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ABSTRACT

In this paper, we describe a visual processing algorithm
we have developed that supports autonomous road follow-
ing. The algorithm requires that lane markings be present
and attempts to track the lane markings on both lane
boundaries. There are three stages of computation: ex-
tracting edges, matching extracted edge points with a geo-
metric model of the road, and updating the geometric road
model. All processing is confined to the 2-D image plane.
No information about the motion of the vehicle is used. This
algorithm has been implemented and tested using video
taped road scenes. It performs robustly for both highways
and rural roads. The algorithm runs at a sampling rate of
15 Hz and has a worst case latency of 139 milliseconds
(ms). The algorithm is implemented under the NASAINBS
Standard Reference Model for Telerobotic Control System
Architecture (NASREM) architecture and runs on a dedi-
cated vision processing engine and a VME-based! micro-
processor system.

1. Introduction

There has been increasing interest in the development of
autonomous vehicles in recent years. Interest has included
high-speed driving on highways, urban driving, and navi-
gation through less structured off-road environments. The
primary challenge in autonomous driving is the develop-
ment of perception techniques that are reliable under the
extreme variability of outdoor conditions in any of these
environments. Roads can vary tremendously in appear-

1. Certain commercial equipment, instruments, or materials
are identified in this paper in order to adequately specify the
experimental procedure. Such identification does not imply

d by NIST, nor does it imply
that the materials or equipment identified are necessarily best
for the purpose.

ion or endor

U.S. Government Work Not Protected by U.S. Copyright

164

ance. Some are smooth and well marked while others are
riddled with cracks and potholes or are not marked at all.
Shadows, glare, varying illumination, other vehicles, rain,
snow, etc. also affect road appearance.

Perception for autonomous driving has been approached
with a wide variety of vision-based techniques. Classical
pattern classification techniques have received much atten-
tion. These methods usually use some combination of color
and spatial cues to label all pixels in the image as either
road or non-road. Various techniques are then used to de-
termine a boundary that best separates the road from the
rest of the scene. Examples of these methods include [1],
{21, [3), [4), [5). Another popular method is to use feature
tracking. These methods track prominent features (¢.g. lane
markers) from image to image. Systems which use feature
tracking include [6], [7], [81, [9], [10], (11], [12]. Other ap-
proaches include image flow based methods, [13], and ar-
tificial neural networks in [14]. In addition to vision-based
perception techniques, in [1], [15], a 3D laser range finder
is used for outdoor navigation.

We use a feature tracking method. Our processing con-
sists of three successive stages of computation:

1) Extracting edge point position and orientation.

2) Matching extracted edge points to the road model.

3) Updating the road model.
A video taped recording provides the input to Stage (1)
(Figure 1). This video consists of road scenes of a driver’s
view of the road. Stages (2) and (3) require an explicit geo-
metric model of the road. Stage (2) attempts to match the
extracted edge points obtained from stage (1) with the road
model. Stage (3) updates the geometric model of the road
using the matched edge points.

We choose not to reconstruct the 3D scene at this level
of processing. Although a 3D model of the road is neces-
sary to command navigation of the vehicle, we believe this
transformation from 2D to 3D should be independent of the
feature tracking feedback loop as shown in Figure 2. In this
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Figure 1. Processing Overview

way, our approach differs from that taken by other feature
trackers (e.g. [6], [7], [8], (9], [10]). Their approaches con-
vert the matched features from 2D to 3D before updating
the road model. The 3D road model is then backprojected
into 2D for the matching process as shown in Figure 3. By
updating the model in 2D, our feature tracking algorithm is
unaffected by any errors, approximations, or assumptions
that might be incurred in doing 3D reconstruction and
backprojection.

