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Abstract

For mechanical systems, it is straight forward to compute the dynamic equations of mo-

tion which govern the evolution of the systems’ configuration variables as the system is

subjected to set of input forces. Solving the “reverse” problem or the motion planning

problem, that is, finding the input forces that cause the system variables to move from a

start to a goal configuration is a more challenging problem.

Researchers have successfully tackles particular flavors of this challenging problem. In

fact, trajectory tracking controllers were defined in a coordinate free way for fully actuated

mechanical systems, that is, systems that have as many input forces as the systems’ degrees

of freedom. On the other hand, motion planning for underactuated mechanical systems

is still an ongoing research. In this dissertation, we approach this specific problem and

present our preliminary results.

Motion planning for underactuated mechanical systems is particularly hard due to the

nonlinearity of equations of motion and additionally due to their complex expressions. We

express the same governing equations of motion in a simplified and reduced form for a

large family of locomotion systems. Utilizing these reduced forms we develop intuitive

evaluation tools that relate the evolution of the unactuated degrees of freedom to the

actuated ones. Then, we utilize these evaluation tools to actually generate gaits that

locomote a large class of mechanical systems along a desired direction. In other words, we

design curves in the actuated subspace of the configuration space that will cause a desired

change in unactuated degrees of freedom.
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Chapter 1

Introduction

Locomotion is all around us, be it in animals running, swimming, flying, slithering, etc. or

be it in us humans walking, running, or even astronauts reorienting themselves in space.

Locomotion is such a broad term, however, one can simply think about it as an organism or

a robot actively being able to change its position or orientation in the ambient space. Early

locomotion ideas in the robotics field were along to main streams, legged locomotion which

is biologically inspired and wheeled locomotion. Recently, robotics researchers addressed

new types of locomotion such as underwater locomotion and slithering of snake-like robots.

In this dissertation we present a unifying understanding of the locomotion problem such

that it governs several seemingly different locomotion modes. Specifically, we seek to

unify the analysis of locomotion to understand systems ranging from slithering of snake-

like robots to cats orienting their bodies in mid-air, and additionally novel locomoting

robots that do not have any biological counterparts.

While legged and wheeled locomotion can be thought of as “direct” modes of locomotion

where the legs or wheel directly apply traction forces to the environment, snakes slithering

and cats reorienting their bodies in flight seem to be un-intuitive due to what believe is

their “indirect” modes of locomotion. Nonetheless, what is common to the latter modes

of locomotion is the fact that position or orientation change is accomplished through

repetitive body-shape changes. In fact, studying how internal shape motions affect the

position and orientation of a mechanical system constitutes a main research body in robotic

locomotion. This dissertation addresses this very problem but in a different approach.

As in the case of legged locomotion, where researchers analyzed how real legged an-

imals locomote, analysis of locomoting snake-like robots had its bio-mimetic roots. For

legged locomotion, understanding how animals locomote was documented by numerous
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photographs by Muybridge in [37]. On the other hand, work done by Kumar and Waldron

presents a survey of legged robotic locomotion in [29]. More legged locomotion can be

found in [44,53]. As for slithering snake locomotion, Hirose took a bio-mimetic approach,

where here observed how real snakes locomote in [20]. In fact, Hirose was able to extract

the geometric structure which the body of the snake cycles through as it slithers on the

ground. He represented this geometric structure by what he terms as the serponiod curve

which is dictated by the assumption that the forces in the contraction muscles along the

body of the snake vary in a smooth sinusoidal transition as the snake undulates. These

muscle forces can then be related to the curvature along the body length of the snake

which defines the shape of the serponoid curve.

Hirose, then successfully demonstrated robotic locomotion on snake-like mechanical

systems that have passive wheels on the bottom. These wheels provide high frictional forces

against lateral motion while providing almost null friction along the forward and backward

directions. In fact, Hirose replaced the wheels by mini-iceskates and demonstrated a

snake-like robot undulating on an ice sheet. Thus, he performed robotic slithering of

snake robot by forcing these structures to track various serpenoid curves whose parameters

were empirically derived. As a side note, not only did Hirose study snake locomotion

but also developed novel robotic joint designs that allowed the construction of snake-like

robots [21]. We also have done extensive work in robotic joint designs suitable for snake-

like robots [12, 48–50]. Actually, we improved upon robotic joint designs by increasing

the joint’s range of motion, strengthening the joint’s resistive torque, and minimizing the

joint’s overall volume and weight.

Even though we designed our spatial snake-like robot with three-dimensional climbing

in mind as an application, we had to consider much simpler mechanical systems to develop

our theory. Similarly, Walsh, and Sastray, among other researchers who were motivated

by how a cat changes its orientation in mid-air, considered and analyzed a simpler planar

three link snake robot floating in space in [57]. Limiting the interlink angles to sinusoidal

inputs and by varying the angle about which the outer two links oscillate, Walsh and

Sastry were able to propose inputs, or gaits, that changed the global orientation of this

planar robot after the completion of a cycle in the shape of the robot, that is, the robot

retains its original shape after each cycle but its global orientation would have changed.

Even though we presented the above two locomotion modes, snake slithering and mid-

air orientation as being similar, that is, locomotion is attained by the effect of internal

body changes on the position and orientation of the robot, these two locomotion modes are
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fundamentally different. In that, we mean that the laws of physics governing the motion

of either mode are different. In the case of slithering snakes, the assumption that the

body of the snake is not allowed to slip sideways completely specify the snakes’ motion,

while in the case of cat’s the mid-air orientation change, the fact that angular momentum

is being conserved is indeed what governs the motion of the falling cat and the above

planar three link snake. Moreover, there are mechanical systems where none of the above

governing laws exclusively specify the systems’ motion, nonetheless, as we shall explain

in this dissertation these two laws specify the systems’ motion in a complementary way.

Thus, one expects that the first governing laws, or what is referred to as non-holonomic

constraints are, at a certain level, equivalent to momentum conservation.

In the previous paragraph, we casually mentioned terms like mechanical systems, non-

holonomic constraint, and momentum conservation. Even though we define these terms

later in the dissertation, we are introducing them here to help us formulate a bigger picture

of the locomotion problem. The mechanical systems we are analyzing in this thesis, were

first defined by Smale in [51, 52] for which a quantity termed the Lagrangian is defined

as the difference between the systems’ kinetic and potential energy. The configuration

variables of such systems evolve in such a way that the integral of the Lagrangian is

minimized according to the principal of least action, thus defining a variational problem.

Recall that the configuration variables are a smallest set of numbers required to completely

specify the location of each mass particle of the robot. Thus, for multi-rigid-bodied robot,

configuration variables are naturally decomposed into position and shape variables. Non-

holonomic constraints or non-integrable velocity constraints as well as external forces are

easily incorporated into the above variational problem that depicts the evolution of a

mechanical system.

Mechanics defines the analysis of motion of objects due to external fores acting on them.

The variational problem we defined above is the Lagrangian formulation for mechanical

systems as presented in classical mechanics by Goldstein in [17]. Using this formulation, it

is straightforward to compute the dynamic equations of motion that govern the evolution

of the systems’ configuration variables. In fact, a solution to the above system of differ-

ential equation, a curve in the system’s configuration space, is nothing but a minimized

of the variational problem we introduced earlier. However, recent research in mechanics

done mainly by Marsden and coworkers in [22, 32, 33] utilized geometric features of the

configuration space of mechanical systems as well as symmetries in the laws of physics to

simplify and reduce the dynamic equations of motion. This reduction proved to be quite
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useful in approaching the motion planning problem.

Deriving the dynamic equations of motion can be thought of as the “forward” problem

whose solution predicts how the configuration variables of a mechanical system evolve in

time for a given set of input forces acting on the system. Motion planning, can be though of

as the “reverse” problem, that is, finding a set of inputs forces that steer the configuration

variables from a start to a goal configuration. In general the dynamic equations of motion

are second order non-linear differential equations which render solving the reverse problem

quite challenging. Thus one can clearly see the utility of simplifying these equations

of motion which is exactly what Marsden et al. presented in there geometric mechanics

approach to locomotion research [22,32,33].

Two main concepts allow for the simplification of the differential equations of motion

of mechanical systems. First is the fact that the configuration space of mechanical systems

has a trivial principal fiber bundle structure which can be decomposed into two subspaces:

the base space which describes the internal shape changes of the system and the fiber

space that represents the system’s position and orientation with respect to a fixed inertial

frame. This special structure of the configuration space endows mechanical systems with

a special action, or map, due to the Lie group structure of their fiber space. Additionally,

due to symmetry in the laws of physics, the placement of the inertial frame is redundant,

thus, another order of simplification is done by representing the entire dynamic in a body-

attached coordinate frame. Symmetry is then defined such that specific terms such as,

kinetic energy and non-holonomic constraints, are invariant with respect to these actions.

Both concepts, the structure of the configuration space as well as symmetry of the laws of

physics, allow us to study the effect of body shape changes to position change by analyzing

a first order differential equation usually termed as a reconstruction equation. The reader

ir referred to work done by Bloch and Lewis [5, 30] for deeper explanation of reduction

theory for mechanical systems.

Moreover, the same two concepts allow us to rewrite original equations of motion in

reduced and decoupled forms. Specifically, the evolution of the base, or shape, variables

is represented by a set of second order differential equation which are independent of the

position and orientation of the robot, that is, the fiber variables. Additionally, the orig-

inal second order differential equations describing the evolution of the fiber variables are

reduced to be represented by a first order differential equation. This last set of differential

equations is referred to as the momentum evolution equations since they are expressed

in terms what is referred to as the generalized momentum rather than the original fiber
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variables. In this dissertation we utilize both the reconstruction and momentum evolution

equations to solve the gait generation for underactuated mechanical systems, thus solving

a particular flavor of the motion planning problem. In other words, we will design curves

in the actuated base space which will cause a desired motion in the unactuated fiber space.

We are not the first to utilize modern mechanics and its geometric intuition to address

the locomotion problem. Ostrowski et al. in [40–43] deserve credit for applying geometric

mechanics to mechanical system and utilizing the reduced forms of the equations of mo-

tion to actually approach the motion planning problem. Utilizing both the reconstruction

and momentum evolution equations, Ostrowski et al. were able to represent the dynamic

equations of motion as a linear affine control system. Then by taking recourse to controls

theory and limiting the input forces to be sinusoidal, they were able to specify the fre-

quencies of these sinusoidal inputs. In fact, these frequencies corresponded to the order

of the non-trivial Lie bracket motions of the drift and control vector fields of the above

control system. Thus, but studying the controllability of mechanical systems, Ostrowski

specified the gait frequencies of the input forces, however, other gait parameters were em-

pirically derived. Nonetheless, Ostrowski was successful in generating gaits for numerous

mechanical system including the robotic snake robots analyzed by Hirose and novel me-

chanical systems like the Snakeboard c©. Moreover, we would like to mention Chitta et al.

who developed several unconventional locomoting robots, such as the rollerblader and the

robo-trikke, [11,45] for which they used Ostrowski’s techniques to generate sinusoidal gaits

for these novel locomoting robots.

Another related work was done by Tsakiris et al. where they studied kinematic chains

which they refer to as G-snakes in [26, 56]. These are snake-like structure with passive

wheels on the bottom that are similar to the snake robots that Hirose built. Moreover, the

shape actuation of the snake robot was done using parallel mechanism structure. They

referred to these robots as “Variable Geometry Truss Assembly” in [25]. Tsakiris et al.

intrigued by the geometric structure of the configuration space, worked on representing

the fiber space using different group structures and computed their respective actions

and lifted actions. Finally, they generated the gaits for several variants of the G-snakes

where they associated the special Euclidean group to the system’s fiber space in [27, 28,

56]. Tsakiris et al. applied his theory by generating gaits for the roller racer in [56] by

limiting themselves to sinusoidal gaits. This robot is similar to the robot-Trikke studied

by Chitta et al. which we are also analyzing in this dissertation.

Bullo et al. also utilized geometric mechanics to address two flavors of the motion
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planning problem. The first approach address fully actuated mechanical systems, that

is, systems that have as many input forces as the degrees of freedom of the robot. In

fact, Bullo et al. used the geometric structure of the configuration space to devise better

controllers for fully actuated systems [7, 9]. Their key idea was to define state errors in a

coordinate free way to make their approach generalizable. Thus, using these controllers,

they solved the motion planning problem by tracking a trajectory in the configuration

space of a fully actuated mechanical system.

Additionally, Bullo and Lewis analyzed the motion planning problem for underactu-

ated mechanical systems [8]. Their main contribution is in actually defining a kinematic

reduction for simple mechanical systems, or in other words, reducing the dynamics of a

system so that it can be represented as a kinematic system. Recall that kinematic systems

are systems whose first derivative of the state vector is a linear combination of the control

inputs. Then they study the controllability of these reduced systems and for certain exam-

ples, they were able to generate gaits for these systems. Bullo and Lynch et al. designed

gaits by devising decoupling vector fields on the base space whose integral curves are can-

didate gaits. Along these curves, the system acts like a kinematic system, thus computing

the position change is done by an integration step. Bullo et al. also concatenated these

integral curves to plan motion between two points in the fiber space of underactuated sys-

tems like the Snakeboard c©. For further reading about similar works, the reader is referred

to [5, 24,32,35,41,42].

Finally, Mukherjee and Nakamura et al. in [34, 38, 39] solved the motion planning

problem for the rolling disk problem. Utilizing Stokes’ theorem, they related position

change of the rolling disk to a volume integral. Then by limiting themselves to rectangular

inputs, they were able to compute closed form solutions of these volume integrals and hence

for changing the position of the rolling disk . We independently developed a similar but

more general approach and generated gaits for two general types of mechanical systems:

purely mechanical systems in [47] which is associated with the cat mid-air orientation

change problem, and principally kinematic systems in [46] which is associated with the

slithering of hyper-redundant robots. Note that, the rolling disk is a principally kinematic

system. Finally, it is worth mentioning that there has been other prior work that directly

relates to this approach by Yamada [58], where he was concerned with purely mechanical

systems and generated gaits only for space robots.

In this thesis, we address the motion planning problem for several types of underactu-

ated mechanical systems. We are particulary interested in under actuation since on one
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hand it simplifies the mechanical design of robots by reducing the number of actuators

and reducing the entire weight of the system. On the other hand, under actuation can

be thought of as a backup plan where fully actuated robot is still able to locomote even

though some of its actuators have failed. Thus, in this thesis, we approach the motion

planning problem, by generating gaits for multi-bodied mechanical systems by specifying

how the internal degrees of freedom should behave in such a way to produce a desired po-

sition change of the entire mechanical system. In other words, we prescribe changes in the

actuated degrees of freedom of a mechanical system to control the rest of its unactuated

degrees of freedom.

1.1 Technical Introduction

The types of mechanical systems we are considering in this dissertation belong to a spec-

trum. At one end of the spectrum are mechanical systems whose motion is governed solely

by the conservation of momentum laws, while the other end represents systems whose

motion is governed solely by the existence of the right number of non-holonomic velocity

constraints. The two ends of the spectrum represent systems that are reminiscent of the

cats orienting in mid-air and snakes slithering motivational problem we described earlier.

Between these two extremes are mechanical systems whose motion is governed by both

momentum conservation laws as well as non-holonomic constraints. We label these three

types of systems we just described as purely mechanical, principally kinematic, and mixed

systems, respectively.

Hence, the goal of this dissertation is to unify the gait generation technique for this

entire spectrum of types of mechanical systems. More specifically, we utilize the config-

uration space’s geometric structure, the Lagrangian of the mechanical system, and the

non-holonomic set of velocity constraints acting on the mechanical system to formulate

a generalized reconstruction equation for a generalized type of mechanical system that

represents the entire above spectrum. Then, taking recourse to Lagrangian dynamics and

geometric mechanics of locomotion, we utilize translational symmetries to rewrite the re-

construction equation and relate position change expressed in body coordinates to two

decoupled quantities: the geometric and dynamic phase shift. We intuitively evaluate the

geometric phase shift by relating it to the volume enclosed by a set of well-defined height

functions. As for the dynamic phase shift, we introduce a new scaled momentum variable

that simplifies the momentum evolution equation, which in turn simplifies the evaluation
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of the dynamic phase shift by relating it to a definite integral of a product of another

well-defined set of gamma functions and the scaled momentum variable.

Utilizing these intuitive evaluation tools we define a partition on the space of allowable

gaits which allows us to propose gaits for which either or both of the phase shifts are

non-zero, thus effectively proposing gaits that move the mechanical system along a de-

sired direction. We apply our gait generation techniques to several well-known and some

novel robotic systems that span the entire spectrum of types of mechanical systems we

are considering in this thesis. For each of these example systems, we present a procedure

for computing the reconstruction as well as the momentum evolution equations. Then

we present our motion planning analysis to generate gaits that move these example sys-

tems along a specified direction. Moreover, we demonstrate our results on several robotic

systems that were specifically constructed for this purpose.

1.2 Layout

This thesis builds upon prior work and in many cases we re-derived several results in what

we think is a more direct and simpler way. This thesis is closely related to work done by

Ostrowski in [40].

In Chapter 2 we introduce several mathematical structures like groups and manifolds.

We also define Lie groups and their respective actions on configuration space and lifted

action on tangent spaces. We define principal fiber bundles and the principal connection

which we use to decompose the tangent space into a vertical and horizontal sub-spaces.

Finally, we recall some results for calculus of variations and exterior algebra.

In Chapter 3 we utilize the fiber bundle structure to locally compute the principal con-

nection. Then we introduce the locked inertia tensor and the momentum map to define a

special principal connection, the mechanical connection, associated with mechanical sys-

tems. Computing the mechanical connection locally and expressing it in body coordinates

allows us to compute the reconstruction equation which relates fiber velocities expressed

in body coordinates to two decoupled quantities. The first of which is a function of the

base variables and the second is a function of the base variables and momentum variables

which in turn is described by a first order differential equation on the base space. Then, we

take recourse to Lagrangian dynamics and compute the equations of motion of mechanical

systems. Finally, we utilize symmetries in the system to reduce the equations of motion

to a set of smaller order differential equations. We conclude this chapter by presenting
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the reduced equations of motion for mechanical systems subject to a set of non-holonomic

velocity constraints.

We start Chapter 4 by defining a generalized type of mechanical systems that represents

all the mechanical systems we are considering in this dissertation. Then, by imposing

certain conditions we introduce several sub-types of mechanical system, for which we will

eventually generate gaits. We also compute the reconstruction equations for all the sub-

types of mechanical systems.

In Chapter 5 we derive the momentum evolution equations and compute their special

forms when evaluated at the fiber space identity element. Moreover, here we present one of

the main assumptions of this thesis, that is, we limit ourselves to mechanical systems that

have at most one generalized momentum variable. With this assumption we introduce a

new scaled momentum variable which allows us to further simplify both the momentum

evolution equation as well as the reconstruction equations which were presented in the

previous chapter.

We present our gait generation techniques in Chapter 6. Here we substitute the scaled

momentum into the reconstruction equations which we then integrate to solve for the

position change represented in body coordinates. This allows us to relate this position

change to two decoupled integrals which respectively compute the geometric and dynamic

phase shifts. Then, we present evaluation tools to compute these two shifts. Specifically,

we propose gaits that ensure that the values of these shifts are non-zero along a specified

fiber direction. We equate the value of the geometric phase shift to a double integral which

evaluates the volume under the graph of what we call height functions and is bounded by

the proposed gait. We evaluate the dynamic phase shift by analyzing both another set

of functions which we refer to as gamma functions as well as the evolution of the scaled

momentum variable. Finally, using these evaluation tools, we synthesize gaits for all the

sub-types of mechanical systems we are considering in this thesis.

In Chapter 7 we apply our gait generation techniques to six mechanical systems. We

ensure that the examples span all the types of mechanical systems we are considering in

this dissertation. Moreover, for all the examples, we present a procedure for, starting with

the configuration space structure, the Lagrangian, and the non-holonomic constraints,

computing the reconstruction and momentum evolution equations expressed in body co-

ordinates in terms of the scaled momentum. Using these two equations, we extract the

height and gamma functions for each system, which we then analyze and eventually utilize

to generate gaits. Finally, we simulate the proposed gaits and verify that they are moving
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the mechanical system along a specified direction. We also ensure that we include several

robotic systems that were analyzed in the literature; additionally, we introduce a couple

of novel mechanical systems. The most interesting of these novel systems is what we

term the variable inertia snakeboard. This novel system is a generalization of the original

snakeboard where we eliminate all the simplifications that were assumed in the prior work

in order to verify the generality and applicability of our gait generation approach.

In Chapter 8, we apply our gait generation technique to an actual variable inertia

snakeboard which was constructed specifically for this purpose. We implement several of

our proposed gaits and compare the actual motion of the system to our simulated results.

Moreover, in this chapter we present the “wave board” (or the “essboard”) which is a special

skate board where the rider propels himself forward by mimicking a wave surfing action.

What is interesting about this toy is that its free-body diagram is almost identical to our

variable inertia snakeboad.

1.3 Results and Contributions

In this dissertation we seek to generalize the motion planning problem for a large set of

types of mechanical systems. Our goal is to verify that our generalized gait generation

techniques apply to all the types of mechanical systems we are considering in this thesis

document. We believe that our work presents the following technical results:

1. We define a general class of mechanical systems, generalized mixed systems, such

that all other systems considered in related prior work and in this thesis are special

cases of this type of mechanical systems. Moreover, we compute the reconstruction

equation for this general type of mechanical systems from which we can deduce the

reconstruction equations for all the other sub-systems.

2. We intuitively compute the geometric phase shift by relating it to a volume integral

under the graphs of a set of well-defined height functions and bounded by the pro-

posed gait. This intuitive evaluation allows us to devise simple rules to design curves

in the base space that ensure that the geometric phase shift is non-zero along the

desired fiber direction and zero along the rest of the fiber directions..

3. We introduce a new scaled momentum variable which simplifies the momentum evo-

lution equations in such a way to allow us to easily study the sign-definiteness of this



11

new momentum variable. This in turn allows us to intuitively to evaluate the dy-

namic phase shift by analyzing another set of well-defined gamma functions. Again,

using this intuitive evaluation tool, we can devise gaits that ensure that the dynamic

phase shift is non-zero along the desired fiber direction and zero along the rest of

the fiber directions.

4. We define a partition on the space of allowable gaits in such a way to ensure that the

geometric phase shift, the dynamic phase shift, or both are non-zero. This partition

does not restrict the gaits to be sinusoidal, as was the case of the prior related work.

