
Hull Set

Figure 2: A graphical rendition of table 1. The standard errors are scaled by 1.64, so that if
two error bars do not overlap the difference is significant at the 95% level.

6.2 Results

The results1 are summarized in Table 1 and Figure 2. We compare two versions of our
Bayesian method to the gamut mapping and scale by max algorithms. The appropriate
preprocessing for each algorithm was applied to the images to achieve the best possible
performance. (Note that we do not include results for color by correlation since the gamut
mapping results were found to be significantly better in [3].) In all configurations, our
algorithm exhibits the lowest RMS error except in a single case where it is not statisti-
cally different than that of gamut mapping. The differences for the hull set are especially
large. The hull set is clearly a useful constraint that improves the performance of all of the
algorithms evaluated.

The two versions of our Bayesian algorithm differ only in the data set used to build the
reflectance prior. The tuning set, while composed of separate images than the test set, is
very similar and has known illuminants, and, accordingly, gives the best results. Yet the
performance when trained on a very different set of images, the uncalibrated bootstrap set
of section 5.1, is not that different, particularly when the illuminant search is constrained.

The gamut mapping algorithm (called CRULE and ECRULE in [3]) is also presented in two
versions: with and without segmenting the images as a preprocessing step as described in
[3]. These results were computed using software provided by Barnard and used to generate
the results in [3]. In the evaluation of color constancy algorithms in [3] gamut mapping was
found on average to outperform all other algorithms when evaluated on real world images.

It is interesting to note that the gamut mapping algorithm is sensitive to segmentation. Since
fundamentally it should not be sensitive to the number of pixels of a particular color in the
image we must assume that this is because the segmentation is implementing some form of
noise filtering. The Bayesian algorithm currently does not use segmentation.

Scale by max is also included as a reference point and still performs quite well given its sim-
plicity, often beating out much more complex constancy algorithms [8, 3]. Its performance
is the same for both illuminant sets since it does not involve a search over illuminants.

1Result images can be found athttp://www.cs.cmu.edu/˜chuck/nips-2003/



Surprisingly, when the error of the Bayesian method is compared with the gamut mapping
method on individual test images, the correlation coefficient is -0.04. Thus the images
which confuse the Bayesian method are quite different from the images which confuse
gamut mapping. This suggests that an algorithm which could jointly model the image
properties exploited by both algorithms might give dramatic improvements. As an exam-
ple of the potential improvement, the RMS error of an ideal algorithm whose error is the
minimum of Bayes and gamut on each image in the test set is only 0.019.

7 Conclusions and Future Work

We have demonstrated empirically that Bayesian color constancy with the appropriate non-
Gaussian models can outperform gamut mapping on a standard test set. This is true re-
gardless of whether a calibrated or uncalibrated training set is used, or whether the full set
or a restricted set of illuminants is searched. This should give new hope to the pursuit of
statistical methods as a unifying framework for color constancy.

The results also suggest ways to improve the Bayesian algorithm. The particular image
model we have used, the normalized count model, is only one of many that could be tried.
This is simply an image modeling problem which can be attacked using standard statistical
methods. A particularly promising direction is to pursue models which can enforce con-
straints like that in the gamut mapping algorithm, since the images where Bayes has the
largest errors appear to be relatively easy for gamut mapping.

Acknowledgments
We would like to thank Kobus Barnard for making his test images and code publicly avail-
able. We would also like to thank Martial Hebert for his valuable insight and advice and
Daniel Huber and Kevin Watkins for their help in revising this document. This work was
sponsored in part by a fellowship from the Eastman Kodak company.

References

[1] K. Barnard, L. Martin, and B. Funt, “Colour by correlation in a three dimensional colour space,”
Proceedings of the 6th European Conference on Computer Vision, pp. 275–289, 2000.

[2] K. Barnard, L. Martin, B. Funt, and A. Coath, “A data set for colour re-
search,” Color Research and Application, Volume 27, Number 3, pp. 147-151, 2002,
http://www.cs.sfu.ca/˜colour/data/colour constancy test images/

[3] K. Barnard, L. Martin, A. Coath, and B. Funt, “A comparison of color constancy algorithms;
Part Two. Experiments with Image Data,”IEEE Transactions in Image Processing, vol. 11. no.
9. pp. 985-996, 2002.

[4] D. H. Brainard and W. T. Freeman, “Bayesian color constancy,”Journal of the Optical Society
of America A, vol. 14, no. 7, pp. 1393-1411, 1997.

[5] G. Buchsbaum, “A spatial processor model for object colour perception,”Journal of the Franklin
Institute, vol. 10, pp. 1-26, 1980.

[6] G. D. Finlayson and S. D. Hordley and P. M. Hubel, “Colour by correlation: a simple, unifying
approach to colour constancy,”The Proceedings of the Seventh IEEE International Conference
on Computer Vision, vol. 2, pp. 835-842, 1999.

[7] B. Funt and V. Cardei and K. Barnard, “Learning color constancy,”Proceedings of Imaging
Science and Technology / Society for Information Display Fourth Color Imaging Conference.
pp. 58-60, 1996.

[8] B. Funt and K. Barnard and L. Martin, “Is colour constancy good enough?,”Proceedings of the
Fifth European Conference on Computer Vision,pp. 445-459, 1998.

[9] B. Funt and V. Cardei. “Bootstrapping color constancy,”Proceedings of SPIE: Electronic Imag-
ing IV, 3644, 1999.

[10] H. J. Trussell and M. J. Vrhel, “Estimation of illumination for color correction,”Proc ICASSP,
pp. 2513-2516, 1991.