Our method for updating the model is also unique. We
use exponentially weighted recursive least squares (de-
scribed in section 2.5) to update the parameters of our geo-
metric road model. The appeal of this method is in its
weighting of data. The weight assigned to the data from
each image implicitly depends on the number of data points
matched between the image and the model. If the lane
marking momentarily disappears, few edge points will

match the model and the weight of this data will be relative-
ly insignificant compared to data from an image in which
lane markings are visible. In addition, since the variance of
a least squares estimate decreases as the number of data
points increases (see [16], [17]) we are in effect giving
more weight to data in which there is a higher confidence.
Other approaches do not seem to account for the confi-
dence of image data when combining image data temporal-
ly. For example, the method used in [6], [7], [8] first com-
putes least squares estimates of a set of geometric parame-
ters using only the data from the current image. These
parameters are then smoothed over time using a Kalman
filter. The weight assigned to these parameters when they
are smoothed seems to be independent of the image. In the
Kalman filter formulation, the weighting of new data is
controlled by the relative choices of the model covariance
and the measurement variance. [6), [7], [8] do not explain
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how these covariances in their Kalman filter are modeled
or chosen, or even if they are chosen to vary as a function
of the image. If they are chosen as constants, an image
yielding a weak edge would be given the same weight as
one yielding a strong edge. This can produce a spurious
data point with significant weight when lane markers dis-
appear (cither between stripes or at an intersection).

In Section 2, we describe our road following algo-
rithm. Section 3 contains a description of our hardware
and development environment. Section 4 describes the
performance of our system. Section 5 summarizes our
experiments and presents future development plans.

2. Road Feature Tracking Algorithm

In this section we describe our road feature tracking
algorithm in detail. In 2.1 we describe our geometric rep-
resentation of the road. In 2.2, we describe how the mod-
el is initialized to a road scene. In 2.3 we describe the
edge extraction algorithm. In 2.4 we describe the algo-
rithm that matches edge points with the road model. In
2.5 we describe the algorithm that updates the road mod-
el.

2.1. Road Model

We model the road using the left and right lane
boundaries in the lane of travel. Physically, these bound-
aries correspond to the white or yellow lane markers
painted on the road. Lane markers may consist of either
solid or striped lines. We represent each of these lane
boundaries by a quadratic model (equation 1) in the im-
age plane:

)

The parameters, ay, a,, a3, govern the shape of this mod-
el.

2
x = a;+ayy+azy

2.2. Initial Conditions

Our algorithm requires an accurate model of the road.
Initially, this model is established by a teleoperator who
manually positions models of both lane markers to align
them with the appearance of the lane boundaries in the
image. The models of the lane markers are represented to
the teleoperator as graphic overlays on the video image.
In this way, the teleoperator assigns the initial values of
the parameters ay, a,, a; for both quadratics.

2.3. Edge Extraction

The first processing step performs edge extraction on
the input scene (stage (1) in Figure 1). For every point in
the image, edge magnitde and edge orientation are com-
puted using a two-dimensional 3 X 3 spatial gradient op-
erator. The direction, 6, of each point in the image is de-
fined to be perpendicular to the direction of the gradient
of the intensity function f(x.y) at that point:

6w (TID(Y)
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The magnitude of each edge pixel, mag, is given by:
mag = A (V xD)2(x,3) + (V D2 (x,¥) &)

Using a non-maximum suppression algorithm, those
edge pixels whose magnitude is greatest in the direction
across the edge are selected as edge points. A description
of the non-maximum suppression edge extraction algo-
rithm can be found in [18]. A binary edge image is pro-
duced by thresholding the edge points. The threshold
level is set to a value which removes weak edges and
edges caused by camera noise. We have empirically
found a threshold value of 8 in a grey level range of 0 to
255 to be effective for our application. The output from

Figure 4a. Road Scene

Figure 4b. Window of Interest
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Figure 4c. Window of interest
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this processing stage consists of a list of the image coordi-
nates of all edge points above the threshold value and the
orientation of these points. It should be noted, at this stage
of operation, no effort is made to distinguish road edges
from other edges present in the input image. Execution of
this algorithm is completely data-driven.