5. We present a thorough procedure that, given the mechanical system’s configuration

manifold structure, its Lagrangian, and the non-holonomic constraints acting on it,

allows one to compute the generalized reconstruction equation, the expression for

the generalized non-holonomic momentum, and momentum evolution equation. We

also recompute the generalized reconstruction and momentum evolution equations,

however, expressed using the new scaled momentum variable.

6. We apply our gait generation techniques to six relatively complex examples for which

the prior work approaches were inadequate. These example systems are complex in a

sense that one can not make any educated guesses on how to generate gaits for them.

Moreover, we introduce a novel mechanical system, the variable inertia snakeboard,

which generalizes systems analyzed in the prior literature to verify the applicability

and generality of our gait generation techniques.

To put the above results in perspective, next we present what we believe are the main

contributions of this dissertation to the motion planning problem. We do not claim that

we completely solved the motion planning problem for underactuated mechanical systems,

however, we believe that our work presents a new approach for understanding and tackling

the problem.

Researchers have been addressing the motion planning problem for underactuated me-

chanical system for more than a decade. There have been several enlightening results

which our work builds upon as well as borrows from. Nonetheless, what is common to

most of these results was the fact that all addresses specific parts of the motion planning

problem. This was evident in the specific types of mechanical systems, or specific example

systems in some cases, addressed and the restrictive types of allowable gaits. In this work

we addressed both restrictions and devise analysis tools that apply to a large family of

mechanical systems and eliminate the gait restrictions imposed by prior approaches.
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We justify our claim that our approach is generalizable to a large family of mechan-

ical systems by applying our techniques to numerous examples as shown in Chapter 7.

Moreover, our gait generation techniques are not as restrictive as was the case in prior

work approaches, that is, we do not limit our input to any particular family of gaits. In

fact, for several examples we devised several gaits that were neglected by prior approaches

nonetheless these gaits provided “better” solutions for the motion planning problem. Here

better describes the relatively larger magnitudes of generated motion of the mechanical

systems.

Another contribution of this work is that our gait generation techniques are not only

intuitive but also unifying, both of which simplify approaching as well as understanding the

motion planning problem. Using our approach we were able to tie and relate Ostrowski’s

locomotion techniques for dynamic systems with non-holonomic constraints to Bullo’s

techniques in locomoting kinematically reducible systems. What is interesting about our

approach is the fact that not only it provides an intuitive explanation why gaits proposed

in the prior work actually locomoted the mechanical system but also our approach unified

why gaits from seemingly different approaches work. In fact, our analysis relates the

prior works’ proposed gaits by partitioning the space of allowable gaits into three distinct

families. The motion due to a gait belonging to these families is exclusively related to

either the geometric, dynamic, or both phase shifts associated with the proposed gait.

At a higher level, we believe that our approach will lead to a natural and efficient

parametrization of the motion planning problem for a large class of mechanical systems.

To be more specific, utilizing our work, we hope to develop evaluation tools whose analysis

is geared towards the gait generation problem. One contribution of our work is developing

simple intuitive gait evaluation tools. Not only do simpler gait evaluation tools make

it easier to generate gaits, but also help form a better understanding of the locomotion

problem. Better understanding, leads to better formulation of the problem and direct

analysis of the gait parameters that matter. We also believe that better understanding of

the locomotion problem compounded with a better parametrization will certainly simplify

the problem of optimal gait generation, which is an even more challenging problem.
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Chapter 2

Mathematical Preliminaries

In this chapter we introduce several terms and definitions that will be used throughout

this thesis. This section is meant to refresh the readers about some terms and does not

constitute either a reference or a tutorial. We will cite several references as we go along

which should be useful but at the same time we give lots of examples to make the terms

easier to grasp. The examples presented in this chapter will be tailored to provide intuition

to make the reader more comfortable with the material presented in the rest of the thesis.

The goal of this chapter it to highlight the special structure of the configuration space

of simple mechanical systems, that is, the space that represents the degrees of freedom

of these systems. We introduce all the tools that eventually allow us to rigorously define

this principal fiber bundle structure. Additionally, we define the tangent spaces associated

with these configuration spaces which represent the velocities of the system. We also define

several maps associated with the configuration space and its tangent space. Namely, we

define the action and lifted action maps which utilize the Lie group structure of the

fiber space, a sub-space of the configuration space, to map configurations and velocities,

respectively. Finally, we introduce several other tools and results that we shall use later

in this dissertation.

2.1 Groups and Matrix Groups

We start by recalling important kinds of groups and their properties. For a more involved

reading, the reader is referred to [2,23,36]. We start with the definition of a group structure.

Definition 1 (Group) A group, (G, ∗) , is a set G together with a map ∗ taking G×G →
G that has following four properties:
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1. Closure: Given g1,g2 ∈ G, then we have g1 ∗ g2 ∈ G.

2. Associativity: Given g1,g2 and g3 ∈ G, then we have (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3).

3. Identity: There should exist a unique element e ∈ G such that e ∗ g = g ∗ e = g.

4. Inverse: For each g ∈ G there exists unique element g−1 ∈ G such that g ∗ g−1 =

g−1 ∗ g = e.

An Abelian group is a group whose associated map is commutative, that is, for g1,g2 ∈
G then we have g1 ∗ g2 = g2 ∗ g1. For example the real numbers with the addition

operation, (R,+) , form an Abelian group. Moreover, new groups can be formed by

taking the Cartesian product of existing groups. The product of groups G and H forms a

group which is usually denoted by G × H.

An important example of groups are matrix groups where the elements of the set G

are matrices. More specifically, for n ∈ N, the set or natural numbers, let G be the set

of n × n invertible matrices with real entries, that is, Gi
j ∈ R

1. Then the set G together

with the operation matrix multiplication form a group. Such a group is referred to as the

general linear group which is usually denoted by GL(n, R) . Finally, note that, matrix

groups are not Abelian since matrix multiplication in not commutative.

Next, we introduce several important matrix groups that are used to represent rigid

body motions. We start with the groups of rigid rotation SO(n), the special orthogonal

groups. The set of elements for SO(n) is given by

SO(n) = {R ∈ R
n×n : RRT = In×n,det R = +1},

where In×n is the n × n identity matrix. For n = 2, the elements of SO(2) have the

following form:

SO(2) =

⎧⎨
⎩
⎛
⎝ cos θ − sin θ

sin θ cos θ

⎞
⎠ : θ ∈ R

⎫⎬
⎭ .

Another important group is the group of rigid translations and rotations in an n-

dimensional space. This group is referred to as the special Euclidean group and is usually

denoted by SE(n). The set on which this group is defined is given by

1Throughout this thesis document, Gi
j denotes the ith row and jth column of the matrix G.
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SE(n) =

⎧⎨
⎩
⎛
⎝ Rn×n pn×1

01×n 1

⎞
⎠ : p ∈ R

n, Rn×n ∈ SO(n)

⎫⎬
⎭ = R

n × SO(n).

For n = 2, the group SE(2) is used to represent the configuration of a rigid body in

the plane.

2.2 Lie Groups and Group Actions

Having defined group structures, now we extend our definitions to include Lie groups.

To define Lie groups we need introduce additional structures such as manifolds. Loosely

speaking, a manifold is a topological space that locally looks like R
n. Thus we need to

define what is a topological space first.

Definition 2 (Topological space) A set X with a collection of open subsets T form a

topological space if the following propoerties hold:

1. The empty set is in T

2. The entire set X is in T

3. The intersection of a finite number of sets in T is also in T

4. The union of an arbitrary number of sets in T is also in T .

Having defined topological spaces, we define manifolds next.

Definition 3 (Manifold) A manifold M is a topological space that has the following

properties:

1. M is Hausdorff.

2. M is locally Euclidean.

3. M has a countable basis of open sets.

We will not elaborate on the first and third properties; however, we will elaborate on

the locally Euclidean property since it is used in later definitions. The reader is referred

to [6, 10,19,55] for a more involved reading.

Definition 4 (Locally Euclidean) A topological space, Q, is said to be locally Eu-

clidean if for each point q ∈ Q we have
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• An open neighborhood U ⊃ q.

• An open set Ũ ⊂ R
n.

• A continuous bijection φ : U → Ũ .

This map takes an open neighborhood of q ∈ Q to an open subset of R
n along with

the open neighborhood U is usually called a coordinate chart and denoted by (φ, U).

Charts allow us to define functions on manifolds, compute their derivatives, and address

the smoothness arguments of these maps. Usually, more than one chart is needed to map

the entire manifold Q to R
n. An atlas is a minimum collection of charts needed to map

the entire manifold Q. If it happens that a point q ∈ Q is mapped by more than two

charts, we require these charts to be compatible.

Definition 5 (Compatible charts) Given a point q ∈ Q, and two charts (ψ1, U1) and

(ψ2, U2) such that q ∈ U1 ∩ U2. Then the two charts are said to be compatible if the two

maps

ψ1 ◦ ψ−1
2 : ψ2(U2) → ψ1(U1) and

ψ2 ◦ ψ−1
1 : ψ1(U1) → ψ2(U2)

are differentiable.

Using compatible charts, we can define differentiable manifolds.

Definition 6 (Differentiable manifolds) A manifold Q is differentiable if there exists

a family of charts U = (ψi, Ui) such that:

1. The open neighborhoods Ui cover Q.

2. (ψi, Ui) and (ψj , Uj) are compatible for all Ui ∩ Uj 
= ∅.

3. If a chart (ψ, V ) is compatible with a chart (ψi, Ui) ∈ U , then U � (ψ, V ).

Having defined differential manifold we can go ahead and define Lie groups.

Definition 7 (Lie Group) A Lie group is a manifold whose elements have an additional

group structure such that the following maps are differentiable

• Product map: G × G → G

• Inverse map: G → G.
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Lie groups are also referred to as continuous groups, that is, the group elements act

on each other in a continuous manner. The group examples described earlier, SO(2) and

SE(2), are also Lie groups. Associated with Lie groups are maps which allow the manifold

elements to act on each other, these maps are referred to as group actions.

Definition 8 (Group action) An action of a group G on a set Q is defined by the map

Φ(g, q) : G × Q → Q for some g ∈ G and q ∈ Q. The action Φ must satisfy the following

properties for all g, h ∈ G, q ∈ Q and e the identity element of G:

1. Φ(g,Φ(h, q)) = Φ(gh, q) and

2. Φ(e, q) = q.

Fig. 2.2 depicts how the action Φg maps q to a new point Φgq. Note that we did not

specify the structure of the set Q at this moment; however, we will be more specific later

when we define fiber bundles. Next, we present a detailed example to illustrate most of

the terms introduced in the section thus far.

Example 1 (Rigid body transformation in a plane) We would like to study the mo-

tion of a rigid object as it moves in a plane. We need three numbers to identify both the

body’s location and orientation. We will study Elroy’s Beanie which can be seen in Fig-

ure 2.1. This robot is composed of two rigid bodies that are allowed to rotate with respect

to each other. Hence, the three numbers that identify the robot’s location and orientation

with respect to an inertial frame are (x, y, θ). Finally, φ specifies the relative angle between

the rigid bodies.

(x, y)

φ

θInertial

Body

Figure 2.1: The Elroy beanie and its configuration variables.
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The location and orientation of the beanie can be represented by the Lie group SE(2).

For an initial configuration g = (x, y, θ) ∈ SE(2) we can represent it as a matrix using

homogeneous coordinates, where

g =

⎛
⎜⎜⎜⎝

cos θ − sin θ x

sin θ cos θ y

0 0 1

⎞
⎟⎟⎟⎠ .

Then if we have another element h = (u, v, α) ∈ SE(2), we can compute the action of

the group element h on the group element g

g.h =

⎛
⎜⎜⎜⎝

cos α − sin α u

sin α cos α v

0 0 1

⎞
⎟⎟⎟⎠ .

⎛
⎜⎜⎜⎝

cos θ − sin θ x

sin θ cos θ y

0 0 1

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

cos(θ + α) − sin(θ + α) u + x cos α − y sin α

sin(θ + α) cos(θ + α) v + x sin α + y cos α

0 0 1

⎞
⎟⎟⎟⎠

Hence, Φ(h, g) = (u + x cos α − y sin α, v + x sin α + y cos α, θ + α) which physically

represents the configuration of the robot after first being translated by a vector (u, v) and

then rotated by an angle α. Note that the action of g on h yields a different answer since

matrix multiplication is not commutative. Φ(g, h) = (x + u cos θ − v sin θ, y + u sin θ +

v cos θ, θ + α).

The above actions acted on the Lie group elements. However, the same actions can

act on the “bigger” spaces on which the Lie group is a sub-space. For example if we

denote the configuration of the robot in Fig. 2.1 by the vector q = (x, y, θ, φ) to include a

representation of the relative angle between the two bodies, then the action of SE(2) on

Q is given by

Φ(h, q) = Φ((u, v, α), (x, y, θ, φ)) =

⎛
⎜⎜⎜⎜⎜⎜⎝

u + x cos α − y sin α

v + x sin α + y cos α

θ + α

φ

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Note that since the configuration Q is actually a product of two groups, Q = SE(2)×S,
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then the action of SE(2) on Q only affects the group part, SE(2), of Q.

Moreover, note that the two actions Φ(h, g) and Φ(g, h) are not identical. This is

because, in general, group operations are not necessarily commutative2. In particular, we

verified that the group SE(2) with the matrix multiplication operation is not commutative.

Thus, we define two types of actions, left and right action.

Φg

Φgq

TqΦg

TΦgqΦg q̇

q

Q

q̇

Figure 2.2: Actions and lifted actions on a manifold Q.

Definition 9 (Left and right actions) Left and right actions are defined on matrix

groups such that L(g, h) = gh and R(g, h) = hg.

For a deeper reading about actions the reader is referred to [5, 40]. We would like to

conclude this section with couple of notational comments. Usually an action is denoted by

Φ(g, q) = Φgq or simply as Φ(g, q) = gq. In this thesis will try to keep the notation as clear

as possible and only use the shorthand notation whenever there is no risk of ambiguity.

2.3 Tangent Spaces, Lie Algebras and Lifted Actions

In the previous section we defined groups which were used to represent the configuration of

a robot in space. In this section we introduce tangent spaces of manifolds which are used to

represent velocities of the robot. For instance, in Example 1 we defined q = (x, y, θ, φ) ∈ Q

as the configuration of the robot, where Q is referred to as the configuration manifold of

the mechanical system. We can define the tangent space of this manifold whose elements

2Commutative groups are also referred to as Abelian groups.
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will represent the configuration velocity elements. We usually denote such elements as

q̇ = (ẋ, ẏ, θ̇, φ̇).

Before we define tangent spaces for general manifolds we define it for the Euclidean

space R
n. This definition is much simpler and allows us to easily define cotangent spaces

as well.

Definition 10 (Tangent spaces on R
n) Given two points p, q ∈ R

n, we define Xp =

(X, p), with X = q − p. Xp is referred to as the tangent vector to R
n at the point p. The

collection of all vectors Xp as the point q moves in R
n is defined as the tangent space of

R
n at the point p and is usually denoted by TpR

n. Note that Xp ∈ TpR
n. Then finally we

define the tangent bundle, TR
n, as the collection of all tangent spaces, TpR

n, as p moves

in all of R
n. Note that TpR

n ∈ TR
n.

Before we go ahead and define tangent spaces on general manifolds, let us define cotan-

gent spaces on R
n.

Definition 11 (Cotangent spaces on R
n) Given p, q ∈ R

n and TpR
n the tangent space

at p. Then we define the one-form at the point p as a linear map, φ : TpR
n → R. Thus,

a one-form is then a choice of smooth maps φ for all p ∈ R
n. Hence we define the set of

all one-forms at the point p as the cotangent space to R
n at the point p which is usually

denoted by T ∗
p R

n. The set of all cotangent spaces on R
n, T ∗

p R
n, is referred to as the

cotangent bundle which is usually denoted by T ∗
R

n.

Note that both the tangent space and the cotangent space are vector spaces that are

dual to each other. There are standard bases associated with these spaces. Specifically,

the basis for TpR
n is { ∂

∂x1 , · · · , ∂
∂xn } while the basis for T ∗

p R
n is {dx1, · · · , dxn}. Also note

that, dxi ∂
∂xj = {1 if i = j, 0 otherwise}.

Now we define tangent spaces on general differentiable manifolds. Previously, when we

defined tangent spaces on R
n, we took advantage of the flatness of R

n to define tangent

vectors at a point. Such flatness does not hold in general. Hence, to define tangent vectors

at a point we need to define curves passing through that point.

Consider a curve γ(t) on a manifold Q that is parameterized by time and passes through

a point q ∈ Q at time t = 0. Then the velocity vector to the curve at t = 0 is given by

γ′(0). Now consider all possible curves passing though point q at t = 0, and there are

infinitely many of them. The tangent vectors to these curves span a vector space, usually

denote by TqQ, which defines the tangent space of Q at point q ∈ Q. Moreover, the tangent

bundle, usually denoted by TQ, is defined as
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TQ =
⋃
q∈Q

TqQ

Having defined tangent spaces on a manifold, we can define vector fields

Definition 12 (Vector field) A vector field is a smooth map, X, from a manifold Q to

its tangent space TqQ, such that

X : Q → TqQ

q �→ X(q)

The set of all smooth vector fields on Q is denoted by χ(Q).

Moreover, if a manifold happens to have a group structure, that is, it is a Lie group,

then the tangent space of the manifold at the identity group element constitutes a Lie

algebra which is usually denoted by g = TeG. We will remind the reader of the definition

of an algebra before we rigorously define define Lie algebras.

Definition 13 (Real algebra) A real vector space V with an operation * is called an

algebra if x ∗ y ∈ V for all x, y ∈ V and

• (x + y) ∗ z = x ∗ z + y ∗ z for all x, y, z ∈ V .

• z ∗ (x + y) = z ∗ x + z ∗ y for all x, y, z ∈ V .

• (ax) ∗ y = x ∗ (ay) = a(x ∗ y) for all x, y ∈ V and a ∈ R.

The vector space R
3 with the operation cross product forms a real algebra. Now we

define a Lie algebra.

Definition 14 (Lie algebra) A Lie algebra is a vector space g together with a binary

operator [·, ·] : g × g → g, usually called the Lie bracket, where the bracket must satisfy

the following properties

1. [ξ, ξ] = 0 for all ξ ∈ g.

2. Bilinearity , that is, [aξ, bη] = a[ξ, η]+b[ξ, η] and [ξ, aη+bλ] = a[ξ, η]+b[ξ, λ], for all a, b ∈
R and ξ, η, λ ∈ g.

3. Jacobi identity, that is, [[ξ, η], λ] + [[λ, ξ], η] + [[η, λ], ξ] = 0, for all ξ, η, λ ∈ g.
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Lie algebras are important since they have linear vector space structure and they are

easier to analyze than Lie groups. Moreover, Lie algebra elements act like generators where

they can be used to recover the entire Lie group. This is done with the exponential map

which we define next after we give an example of a Lie algebra.

Example 2 (Lie algebra of SO(3)) The Lie algebra of the special orthogonal group

SO(3) is usually denoted by so(3) and defined by

so(3) = {ω̂ ∈ R
3×3 : ω̂T = −ω̂}.

Here we used the fact that for ω = (ω1, ω2, ω3) ∈ R
3, we define matrix representation

of ω using the “hat” operator where

ω̂ =

⎛
⎜⎜⎜⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎟⎟⎟⎠ .

Note that ω̂ is a skew symmetric matrix.

Definition 15 (Exponential map) Given a Lie group G with its associated Lie algebra

g then for ξ ∈ g and t ∈ R we define the exponential map by

exp : g → G

ξ �→ g = exp(tξ)

Thus, the exponential map yields a configuration fiber variable that is reached by

flowing along the fiber for time t, and whose initial velocity was ξ. If G is a matrix Lie

group then exp tξ is defined as the matrix exponential acting on the matrix tξ.

exp tξ =

∞∑
n=0

(tξ)n

n!

Example 3 (Exponential of so(3)) Consider rotations around the x-axis, then ω =

(1, 0, 0). Now we use Rodrigues’ formula to compute the exponential of ω̂
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exp θω̂ = I + ω̂ sin θ + ω̂2(1 − cos θ)

=

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

0 0 0

0 0 −1

0 1 0

⎞
⎟⎟⎟⎠ sin θ +

⎛
⎜⎜⎜⎝

0 0 0

0 −1 0

0 0 −1

⎞
⎟⎟⎟⎠ (1 − cos θ)

=

⎛
⎜⎜⎜⎝

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎟⎟⎟⎠ ∈ SO(3).

Note that the last matrix is exactly the rotation matrix for rotations about the x-axis

by an angle θ.

In the previous section we defined group actions that acted on group and configuration

elements, now we will define what is termed as lifted actions that act on tangent vectors

of manifolds.

Definition 16 (Lifted action) Consider a manifold Q. Then the lifted action is a linear

map defined by

TqΦg : TqQ → TΦgqQ

q̇ �→ TΦgqΦg q̇

Fig. 2.2 depicts how the action and the lifted action map q and q̇ to a new configuration

Φgq and velocity TΦgqΦg q̇, respectively.

Similar to group actions we have to make the distinction between left and right lifted ac-

tions, however, in this case the distinction has a deep physical intuition. For a given group

velocity, ġ, the left lifted action maps ġ to the Lie algebra is the body velocity representation

of ġ. Similarly, using the right lifted action yields the spatial velocity representation.

Definition 17 (Body and spatial velocity representations) Given a Lie group G,

a point g ∈ G, and vg ∈ TgG, we define the body and spatial body representations

respectively by

ξb = TgLg−1vg (2.1)

ξs = TgRg−1vg (2.2)
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According to [36], body velocity represents the velocity of body as seen in the inertial

coordinate frame but represented in the body-attached coordinate frame. Spatial velocity

is the velocity of an imaginary point rigidly attached to the body as it passes through

the origin of the inertial coordinate frame and again represented in body frame. The

following example helps the reader understand the difference between the two velocity

representations.