To reduce the amount of data processed by algorithms in
stages (2) and (3) in Figure 1, we exclude all edges that fall
outside a window of interest. This window of interest is
chosen to include the entire portion of the visible road but
to exclude, as much as possible, the rest of the image (e.g.
the hood of the vehicle, trees, grassy shoulders, houses,
etc.). Figure 4a is a typical image of a road viewed from a
camera mounted on a vehicle. Figure 4b is a window of in-
terest. Figure 4c represents the results of masking the orig-
inal road scene with the window of interest. During execu-
tion, the lateral position of the window of interest shifts in
order to keep it centered on the road. In addition to center-
ing, the shape of the window of interest changes as a func-
tion of the current road curvature. We are currently using
seven masks: one mask representing zero road curvature
(figure 4b), three masks representing increasing road cur-
vature to the left, and three masks representing increasing
road curvature to the right. All masks are generated off-line
but are instantiated in real-time for the actual image pro-
cessing. Our mask selection algorithm changes masks
when one of the lane marker models intersects either of the
vertical boundaries of the current mask. For example, if a
lane marker intersects the left boundary, the mask giving
the next larger increment of curvature to the left is chosen.

2.4. Edge Matching

In this stage of processing we match the edge data
against the existing model of the road. The purpose of this
edge matching algorithm is twofold. The first purpose is to
associate edge points with the appropriate lane marker. The
second purpose is to eliminate edge points that do not scem
to be associated with either lane marker. For example,
shadows, pot holes, or other vehicles can appear in the se-
lected window and will contribute to the edge information.
‘We wish to exclude this “spurious” edge data from the road
model update computation.

The edge matching algorithm compares each edge pixel
to the model of each lane marker. An edge pixel is either
accepted or rejected depending upon its similarity to the
model. The labelling process is based on two criteria. The
first criterion is the two-dimensional spatial proximity of
an edge point to the model. The second criterion is the sim-
ilarity of direction of the edge point with the angular orien-
tation of the model.
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To facilitate this process, the quadratics representing
each lane marker are approximated by a set of consecutive
line segments. The conglomerate of these lines is used as
the model in the matching procedure. The first step in this
procedure compares the edge direction of the candidate
edge point with the angular direction of each of these mod-
el lines:

o @)

If this angular disparity is within an acceptable range,
3, for any model line, the distance d is computed between
the point at image coordinate (x;, y;) and each model line:

model ™ Ogana] <3

_Agx; +Byy; +C,
(&)

Where (Ayx + By + Cy = 0) is the equation for the k" line
in the model.

The minimum of these distances is used to determine if
that point is less than a distance threshold, {, from the
model. The point is labelled as belonging to the model
when both the spatial proximity and orientation conditions
are satisfied. Under these matching criteria, an edge point
will rarely be associated with both lane markers except
possibly at the vanishing point of the road.

12
(Al+BY)

2.5. Road Model Update

The parameters of the road model, equation (1), are up-
dated with an exponentially weighted recursive least
squares computation using the matched edge points as in-
put data. It should be emphasized that in this estimation
method, the fit is based on data acquired over a sequence of
images rather than just the current image. Earlier experi-
ments involved fitting the road model separately to each
image. The frequent inclusion of spurious data and sparse
real data often resulted in poor fits. By combining data over
a sequence of images, the spurious data tends to average
and the real data reinforces itself resulting in a better fit.
Probability theory calls this phenomena stochastic conver-
gence [16], [17].

The success of this method is based on the assumption
that the appearance of the road changes gradually over a se-
quence of images. There are, however, limits at which the
assumption of continuity fails. We must therefore choose a
method of weighing new data with respect to old in order
to achieve a compromise between responsiveness and ro-
bustness. For example, if new data is weighted relatively
heavily, the algorithm will be very responsive to changes in
the road. However, the algorithm will also be more suscep-



tible to the ill-effects of noise and sparse data. On the other
hand, if new data is weighted less heavily, the algorithm
will be more robust in the presence of noise, but more inert
in responding to actual changes in the image of the road.
In exponentially weighted recursive least squares, the
trade-off between new and old data is controlled by speci-
fying the value of the forgetting factor, A. The weight as-
signed to each data point is then given by:
A™™ where

00<A<10

n is the current time

m is the time the data was sampled
For example, if A = 0.5, all edge points in the current image,
time m=n, have a weight of 1.0. All edge points in the im-
age read at time m = n - I have a weight of 0.5; edge points
from time m = n - 2 have a weight of 0.25, etc.). Empirical-
ly we found the values of A in the range 0.5 <A < 0.75 pro-
duced robust tracking for our road scenes.