Example 4 (Lifted actions and different velocity representations) In Example 1,

we worked out the group actions on the groups SE(2). Now we will work out the

lifted action for the beanie example. For q = (x, y, θ, φ) and h = (u, v, α), we have

Lhq = (u + x cos α − y sin α, v + x sin α + y cos α, θ + α, φ) and Rhq = (x + u cos θ −
v sin θ, y + u sin θ + v cos θ, θ + α). Hence we can compute the lifted maps TgLhq̇ and

RgLhq̇

TgLhq̇ =
(

∂Lhq
∂x

∂Lhq
∂y

∂Lhq
∂θ

∂Lhq
∂φ

)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

cos α − sin α 0 0

sin α cos α 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

φ̇

⎞
⎟⎟⎟⎟⎟⎟⎠

TgRhq̇ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 −u sin θ − v cos θ 0

0 1 u cos θ − v sin θ 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

φ̇

⎞
⎟⎟⎟⎟⎟⎟⎠

To illustrate the difference between body and spatial velocities, we select an action

that maps the current configuration to the group identity element, e. Hence, if the beanie

in Example 1 is located at configuration q = (g, φ) = (x, y, θ, φ) and has a velocity q̇ =

(ẋ, ẏ, θ̇, φ̇), (Figure 2.3), then we define h ∈ G such that h = g−1. Now we have Lg−1q =

Rg−1q = (e, φ) = (0, 0, 0, φ). Then we compute the lifted maps TgLg−1 q̇ and TgRg−1 q̇.

In general TgLg−1 q̇ 
= TgRg−1 q̇ as seen in Figure 2.3. This difference is due to the non-

commutativity of the SE(2). To measure this non-commutativity we use the adjoint map.

Definition 18 (Adjoint map) The adjoint map is a map from a Lie algebra to itself
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0

0

0

ġ

ξb

ξs

ge

TgLg−1

TgRg−1

Adgξ
b

x

y

θ

Figure 2.3: Actions and lifted actions for the beanie example.

and is defined as follows

Adg : g → g

ξ �→ TgRg−1(TeLgξ)

Computing the adjoint for SE(2) we get:

Adg =

⎛
⎜⎜⎜⎝

cos θ − sin θ y

sin θ cos θ −x

0 0 1

⎞
⎟⎟⎟⎠ , and

Adg−1 = (Adg)
−1

⎛
⎜⎜⎜⎝

cos θ sin θ −x sin θ − y cos θ

− sin θ cos θ x cos θ − y sin θ

0 0 1

⎞
⎟⎟⎟⎠ .

Note that the Adjoint map allows us to map velocities from spatial to body represen-

tations and viceversa. Thus, using (2.1) and (2.2) we get
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ξs = TgRg−1vg

= TgRg−1(TgLg−1)−1ξb

= TgRg−1TgLg−1ξb

= Adgξ
b, and (2.3)

ξb = TgLg−1vg

= TgLg−1(TgRg−1)−1ξs

= (TeLgTgRg−1)−1ξs

= Adg−1ξs. (2.4)

2.4 Fiber Bundles

Earlier in this document, we referred to configuration manifolds of mechanical systems.

Now we will define such manifolds more rigorously. According to [5], a configuration is

the minimum number of variables needed to uniquely specify the location in two or three

dimensions of each physical point of the mechanism or robot. So for rigid bodies that

have a fixed shape, the location and orientation of a body-attached reference coordinate

frame is enough. However, if the robot or mechanism is made up of many rigid bodies

then additional variables are needed to specify the robot’s shape. Hence, for multi-bodied

robots, the configuration space is composed of a position and shape variables.

We will assume that the position variables are elements of a set that has a group

structure such as R
n, SO(n), or SE(n). Additionally, the position variables belong to the

configuration manifold, hence the position variables are governed by a Lie group structure.

For mechanical system, we assume that a general configuration manifold is usually denoted

by Q = G × M , where G is the fiber space specifying the position of the robot and M is

the base space specifying the internal shape of the robot. In this document we deal with

configuration manifolds that have a principal fiber bundle structure.

Definition 19 (Fiber bundle) For a manifold Q with a base subspace M and a projec-

tion map π : Q → M , define a fiber, G(r), as the pre-image of r ∈ M in Q with respect

to the map π, that is, G = π−1(r). Then, Q is said to be a fiber bundle if for every

neighborhood U ⊂ M of r we have



27

π−1(U) is homeomorphic to G × U , that is,

locally we have Q ∼= M × G. We usually denote fiber bundle by Q = (G,M).

Note that if the fiber G has a group structure then Q is a principal fiber bundle,

and if Q = G × M globally, then Q is a trivial fiber bundle. The configuration space of

all mechanical systems are trivial principal fiber bundles. Referring to Example 1, the

configuration space is Q = SE(2) × S
1 which is a trivial principal bundle.

The projection map associated with the fiber bundle manifold does induce a lifted map

that acts on the manifold’s tangent space,

π : Q → M ⇒ Tπ : TQ → TM.

This lifted map allows us to decompose the manifold’s tangent space into two subspaces:

Definition 20 (Vertical and horizontal spaces) Given a fiber bundle Q with an as-

sociated projection map π : Q → M , then a vertical space Vq is defined at a point q ∈ Q

as

Vq = ker(Tπ).

Then the horizontal space Hq is defined as the complement of the vertical space such that

TqQ = Vq ⊕ Hq.

Moreover, for a configuration manifold with a principal fiber bundle structure, we can

define a principal connection, but first we need to define a Lie group generator. We have

mentioned earlier that Lie algebras represent the entire group using the exponential map.

Now we will extend this notion to principal fiber bundles.

Definition 21 (Lie group generator) Given a trivial principal fiber bundle Q = G×M

and an action Φ(g, q) : Q → Q then define a generator on Q by

ξQ : g → TQ

ξ �→ d

dt
(Φ(exp tξ, q))t=0
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q
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e

G
ξ

ξQ

exp ξt

ξQq

Figure 2.4: The exponential map and the vector field generation on Q along the fiber G.

Figure 2.4 illustrates how the exponential map and generator are related. When the

generator is applied to the principal bundle, it has a very specific form which is presented

in the following Lemma.

Lemma 1 (Generator on principal bundles) For a given principal fiber bundle, Q =

G × M , the Lie group generator can be written as

ξQ(g, r) = (TeRgξ, ṙ). (2.5)

Proof Computing the generator using its definition

ξQ(g, r) =
d

dt
(Φ(exp(tξ), (g, r)))t=0

=
d

dt
(exp(tξ)g, r)t=0

=
d

dt
(Rg(exp(tξ)), r)t=0

= (TeRgξ(exp(tξ)), ṙ)t=0

= (TeRgξ, 0)

�

The above result was mentioned in [5, 40]; however, here we presented a more explicit

proof.

Example 5 (Generator on SE(2)) Given g = (x, y, θ) ∈ SE(2) and ξ = (ξ1, ξ2, ξ3) ∈
se(2). Using the computed lifted maps in Example 4 and Lemma 1, we can compute the
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A(ξQ(q))

ṙ

A

A
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A(vq)

A(TqΦgvq)

TqΦgvq

Figure 2.5: Configuration of the two-mass example.

generator on SE(2)

TeRg = ThRg|h=e =

⎛
⎜⎜⎜⎝

1 0 −x sin α − y cos α

0 1 x cos α − y sin α

0 0 1

⎞
⎟⎟⎟⎠

(u=0,v=0,α=0)

=

⎛
⎜⎜⎜⎝

1 0 −y

0 1 x

0 0 1

⎞
⎟⎟⎟⎠ .

Then we have

ξSE(2)(g) = TeRgξ =

⎛
⎜⎜⎜⎝

1 0 −y

0 1 x

0 0 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ξ1

ξ2

ξ3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ξ1 − yξ3

ξ2 + xξ3

ξ3

⎞
⎟⎟⎟⎠

Having defined the generator we can go ahead and define a principal connection map.

Definition 22 (Principal connection) Given a trivial principal fiber bundle manifold

Q = G × M with and associated projection map π : Q → M , then a principal connection

is a Lie algebra valued map A : TQ → g, such that

• A(ξQ(q)) = ξ, for all ξ ∈ g and q ∈ Q.

• A(TqΦgvq) = AdgA(vq), for all q ∈ Q, vq ∈ TqQ, and g ∈ G.

The first property implies that if a vector in the tangent space of Q was generated by

Lie group generator, then the principal connection maps the generated vector back to the

Lie algebra element which generated it as shown in the first plot of Fig. 2.5. The second

property implies that if two elements in the tangent space of Q are related by a lifted
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map TqΦg, then Lie algebra elements corresponding to these vectors are related by the

Adjoint map as shown in the second plot of Fig. 2.5. Moreover, we can utilize the principal

connection to redefine the horizontal space more rigorously.

Lemma 2 (Kernel of the principal connection) Given a principal bundle manifold,

Q = G×M , and an associated projection map π : Q → M , let Vq denote the vertical space

at q ∈ Q, then the horizontal space is defined by Hq = kerA(vq) such that TqQ = Vq ⊕Hq.

Proof Given vq ∈ TqQ, let ξ = A(vq). Then we have A(vq−ξQ(q)) = A(vq)−A(ξQ(q)) =

ξ−ξ = 0. This implies that (vq−ξQ(q)) ∈ Hq. Moreover, we know that since Tqπ(ξQ(q)) =

0, we have ξQ(q) ∈ VqQ. Thus, defining, hor(vq) = (vq − ξQ(q)) and ver(vq) = ξQq, we

have

hor(vq) = vq − ver(vq) ⇒ vq = hor(vq) + ver(vq).

This implies that TqQ = VqQ + HqQ.

�

This result is stated in [5,40] but we have never seen an intuitive proof for it. Hence, for

a given principal fiber bundle, we use the kernels of the projection map and the principal

connection to respectively define the vertical and horizontal subspaces of the bundle’s

tangent space.

o m1 m2

x1 x2

Figure 2.6: Configuration variables of the two-mass example.

Example 6 (Fiber bundles and connections) Now we will present a simple but very

useful example. Consider a two mass system that moves along a line. The position of first

mass is measured from the origin of an inertial frame, x1, and the position of the second

mass is measured relative to the first mass, x2 as shown in Fig. 2.6. The configuration

manifold is Q = R × R. Since R is a Lie group, then Q is a principal bundle. Now we
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can compute the projection map and the lifted projection map. Given a configuration

q = (x1, x2) ∈ Q and a velocity vq = (ẋ1, ẋ2) ∈ TqQ, then we have

π : Q → R

(x1, x2) �→ x2

Tπ : TQ → TR

(ẋ1, ẋ2) �→ ẋ2

Alternative, in matrix representation we have π =
(

0 1
)

and Tπ =
(

0 1
)
.

Now let us choose a principal connection such that: A((ẋ1, ẋ2)) = ẋ1 + A(x1, x2)ẋ2. We

can easily verify this connection satisfies both properties in Definition 22. In matrix rep-

resentation we have A =
(

1 A(x1, x2)
)
. Having computed both the lifted projection

and the principal connection we can go ahead and compute the vertical and horizontal

spaces.

Vq = ker
(

0 1
)

= span
(

1 0
)

and

Hq = ker
(

1 A(x2, x2)
)

= span
(

−A(x1, x2) 1
)

.

q

vqhor(vq)

ver(vq)

x1

x2

ẋ1

ẋ2

Aẋ2

Figure 2.7: The vertical and horizontal components of vq.

The exponential map for the group R is given by exp(tξ) = tξ and the generator is given

by ξQ(q) : ξ �→
(

ξ 0
)
. Now we can compute the vertical and horizontal components

of a vector vq ∈ TqQ.

ver(vq) = A(vq)Q = (ẋ1 + A(x1, x2)ẋ2)Q =
(

ẋ1 + A(x1, x2)ẋ2 0
)

, and

hor(vq) = vq − ver(vq) =
(

−A(x1, x2)ẋ2 ẋ2

)
.

A graphical representation of the vertical and horizontal components of vq can be seen
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in Figure 2.7. Note that a motion in the base, that is, a pure horizontal velocity only

occurs if m2 moves with velocity ẋ2 and m1 will move with velocity −A(x1, x2)ẋ2. In

other words if the connection A(x1, x2) 
= 0 then a horizontal base motion will induce a

vertical fiber motion.

As we shall see later in the document, for unconstrained mechanical systems, the prin-

cipal connection has a specific definition which has conservation of momentum embedded

within. In other words, if the shape of the robot changes, its position will change in such

a way that momentum is conserved.

2.5 Calculus of Variations

The calculus of variations allows us to solve numerous physical problems. Moreover, we

can use calculus of variation to produce the dynamic equations of motion for mechanical

systems with and without non-holonomic constraints. The reader is referred to [15,16].

Definition 23 (Basic problem in the Calculus of variations [15]) Given a, b, A,B ∈
R with a < b and f : [a, b] × R × R → R. Let

Y := {y ∈ C1[a, b]|y(a) = A and y(b) = B},

where Cn[a, b] is the set of continuous functions on the closed interval [a, b] that are n-

differentiable. Then define J(y) : Y → R as

J(y) =

∫ b

a

f(x, y(x), y′(x))dx ∀y ∈ Y.

The basic problem in the calculus of variation is to minimize or maximize J over Y.

The function f(x, y(x), y′(x)) is called functional.

Definition 24 (Admissible variations [15] ) For v ∈ X , a linear vector space, and

y ∈ Y, we say that v is a Y-admissible variation at y if there exists an open interval I ⊂ R

with 0 ∈ I such that [y + εv] ∈ Y for every ε ∈ I. The set of Y-admissible variations at y

is denoted by Vy.

Definition 25 (Gâteaux variations [15] ) Let y ∈ Y and v ∈ Vy be given and put

δJ(y; v) = lim
ε→0

J(y + εv) − J(y)

ε
,
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provided the limit exists. When the limit exists, δJ(y; v) is called the Gâteaux variation

of J at y in the v direction.

Definition 26 (First Euler-Lagrange equation [15] ) Given a, b, A,B ∈ R with a <

b and f : [a, b]×R×R → R. Assume that f has continuous second order partial derivatives.

Let X = C2[a, b] and define Y ⊂ X

Y := {y ∈ C1[a, b]|y(a) = A and y(b) = B}.

Then define J(y) : Y → R by

J(y) =

∫ b

a

f(x, y(x), y′(x))dx ∀y ∈ Y.

Let y∗ ∈ Y be a minimizer of J , then f is governed by the First Euler-Lagrange equation

∂

∂y∗(x)
(f(x, y∗(x), y′

∗(x))) − d

dx

[
∂

∂y′∗(x)
(f(x, y∗(x), y′

∗(x)))

]
= 0,∀x ∈ [a, b]. (2.6)

Definition 27 (Second Euler-Lagrange equation [15] ) Given a, b, A,B ∈ R with

a < b and f : [a, b] × R × R → R. Assume that f has continuous second order par-

tial derivatives. Let y = C2[a, b] be given and y satisfies

∂

∂y(x)
(f(x, y(x), y′(x))) − d

dx

[
∂

∂y′(x)
(f(x, y(x), y′(x)))

]
= 0,∀x ∈ [a, b].

Then there exists a constant c ∈ R such that

f(x, y(x), y′(x))−y′(x)
∂

∂y′(x)
(f(x, y(x), y′(x))) = c+

∫ x

a

∂

∂x
(f(t, y(t), y′(t))) dt, ∀x ∈ [a, b].

This equation is referred to ar the Second Euler-Lagrange equations.

We will not include the Lagrangian multipliers definition, since it is very mathematical

and omitting it will not disturb the readers intuition. Finally we will introduce two very

important lemmas that will be useful in relating body and spatial velocity represnetations.

For the proof of the lemmas, the reader is referred to [15].

Lemma 3 (Lagrange Lemma) Let g(x) ∈ C1[a, b] be given, and assume that
∫ b

a
g(x)v(x)dx =

0 for all v ∈ C2[a, b] such that v(a) = v(b) = 0. Then g(x) = 0 for all x ∈ [a, b].



34

Lemma 4 (du Bois-Reymond Lemma) Let g(x) ∈ C1[a, b] be given, and assume that∫ b

a
g(x)v′(x)dx = 0 for all v ∈ C1[a, b] such that v(a) = v(b) = 0. Then there exist a

constant c ∈ R such that g(x) = c for all x ∈ [a, b].

The definitions in the section will come useful when we are optimizing gaits and even

when presenting the equations of motion due to Lagrangian dynamics.

2.6 Exterior Algebra

Finally, we present couple of results from exterior algebra theory. First, we shall review

Stokes’ theorem in its most general form.

Theorem 1 (Stokes’ Theorem) Given a one-form ω and its exterior derivative dω, we

have ∮
∂N

ω =

∫
N

dω, (2.7)

where ∂N is the boundary of the manifold N .

The exterior derivative of an m dimensional one-form,

ω =

m∑
i=1

fi(σ1, σ2, · · · , σm)dσi, (2.8)

yields a two-form and is given by

dω =

m∑
i,j=1,i<j

(
∂fj

∂σi
− ∂fi

∂σj

)
(dσi ∧ dσj), (2.9)

where ∧ represents the wedge product [14,31].
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Chapter 3

Mechanics of Locomotion

In this chapter, we present several results from the geometric mechanics and the Lagrangian

dynamics fields. Even though some of these results are not novel, we still present them

and actually provide our own intuitive proofs to help the reader understand these results.

The main idea in this chapter is how to utilize the special structure of the configu-

ration space of mechanical systems to simplify the dynamic equations of motion. In this

dissertation we use the Lagrangian formulation to compute the equation of motion for a

mechanical system. These equations are a set second order differential equations whose

solution describes the evolution of the degrees of freedom of a mechanical system due to a

set of input forces. In general, these equations are highly nonlinear thus rendering the mo-

tion planning problem quite challenging, that is, proposing input forces that will cause the

degrees of freedom to evolve in a desired way. Thus, it is clear that a simplification of the

dynamic equations of motion is necessary for approaching the motion planning problem.

It is the special geometric structure of the configuration space which allows us to

simplify the dynamic equations of motion. In fact, we utilize the principal fiber bundle

structure of the configuration space to define a principal connection which we then utilize

to relate internal shape to position velocities. This relation which is referred to as the re-

construction equation which, in its most general form, is dictated by both the conservation

of momentum along the allowable directions and the non-holonomic constraints acting on

the systems.

The other tool we utilize to simplify the equations of motion is the symmetry of the

laws of physics. Here symmetry is defined as the invariance of the Lagrangian and the

non-holonomic constraints with respect to the Lie group actions. This invariance allows us

to rewrite the equations of motion in a body attached coordinate frame, thus, eliminating
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the significance of the placement of the inertial coordinate frame. Utilizing this invariance

we actually rewrite the original equations of motion in a simpler reduced form. The

original equations describing the evolution of the position variables are rewritten as a set

of first order differential momentum evolution equations while the original equations of

motion describing the internal changes will be decoupled from the position of the robot

and expressed are the reduced base dynamic equations. Thus, in this chapter we work

towards computing and obtaining these sets of reduced equations of motion.

3.1 Geometric Mechanics

In this section we summarize most of the results from [40], where we include intuitive

proofs for some results. This makes the material presented easier to grasp and expose the

reader to some useful concepts used in mechanics. For more involved reading, the reader

is referred to [1, 5, 40].

3.1.1 Connections on Principal Bundles

Earlier in the Chapter 2 we have presented principal connections on principal bundles. If

the configuration space under investigation is trivial, which is the case with all mechanical

systems, then a very useful result can be attained. We present this result in the following

proposition.

Proposition 1 (Local trivialization of the principal connection) Given a principal

connection A on a trivial principal bundle Q = G × M , the connection is locally written

as

A(ġ, ṙ) = Adg(TgLg−1 ġ + A(r)ṙ). (3.1)

where Adg is the adjoint map, TgLg−1 is the lifted map acting on ġ, and A(r) is the local

form of the principal connection multiplying the base velocity, ṙ.

Proof The principal connection is linear, that is,

A(g,r)(ġ, ṙ) = A(g, r)(ġ, 0) + A(g, r)(0, ṙ)

Next we compute each of the two terms in the right hand side of the above equation.

There should exist a Lie algebra element ξ ∈ g such that the generated left-invariant vector
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field evaluated at the point (g, r) yields the tangent element (ġ, 0), that is, ξQ(g, r) = (ġ, 0).

Moreover, we know from Equation 2.5 that ξ = TgRg−1 ġ, then we have

A(g,r)(ġ, 0) = A(g,r)ξQ(g, r),

= ξ,

= TgRg−1 ġ,

= TgRg−1(TeLg)(TgLg−1)ġ,

= Adg(TgLg−1 ġ).

Here we used the first property of the principal connection map given in Definition 22.

Moreover, we used the fact that the map (TgLg−1) is the inverse map of (TeLg). As for

computing the second term, without loss of generality we will assume that Φq(h, s) =

(Lgh, s), and T(h,s)Φg(ḣ, ṡ) = (ThLgḣ, ṡ). Then we have

A(g,r)(0, ṙ) = AΦg(e,r)(0, ṙ),

= AΦg(e,r)(TeLg0, ṙ),

= AΦg(e,r)T(e,r)Φg(0, ṙ),

= AdgA(e,r)(0, ṙ),

= Adg(A(r)ṙ),

where A(r) is called the local form1 of the connection. Here we used the second property

of the principal connection map given in Definition 22. Finally, we finish the proof to

arrive at

A(g,r)(ġ, ṙ) = A(g, r)(ġ, 0) + A(g, r)(0, ṙ),

= Adg(TgLg−1 ġ) + Adg(A(r)ṙ),

= Adg(TgLg−1 ġ + A(r)ṙ).

�

1Throughout this thesis document, “local” means that the terms are computed at the Lie group identity.
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This is an important proposition since it allows us to decouple our configuration veloc-

ities, q̇ = (ġ, ṙ), at the identity of the group into the two terms TgLg−1 ġ and A(r)ṙ. This

idea will be illustrated further in a later example.

Up until now, we have been considering an arbitrary connection map, Aq(q̇), on the

principal fiber bundle configuration space, Q. Nonetheless, for mechanical systems, this

connection takes a special form. Before we present this special form, we need to introduce

two additional terms, specifically, the locked inertia tensor and the momentum map.

Definition 28 (Locked inertia tensor) The locked inertia tensor represents the inertia

of the mechanical system when all its base variables are locked, that is, fixing the robot’s

shape. The locked inertial tensor denoted by I is represented by the map, I : g → g
∗ which

is defined as

〈Iη, ξ〉 = 〈〈ηQ(q), ξQ(q)〉〉, (3.2)

where η, ξ ∈ g and ηQ(q), ξQ(q) ∈ TqQ. Note that g
∗ is the dual Lie algebra of g.

We distinguish between the kinetic energy metric and the dot product. The operation

〈·, ·〉 is the natural pairing between a vector, vq ∈ TqQ, and co-vector, ωq ∈ T ∗
q Q, which

is computed using the simple dot product operation 〈vq, ωp〉 = vT
q ωq, and the operation

〈〈·, ·〉〉 is computed using the kinetic energy metric, that is, 〈〈vq, vp〉〉 = 1
2vT

q Mvp, where

M is the mass matrix and vp, vq ∈ TqQ. The reader is referred to [5,9,32] for an involved

reading about kinetic energy metrics.

Definition 29 (Momentum map) The momentum map computes the momentum of

the system for a given velocity vq. To be more specific, the momentum map, denoted by

J , maps J : TqQ → g
∗. Mathematically, we define the momentum map as

〈J(vq), ξ〉 = 〈〈vq, ξQ(q)〉〉, (3.3)

where ξ ∈ g and vq, ξQ(q) ∈ TqQ.

Now illustrate the above two maps using the following example.

Example 7 (Locked inertia and momentum maps) Referring to Figure 2.1 in Ex-

ample 1, the kinetic energy is given by KE = 1/2
(
m(ẋ2 + ẏ2) + Jθ̇2 + Jr(θ̇ + φ̇)2

)
. Let
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us rewrite it in matrix form to extract the mass matrix,

KE =
1

2

(
ẋ ẏ θ̇ φ̇

)
⎛
⎜⎜⎜⎜⎜⎜⎝

m 0 0 0

0 m 0 0

0 0 J + Jr Jr

0 0 Jr Jr

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

φ̇

⎞
⎟⎟⎟⎟⎟⎟⎠ =

1

2
q̇T Mq̇.

Now using the result from Example 5, we can compute the locked inertia and mo-

mentum maps. Let ξ = (ξ1, ξ2, ξ3), η = (η1, η2, η3) and vq = (vx, vy, vθ, vφ), then we

have

ηQ(q)T MξQ(q) =

⎛
⎜⎜⎜⎜⎜⎜⎝

η1 − yη3

η2 + xη3

η3

0

⎞
⎟⎟⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎜⎜⎝

m 0 0 0

0 m 0 0

0 0 J + Jr Jr

0 0 Jr Jr

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ1 − yξ3

ξ2 + xξ3

ξ3

0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

η1

η2

η3

⎞
⎟⎟⎟⎠

T ⎛⎜⎜⎜⎝
m 0 −my

0 m mx

−my mx J + Jr + m(x2 + y2)

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
I

⎛
⎜⎜⎜⎝

ξ1

ξ2

ξ3

⎞
⎟⎟⎟⎠ , and

vT
q MξQ(q) =

⎛
⎜⎜⎜⎜⎜⎜⎝

vx

vy

vθ

vφ

⎞
⎟⎟⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎜⎜⎝

m 0 0 0

0 m 0 0

0 0 J + Jr Jr

0 0 Jr Jr

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ1 − yξ3

ξ2 + xξ3

ξ3

0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

vx

vy

vθ

vφ

⎞
⎟⎟⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎜⎜⎝

m 0 −my

0 m my

0 0 J + Jr

0 0 Jr

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
J(vq)

⎛
⎜⎜⎜⎝

ξ1

ξ2

ξ3

⎞
⎟⎟⎟⎠ .

3.1.2 Mechanical Connection

For mechanical systems that have a configuration space with a principal fiber bundle

structure, the principal connection has a very specific form [5,40].

Definition 30 (Mechanical Connection) Given a configuration manifold Q for a me-
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chanical systems that has a fiber bundle structure, Q = G×M , we define the mechanical

connection as

A(q̇) : TqQ → g

(q, q̇) �→ I
−1(q)J(q̇)

(3.4)

where I is the locked inertia tensor and J is the momentum map.

Example 8 (Mechanical connection) In Example 7 we computed the locked inertia

tensor and the momentum map. Hence, we can compute the mechanical connection for

Elroy’s beanie seen in Figure 2.1.

A(vq) =
(

vx + y
(
vθ + Jr

J+Jr
vφ

)
vy + x

(
vθ + Jr

J+Jr
vφ

)
vθ + Jr

J+Jr
vφ

)

Multiplying the above quantity by Adg−1 from Definition 18, and grouping terms we arrive

at

Adg−1A(vq) =

⎛
⎜⎜⎜⎝

cos α sin α 0

− sin α cos α 0

0 0 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

vx

vy

vθ

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

0

0

Jr

J+Jr

⎞
⎟⎟⎟⎠ vφ

= TgLg−1vg + A(r)vr.

This result agrees with Proposition 1. Note that Adg−1A(vq) is nothing but the me-

chanical connection written in body coordinates as seen in Equations 2.3 and 2.4.

Proposition 2 (Mechanical connection in body coordinates) For a simple mechan-

ical system whose configuration space is a trivial principal fiber bundle and whose La-

grangian defines a kinetic energy metric, then the mechanical connection represented in

body coordinated has the following form

Ab
q(q̇) = I−1(r)Jb(q̇) = ξb + A(r)ṙ (3.5)

where I(r) = I(e, r) is the local form of the locked inertia tensor computed at the Lie group

identity, e, Jb(q̇) is the momentum map represented in body coordinates, and A(r) is the

local form of the mechanical connection.

Proof We start by expressing the momentum map and the locked inertia tensor in the

body coordinates as was shown in [5] to arrive at
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Jb(q̇) = Ad∗gJ(q̇), and

I(q) = Ad∗hI(Φhq)Adh

= Ad∗g−1I(Φg−1q)Adg−1

= Ad∗g−1I(e, r)Adg−1

where Ad∗g is the dual map of Adg. In the second set of equations we utilized the fact that

the locked inertia tensor is Adg-invariant. Here we mapped the locked inertia tensor to

the Lie group identity by using the map Φhq = Φg−1q = (e, r). Next, we substitute the

above two expressions into the definition of the mechanical connection to arrive at

Aq(q̇) = I
−1(q)J(q̇)

=
(
Ad∗g−1I(e, r)Adg−1

)−1 (
Ad∗g

)−1
Jb(q̇)

= AdgI
−1(e, r)Ad∗g

(
Ad∗g

)−1
Jb(q̇)

= AdgI
−1(r)Jb(q̇)

= AdgAb
q(q̇)

Here, we label the term I(e, r) by I(r) which is the local form of the locked inertia tensor.

Moreover, in the last line we have defined the mechanical connection in body coordinates

such that Ab
q(q̇) to be equal to I−1(r)Jb(q̇). Next, we shall see how the principal connection

computed at the Lie group identity allows us to decouple a configuration velocity. Thus,

expressing the mechanical connection, which is a principal connection, in body coordinates

and substituting for it using the result from Proposition 1 we arrive at

Ab
q(q̇) = Adg−1Aq(q̇)

I−1(r)Jb(q̇) = Adg−1

(
Adg(TgLg−1 ġ + A(r)ṙ)

)
I−1(r)Jb(q̇) = TgLg−1 ġ + A(r)ṙ

Finally recall that ξb = TgLg−1 ġ which is the body representation of the fiber velocity

ġ. Hence, solving for ξb we arrive at



42

ξb = −A(r)ṙ + I−1(r)Jb(q̇) (3.6)

�

Later in the thesis, we will further simplify this expression. Specifically, we will present

how to compute the momentum map in body coordinates, Jb(q̇), using the reduced La-

grangian. The reconstruction equation given in (3.6) is important, since we not only utilize

it to define a partition on the types of mechanical systems we are considering in this thesis,

but we also use it to generate gaits for these types of mechanical systems.

3.2 Lagrangian Dynamics

In this section we present the Lagrangian approach to model the dynamics of mechanical

systems and compute the governing equations of motion. Then we define the Lagrangian

invariance with respect to Lie group action which physically means that the placement of

the inertial coordinate frame can be arbitrary. We utilize this invariance, or symmetry,

to reduce the order of differential equations of motion of the mechanical system. For a

thorough reference for Lagrangian dynamics, the reader is referred to [1, 5, 18].

3.2.1 Fundamentals

Given a system with an n-dimensional configuration space Q, then the Lagrangian is a

map L(t, q, q̇) : [a, b] × R
n × R

n → R. For mechanical systems composed of multiple rigid

bodies, the Lagrangian takes a very specific form. Before we define the Lagrangian for

mechanical systems let us define the kinetic energy and the mass matrix for a multi-bodied

mechanical system.

Definition 31 (Kinetic energy of multi-bodied mechanical systems) For a mechan-

ical system composed of n rigid bodies and whose configuration space is Q, the kinetic

energy is given by

KE =

n∑
i=1

1

2

(
q̇T
i miq̇i + μ̇T

i jiμ̇i

)
, (3.7)

where q̇i is the linear velocity of the center of mass of each rigid body, μi is the angular

velocity of each of the bodies, mi and ji are the mass and inertia of each of the bodies.
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Associated with the kinetic energy of mechanical systems, we can define a kinetic

energy metric utilizing the mass matrix.

Definition 32 (Mass matrix) For a mechanical system whose configuration space is Q

and whose kinetic energy is KE, we can define the kinetic energy metric on the tangent

space of the configuration manifold such that

KE = 〈〈v1, v2〉〉 =
1

2
vT
1 M(q)v2 (3.8)

where v1, v2 ∈ TqQ and M(q) is the mass matrix.

Now we can define the Lagrangian for mechanical systems.

Definition 33 (Lagrangian for mechanical systems) For a mechanical systems with

configuration space Q, the Lagrangian is defined by

L(q, q̇) =
1

2
q̇T Mq̇ − V (q), (3.9)

where M is the mass matrix of the mechanical system, 1
2 q̇T Mq̇ is its kinetic energy, and

V (q) is its potential energy.

For the rest of the thesis, we will assume that the potential energy is zero unless

specified otherwise. Next, we present how to compute the equations of motion for a

mechanical system.

Definition 34 (Action integral) For a mechanical system whose configuration space

Q, and whose Lagrangian is given by L(q, q̇), the action integral is defined by

∫ t1

t0

L(q, q̇)dt. (3.10)

Taking recourse to Lagrangian dynamics, we know that mechanical systems evolve with

time according to the principal of least action. In other words, mechanical systems evolve

in time such that the action integral given in (3.10) is minimized. Thus, computing the

dynamic equations of motion for mechanical systems is simply equivalent to computing

the first Euler-Lagrange equations, (2.6), associated with the variational problem that

minimizes the functional f(t, q(t), q′(t)) = L(q(t), q̇(t)).
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3.2.2 The Euler-Lagrange Equations

Given a mechanical system with configuration space Q and Lagrangian L(q, q̇), the con-

figuration of the system will evolve along the curve q(t) which is a minimizer of the action

integral (3.10). Hence, q(t) must satisfy the first Euler-Lagrange equations given in (2.6)

which are the dynamic equations of motion,

d

dt

(
∂

∂q̇i
L(q, q̇)

)
− ∂

∂qi
L(q, q̇) = 0, (i = 1, . . . , n). (3.11)

Equation 3.11 is the governing equation of motion for isolated mechanical systems, that

is, no external forces and no non-holonomic constraints acting on the system. Next we

present the more general equations of motion for mechanical systems with external forces

but with zero potential energy, that is,

d

dt

(
∂

∂q̇i
L(q, q̇)

)
− ∂

∂qi
L(q, q̇) = τi, (i = 1, . . . , n), (3.12)

where τi are the generalized external forces. Moreover, for mechanical systems that are

subject to k non-holonomic constraints given in the Pfaffian form, ω(q)q̇ = 0, the dynamic

equations of motion are given by

d

dt

(
∂

∂q̇i
L(q, q̇)

)
− ∂

∂qi
L(q, q̇) = λjω

j
i + τi, (i = 1, . . . , n, j = 1, . . . , k) (3.13)

where λj ’s are the Lagrange multipliers. The next Example will illustrate how to write

the equations of motion for a general mechanical system with external forces and non-

holonomic constraints.

Example 9 (Unicycle) Given a unicycle as shown in Figure 3.1. The robot’s configura-

tion is represented by the vector q = (x, y, θ, φ) where x and y denote the position of the

contact point of the wheel, θ denotes the wheel’s orientation, and φ measures the rotation

of the wheel. Hence, the configuration manifold is four-dimensional, Q = R × R × S × S.

Let Q = G×M where G = R×R is the fiber Lie group and M = S× S is the base space.

The Lagrangian of the unicycle which is equal to its kinetic energy and is given by

L(q, q̇) =
1

2

(
m(ẋ2 + ẏ2) + Jθ̇2 + Jwφ̇2

)
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Figure 3.1: An illustration for the unicycle example.

where m is the robot’s total mass, J is its inertia about the z axis, and Jw is the wheel’s

rolling inertia. The two non-holonomic constraints are given by

ẋ cos θ + ẏ sin θ − rφ̇ = 0 [Rolling without slipping],

ẋ sin θ − ẏ cos θ = 0 [No sideways slipping].

Assuming that the generalized forces in the steering and rolling directions are τθ and

τφ respectively, Then using Equation 3.13 we can write the equations of motion to arrive

at

mẍ = λ1 cos θ + λ2 sin θ,

mÿ = λ1 sin θ − λ2 cos θ,

Jθ̈ = τθ, and

Jwφ̈ = λ1r + τφ.

3.2.3 Symmetries and Momentum Maps

In 1915, Emmy Noether introduced a theorem which exploits symmetry in the laws of

physics to extract conserved quantities [5,40]. For example, the invariance (or symmetry)

of the kinetic energy with respect to translations in space leads to conservation of momen-

tum. In the context of thesis, symmetry will be encountered as invariance of a quantity

with respect to some action.
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Definition 35 (Lagrangian invariance) The Lagrangian, L(q, q̇), of a mechanical sys-

tem with a trivial principal bundle configuration manifold, Q = G × M , is said to be

invariant if

L(q, q̇) = L(Φgq, TqΦg q̇). (3.14)

where Φg is the Lie group action on Q and TqΦg is the lifted action on TQ.

Similarly, we can define the invariance of vector fields, X(q) : Q → TqQ, and one-

forms, f(vq) : TqQ → R. Specifically, we can verify the invariance of the non-holonomic

constraints which are a set of one-forms using the following equations

ω(q)q̇ = ω(Φgq)TqΦg q̇. (3.15)

Example 10 (Elroy’s beanie: Invariance) Referring to Figure 2.1 we can compute

the Lagrangian of the robot

L((x, y, θ, φ), (ẋ, ẏ, θ̇, φ̇)) =
1

2

(
m(ẋ2 + ẏ2) + Jθ̇2 + Jr(θ̇ + φ̇)2

)
.

where m is the entire mass of the robot, J is its inertia, and Jr is the rotor’s inertia. In

Example 1 we computed the action for SE(2) and its lifted action.

Φhq = (u + x cos α − y sin α, v + x sin α + y cos α, θ + α, φ), and

TqΦhq̇ = (cos αẋ − sin αẏ, sin αẋ + cos αẏ, θ̇, φ̇).

Then we can verify that

L(Φgq, TqΦg q̇) =
1

2

(
m((cos αẋ − sin αẏ)2 + (sin αẋ + cos αẏ)2) + Jθ̇2 + Jr(θ̇ + φ̇)2

)
=

1

2

(
m((cos2 α + sin2 α)ẋ2 + m((cos2 α + sin2 α)ẏ2) + Jθ̇2 + Jr(θ̇ + φ̇)2

)
=

1

2

(
m(ẋ2 + ẏ2) + Jθ̇2 + Jr(θ̇ + φ̇)2

)
= L(q, q̇).

In the next section we will see how to exploit this invariance to reduce the dynamic

equations of motion.
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3.2.4 Reduction

We will present how symmetry can simplify the differential equations of motion by reducing

them from a set of second to first order differential equations. For the sake of clarity, we

will do an example for the one-dimensional case to help give some intuition.

Example 11 (Reduction in one dimension) Given an invariant Lagrangian2 L(x(t), ẋ(t)),

we can compute the dynamic equation of motion using (2.6) to arrive at

d

dt

(
∂L(x(t), ẋ(t))

∂ẋ(t)

)
− ∂L(x(t), ẋ(t))

∂x(t)
= 0. (3.16)

Now we define the momentum in the x direction by

p =
∂L(x(t), ẋ(t))

∂ẋ(t)
.

Then using (2.6) we can write out the first Euler-Lagrange equation in terms of p to

get

p′ =
∂L(x(t), ẋ(t))

∂x(t)
.

If we assume that the Lagrangian is invariant with respect to the variable s, then we

have

0 =
∂L(x(s), ẋ(s))

∂s
[Invariance]

=
∂L(x(s), ẋ(s))

∂x(s)

dx(s)

ds
+

∂L(x(s), ẋ(s))

∂ẋ(s)

dẋ(s)

ds
[Product rule]

= p′(s)
dx(s)

ds
+ p(s)

dẋ(s)

ds
[Substitutions]

=

(
p(s)

dx(s)

ds

)′
[Regrouping]

⇔ c = p(s)
dx(s)

ds

Thus, the quantity p(s)dx(s)
ds is conserved. Note that order of the last differential

equation is one. This is a one-fold reduction from the original Euler-Lagrange equations

(3.16).

2For this example, we assume that the Lagrangian is solely the kinetic energy of the system.
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Similar proofs can be done for a general n-dimensional Lagrangian. Next we will present

the result due to reduction without proof. For further details the reader is referred to

[1,5,40]. It is convenient to define different reference frames for representing the equations

of motion of the robot. In this document the body representation will play an important

role.

Definition 36 (Body Coordinates) Let q̇ = (ġ, ṙ) ∈ TqQ be a configuration velocity

at the point q = (g, r) and let the body frame be rigidly attached to the robot. The body

representation of q̇ is given by

TqΦg−1(q̇) = (TgLg−1 ġ, ṙ)

In fact, we already defined body representation on a Lie group, G, as shown in (2.1),

however, here we are defining the action on the entire manifold, Q. In the rest of this

thesis, we will use body representation and hence ξ will always refer to ξb. Remember

that the body velocity is the velocity of the body computed in the inertial frame but

represented in the body frame [36].

The invariance of the Lagrangian means that we can compute the Lagrangian anywhere

on the configuration manifold and get the same value provided that we map the velocities

using the lifted actions. One special configuration to compute the Lagrangian is at the Lie

group identity element, e. This yields an expression of the Lagrangian that is independent

of the fiber variables g. This special Lagrangian is referred to as the reduced Lagrangian.

According to [40], the reduced Lagrangian is given by

l(ξ, r, ṙ) = L(Φg−1q, TqΦg−1 q̇)

= L(g−1g, r, TgLg−1 ġ, ṙ)

= L(e, r, ξ, ṙ). (3.17)

Moreover, according to [40] the reduced Lagrangian will have the following form

l(ξ, r, ṙ) =
1

2

⎛
⎝ ξ

ṙ

⎞
⎠T

M̃(r)

⎛
⎝ ξ

ṙ

⎞
⎠ (3.18)

Here, M̃(r) is the reduced mass matrix associated with the reduced Lagrangian can be

written in the following form
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M̃(r) =

⎛
⎝ I(r) I(r)A(r)

(I(r)A(r))
T

m(r)

⎞
⎠ , (3.19)

where A(r) is the local form of the mechanical connection, I(r) is the local form of the

locked inertia tensor, I = I(e, r), and m(r) is a matrix depending only on base variables.

Next, we utilize the reduced Lagrangian to compute the momentum map at the group

identity. We will utilize the above structure of the reduced Lagrangian to simplify the

computation of the reconstruction and momentum evolution equations.

Proposition 3 (Body representation of the momentum map) For a simple mechan-

ical system whose Lagrangian is invariant with respect to the Lie group action, the mo-

mentum map can be computed using the reduced Lagrangian map as follows

Jb(q̇) =
∂l(ξ, r, ṙ)

∂ξ
(3.20)

where l(ξ, r, ṙ) is the reduced Lagrangian and ξ is the body representation of the fiber velocity

ġ.

Proof Recall the the momentum map is computed using the equation 〈J(vq), ξ〉 =

〈〈vq, ξQ(q)〉〉. Using this expression, we compute the momentum map at the Lie group

identity by setting q = (e, r) and q̇ = (ξ, ṙ). Hence, we get

〈Jb(q̇), ξ〉 = 〈J(ξ, ṙ), ξ〉
= 〈〈(ξ, ṙ), ξQ(e, r)〉〉
= 〈〈(ξ, ṙ), (ξ, 0)〉〉

=

⎛
⎝ ξ

ṙ

⎞
⎠T

M(e, r)

⎛
⎝ ξ

0

⎞
⎠

= ξT M̃(r)ξ

= 〈ξT M̃(r), ξ〉

Thus, it is obvious that Jb(q̇) = ξT M̃(r). Moreover, we know that the reduced La-

grangian is given by l(ξ, r, ṙ) = 1
2 (ξ, ṙ)T M̃(r)(ξ, ṙ). Hence, we can conclude that
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Jb(q̇) = ξT M̃(r) =
∂l(ξ, r, ṙ)

∂ξ
.

�

Finally, we conclude this section by computing the reduced non-holonomic constraints.

On other words, we utilized the invariance of the non-holonomic constraints to represent

their Pfaffian form in the body-attached coordinate frame. The result is presented in the

following Lemma.

Lemma 5 (Local form of the non-holonomic constraints) For a mechanical system

whose configuration space is a trivial principal fiber bundle, Q = G×M , and which is sub-

ject to k linearly independent non-holonomic constraints, ω(q)q̇ = 0, that are invariant

with respect to left group actions, then the reduced non-holonomic constraints are given by

ω̄ξ(r)ξ + ω̄r(r)ṙ = 0.

Proof Given the triviality of the configuration space and the invariance of the constraints

with respect to left group actions, then we have

ω(q) · q̇ = ω(Φhq) · TqΦhq̇ = 0, or

⇔ ω(g, r) · (ġ, ṙ)T = ω(Lhg, r) · (TgLhġ, ṙ)T = 0,

where Φhq and TqΦhq̇ are the left and lifted left actions on the manifold Q, [5, 41]. Note

that these actions act only on the fiber part of q. Let h = g−1 we arrive at

0 = ω(g, r) · (ġ, ṙ)T = ω(Lg−1g, r) · (TgLg−1 ġ, ṙ)T

= ω(g−1g, r) · (TgLg−1 ġ, ṙ)T

= ω(e, r) · (TgLg−1 ġ, ṙ)T .