The least squares problem of fitting a quadratic to a set

of data is formulated as follows. For a set of data points (x;,
y) fori = I to N where N is the total number of data points,
we wish to determine a;, a;, a3 such that J, the residual in
x, is minimized:

2.2
[x; - (a; +ayy;+ a3yi)]
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Since our data set includes edges from all previous images,
where images are weighted exponentially, we minimize the
following quantity:

N;
]
2
2
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Ny R )
A Ixi_y i~ (ay+apy; g i+agyi g D) +
i=1
2Nj_2 2 2
A [xj_z_."(01+“2Yj_2_;+"3)‘j_2,.')] +..

1

Each summation represents the data from one image. In
this residual, the weight of image j is also implicitly a func-
tion of the number of edge points matched, N;. An image
that yields a good match with the road will exert a larger
weight than one with a poorer match. Since the variance of
a least squares estimate decreases as the number of data
points increases (see [16], [17]) we are in effect giving
more weight to data in which there is a higher confidence.

To efficiently solve equation (7) for a;, a,, a3 such that
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the residual is minimized, we use the square root informa-
tion filter (SRIF) algorithm. The SRIF provides an effi-
cient, numerically stable, closed form solution to the least
squares problem. It is also an iterative algorithm. Data from
previous images is not explicitly stored but is summarized
in the previous estimate and its covariance. After each im-
age, this algorithm updates the estimate and a square root
of its information matrix. (The information matrix is the in-
verse of the covariance matrix). The SRIF is described in
191, [20]).

3. Hardware and Developmental Testbed

Our development environment consists of a Sun
SPARC?2 workstation, a Pipelined Image Processing En-
gine (PIPE), a VME-based multiprocessor system, and a
VHS video cassette recorder (VCR). Figure 5 shows the
breakdown of processing across hardware. In this figure,
the large gray rectangles represent distinct software mod-
ules. Each of these modules is labelled by its functionality
(SP = sensory processing, WM = world modeling) and lev-
el within the NASA/NBS Standard Reference Model for
Telerobot Control System Architecture (NASREM) [21]1.
The system described in this paper is contained in a larger,
multi-purpose implementation of NASREM, [22], [23],
[24], [25]. Also, a complete control system architecture
proposed for intelligent vehicles is found in [26].

Our image data was recorded with a camcorder mounted
on the hood of a U.S. Army High Mobility Multipurpose
Wheeled Vehicle (HMMWYV) [27] aimed to capture the
driver’s view of the road ahead. Recordings were made of
both highway scenes and rural roads as the vehicle travels
at speeds varying between 40 kilometers per hour (k.p.h.)
and 88 k.p.h. The HMMWYV was occasionally driven in an
erratic fashion (weaving back and forth, etc.) to create chal-
lenging image sequences.

The recorded data is read into PIPE through the VCR
playback mode. The incoming images are digitized to pro-
vide 8-bit grayscale images that are 242x256 pixels in size.
Edge extraction is performed on the images. The Iconic-to-
Symbolic Mapper (ISMAP) stage of PIPE then converts in-
formation from an image format to a symbolic list and is
used to store the binary edge image as a list of pixel posi-
tions. In addition, the corresponding edge direction values
are stored in the ISMAP iconic buffer where they are
mapped onto the memory of one of the microprocessors via
a specialized PIPE-VME interface board. The edge extrac-
tion and symbolic mapping operations are pipelined. They
are indicated by black parallelograms in Figure 5.

The remaining processing is divided among micropro-
cessors in the VME backplane. Most computations -- com-
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munication with the PIPE, edge maiching, updating the
model, and computing a graphical overlay -- are pipelined.
The model updates for each lane marker are computed in
parallel on separate processors. All inter-processor com-
munication is done through semaphored global memory.
For a detailed description of our software engineering prac-
tices refer to [28].

The display process provides graphic overlays of the
window of interest, the geometric model of the lane bound-
aries and the computed lane center on the live video image.
These graphic overlays are used for debugging purposes
and to provide a qualitative measure of performance. A
Matrox VIP 1024 board (not shown in figure) is used to im-
plement the graphic overlays on the video signal.