Now, define the local form of ω(q) to be ω̄(r) = ω(e, r). Moreover, we know that

ξ = ξb = TgLg−1 ġ. Thus, the non-holonomic constraints, expressed in the body-attached

frame are given by
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0 = ω̄(r)

⎛
⎝ ξ

ṙ

⎞
⎠ ,

0 = ω̄ξ(r)ξ + ω̄r(r)ṙ, (3.21)

where ω̄ξ(r) and ω̄r(r) are the k× l and k×m sub-matrices of ω̄(r). Note that, the reduced

non-holonomic constraints are independent on the fiber variable, g.

�

3.3 Reduced Equations of Motion

In this final section, we present the reduced equations of motion for unconstrained systems.

For more details, the reader is referred to [5, 9, 24,40].

For unconstrained mechanical systems that have a trivial principal fiber bundle con-

figuration space, Q = G × M , and whose Lagrangian is invariant with respect to the Lie

group action, we use the reduced Lagrangian to define the generalized momentum variable,

p such that

p =
∂l(ξ, r, ṙ)

∂ξ
.

Note that p is actually the momentum map represented in body coordinates as shown

in Proposition 3. Hence, for unconstrained mechanical systems, we can rewrite the recon-

struction equation, (3.6) in terms of the generalized momentum variable to arrive at

ξ = TgLg−1ġ = −A(r)ṙ + I−1(r)pT (3.22)

where ξ = ξb, A(r) is the local form of the mechanical connection, and I(r) is the local

form of the locked inertia tensor. Later in the thesis, we will re-derive this equation and

compute it for mechanical systems with non-holonomic constraints.

The reconstruction equation presented above can be used to solve for the fiber ve-

locities, ġ = TeLgξ, given the base configuration and velocity variables, (r, ṙ), and the

momentum variable, p. Thus, we need additional sets of equations that prescribe the evo-

lution of the base and momentum variables. Such equations were presented by Ostrowski
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in [40]. Hence, we can rewrite the dynamic equations of motion as follows

ġ = TeLg

(−A(r)ṙ + I−1(r)pT
)
, (3.23)

ṗ = ad∗ξp + τe
g , and (3.24)

r̈ = −M̄−1(r)
(
ṙT C̃(r)ṙ + Ñ(r) + B(r)τe

r

)
. (3.25)

The last two equations, (3.23) and (3.25), describe the evolution of the momentum

and base variables for a given generalized fiber and base forces, τe
g and τe

r , pulled to the

group identity, e. Thus, giving these input generalized forces, one can solve for the base

and momentum variables and plug them into the reconstruction equation and solve for

the fiber velocity, ġ.

Moreover, note that both the reconstruction equation, (3.24), and the momentum

evolution equation, (3.24), are a set of l first order differential equations, where l is the

dimension of the fiber space G. The reduced3 base dynamics equations, (3.25) are a set

of m second order differential equations, where m is the dimension of the base space,

M . Hence, we reduced the original set of n(= l + m) second order dynamic equations of

motion, (3.12), to a set of 2l first order and m second order differential equations.

Finally, we conclude this chapter with the following assumption. Throughout this

thesis, we assume that we have full control solely over the base space configuration and

velocity variables, (r, ṙ). Hence, for the rest of the thesis, we will neglect the reduced

dynamic equations of motion on the base space (3.25), thus, we will use only the recon-

struction and momentum evolution equations to represent the systems dynamics for all

types of mechanical system we are considering in this thesis. In the following two chap-

ters, we will derive both the reconstruction and momentum evolution equations for several

types of mechanical systems which we will utilize later to eventually generate gaits for

these systems.

3Here the word “reduced” describes the fact that the system dynamics is projected on the base space.
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Chapter 4

Mechanical Systems Classification

In this chapter we build upon the background material presented in Chapter 3 and tailor

the results into new forms that serve our gait generation techniques. Specifically, we

define a partition over the family of simple mechanical systems. We start by defining

a general type of systems, generalized mixed systems, which represents a superset of all

the mechanical systems considered in this thesis. Then we introduce the other types of

mechanical systems which are merely special cases of the generalized mixed systems type.

The partition is defined in terms of additional conditions that we impose on the generalized

type of mixed systems. Finally, we present the respective reconstruction equations for these

mechanical systems.

Definition 37 (Generalized mixed systems) A simple mechanical system1 that has

an n-dimensional configuration space that has a trivial principal fiber bundle structure,

Q = G×M , where G is an l-dimensional Lie group fiber space and M is an m-dimensional

base space, and that is subject to a k-dimensional set of non-holonomic constraints is said

to be of the generalized mixed type if

1. Its Lagrangian is equal solely to the system’s kinetic energy,

L(q, q̇) =
1

2
q̇T M(q)q̇,

where M(q) is the n × n mass matrix defining the kinetic energy metric.

2. The non-holonomic constraints acting on the system can be written in a Pfaffian

from

ω(q)q̇ = 0,

1We are using Smale’s definition of simple mechanical systems as presented in [51,52],
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where ω(q) is a k × n matrix describing the constraints.

3. Both the Lagrangian and the set of non-holonomic constraints are invariant with

respect to the fiber group Lie actions, that is,

L(q, q̇) = L(Φgq, TqΦg q̇), and

ω(q)q̇ = ω(Φgq)TqΦg q̇,

where Φg is the Lie group action on Q and TqΦg is the lifted action on TQ.

4. Away from singular configurations of the system, the non-holonomic constraints are

linearly independent, that is,

det (ω(q)) 
= 0.

The last requirement ensures that none of the constraints is a linear combination of

the other velocity constraints.

In the rest of the thesis, we will assume that the mechanical systems we are considering

are of the generalized mixed type. Before we define other sub-types of mechanical systems,

we will compute the reconstruction equation. In the next chapter we will compute the

momentum evolution equation for generalized mixed systems.

Note that, computing these two equations for the most general type of systems, gen-

eralized mixed systems, will simplify their respective computation for the other types of

system as they are special cases of generalized mixed systems and will help us compare

these sub-types of mechanical systems.

4.1 Reconstruction Equation for Generalized Mixed Sys-

tems

In this section, we compute the reconstruction equation for the generalized mixed type of

mechanical systems. The results of this section can be found in the prior work, [5] and [40],

however, we re-derive the same result in what we believe is a more compact way and we

shall use this derivation later in the paper.

Given a generalized mixed mechanical system whose Lagrangian and non-holonomic

constraints are, by definition, invariant with respect to its fiber space group action and
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lifted action, then the reduced Lagrangian and reduced non-holonomic constraints are

respectively given by

l(ξ, r, ṙ) =
1

2

(
ξ ṙ

)T

⎛
⎝ I IA

(IA)T m

⎞
⎠
⎛
⎝ ξ

ṙ

⎞
⎠ , (4.1)

0 = ω̄

⎛
⎝ ξ

ṙ

⎞
⎠ =

(
ω̄ξ ω̄r

)⎛⎝ ξ

ṙ

⎞
⎠ , (4.2)

where I is the local form of the locked inertia tensor, A is the local form of the mechanical

connection, ω̄ξ and ω̄r are sub-matrices of the constraint matrix ω̄ = (ω̄ξ, ω̄r). All of the

above matrices are independent of the fiber variable, g, and depend only on the shape

variables, r. We define the generalized non-holonomic momentum along the allowable

directions by p = ∂l
∂ξ Ω̄T where Ω̄T is a basis of N (ω̄ξ), the null space of ω̄ξ. Then using

(4.1) we have

p =
∂l

∂ξ
Ω̄T =

(
ξT IT + ṙT (IA)T

)
Ω̄T . (4.3)

Note that the transpose of the generalized non-holonomic momentum has the following

form

pT =
(

Ω̄I Ω̄IA
)⎛⎝ ξ

ṙ

⎞
⎠ =

(
ηξ ηr

)⎛⎝ ξ

ṙ

⎞
⎠ , (4.4)

where the η’s are functions of the base variables. Note the resemblance in structure of

the reduced non-holonomic constraints in (4.2) to the generalized momentum in (4.4).

Rewriting (4.2) and (4.4) we get

ω̄ξξ = 0 − ω̄r ṙ (4.5)

Ω̄Iξ = pT − Ω̄IAṙ (4.6)

The above two equations allow us to solve for a unique ξ provided that the matrix

composed by stacking ω̄ξ and Ω̄I is invertible as we shall show in the following Lemma.

Lemma 6 (Invertibility of the
(

ω̄ Ω̄I

)T

matrix) Let Ω̄T be a basis of N (ω̄), the

null space of ω̄, where ω̄ is a full row rank matrix. Moreover, let I be a symmetric positive
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definite matrix. Then the matrix composed by stacking ω̄ and Ω̄I is invertible.

Proof Since Ω̄ is full row rank and I is a symmetric positive definite matrix we conclude

that Ω̄I is full row rank. Moreover, since I is positive definite we know that there exists

a symmetric positive definite matrix J such that I = JJ .

Now, suppose that the matrix
(

ω̄ Ω̄I
)T

is singular, then we have R(ω̄)∩R(Ω̄I) 
= ∅

where R(ω̄) is the range space of ω̄. Let z = (x, y) ∈ R(ω̄) ∩ R(Ω̄I) where x and y are

nonzero, then we have

xT ω̄ = yT Ω̄I,

xT ω̄J−1 = yT Ω̄(JJ)J−1 = yT Ω̄J.

Now consider the product of the following matrices

(xT ω̄J−1)(yT Ω̄J)T = xT ω̄J−1JT Ω̄T y,

= xT ω̄J−1JΩ̄T y,

= xT ω̄Ω̄T y = 0,

since the columns of Ω̄T ∈ N (ω̄). Therefore, the matrices (xT ω̄J−1) and (yT Ω̄J) are

orthogonal. Moreover, we proved that the two matrices are identical, hence, (xT ω̄J−1) =

(yT Ω̄J) = 0. Since, both (ω̄J−1) and (Ω̄J) are full row rank (J is nonsingular) then x = 0

and y = 0, which contradicts our assumption. Thus, we conclude that
(

ω̄ Ω̄I
)T

must

be nonsingular.

�

Having proved that the matrix composed by stacking ω̄ξ and Ω̄I is invertible, we use

(4.5) and (4.6) to solve for ξ to arrive at

ξ = −
⎛
⎝ (ω̄ξ)

k×l(
Ω̄I
)(l−k)×l

⎞
⎠−1⎛⎝ (ω̄r)

k×m(
Ω̄IA

)(l−k)×m

⎞
⎠ ṙ+

⎛
⎝ ω̄ξ

Ω̄I

⎞
⎠−1⎛⎝ 0k×1(

pT
)(l−k)×1

⎞
⎠ (4.7)
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No non-holonomic 

constraints

Non-holonomic

constraints

Generalized

momentum

No generalized

momentum
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Generalized mixed 

systems

Mixed

- Purely dynamic

Figure 4.1: A diagram depicting the various types of mechanical systems.

This is the reconstruction equation for generalized mixed systems. Note that, the

matrices multiplying both the base velocity, ṙ, and the generalized momentum variable, p,

are independent on the group variable, g, and depend solely on the base variable, r. Next,

we define other specific types of mechanical systems and compute their reconstruction

equations.

4.2 Sub-types of Mixed Systems

Here, we define sub-types of mechanical systems (Fig. 4.1) by imposing additional con-

ditions on the dimensions of fiber and base spaces and the number of non-holonomic

constraints. We start with mixed systems which were mentioned in the [5, 40].

Definition 38 (Mixed systems) Mixed systems are systems that belong to the gener-

alized mixed system family and additionally have at least one non-holonomic constraint

and at most one less non-holonomic constraints than the dimension of the fiber space, that

is,

0 < k < l

where l is the dimension of the fiber space and k is the number of non-holonomic velocity

constraints acting on the system.

Mixed systems are mechanical systems that do not have enough non-holonomic con-

straints to fully span the fiber space. Thus, there should exist directions of motion that are

“orthogonal” to all the non-holonomic constraints acting on the system. Along these allow-

able directions, we can define generalized momentum variables that are instantaneously
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conserved and are governed by a first order differential equation as we shall show in the

next chapter.

As for the reconstruction equation for mixed systems, we regroup terms we can rewrite

(4.7) as follows

ξ = −A(r)ṙ + Γ(r)pT , (4.8)

where A(r) is an l×m matrix that represents the local form of the mixed connection and

Γ(r) is an l × (l − k) matrix multiplying the transpose of the generalized non-holonomic

momentum. Thus, only using the non-holonomic constraints, ω̄ξ and ω̄r, as well as the

components of reduced mass matrix, I and IA, we compute the local form of the mixed

connection A(r) as shown in (4.7).

The next sub-type of mechanical systems we define is for the case when we have enough

non-holonomic constraints to completely specify the systems velocity.

Definition 39 (Principally kinematic systems) Principally kinematic systems2 are

systems that have just enough non-holonomic constraints to fully span the fiber space,

that is,

k = l

where l is the dimension of the fiber space and k is the number of non-holonomic velocity

constraints acting on the system.

In other words, for principally kinematic systems the non-holonomic constraints are

sufficient to fully specify the systems’ fiber velocity for a given base velocity. We can

clearly see this by computing the reconstruction equation for principally kinematic systems.

Setting l = k in (4.7) we can see that there will be no generalized momentum variables.

Thus, (4.7) reduces to

ξ = −ω̄ξ
−1ω̄r ṙ = −A(r)ṙ, (4.9)

where A(r) is an l×m matrix that represents local form of the principal connection. Next,

we define a third sub-type of mechanical systems which belong to the opposite end of the

spectrum across from principally kinematic systems, that is, these systems are not subject

to any non-holonomic constraints.

2Sometimes, these systems are referred to as Chaplygin.
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Definition 40 (Purely mechanical systems) Purely mechanical systems are systems

that have no non-holonomic constraints acting on the system, that is,

k = 0

where k is the number of non-holonomic velocity constraints action on the system.

Thus, for purely mechanical systems, setting k = 0 in (4.7), the reconstruction equation

reduced to

ξ = −A(r)ṙ + I−1(r)pT , (4.10)

where A(r) is an l×m matrix that represents local form of the mechanical connection and

I(r) is an l × l matrix that represents local form of locked inertia tensor.

Later in the thesis, we will impose an additional condition on purely mechanical system

to simplify their reconstruction equation. More specifically, we ensure that there are no

external forces acting on the system and that the system starts from rest. This will force

all the momentum variables to start and stay at zero for all time. Thus, for such purely

mechanical systems, the reconstruction equation simplifies to

ξ = −A(r)ṙ, (4.11)

where A(r) is an l × m matrix that represents local form of the mechanical connection.

Note the similar structure of the reconstruction equations for both principally kinematic

and purely mechanical systems in (4.9) and (4.11), respectively. Finally, we will introduce

one last sub-type of mechanical systems.

Definition 41 (Purely dynamic systems) Purely dynamic are a special family of the

mixed type of systems whose base space is one-dimensional, that is,

m = 1,

where m is the dimension of the base space M .

What is unique about purely dynamic systems is the fact that for cyclic gaits, their

motion is attributed solely to the dynamic part of the reconstruction equation of the mixed

type systems, Γ(r)pT . Recall, that ξ is a base space velocity at the group identity. Later

in this dissertation, we shall be integrating the reconstruction equations to generate gaits.



60

System type Condition Reconstruction equation

Mixed 0 < l < k ξ = −A(r)ṙ + Γ(r)pT

Principally kinematic l = k ξ = −A(r)ṙ

Purely mechanical k = 0 and p(t) = 0 ξ = −A(r)ṙ

Purely dynamic m = 1 ξ = Γ(r)pT

Table 4.1: A list of the types of mechanical systems and their respective reconstruction

equations.

Hence, if we integrate the reconstruction equation of purely dynamic systems over a closed

curve, we can clearly see that the first term in (4.12) is equal to zero since

∫ τ

0

Ai(r)ṙdt =

∮ r(τ)

r(0)

Ai(r)dr = 0,

where r(0) = r(τ). Hence, if we are considering cyclic gaits, which is the case for this

entire thesis, the reconstruction equation for purely dynamic systems reduces to

ξ = Γ(r)pT , (4.12)

where Γ(r) is an l × (l − k) matrix multiplying the transpose of the generalized non-

holonomic momentum variable, p.

We have summarized the various types of mechanical systems we have presented in this

chapter in Table 4.1. Moreover, Fig. 4.1 depicts the various types of mechanical systems

and their relations to each others.
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Chapter 5

Generalized and Scaled Momentum

In Chapter 4, we presented a classification of several types of mechanical systems and pre-

sented their respective reconstruction equations. In this chapter, we present the respective

generalized momentum evolution equations for these various types of mechanical systems.

In earlier chapters, we utilized the structure of the configuration space to devise a

relationship between of base and fiber velocities. This relation is represented by the recon-

struction equation. Here we invoke another tool to further simplify the dynamic equations

of motion. We utilize symmetry of the laws of physics to actually reduce the order of the

equations of motion along the fiber directions. The reduction is done by representing the

dynamics in terms of a generalized momentum variable, thus, reducing the order of the

governing differential equations of motion. Finally, for a certain general family of mechan-

ical systems, we present and even simpler representation of the fiber space dynamics. This

is done by introducing a scaled momentum variable and expressing the dynamics in terms

of it. In later chapters, we shall see how representing the dynamics in terms of the scaled

momentum variable simplifies our approach to the gait generation problem.

5.1 Reduced Dynamics of Mechanical Systems

In this section, we take recourse to mechanics of locomotion and recall several useful results.

Mainly, we present the reduced dynamic equations of motion for simple mechanical systems

that are subject to a set of non-holonomic velocity constraints. The results presented in

this section are similar to those presented in Section 3.3 in Chapter 3 where unconstrained

systems were analyzed.

The main idea of reducing the equations of motion is to utilize the Lagrangian in-
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variance as well as the non-holonomic constraints invariance to rewrite the equations of

motion at the Lie group identity. This eliminates any fiber configuration variables from

the equations of motions and allows the base dynamics to be expressed solely in terms of

the base variables. Note that, since the new set of dynamic equations, the reduced base

dynamics and the momentum evolution equations, are independent of the fiber variables,

we use the reconstruction equations presented in the previous chapter to reconstruct the

fiber variables from the base and momentum variable.

Recall the equations of motion for mechanical systems that are subject to non-holonomic

constraints are shown in (3.13). Rewriting these equations at the group identity is given

in the following Proposition.

Proposition 4 (Reduced momentum evolution equation) For a generalized mixed

system, that is, the configuration space has a trivial principal fiber bundle, Q = G×M , and

the Lagrangian, as well as the set of non-holonomic constraints acting on the system, are

invariant with respect to the Lie group actions, the dynamic equations of motion evaluated

at the Lie group identity have the following form

d

dt

(
∂l

∂ξa

)
− ad∗ξ

∂l

∂ξa
= (λcω

c
b + τb) (TeLg)

b
a , (5.1)

d

dt

(
∂l

∂ṙa

)
− ∂l

∂ra
= λcω

c
i + τi, (5.2)

where l is the reduced Lagrangian, ξ is a Lie algebra element or a fiber velocity at the

group identity such that ξ = TgLg−1 ġ, ω is the matrix representing the non-holonomic

constraints, and λ is the a vector representing the constraint forces. The term ad∗ξ is the

“derivative” of the lifted adjoint map, Adg
1.

We will not provide a rigorous proof for this above proposition as it was presented in

Proposition 3.12 in [40]. However, we will present a sketch of the proof, but before that

we shall present the following Lemma.

Lemma 7 (Pfaffian constraints at the group identity) For a mechanical system whose

configuration space has a trivial principal fiber bundle, Q = G×M , and whose Lagrangian

as well as the set of non-holonomic constraints acting on the system are invariant with

1For ξ, η ∈ g, adξη = [ξ, η] which can be computed using the structure constants of the Lie algebra.

Then ad∗ξp is the dual map to adξη [40].
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respect to the Lie group actions, the Pfaffian non-holonomic constraints are expressed in

the following form

ω(q)c
b (TeLg)

b
a ξa + ω(q)c

dṙ
d = 0 (5.3)

Proof The Pfaffian non-holonomic constraints are expressed as ω(q)q̇ = 0. Using the

triviality of the configuration space we can write the non-holonomic constraints in coordi-

nate as follows

0 = ω(q)c
bq̇

b

= ω(q)c
bġ

b + ω(q)c
dṙ

d

= ω(q)c
b (TeLg)

b
a ξa + ω(q)c

dṙ
d

= ω(e, r)c
b (TeLg)

b
a ξa + ω(e, r)c

dṙ
d

�

Moreover, we proved in (3.21) that the invariance of the constraints with respect to the

Lie group action allows us to express the constraints in body coordinates where we have

0 = (ω̄ξ)
c
a ξa + (ω̄r)

c
d ṙd

Thus, we conclude that (ω̄ξ)
c
a = ω(q)c

b (TeLg)
b
a and (ω̄r)

c
d = ω(q)c

d which we shall use

later.

Proof (Sketch of the proof of Proposition 4) The main idea for this proof is to

rewrite the dynamic equations of motion at the Lie group identity using a change of

variables, g → ξ. Next, we provide the first steps of writing the fiber space equations

of motion at the group identity. We start by rewriting the first two terms of the Euler-

Lagrange equations of motion, d
dt

(
∂L
∂ġ

)
and ∂L

∂g .
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d

dt

(
∂L

∂ġ

)
=

d

dt

(
∂l

∂ξ

∂ξ

∂ġ

)

=
d

dt

∂l

∂ξ

(
TgLg−1

)
+

∂l

∂ξ

d

dt

(
TgLg−1

)
=

d

dt

∂l

∂ξ

(
TgLg−1

)
+

∂l

∂ξ

∂

∂g

(
TgLg−1

)
ġ

Here, we used the fact that ξ = TgLg−1 ġ. Similarly, the second term of the equations

of motion is rewritten as

∂L

∂g
=

∂l

∂ξ

∂ξ

∂g

=
∂l

∂ξ

∂
(
TgLg−1

)
∂g

ġ

=
∂l

∂ξ

∂
(
TgLg−1

)
∂g

(TeLg) ξ

Then, we substitute the above two terms into the original equations of motion, (3.13),

and solve for the term d
dt

∂l
∂ξ . Thus, it is clear that we have to post multiply by the matrix

(TeLg). This explains the fact what the constraints matrix and the generalized forces are

post multiplied by (TeLg) in the right hand side of (5.1). Finally, we can see that the term

ad∗ξ
∂l
∂ξ represents all the other leftover terms as was shown in [40].

�

5.2 Momentum Evolution Equation

Thus far, we were able to write the equation of motion on the fiber space in terms of

the generalized momentum variable p = ∂l
∂ξ . Next, we express the same equations of

motion, nonetheless, using the generalized non-holonomic momentum variable, p = ∂l
∂ξ Ω̄T .

Moreover, we verify that the first derivative of p is equal to a quadratic expression in the

generalized non-holonomic momentum and base velocity variables.

Proposition 5 (Momentum evolution equation) For a mechanical system whose con-

figuration space has a trivial principal fiber bundle, Q = G×M , and whose Lagrangian as

well as the set of non-holonomic constraints acting on the system are invariant with re-

spect to the Lie group actions, the dynamic equations of motion evaluated at the Lie group
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identity expressed using the non-holonomic generalized momentum will have the following

form

ṗc = ṙT (σṙṙ)c ṙ + ṙT (σṙp)c p + pT (σpp)c p (5.4)

where pc is the cth column of p and the σ’s are matrices of appropriate dimensions whose

components are functions solely of the base variables, r.

Proof Recall that the non-holonomic generalized momentum is given by p = ∂l
∂ξ Ω̄T ,

where Ω̄T is a basis element of the null space of (ω̄ξ), that is,

0 = (ω̄ξ)
c
a

(
Ω̄T
)a
c

= ωc
b (TeLg)

b
a

(
Ω̄T
)a
c

Computing the derivative the cth element of the non-holonomic generalized momentum,

p, we get

ṗc =
∂l

∂ξa

d

dt

(
Ω̄T
)a
c

+
d

dt

(
∂l

∂ξa

)(
Ω̄T
)a
c
. (5.5)

Now, we Substitute (5.1) into (5.5) and solving for ṗc to arrive at

ṗc =
∂l

∂ξa

d

dt

(
Ω̄T
)a
c
−
(

ad∗ξ
∂l

∂ξa
− λcω

c
b (TeLg)

b
a

)(
Ω̄T
)a
c
,

=
∂l

∂ξa

d

dt

(
Ω̄T
)a
c
− ad∗ξ

∂l

∂ξa

(
Ω̄T
)a
c

+ λcω
c
b (TeLg)

b
a

(
Ω̄T
)a
c
,

=
∂l

∂ξa

d

dt

(
Ω̄T
)a
c
− ad∗ξ

∂l

∂ξ

(
Ω̄T
)
c
,

=
∂l

∂ξa

d

dt

(
Ω̄T
)a
c
− ∂l

∂ξ
[ξ,
(
Ω̄T
)
c
],

=
∂l

∂ξa

d

dt

(
Ω̄T
)a
c
− ∂l

∂ξa
[ξ,
(
Ω̄T
)
c
]a,

=
∂l

∂ξa

d

dt

(
Ω̄T
)a
c
− ∂l

∂ξa
Ca

deξ
d
(
Ω̄T
)e
c
,

=
∂l

∂ξa

(
d

dt

(
Ω̄T
)a
c
− Ca

de

(
Ω̄T
)e
c
ξd

)
.

Here, we used the fact that ωc
b (TeLg)

b
a

(
Ω̄T
)a
c

= 0 by definition and we used the prop-
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erty of the adjoint map ad∗ξ
∂l
∂ξ = ∂l

∂ξ [ξ, .] Moreover, we used the structure constants of the

Lie algebra to compute the Lie bracket, that is, [ξ, η]a = Ca
bcξ

bηc. Next, we compute the

term d
dt

(
Ω̄T
)a
c

to arrive at

d

dt

(
Ω̄T
)a
c

=
∂
(
Ω̄T
)a
c

∂re
ṙe.

Recall that, using the reconstruction equation for generalized mixed systems, (4.12),

we can computed the fiber velocity expressed in body coordinates which we rewrite as

ξd = −Ad
e ṙ

e + Γd
e

(
pT
)e

and(
ξT
)
e

= (ξe)
T

= − (ṙT
)
f

(
AT
)f

e
+ pf

(
ΓT
)f
e

.

Now, we utilize both the expression of the reduced Lagrangian, (4.1), to compute the

term ∂l
∂ξa to get

∂l

∂ξa
=

(
ξT
)
e

(
IT
)e
a

+
(
ṙT
)
f

(
AT IT

)f
a

,

=

(
− (ṙT

)
f

(
AT
)f

e
+ pf

(
ΓT
)f
e

)(
IT
)e
a

+
(
ṙT
)
f

(
AT IT

)f
a

,

=
(
ṙT
)
f

((
AT IT

)f
a
−
(
AT
)f

e

(
IT
)e
a

)
+ pf

(
ΓT
)f
e

(
IT
)e
a
,

=
(
ṙT
)
f

((
AT − AT

)
IT
)f

a
+ pf

(
ΓT IT

)f
a

.

Substituting back into the equation of pc we arrive at

ṗc =

((
ṙT
)
f

((
AT − AT

)
IT
)f

a
+ pf

(
ΓT IT

)f
a

)
(

∂
(
Ω̄T
)a
c

∂re
ṙe − Ca

de

(
Ω̄T
)e
c

(
−Ad

e ṙ
e + Γd

e

(
pT
)e))

= ṙT (σṙṙ)c ṙ + ṙT (σṙp)c p + pT (σpp)c p

where the σ’s have the following expressions
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(σṙṙ)c =
((

AT − AT
)

IT
)

a

(
∂
(
Ω̄T
)a
c

∂r
+ Ca

de

(
Ω̄T
)e
c
Ad

)

(σṙp)c = −
((

AT − AT
)

IT
)

a
Ca

de

(
Ω̄T
)e
c
Γd +

(
ΓT IT

)
a

(
∂
(
Ω̄T
)a
c

∂r
+ Ca

de

(
Ω̄T
)e
c
Ad

)

(σpp)c = − (ΓT IT
)
a
Ca

de

(
Ω̄T
)e
c
Γd

�

Recall that for certain types of mechanical systems, the reconstruction equation is a

function of the generalized momentum as shown in Table 4.1. Even though, we proved

that the evolution momentum equation is a first order differential equation and the first

derivative of the generalized momentum is equal to the quadratic term we presented above,

this equation does not furnish a closed form solution. Thus, the above equation is not as

helpful as we wished for utilizing to solve for the generalized momentum. Next we define

a new momentum variable that will allow us to rewrite the reconstruction and momentum

evolution equations in “useful” forms to apply our gait generation technique.

5.3 Scaled Momentum

In this section, we introduce a novel scaled momentum variable. For a certain family of

mechanical systems, expressing the momentum evolution equation in terms of this novel

momentum variable simplifies it even more. This simplification allows us to easily verify the

sign definiteness of the scaled momentum variable which we utilize to eventually generate

gaits for mechanical systems as we shall see in the next chapter.

Before we define this novel momentum variable, we will make the following assumption

which will be assumed true for the rest of the thesis unless otherwise specified.

Assumption 1 (One-dimensional generalized momentum) We assume that for all

the mechanical systems considered in this thesis the dimension of fiber space is one more

than the number of non-holonomic constraints action on the system, that is,

l − k = 1,

where l is the dimension of the fiber space and k is the number of non-holonomic constraints

acting on the system.
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For such systems, only one generalized non-holonomic momentum variable exists. This

is clear from the definition of the generalized non-holonomic momentum where p = ∂l
∂ξ Ω̄T

since Ω̄ is an (l − k) × l = 1 × l matrix. Moreover, Ostrowski in [40] proved that for such

systems, the term σpp in (5.4) is equal to zero . Hence, for such system, the momentum

evolution equation (5.4) reduces to

ṗ = ṙT σṙṙ ṙ + ṙT σṙpp (5.6)

Note that we removed the c subscript since we only have one momentum variable.

Next, we define the new scaled momentum variable.

Definition 42 (Scaled momentum variable) For mechanical system whose momen-

tum evolution equation has the from given in (5.6), define the scaled momentum variable,

ρ = f(r)p (5.7)

such that f(r) is an integrating factor2 of the first order differential equation (5.6).

Using this novel scaled momentum variable, we can rewrite the momentum evolution

equation in an even more simplified from presented in the following Lemma.

Lemma 8 (Scaled momentum evolution equation) For generalized mixed mechani-

cal systems that have one less non-holonomic velocity constraints than the dimension of

the systems fiber space, the momentum evolution equation has the following form

ρ̇ = ṙT Σ(r)ṙ (5.8)

where ρ is the scaled momentum variable, and Σ is an m × m matrix whose components

are a function of the base variables where m is the dimension of the base space.

Proof Taking the derivative of the scaled momentum variable given in (5.7) we arrive at

2Integrating factors allow us to rewrite first order differential equations of the form dp/dt = f(r, p, ṙ)

as d(h(r)p)/dt = f̄(r, ṙ), [54].
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ρ̇ =
d

dt
(f(r)p)

= f(r)ṗ +
∂f

∂r
ṙp

= f(r)

(
ṗ +

∂f/∂r

f
ṙp

)

Moreover, since f is an integrating factor of (5.6), we know that
∂f
∂r

f(r) = −σṙp. Substi-

tuting into the above equation we get

ρ̇ = f(r)
(
ṙT σṙṙ ṙ

)
= ṙT Σ(r)ṙ

where Σ(r) = f(r)σṙṙ.

�

Finally, we can rewrite the reconstruction equations for mixed systems in terms of the

scaled momentum variable to get

ξ = −A(r)ṙ + Γ̄(r)ρ, (5.9)

where Γ̄(r) = Γ(r)/f(r). Now that we have written the reconstruction and momentum

evolution equations in terms of the scaled momentum variable, we are ready to generate

gaits by studying and analyzing the three terms, A(r), Γ̄(r), and Σ(r).
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Chapter 6

Gait Generation

In this chapter, we utilize both the momentum evolution equation, (5.8) as well as the

reconstruction equation, (5.9) to evaluate the motion due to any closed curve in the base

space. We start with by integrating the reconstruction equation of generalized mixed me-

chanical systems, the most general type of mechanical systems, and then relating position

change expressed in body coordinated to two decoupled quantities, the geometric and dy-

namic phase shift. Thus, the main idea in this chapter is how to intuitively evaluate the

values of these shifts, so that we can use these evaluation tools to actually generate gaits.

Our approach is to relate the value of geometric phase shift to the volume under a well-

defined height function which is bounded by a proposed closed base space curve. As for the

dynamic phase shift, we utilize the new scaled momentum variable as well as another set

of well-defined gamma functions to intuitively evaluate the dynamic shift value to a closed

base space curve. Finally, we utilize both evaluation tools for computing the geometric

and dynamic phase shift to actually synthesize and generate gaits for mixed non-holonomic

system. We start this chapter by defining a base space gait as follows:

Definition 43 (Gait) We define a gait to be a continuous closed curve, φ, in the base

space, M , that is,

φ : R → M,

t �→ r,

such that φ(t) = φ(t + τ), where τ ∈ R is the period of the gait.

Thus, since all gaits are periodic, after each period of time, the mechanical system
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returns to the same point in the base space, that is, it retains the same shape at the end

of each cycle. Since our gait generation analysis requires that the mechanical system can

perform any gait or curve in the base space, we will assume that the actuation of the

underactuated mechanical system occurs on the base space, that is, we assume that the

base space is fully actuated as presented in the following assumption.

Assumption 2 (Fully actuated base space) We assume that all the base variables are

fully actuated, that is, we assume that we can independently control each of the base con-

figuration variables.

6.1 Geometric and Dynamic Phase Shift

In Chapter 4, for generalized mixed systems, we related the fiber velocity, expressed in body

coordinates, ξ, to two decoupled quantities as shown in (4.7). Then in Chapter 5 we defined

a new scaled momentum variable which changed the expression of the reconstruction

equation, nonetheless, the right hand side was still composed of two terms as shown in

(5.9).

Define the variable ζ as the integral of ξ, that is, ζ̇ = ξ. Thus, integrating the ith row

of the reconstruction equation (5.9) with respect to time we get

Δζi =

∫ t1

t0

ζ̇idt =

∫ t1

t0

ξidt

=

∫ t1

t0

⎛
⎝−

m∑
j=1

Ai
j(r)ṙ

j +

l−k∑
j=1

Γ̄i
j(r)ρ

j

⎞
⎠ dt

=

∮ r(t1)

r(t0)

⎛
⎝−

m∑
j=1

Ai
j(r)

⎞
⎠ drj +

∫ t1

t0

⎛
⎝l−k∑

j=1

Γ̄i
j(r)ρ

j

⎞
⎠ dt (6.1)

where we transformed the first integral from a time definite integral to a line integral of

an m-dimensional one-form. Next, along the ith fiber direction, we define the geometric

phase shift, Ii
GEO, and dynamic phase shift, Ii

DY N , respectively as the values of the first

and second integrals in (6.1), that is,
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Ii
GEO =

∮ r(t1)

r(t0)

⎛
⎝−

m∑
j=1

Ai
j(r)

⎞
⎠ drj , (6.2)

Ii
DY N =

∫ t1

t0

⎛
⎝l−k∑

j=1

Γ̄i
j(r)

∫ (
ṙT Σ(r)ṙ

)j
dt

⎞
⎠ dt, (6.3)

where we substituted for the value of the scaled momentum, ρ, using (5.8). Hence, the

position change expressed in body coordinates is equal to the sum of the two phase shifts,

that is,

Δζi = Ii
GEO + Ii

DY N (6.4)

6.2 Evaluation of the Geometric and Dynamic Phase

Shifts

Thus far, we equated the position change due to any base-space curve to two decoupled

terms IGEO and IDY N . In this section, we present how to design curves in such a way

to ensure that the any of these terms is non-zero along a specified fiber direction, that

is, we effectively present two evaluation techniques that allow us to propose base space

curves that ensure either the geometric phase shift, the dynamic phase shift, or both are

non-zero.

Later in this chapter, we define a partition on the space of allowable gaits such that

the motion of the system is exclusively due to either of the phase shifts, IGEO or IDY N , or

both. Thus, we can simply use the evaluation tools presented in this section to generate

such families of gaits.

6.2.1 Geometric Phase Shift Evaluation

In this section, we synthesize gaits that yield a non-zero geometric phase shift, (6.2), along

the specified fiber direction, that is, Ii
GEO 
= 0. Actually, there are two approaches for

synthesizing geometric gaits. The first of which is by defining a variational problem whose

solution constitutes an optimal gait. Rather than numerically solving this constrained

variational problem, which we present as part of our future work in Section 9.5, we chose

a second more intuitive approach. In fact, this second approach uses Stokes’ theorem to
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transform the line integral in (6.2) to a volume integral. This will provide us with a simple

gait evaluation technique that measures the geometric or kinematic motion contribution

due to any closed curve in the base space. This evaluation tool is simple enough that we

can utilize it to actually synthesize gaits.

Note that the integrand in (6.2),
∑

j Ai
j(r)drj , is a one-form, hence, we can use Stokes’

theorem to transform the integral to an integral of a two-form which is the exterior deriva-

tive of the original one-form. Thus, we rewrite the change in position due to the geometric

phase and expressed in body coordinated as

Ii
GEO =

∫ ∫
Φ

m∑
o,j=1,o<j

(
Ā

i
oj(r)

)
drodrj

=

m∑
o,j=1,o<j

∫ ∫
Φ

Ā
i
oj(r)drodrj , (6.5)

where Φ is the region enclosed by the gait φ and Ā
i
oj(r) are the components of the two-

form given in (2.9). Thus, the integrand of (6.5) is a two-from and Ii
GEO computes the

volume integral of the two-from over Φ which is the interior of a region on an arbitrary

two-surface bounded by φ.

Note that, Ii
GEO is equated to the volume under what we term as height functions,

which are the components of the two-form. We label these height functions by F i
oj =

Ā
i
oj . Hence, we have equated the position change for any closed curve in the base space,

φ, to the volume that this curve envelopes under several well-defined functions. These

height functions are simply composed of partial derivatives of the components of the mixed

connection matrix, A(r), with respect to the base variables. By studying the properties

of these height functions we are actually able to design curves that produce a desired

non-zero Ii
GEO.

Thus, we synthesize gaits by only analyzing the components of the two-form Ā
i
oj(r).

We refer to these gaits as geometric since the motion to the system is solely due to the

geometric phase shift of the designed gait. At this point, for simplicity we make the second

main assumption in this thesis.

Assumption 3 (Two-dimensional base space) we assume that the base space, M , is

two-dimensional, that is,

m = 2,
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where m is the dimension of the base space.

This assumption allows us to easily think about the volume integrals, IGEO, as simply

computing the volume under the graph of the height functions in the two dimensional base

space. Thus, using Green’s theorem, the two-dimensional version of Stokes’ theorem, we

define the height functions for each fiber direction as

Fi(r
1, r2) =

∂Ai
2

∂r1
− ∂Ai

1

∂r2
, (6.6)

where Ai
j ’s are the components of the mixed non-holonomic connection. Then the position

change due to the geometric phase shift, IGEO, is given by

Ii
GEO =

∫ ∫
Φ

Fi(r
1, r2)dr1dr2, (6.7)

By studying the integrands in (6.7) and by designing and placing curves in the base

space, we are able to generate geometric gaits that yield a non-zero geometric phase shift

along a desired direction.

We remind the reader that Ii
GEO is an integral of a body representation of a fiber

velocity, ξi. Hence, it does not necessarily relate trivially to inertial position change, Δgi.

This is the case only when the fiber space has a commutative group structure, that is, the

lifted action map is the identity map.

Properties of Height Functions

By studying certain properties of the integrand functions of (6.7) we are able to evaluate

the motion of the system due to closed curves in the base space. We study the follow-

ing properties of the height functions which we shall utilize later to actually synthesize

geometric gaits.

Symmetry: We study the height functions periodicity which allows us to investigate

smaller portions of the base space. Moreover, we find the set of points or lines about

which the height function is even or odd. Note that, a gait that is symmetric about

an odd point of the height function yields zero volume, and thus yields zero geometric

phase shift. However, a gait that changes orientation as it passes through an odd

point is guaranteed to have a non-zero geometric phase shift.

Signed regions: Since we are integrating a height function over a closed region, it is

important to know where the height functions are positive, negative, or zero. Not
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only does this allow us to control the direction of motion along the fiber but also to

optimize gaits by restricting them to lie in a strictly positive or negative regions.

Unboundedness: While designing gaits, one should stay away from regions where the

height functions tend to infinity. A gait that passes through such regions might yield

infinite volume, that is, infinite position change for a finite shape change. Usually

this is an indication that a non-holonomic constraint is being violated, or that the

system has passed through a problematic singularity.

By inspecting the above properties of the height functions we are able to evaluate the

position change of the robot due to following any closed curve in the base space. Note

that for purely mechanical systems, the height functions are never unbounded as we prove

in the following Lemma.

Lemma 9 (Height functions for purely mechanical system) For a purely mechan-

ical system as defined in Chapter 4, the height functions for each of the fiber variables are

bounded over the entire base space.

Proof Recall that for purely mechanical systems, the reconstruction equation is given

by ξ = −A(r)ṙ as shown in (4.11), where A(r) is local form of the mechanical connection.

Moreover, we can compute A(r) using the components, I and (IA), of the reduced mass

matrix given in (3.19), where we know that A = I−1(IA). Thus, we know that the

matrices I and (IA), being sub-matrices of the mass matrix, are composed of bounded

analytic function of the base variables. Moreover, we know that

I−1 =
adj(I)

det(I)
,

where adj(I) and det(I) are the adjugate1 and determinant of I, respectively. Since, the

components of adj(I) are also bounded analytic functions of the base variables, the com-

ponents adj(I)(IA) are also bounded analytic functions of the base variables. Moreover,

since I is symmetric positive definite, we know that det(I) 
= 0. Thus, we conclude that

the components of 1
det(I)adj(I)(IA) = I−1(IA) = A are bounded analytic functions of the

base variables.

Finally, since the height function along each of the fiber directions is evaluated by

taking partial derivative of each row of the local connection matrix with respect to the

1The transpose of the adjugate of a matrix A is given by (−1)i+jBi
j , where Bi

j is a matrix whose

components are the determinants of the sub-matrices of A composed by deleting its ith row and jth

column.
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base variables, we conclude that the height functions for purely mechanical systems are

bounded.

�

Synthesizing Gaits Using Height Functions

Now, we utilize the above properties of height functions to actually synthesize geometric

gaits. We devise the following set of rules to generate geometric gaits

1. Closed non-self-intersecting curves: Any closed non-self-intersecting curve that

lies entirely in a positive or negative region is guaranteed to produce a non-zero

IGEO.

2. Closed self-intersecting curves: Any closed self-intersecting curve is guaranteed

to produce a non-zero IGEO provided that the curve spans two regions of opposite

signs, the self-intersection occurs at the zero line separating the two regions, and the

curve changes orientation as it passes from one region to the other.

3. Symmetric non-intersecting curves around “odd” points: Let Kodd be the

set of all points about which the height function is odd, that is, F (k + r) = −F (k −
r) where k ∈ Kodd. Then any curve symmetric with respect to points in Kodd

will enclose equal areas in two or more adjacent regions that have opposite signs.

Integrating the volume under such curves will yield zero, that is, the fiber motion

for such gaits is identically zero.

4. Symmetric intersecting curves around “even” points: Let Keven be the set

of all points about which the height function is even along a fixed direction, that is,

F (k + r) = F (k − r) where k ∈ Keven. For any self intersecting curve symmetric

with respect to points in Keven along the specified direction, the intersection will

occur in the set Keven. For curves that change orientation at the intersection point,

they will enclose equal areas but of opposite signs, hence, such curves will yield zero,

that is, the fiber motion for such gaits is identically zero.

Note that the first two rules are active rules which help in designing gaits that produce

motion, while the last two rules are passive rule that ensure null motion of the system.

All rules are equally important as we use the first two rules to produce motion along a

specified height function while the last two rules are used to ensure zero motion along the

rest of the height functions.
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We should point our that, these rules do not impose any additional constraints on the

shape of the input curves. For instance, as long as the curve stays entirely in one region

and does not intersect itself, it is guaranteed to generate a non-zero fiber motion. The

bigger the area enclosed by the curve within a positive or negative region, the bigger the

generated geometric phase shift. This eliminates the restriction of sinusoidal inputs which

was required in prior work.

6.2.2 Dynamic Phase Shift Evaluation

Now, we will analyze the second term in (6.4), to propose gaits that ensure that IDY N is

non-zero along a desired fiber direction. Earlier, we verified that for each fiber direction the

integrand of IDY N in (6.3) is composed of the product of two terms: the scaled momentum

variable, ρ, and the gamma function, Γ̄i(r).