All program development for the VME-based multipro-
cessor system is done on a Sun SPARC2 workstation. All
code on this system is written in the Ada programming lan-
guage. Program development for PIPE is done on a person-
al computer using the PIPE graphical programming lan-
guage, ASPIPE [29].

4. System Evaluation

As mentioned earlier, we tested the system and algo-
rithms described using input from videotaped sequences
taken with a camcorder mounted on the HMMWYV vehicle
as it traveled on highways, local roads, and back roads.

On a limited access multilane highway, interstate I-270
in Maryland, the algorithm successfully maintained track-
ing over a 3 mile section of road. The vehicle was travelling
in the right lane at approximately 88 k.p.h. The lane mark-
ings consisted of a dashed line on the left and a solid line
on the right. Tracking was maintained while other cars
passed in the adjacent lane and while the vehicle weaved
back and forth in the lane of travel. Tracking was lost when
the vehicle changed lanes to exit.

On a four lane local road, Great Seneca highway in
Gaithersburg, Maryland, the algorithm successfully
tracked the video taped scene over a distance of approxi-
mately 2 miles. The vehicle was driving in the left lane at a
speed of approximately 65 k.p.h. The lane markings con-
sisted of a solid line on the left and widely spaced stripes
on the right. The algorithm was robust in maintaining
tracking through two intersections in which the lane mark-
ings disappeared. Tracking was also maintained while driv-
ing beneath an underpass and over two bridges. The pave-
ment texture and color changed from a dark asphalt to a
light cement on the bridges. On other portions of this road,
the algorithm could not always maintain tracking through
intersections in which the lane of travel split into two lanes
(a turning lane and a lane for going straight). Also tracking
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could not be maintained when the vehicle changed lanes.

On a two lane rural road, Quince Orchard road in Gaith-
ersburg, Maryland, tracking was maintained over a dis-
tance of 1.5 miles. The vehicle travelled at speeds between
40 and 65 k.p.h. The lane markings consisted of a double
solid line on the left and a single solid line on the right.
Tracking was robustly maintained on travel up and down
hills with on-coming traffic, through sharp curves, through
moderate shadows, and through four intersections in which
lane markings disappeared. Tracking was temporarily lost
when the vehicle travelled through a sharply curved portion
of road that was shadowed by a heavily wooded area.

The image sampling rate of our system is 15 Hz and the
worst case latency is 139 milliseconds (ms). Edge extrac-
tion was performed every 66.7 ms. The number of edge
points extracted varies from scene to scene and the process-
ing times for the algorithms in stages (2) and (3) will vary
depending on the number of data points present. For a rep-
resentative road scene containing approximately 300 edge
points, the edge matching is performed in 21 ms and the
road model update is performed in 51 ms. The graphic
overlay process, which is not part of the feedback loop, is
updated in approximately 5 ms.

5. Conclusion and Future Work

We have described a system of algorithms that robustly
follows roads that one might expect to find on state high-
ways. We assume that the lane boundaries are well marked
with either solid, double, or dashed lines. All visual pro-
cessing is done in two dimensional image coordinates. Pro-
cessing is performed in sequential stages: extracting edges;
matching edge points to the road model; and updating the
model of the road. Computation time for the image pro-
cessing algorithms is reduced by using knowledge of the
road curvature to mask out non-road information. The ex-
ponentially weighted recursive least squares algorithm
used to update the road model operates in both a spatial and
temporal domain. The system update rate is 15 Hz.

We hope to integrate our algorithm with the navigation
system of the U.S. Army High Mobility Multipurpose
Wheeled Vehicle (HMMWYV) [27] and to perform un-
manned driving using the entire system in the near future.
We also plan to enhance our algorithm by incorporating
geometric constraints such as road width consistency and
by incorporating knowledge of vehicle motion. Future re-
search directions include the investigation of pattern classi-
fication methods using color and spatial cues similar to
those used by [11, [2]. {31, [4], [5], as ameans of reinforcing
the boundary tracking methods described in this paper.
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