In this thesis, we propose base space curves that ensure that the scaled momentum is

sign definite, that is, ρ ≥ 0 or ρ ≤ 0. Given the sign-definiteness of the scaled momentum,

we can design dynamic gaits by simply analyzing the gamma function.

As for the gamma functions, we analyze the same properties we did for the height func-

tions as we presented in Section 6.2.1, that is, we study the gamma functions symmetry,

signed regions, and unboundedness. Thus, by picking gaits that are located in a same

signed region of one of the gamma functions and ensuring that the gaits are odd about the

odd points of the rest of the gamma functions, we can verify that the integrand of IDY N

is non-zero along a desired fiber direction. Moreover, we use the same rules presented in

Section 6.2.1 to propose curves that will yield a non-zero dynamic phase shift along the

desired fiber direction.

Note that, for gamma functions, we analyze their signs as the systems traverses a gait

in the base space, we do not analyze the volume under the gamma functions as we did for

the height functions. Volume under the gamma functions is insignificant since the dynamic

phase shift is a equated to a time definite integral and not a volume integral as was the

case for the geometric phase shift.

6.3 Gait Generation for Mixed System

In this section, we utilize our geometric and dynamic phase shift evaluation tools presented

in Section 6.2 to generate gaits for mixed systems, the most general type of mechanical

systems we are considering in this thesis. Next, we define a partition on the allowable gait
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space which allows us to independently analyze IGEO and IDY N and generate gaits using

our synthesis tools. We respectively label the two families of gaits as purely kinematic

and purely dynamic gaits. Moreover, we propose a third type of gait that simultaneously

utilizes both shifts, IGEO and IDY N , to produce motions with relatively larger magnitudes.

We label this family of gaits as kino-dynamic gaits.

6.3.1 Purely Kinematic Gaits

Purely kinematic gaits are gaits whose motions are solely due to IGEO, that is, IDY N = 0

for all time. A solution for such a family of gaits is to set ρ = 0 in (6.1) which sets the

integrand of IDY N to zero. Thus, we define purely kinematic gaits as gaits for which ρ = 0

for all time. Hence, for mixed systems, we generate purely kinematic gaits by the following

two step process:

• Solve the scaled momentum evolution equation, (5.8), for which ρ = ρ̇ = 0. This step

defines vector fields over the base space whose integral curves are either candidate

purely kinematic gaits or candidate curves that can be used to construct purely

kinematic gaits.

• Use our geometric gait synthesis analysis to either pick the integral curves or con-

struct gaits by concatenating parts of integral curves that enclose a non-zero volume

only under the desired height functions.

Sometimes, purely kinematic gaits are referred to as geometric gaits, since the produced

motion is solely due to the generated geometric phase. Moreover, purely kinematic gaits

are structurally similar to gaits proposed by Bullo in his kinematic reduction of mechanical

systems in [9]. The vector fields defined above essentially serve the same purpose of the de-

coupling vector fields presented in Bullo’s work. Even though, Bullo defined and evaluated

their de-coupling vector fields in a different way, they essentially define directions along

which the system’s generalized momentum is conserved. This is exactly the purpose of

our vector fields that we utilize to design purely kinematic gaits.

Recall that for purely mechanical systems p = ρ = 0 by definition and for principally

kinematic systems IDY N = 0 since p = ∅. Thus, for both types of systems, the right

hand side of the reconstruction equation is equal to the kinematic part. Thus, all gaits for

purely mechanical and principally kinematic systems are necessarily purely kinematic. As

for purely dynamic systems, their gaits are never of the purely kinematic type since the

geometric phase shift for such systems is identically zero for all gaits.
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6.3.2 Purely Dynamic Gaits

As the name suggests, purely dynamic gaits are gaits that produce motion solely due to

the dynamic phase shift, that is, IGEO = 0 while IDY N 
= 0. These gaits are relatively

easy to design since these are gaits that enclose no “volume” in the base space. Thus,

purely dynamic gaits should not enclose any area in the base space. A simple solution

would be to ensure that a gait retraces the same curve in the second half cycle of the gait

but in the opposite direction. Thus, we propose the following purely dynamic families of

gaits.

Proposition 6 (Purely dynamic families of gaits) For a mechanical system whose

configuration manifold has a trivial principle bundle structure, Q = G × M , and whose

base space is two-dimensional, m = 2, the following families of curves enclose zero area

in the base base.

r1(t) =

n∑
i=0

ai (f(t))
i
,

r2(t) = f(t),

where f(t) = f(t + τ) is a periodic real function and ai’s are real numbers.

Proof Given a parametric curve (r1(t), r1(t)) in the two dimensional base space, we can

compute the area enclosed in the curve using the following expression

Area =

τ∫
t=0

(
r1

∂r2

∂t

)
dt,

=

τ∫
t=0

(
n∑

i=0

ai (f(t))
i
f ′(t)

)
dt,

=

f(τ)∮
f(0)

(
n∑

i=0

ai (f(t))
i

)
df,

= 0,

since f(0) = f(τ).

�
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Moreover, if we can verify that for the above family of gaits, the scaled momentum

variable is sign-definite, that is, ρ ≤ 0 or ρ ≥ 0 for all time, then generating purely dynamic

gaits reduces to the following simple procedure:

• Select gaits from the above described family and check the sign of the scaled mo-

mentum variable ρ.

• Analyze the gamma functions depicted in (6.3) to pick the gaits that ensure that the

integrand of IDY N is non-zero for the desired fiber direction.

Note that, for systems that have only one base variable, all their gaits are necessarily

purely dynamic, since IGEO = 0 using (6.2) where m = 1. Thus, we using the purely

dynamic gait synthesis to generate gaits for the purely dynamic class of mechanical system

defined in Chapter 4. Finally, not that there does not exist any purely dynamic gaits for

purely mechanical and principally kinematic systems since the dynamic phase shift for

both system type is identically zero for all gait.

6.3.3 Kino-dynamic Gaits

Finally, we have the third type of gaits which we term as kino-dynamic gaits. These gaits

have both IGEO and IDY N not equal to zero, that is, the motion of the system is due to

both the geometric phase shift as well as the dynamic phase shift which are associated

with IGEO and IDY N , respectively. We design kino-dynamic gaits in a two step process.

• First we do the volume integration analysis on IGEO to find a set of candidate gaits

that move the robot in the desired direction.

• The second step is to compute IDY N for the candidate gaits and verify that the

effect of IDY N actually enhances the desired motion.

Kino-dynamic gaits are variations of purely kinematic gaits. We start by generating a

purely kinematic gait but by neglecting the constraints that the gait has to be an integral

curve of the vector field that prescribes the purely kinematic gaits. Thus, we know that

scaled momentum is not necessarily zero for all time, that is, IDY N 
= 0. Moreover, it is

easy to verify the sign of the gamma function for a particular proposed gaits. However, to

ensure that the dynamic phase shift additively contributes to the geometric phase shift,

we have to analyze the evolution of the scaled momentum. Nonetheless, since we already

have a proposed gait, solving for the evolution of the momentum is done straight forward

by solving the momentum evolution equation.
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Figure 6.1: The gaits synthesis techniques used for various types of mechanical systems.

Thus far, for the examples we have analyzed, our initial guesses at kino-dynamic gaits

produced geometric and dynamic shifts with similar signs, hence, effectively producing

fiber motions with bigger magnitudes. However, we do not expect this to be the case in

general and an additional iteration step might be required to find kino-dynamic gaits. We

plan to address this particular issue in our future work.

In this Section, we proposed three types of gait synthesis that we will utilize to generate

gaits for mixed mechanical systems and their sub-type families of systems. Figure 6.1

depicts which gait synthesis technique will be used to generate gaits for each of the types

of mechanical systems we are considering in the thesis.
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Chapter 7

Applications

In this chapter, we apply our gait generation analysis to several robotic systems. We

ensure that we pick at least one example for each of the families of mechanical system we

presented in Chapter 4. More specifically, in Section 7.1, we generate purely kinematic

gaits for two purely mechanical systems, the floating three link snake robot and the pivoting

dynamic model shown in Fig. 7.1 and Fig. 7.6, respectively. In Section 7.2, we generate

purely kinematic gaits for the three link kinematic snake robot (Fig. 7.13) which is a

principally kinematic system. In Section 7.3, we generate purely dynamic gaits for the

simplified Trikke shown in Fig. 7.17. Finally, in Section 7.4, we generate three types

of gait, purely kinematic, purely dynamic, and kino-dynamic gaits for two mixed type

mechanical systems, the original and the variable inertia snakeboards shown respectively

in Fig 7.22 and Fig. 7.30.

All of the example sections will have a similar structure, that is, we start by defining the

systems configuration space and attaching a body coordinate frame to the system. After

we compute the kinetic energy and non-holonomic constraints acting on the system, we

utilize the fiber space Lie group structure to define the group actions and lifted action to

rewrite the kinetic energy and non-holonomic constraints in their reduced from. Moreover,

where applicable, we compute the generalized momentum which allows us to compute

the reconstruction equation for each example. We also present the systems momentum

evolution equation and find an integrating factor which allows us to define the scaled

momentum variable. Using the scaled momentum variable, we rewrite both the momentum

evolution equation, (5.8) and the reconstruction equation, (5.9). We utilize the first of

which to compute the height and gamma functions, while we use the latter of which to

compute the sigma functions which allow us to study the sign-definiteness of the scaled
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Figure 7.1: A depiction of the floating three link snake with its configuration variables.

momentum. Finally, by analyzing the height functions, gamma functions, and sigma

functions, we generate the appropriate type of gaits for each example.

7.1 Purely Mechanical Systems

In this section we generate gaits for two purely mechanical system, the floating three link

snake robot, and the pivoting dynamic model of the Rocking and Rolling Robot which was

introduced by Balasubramanian in [3]. Recall that we will use the purely kinematic gait

generation tools to generate gaits for purely mechanical systems as was shown in Fig. 6.1.

7.1.1 Floating Three Link Snake Robot

The floating three link snake robot shown in Fig. 7.1 is composed if three rigid links that

are connected to each other by revolute joints. The axes of the revolute joints are parallel,

thus, the links are always co-planer for any value of the inter-link angles, α1 and α2. We

assume that each of the three links has a mass m centered at the middle of the link, qi,

and each link as an inertia j about the link’s center of mass. Moreover, we assume that

each link has a length 2l and the inertia of each link j = ml2.

To locate the snake in the plane, we attach a body frame at the center of mass of the

entire snake as shown in Fig. 7.1, where x and y depict the position of the center of mass.

We also align the first axis of the body frame along the middle link of the snake which makes

an angle θ with the horizontal. Hence, we need five variables, (x, y, θ, α1, α2), to completely

identify the configuration of the three link snake robot. Moreover, we can clearly see that
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θ0 = θ

θ1 = θ + α1

θ2 = θ + α2

x1 = x − L cos(θ) − 2
3L cos (θ + α1) − 1

3L cos (θ + α2)

y1 = y − L sin(θ) − 2
3L sin (θ + α1) − 1

3L sin (θ + α2)

x2 = x + 1
3L (cos (θ + α1) − cos (θ + α2))

y2 = y + 1
3L (sin (θ + α1) − sin (θ + α2))

x3 = x + L cos(θ) + 1
3L cos (θ + α1) + 2

3L cos (θ + α2)

y3 = y + L sin(θ) + 1
3L sin (θ + α1) + 2

3L sin (θ + α2)

Table 7.1: Computing the links’ center of mass locations and global orientations in terms

of the configurations variables.

the configuration space of the three link snake robot is a five-dimensional principal fiber

bundle Q = G × M where G = SE(2), the special Euclidean group representing the fiber

space and M = (S × S) representing the base space.

Now, we compute the kinetic energy of the floating three link snake which is computed

using the following equation

KE =
1

2

2∑
i=0

(
q̇T
i mq̇i + jθ̇2

i

)
,

where qi = (xi, yi) and θi are the global position of the center of mass and orientation of

each link. Note that the kinetic energy is a function of the configuration variable, q, and

velocities, q̇ since we can substitute for qi and θi in terms of the configuration variables

as shown in Table 7.1. For this example, we assume that the three link snake is floating

in a horizontal plane, thus, the potential energy is constant. Thus, we can equate the

Lagrangian to the kinetic energy, that is, L(q, q̇) = KE.

Using the structure of the Lie group, SE(3), we can compute the matrix form of the

lifted action which we presented in Example 4 to arrive at

TgLg−1 =

⎛
⎜⎜⎜⎝

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

⎞
⎟⎟⎟⎠ . (7.1)

Using the lifted action, we can verify the Lagrangian invariance and compute the re-

duced Lagrangian at the Lie group identity. This is simply done by making the substitution
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in ġ = TeLgξ =
(
TgLg−1

)−1
ξ into the Lagrangian L(q, q̇). The reduced Lagrangian has

the form given in (3.18), where the components of the reduced mass matrix for the floating

three link snake are given by

I =

⎛
⎜⎜⎜⎝

3m 0 0

0 3m 0

0 0 l2 m (19+6 cos(α1)+2 cos(α1−α2)+6 cos(α2))
3

⎞
⎟⎟⎟⎠ ,

IA =

⎛
⎜⎜⎜⎝

0 0

0 0

l2 m (5+3 cos(α1)+cos(α1−α2))
3

l2 m (5+cos(α1−α2)+3 cos(α2))
3

⎞
⎟⎟⎟⎠ , and

m =

⎛
⎝ 5 l2 m

3
l2 m cos(α1−α2)

3

l2 m cos(α1−α2)
3

5 l2 m
3

⎞
⎠ .

Note that the components of the reduced mass matrix are a functions of the base

variables, (α1, α2). Thus, using the components of the reduced mass matrix, we compute

the local from of the mechanical connection, A = I−1(IA), to arrive at

A =

⎛
⎜⎜⎜⎝

0 0

0 0

5+3 cos(α1)+cos(α1−α2)
19+6 cos(α1)+2 cos(α1−α2)+6 cos(α2)

5+cos(α1−α2)+3 cos(α2)
19+6 cos(α1)+2 cos(α1−α2)+6 cos(α2)

⎞
⎟⎟⎟⎠ .

Note that for our choice of body frame and system parameters, (m, l, j = ml2), the local

from of the mechanical connection is independent of any of these parameters.

Assuming that the floating three link snake has no external forces acting on it, and that

it starts from rest, we can easily verify that it belongs to the family of purely mechanical

systems. Thus, the reconstruction equation, (4.11), for the three link floating snake is

given by ξ = −A(r)ṙ, where A was computed in the above equation.

Using the local form of the mechanical connections, we can compute the height func-

tions corresponding to the group variables. The first two height functions corresponding

to the ξ1 and ξ2 are zero, since the first two rows of the mechanical connection are zeroes.

The implication is that for whatever base space motion, that is, inter link motion, the

center of mass of the entire robot will never move. This agrees with our intuition and

abides by Newtonian mechanics, that is, since there are no external forces and since the
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Figure 7.2: The three height functions for the floating three link snake. The darker shades

indicate the positive regions which are separated from the light colored negative regions

by the solid lines.

system is starting from rest, the center of mass of the entire mechanical system remains

fixed. As for the height function along the third fiber variable, F3, we compute it as follows

F3(α1, α2) =
∂A3

1

∂α2
− ∂A3

2

∂α1
,

=
24 (sin(α1) − sin(α2))

(19 + 6 cos(α1) + 2 cos(α1 − α2) + 6 cos(α2))
2 .

Before, we generate any gaits, we will analyze the height functions and study their

properties as was discussed in Section 6.2.1. The first two height functions, F1 and F2 are

zero everywhere on the base space as shown in Fig. 7.2. As for the third height function,

the following curves indicate the regions where F3 = 0,

l1 = {α2 = α1 + 2kπ, k ∈ Z}, and

l2 = {α2 = π − α1 + 2kπ, k ∈ Z}.

The above lines are depicted by the solid curves in Fig. 7.2. Note how these lines

partition the base space into regions where the height function is either positive (dark

shades) or negative (light shades) in Fig. 7.2. Moreover, note that the third height function

is odd about the l1 set of lines. Thus, using the rules we devised in Section 6.2.1, we propose

the gaits given in Table 7.2.
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φ1 :
α1 = π (−1+2 cos(t)+sin(t))

4

α2 = π (1+2 cos(t)−sin(t))
4

φ2 :
α1 = α1 = −(π (sin(t)+sin(2 t)))

2

α2 = π (sin(t)−sin(2 t))
2

Table 7.2: Purely kinematic gaits for the floating three link snake.
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Figure 7.3: The time simulation of the gait, φ1, for the floating three link snake.

One can clearly see that the first gait, φ1, lies entirely in the negative region of F3 as

shown in the first plot of Fig. 7.3. Thus, we expect the integral of the third height function

to yield a non-zero negative value, that is,

I3
GEO =

∫ ∫
φ1

F3(r)dr < 0.

Moreover, note that for the Lie group SE(2), I3
GEO = Δθ, that is, the volume under

the third height function actually computes the absolute change in orientation of the entire
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Figure 7.4: The time simulation of the gait, φ2, for the floating three link snake.



88

α1

α2

F3

x

x

y

y θ

t 0

0

0

0

0

0

0

0

1

1

1

1

−1

−1

−1

2

2

2

2

2

2

2

2

−2

−2

−2

−2

−2

−2

−2

3

3

3

3
−3

4 5 6

0.25

−0.25

0.5

−0.5

Figure 7.5: The time simulation of a non-sinusoidal square gait for the floating three link

snake.

mechanical system after the completion of each gait. Thus, we expect the gait φ1 to rotate

the robot in a clock-wise direction after each cycle. We have simulated this gait, and,

indeed as expected, the floating three link snake robot changes its orientation at the end

of the gait, φ1, as shown Fig. 7.3.

Similarly, we simulate the second gait, φ2, depicted in the second row of Table 7.2 as

shown in Fig. 7.4. Note that for φ2, we utilized the fact that the third height function is

odd about the line, l1, hence, the figure-eight type curve which is symmetric with respect

to l1 must yield a non-zero negative orientation change. The time simulation of this gait

verifies our expected orientation change as shown in Fig. 7.4.

Finally, we would like to note that, even though the proposed gaits for this floating three

link snake are sinusoidal, other types of gaits are still allowable. In fact, we just chose to

simulate the sinusoidal gaits as they simplify the numeric time simulations. We actually,

designed a non-sinusoidal gait which is shown in Fig. 7.5. The square gait depicted in

Fig. 7.5 lies entirely in the negative region of the third height function, thus, as expected

it orients the three link snake robot in a clock-wise direction.

7.1.2 Pivoting Dynamic Model of RR-Robot

The pivoting dynamic model was first introduced by Balasubramanian et al. as a novel

locomoting system [3, 4]. We are interested in this system because it is somewhat related

to simpler systems studied in the prior work. However, we have opted to demonstrate our

results on this novel system because it is more general than the prior systems and one

can not simply make any educated guesses on what inputs could possibly locomote this

system. This demonstrates the applicability of our gait generation technique.
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Figure 7.6: The pivoting dynamic model.

The pivoting dynamic model shown in Fig. 7.6 is composed of three rigid links. The

outer two links are connected to the middle link via two revolute joints whose axes are

coincident with the middle link. Thus, the outer two links lie in two parallel planes that

are perpendicular to the middle link. The outer two links have mass, m, concentrated at

their distal ends, while the middle link has three concentrated masses at each of its distal

ends and one in the middle. The middle link is connected to the ground via a spherical

joint at the link center. Finally we attach a body coordinate frame to the middle of the

center link as shown in Fig. 7.6. The orientation of this body frame is represented by

the three fiber variables, (α, β, γ), which denote the three rotations along the three frame

axes. The two internal degrees of freedom are represented by the relative angle between

the links (α1, α2).

Hence, the pivoting dynamic model has a five-dimensional, (n = 5), configuration

space Q = G × M , where the associated Lie group fiber space is G = SO(3), the three-

dimensional special orthogonal group, denotes the robot’s global orientation. The base

space denoting the internal degrees of freedom is M = S × S. The Lagrangian of the

pivoting dynamic model in the absence of gravity is

L(q, q̇) =
1

2

5∑
i=1

(
miẋ

T
i ẋi

)
(7.2)

where mi represents the mass of each of the concentrated masses and each xi represents

the inertial position of these masses. Let the length of the middle link be 2L while the
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length of the outer links be R. To simplify some expressions we will assume that all the

masses are identical, that is, mi = m.

We define the rotation matrices along the three axes in the usual way, that is,

Rx(α) =

⎛
⎜⎜⎜⎝

1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

⎞
⎟⎟⎟⎠ ,

Ry(β) =

⎛
⎜⎜⎜⎝

cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)

⎞
⎟⎟⎟⎠ , and

Rz(γ) =

⎛
⎜⎜⎜⎝

cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1

⎞
⎟⎟⎟⎠ .

Given that the fiber space has an SO(3) group structure, we define the group action as

Lg = Rz(γ)Ry(β)Rx(α)1. Since Lg ∈ SO(3), we can compute the lifted action as defined

in [36], where TgLg−1 = (Lg)
T d

dt (Lg). Then we can compute the lifted action in matrix

form to arrive at

ξ︷ ︸︸ ︷⎛
⎜⎜⎜⎝

ξα

ξβ

ξγ

⎞
⎟⎟⎟⎠ =

TgL
g−1︷ ︸︸ ︷⎛

⎜⎜⎜⎝
1 0 − sin(β)

0 cos(α) cos(β) sin(α)

0 − sin(α) cos(α) cos(β)

⎞
⎟⎟⎟⎠

ġ︷ ︸︸ ︷⎛
⎜⎜⎜⎝

α̇

β̇

γ̇

⎞
⎟⎟⎟⎠ .

The above equation allows us to verify the Lagrangian invariance by computing and

comparing the quantities, L((g, r), (ġ, ṙ)) and L((Lg−1g, r), (TgLg−1 ġ, ṙ)). After verifying

the invariance of the Lagrangian we can compute the reduced Lagrangian and the reduced

mass matrix. The components of the reduced mass matrix, as given in (3.19), are computed

for the pivoting dynamic model where

1Note that the one could use different rotation matrices ordering as long as Lg is full rank. Different

actions do not affect the computation of the reduced Lagrangian.
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I =0
BBB@

2
`
L2 + 2R2

´
2LR (cos(α2) − cos(α1)) 2LR (sin(α2) − sin(α1))

2LR (cos(α2) − cos(α1))
5L2+R2

0.5
−

cos(2α1)+cos(2α2)

R−2 −

`
R2 (sin(2α1) + sin(2α2))

´
2LR (sin(α2) − sin(α1)) −R2 (sin(2α1) + sin(2α2))

4L2+R2

0.5
+ cos(2α1)+cos(2α2)

R−2

1
CCCA ,

IA =

0
BBB@

2R2 2R2

−2LR cos(α1) 2LR cos(α2)

−2LR sin(α1) 2LR sin(α2)

1
CCCA , and m =

0
@ 2R2 0

0 2R2

1
A .

Note that as expected the reduced mass matrix depends solely on the base variables

α1 and α2. We have already verified the invariance of the Lagrangian and there are no

external forces acting on the pivoting dynamic model. Thus, if the system starts at rest,

then all angular momentum variables will remain constant and equal to zero for all time.

We conclude that the pivoting dynamic model is a purely mechanical system.

Now, we compute the local from of the mechanical connection, A(r), by inverting I(r)

and post multiplying it by I(r)A(r). Hence, A(r) will have the following form

A(r) =
R

LD

0
BBB@

L
R

f1
1 (α1, α2)

L
R

f1
2 (α1, α2)

f2
1 (α1, α2) f2

2 (α1, α2)

f3
1 (α1, α2) f3

2 (α1, α2)

1
CCCA ,

where f i
j are the ith row and jth column of the mechanical connection which are analytic

functions of the base variables (α1, α2). The expressions of the f i
j functions are presented

in Table 7.3.

Now we set the system’s point mass values to 1, and the both parameters L = 1 and

R = 1, then we compute the heights function by utilizing Green’s theorem. The three

height functions corresponding to the three fiber directions are shown in Fig. 7.7.

All three height functions have distinctive signed regions. The darker colors denote the

positive regions while the lighter colors denote the negative regions. Note that none of the

height functions has unbounded regions. In fact, this is a property of all purely mechanical

systems as we proved in Lemma 9. The intuition behind why the height functions for purely

mechanical systems are never unbounded is that for whatever base motion the robot is

forced to do, the system always has bounded motion, that is a bounded volume under the

height functions. In other words, there are no singularities of motion.



92

f1
1 = 31L4 + 15L2R2 + R4 + L2

`
L2 + R2

´
cos(2α1) + L2

`
9L2 + 4R2

´
cos(α1 − α2)

+R2
`
−

``
L2 + R2

´
cos(2 (α1 − α2))

´
+ L2 cos(2α2)

´
− L4 cos(α1 + α2)

f2
1 = 31L4 + 15L2R2 + R4 + L2R2 cos(2α1) + L2

`
9L2 + 4R2

´
cos(α1 − α2)`

L2 + R2
´ `

−

`
R2 cos(2 (α1 − α2))

´
+ L2 cos(2α2)

´
− L4 cos(α1 + α2)

f1
2 = −

``
8L4 + 10L2R2 + 3R4

´
cos(α1)

´
R2

``
2L2 + R2

´
cos(α1 − 2α2) +

`
L2 + R2

´
cos(2α1 − α2) +

`
7L2 + 3R2

´
cos(α2)

´
f2
2 = R2

`
7L2 + 3R2

´
cos(α1) + R2

`
L2 + R2

´
cos(α1 − 2α2)`

2L2 + R2
´ `

R2 cos(2α1 − α2) +
`
4L2 + 3R2

´
cos(α2)

´
f1
3 = −

`
10L4 + 12L2R2 + 3R4

´
sin(α1)

R2
``

L2 + R2
´
sin(2α1 − α2) −

``
2L2 + R2

´
sin(α1 − 2α2)

´
+ 3

`
3L2 + R2

´
sin(α2)

´
f2
3 = R2

`
3

`
3L2 + R2

´
sin(α1) −

`
L2 + R2

´
sin(α1 − 2α2) +

`
2L2 + R2

´
sin(2α1 − α2)

´
`
10L4 + 12L2R2 + 3R4

´
sin(α2)

D =
40L6+80L4R2+31L2R4+2R6+2L2R2(L2+R2) cos(2α1)

R2

−

`
R2

`
3L2 + 2R2

´
cos(2 (α1 − α2))

´
+ 2L2

`
L2 + R2

´
cos(2α2) − 2L4 cos(α1 + α2)

Table 7.3: Components of the local form of the mechanical connection for the pivoting

dynamic model.
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Figure 7.7: The height functions of the pivoting dynamic model.

Without loss of generality, we assume that we want to design a gait that rotates the

robot only around the x axis. This means that we want to design a gait the envelops a

non-zero volume only under the first height function in Fig. 7.7. To design such a curve, we

should look carefully at the height functions properties. Note that the first height function

in Fig. 7.7 is odd about the line α2 = α1 and even about the line α2 = −α1. The second

height function is even about the line α2 = α1 and odd about the line α2 = −α1. Finally,

the third height function is even about both lines. Thus, we can see that a figure-eight

type of curve with the following properties will envelope volume only under the first height
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Figure 7.8: Time simulation of the three gaits, φ1, φ2, and φ3, for the pivoting dynamic

model. The first column depicts non-zero motion producing gaits superimposed over the

height functions, the second column depicts the time evolution of the fiber variables, and

the last column depicts snapshots of the mechanical system at the beginning and end of

each gait.

function:

• The curve is centered at the origin of the base space.

• Both of the curve loops are on either side of the line α2 = α1.

• The curve is symmetric with respect to the two lines α2 = α1 and α2 = −α1.
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φ1 :
α1 = π

2 (sin(t) + sin(2t))

α2 = π
2 (− sin(t) + sin(2t))

φ2 :
α1 = π

4 (2 sin(t) + sin(2t))

α2 = π
4 (−2 sin(t) + sin(2t))

φ3 :
α1 = π

4 (2 + 2 sin(t) + sin(2t))

α2 = π
4 (2 − 2 sin(t) + sin(2t))

Table 7.4: Purely kinematic gaits for the pivoting dynamic model.

• The curve is bounded by the two lines α2 = α1 − π and α2 = α1 + π.

The curve φ1 in the first row of Table 7.4 satisfies all the above conditions. Note that,

referring to Section 6.2.1, we used the second rule on the first height function and the

fourth rule on the second and third height functions. This curve is shown in the first row

of Fig. 7.8. We have numerically simulated this gait and indeed as expected the robot

rotated only around the x axis after one complete cycle. The rotations along all three

axes is shown in the second column of the first row of Fig. 7.8. Note that there are no net

rotations about other two axes, y and z, the end of the gait cycle.

Similarly, we can design two other gaits, φ2 and φ3, shown respectively in the second

and third rows of Table 7.4, that will independently rotate the robot only around either

the y and z axes. The time simulation of both gaits are shown in the second and third

rows of Fig. 7.8.

Finally, we plotted the initial and final configurations of the pivoting dynamic model for

each the three gaits as shown in the last column of Fig. 7.8, where the three independent

rotations, Δα, Δβ, and Δγ are depicted. The gray color indicates the initial configuration

of the pivoting dynamic model while the back color indicates the robot’s final configuration.

Hence, using our gait generation analysis we were able to easily design three gaits each

of which moves the robot independently along one fiber direction.

7.1.3 Demonstrations of the Pivoting Three Link Snake

To demonstrate our gait generation techniques for purely mechanical systems, we built a

simple robot using Lego blocks and hobby servos. Rather than building an actual floating

three link snake or the pivoting dynamic model, we opted for a simpler planar version

shown in Fig. 7.9 as it was much easier to construct and still demonstrates our techniques.

For this particular robot, which can be thought of as the pivoting (rather than floating)
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Figure 7.9: A depiction of the pivoting three link snake with its configuration variables.
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Figure 7.10: The height function and the time simulation of the pivoting three link snake.

φ1 :
α1 = π

2

(
1 + sin(t)

1

5

)
α2 = π

2

(
1 + sin(t)

1

5

)
Table 7.5: Proposed gait for the pivoting three link snake robot.

three link snake robot or the planar version of the pivoting dynamic model, the configura-

tion space is q = (θ, α1, α2) ∈ Q = SO(2)×S×S. This planar model has four concentrated

masses, one at each of the distal ends of the outer links and two at each end of the mid-

dle link. Then we compute the reduced mass matrix from which we can compute the

mechanical connection.

Specifically for this robot, since the fiber space SO(2) is commutative, we can directly

compute the change in the inertial angle, θ. Then integrating the connection we get

Δθ =
LR2

2

∫ ∫
R (sin(α1) + sin(α2)) − L sin(α1 − α2)

(2L2 + R2 + LR (cos(α1) − cos(α2)))
2 dα1dα2

A plot of the above height function, the integrand, is shown in the first plot of Fig. 7.10.
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Figure 7.11: Snapshots of the pivoting three link snake as it performs the gaits φ1

01                              02                              03                              04                              05                              06

07                              08                              09                              10                              11                              12

13                              14                              15                              16                              17                              18

Figure 7.12: Snapshots of the actual pivoting three link snake as it performs the gaits φ1.

Now, consider the base space curve given in Table 7.5. This particular curve, φ1,

encloses a large volume and remains in the same positive region, (Fig. 7.10). We have

simulated this specific gait and plotted the change the fiber angle, θ, versus time as shown

in the second plot of Fig. 7.10.

Finally, we plotted several snapshots of the pivoting three link snake at the beginning

and end of specific intervals of the square gait, φ1, as shown in Fig. 7.11. We have

implemented this gait on our actual planar pivoting robot and indeed, as expected, the

robot started rotating after each cycle as shown in Fig. 7.12. Nonetheless, the magnitudes

of rotation of the actual robot did not match that of our model. The reasons for this

mismatch we believe are due to the friction in the bearings around which the robot pivots
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and the slight errors in computing the mass and inertia of the actual links.

7.2 Principally Kinematic Systems

Recall that principally kinematic systems are mechanical systems whose motion is entirely

specified by the existence of a set of non-holonomic constraints. In other words, these are

systems that have as many non-holonomic constraints as the dimension of the fiber space

where the constraints, away from singularities, fully span the fiber space. In Chapter 4 we

proved that the reconstruction equation for principally kinematic system has the simple

form depicted in (4.9).

Next, we introduce the three link kinematic snake which, as we shall verify, belongs

to the family of principally kinematic systems. We compute its principal kinematic con-

nection, and the system’s height functions. Then we utilize our geometric gait generation

synthesis to generate gaits for the kinematic snake to locomote it in the plane.

7.2.1 Three Link Kinematic Snake

α1

α2

θ(x, y)
q0q1

q2

L

L

L L

Figure 7.13: Kinematic three-link snake.

The kinematic snake robot is composed of three rigid links that are connected by two

revolute joints and three passive wheel sets connected to each link as shown in Fig. 7.13.

This robot is similar to the kinematic snake studied by Ostrowski in [40]. In our case,

the wheel axes are rigidly held perpendicular to the links, however, Ostrowski actually

controlled the angles between the wheel axes and the links, hence, increasing the dimension

of the base space. Even though we fix the angles of the wheel axes with respect to the
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links, we are still able to generate gaits to move the kinematic snake in the plane.

We attach a body coordinate frame to the middle of the center link as shown in

Fig. 7.13. The position and orientation of this body frame is represented by the three

fiber variables, (x, y, θ), which denote position of the origin of the body frame and its ori-

entation in the plane. The two internal degrees of freedom are represented by the relative

angle between the links (α1, α2).

The kinematic snake has a five dimensional, (n = 5), configuration space Q = G×M ,

where the associated Lie group fiber space denoting the robot’s orientation in the plane

is G = SE(2), the special Euclidean group. The base space denoting the internal degrees

of freedom is M = S × S. Note that the mass and inertia values are irrelevant for this

system since, as we shall show later, it is principally kinematic and all the momentum

variable are annihilated. What this means, if we lock the base variables of the kinematic

snake, away from singular base configuration, the kinematic snake can not move in any

direction since the non-holonomic constraints fully span the fiber space. Thus, there are

no allowable motions along which we can define any momentum variables.

There are three non-holonomic constraints acting on the kinematic snake. Each of

them has the following form

(
ẋi ẏi

)⎛⎝ cos(θi)

sin(θi)

⎞
⎠ = 0

where (xi, yi) is the global2 position of the intersection point of the wheel axes and the

snake links, and θi is the global orientation of the wheel axes.

Given that the fiber space has an SE(2) group structure, we can compute the group

action and lifted action. In particular, the matrix form of the lifted action is given in

(7.1). Using this equation we can compute the non-holonomic constraints, ω(q)q̇ = 0, in

body coordinates. This is simply done by inverting (7.1) to get ġ =
(
TgLg−1

)−1
ξ and

substituting for the fiber velocity, ġ, by its body representation, ξ into ω(q)q̇ = 0 as we did

in Lemma 5. Then we verify that the constraints are independent of any fiber variables

as shown in the following equation

2Recall that, global means that the position is represented in a fixed inertial frame.
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⎛
⎜⎜⎜⎝

− sin(σ1) cos(σ1) −R − L cos(σ1)

0 1 0

sin(σ2) cos(σ2) R + L cos(σ2)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ξ1

ξ2

ξ3

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

−R 0

0 0

0 −R

⎞
⎟⎟⎟⎠
⎛
⎝ σ̇1

σ̇2

⎞
⎠ = 0, (7.3)

where indeed the reduced non-holonomic constraints independent of the fiber variables, g =

(x, y, θ). Moreover, we know that away from singular configurations, the non-holonomic

constraints are linearly independent. Thus, the number of the non-holonomic constraints

is three which is equal to the dimension of the fiber space, SE(2). Hence, the kinematic

snake robot is a principally kinematic system. Now, we compute the kinematic connection

which has the following form,

A(r) =
R

D

⎛
⎜⎜⎜⎝

R + L cos(α2) R + L cos(α1)

0 0

− sin(α2) − sin(α1)

⎞
⎟⎟⎟⎠ ,

where D = R sin(α1) + L sin(α1 − α2) − R sin(α2) and again the components of the con-

nection are functions of the base variables (α1, α2). Next, we use the components of the

kinematic connection to compute the height functions for the kinematic snake to arrive at

F1 =
2LR +

(
L2 + R2

)
cos(σ2) + cos(σ1)

(
L2 + R2 + 2LR cos(σ2)

)
− 4

R

(
L cos(σ1−σ2

2 ) + R cos(σ1+σ2

2 )
)2

sin(σ1−σ2

2 )
2 ,

F2 = 0, and

F3 =
R sin(σ1+σ2

2 )

2
(
L cos(σ1−σ2

2 ) + R cos(σ1+σ2

2 )
)
sin(σ1−σ2

2 )
2 .

In particular, we choose the robot parameters to be L = 1 and R = 1. A plot of the

three height functions for such a kinematic snake are shown in Fig. 7.14. The first two

height functions correspond to ξ1 and ξ2 fiber motions while the third height function

corresponds to ξ3 fiber rotation. Note that the first height function is negative everywhere

in the base space, the second is zero everywhere in the base space, while the third has

distinctive negative regions (lighter shaded) separated from the positive (darker shaded)

regions by the solid line α1 = α2. The second height functions is always zeros since we

aligned the second axis of the body frame along the wheel axis of the middle link as shown

in Fig. 7.13. This means for an observer sitting on the robot, there will never be any
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Figure 7.14: The three height functions of the kinematic snake. The darker shades indicate

the positive regions which are separated from the lighter shaded negative regions by the

solid lines.

motion along the wheel axis due to the no-sideways motion non-holonomic constraint.

Moreover, note that the first and third height functions have unbounded regions. To

be able to plot these unbounded height regions, we used the “arctan” function to map the

range of the height functions to the interval [−π
2 , π

2 ]. The following lines, l1 and l3 denote

the unbounded regions for the first and third hight functions, respectively.

l1 = {α2 = α1 + 2kπ, k ∈ Z}
l3 = {α2 = α1 + 2kπ, α1 = (2k + 1)π, and α2 = (2k + 1)π, k ∈ Z}

These regions are depicted in Fig. 7.14, where the graphs of the height functions ap-

proached the upper and lower bounds of plot range. These unbounded regions correspond

to a singular configuration of the robot, where one, or more, of the non-holonomic con-

straints become a linear combination of the others. For example, consider the solid line

α2 = −α1 in Fig. 7.14. At this line both the first and third height functions have infinite

values which we plot at ±π
2 using the “arctan” function. This line corresponds to snake

configurations where all three wheel axes meet at a single point. It is intuitively clear

that if the robot starts at such a configuration it can not change its configuration without

breaking one of the non-holonomic constraint, that is, without one of the wheels sliding

sideways.

On the other hand, consider a gait that contains a portion of the line α2 = −α1. The

volume under the height function for such a gait will be unbounded, that is, for a finite
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base variable change, the snake will have infinite motion. Such a gait is not feasible. Thus,

not only these height function help us in designing gaits, but also depict singularity region

in the base space.

Again, without loss of generality, assume we want to design a gait that will rotate the

kinematic snake, that is move the system along the θ fiber direction. In other words, we

want to design a curve that will envelope non-zero volume only under the third height

function. Note that the first height function for the kinematic snake is even about both

lines α2 = α1 and α2 = −α1, while the third height function is even about the line

α2 = −α1 and odd about the line α2 = α1. So to move the robot in the θ direction we

need figure-eight type of curve with the following properties:

1. The first height function is negative everywhere in the base space and it is even about

all line α2 = α1 + k, where k ∈ R. Thus, using the fourth rule in Section 6.2.1, we

know that we need a curve that is self-intersecting and should be symmetric about

the one of the lines, α2 = α1 + k. Such a curve will ensure zero volume under the

first height functions.

2. The curve should not intersect any of the unbounded regions prescribed by the lines,

l1 and l2.

3. Finally, since we need the curve to enclose a non-zero volume under the third height

function, we use the second rule in Section 6.2.1 and ensure that the curve is sym-

metric about the line α2 = α1 about which the third height function is odd.

The curve φ3 in the third row of Table 7.6 satisfies all the above conditions as shown in

the third row of Fig. 7.15. We can easily see that such a curve envelopes non-zero volume

only under the third height function. We numerically simulated such a gait and indeed

we get a motion of the kinematic snake which after one complete cycle only rotates the

robot. All fiber motions are plotted in the second column of the third row of Fig. 7.15. We

also plot two snapshots of the kinematic snake at the beginning and end of the φ3 gait. It

is clear that the kinematic snake is rotating as shown in the last plot of the third row of

Fig. 7.15.

Similarly we can design two other gaits, φ1 and φ2, shown respectively in the first and

second rows of Table 7.6, that move the robot only in the x and y directions as shown in

the first and second rows of Fig. 7.15. Note that both gaits have an identical curve, but

different initial configurations. The initial configuration is denoted by the solid dot in the
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Figure 7.15: The time simulations of the three gaits φ1, φ2, and φ3, for the kinematic three

link snake. The first column depicts non-zero motion producing gaits superimposed over

the height functions, the second column depicts the time evolution of the fiber variables,

and the last column depicts snapshots of the mechanical system at the beginning and end

of each gait.

first column of Fig. 7.15. The motion of the kinematic snake due to the above two gaits

is depicted in the last column of the first and second row of Fig. 7.15. We can clearly see

that the kinematic snake moves along the x direction while performing φ1 and parallel

parks or moves along the y direction while performing φ2.

Note that both gaits produce identical geometric phase shift in body coordinates, that
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φ1 :
α1 = π

2 − 0.63778 cos(t) − 0.832148 sin(t)

α2 = π
2 − 1.01344 cos(t) + 0.268663 sin(t)

φ2 :
α1 = π

2 + 1.03919 cos(t) − 0.139003 sin(t)

α2 = π
2 + 0.271378 cos(t) − 1.01271 sin(t)

φ3 :
α1 = π

4

(
2 + π(9 sin(4.1594+2t)+4 sin(2.0797+t))

18
√

2

)
α2 = π

4

(
2 + π(9 sin(4.1594+2t)−4 sin(2.0797+t))

18
√

2

)
Table 7.6: Purely kinematic gaits for the kinematic snake robot.

is, I1
GEO = volume under the height function while I2

GEO = 0. Nonetheless, due to the non-

commutativity of the fiber Lie group, SE(2), the same geometric phase shift is transferred

entirely into Δx in the case of φ1 and entirely into Δy in the case of φ2.

7.2.2 Demonstration of the Three Link Kinematic Snake

To demonstrate our gait generation technique, we built a simple kinematic snake using

Lego blocks and hobby servos. In this case we applied two sinusoidal gaits. The first gait we

applied was similar in structure to φ1, that is, the gait was a an elliptical non-intersecting

gait that is symmetric with respect to the line α1 = α2. As expected, implementing

this gait moved the kinematic snake along the same direction after each complete cycle.

Snapshots of the actual robot are shown in Fig. 7.16(a).

We would like to note that we observed some sideways slipping of the wheels and

the magnitude of the slipping was more significant as our gaits got closer to the line

α1 = −α2. This observation does match our intuition, since we know from the height

function analysis, that the line α1 = −α2 represents the singular configurations of the

robot. Hence, according to our analysis, as the gaits got closer to the line α1 = −α2,

they should envelop larger volumes, that is, the magnitudes of motion should get larger.

Moreover, we know that as the gaits approach the singular line α1 = −α2, the constraint

forces get larger in magnitudes. Nonetheless, since the wheels on our kinematic snake

robots are not ideal, as the constraint forces became larger and overcame the sideways

frictional forces, the wheels started slipping. So for gaits that approached the singular line

α1 = −α2, rather than attaining larger magnitudes of motion, we observed wheel slipping.

In fact, we pushed this idea to an extreme where we implemented a circular gait that

was centered at the origin of the base space, that is, the gait actually crosses the singular

line α1 = −α2 twice per cycle. Even though we observed considerable slipping of the wheels
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Figure 7.16: Snapshots of the actual kinematic three link snake as it performs two trans-

lational gaits in (a) and (b), and one rotational gait in (c).

each time the gait passed through the singular line, the actual magnitude of motion along

the x direction was relatively large when compared the the gaits we implemented earlier as

shown in Fig. 7.16(b). This is not an indication of a failure of our gait generation analysis

which predicts infinite motion for such a gait, rather the actual model violated the non-

holonomic constraints at these singular configuration and due to slip and modeling errors

produced a large finite motion. Finally, we implemented a figure-eight type curve which,
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as expected, rotated the kinematic snake in place as shown in Fig. 7.16(c).

7.3 Purely Dynamic Systems: Simplified Trikke

In this section, we generate gaits for purely dynamic systems, that is, systems whose

height functions are null over the entire space. The simplest type of mechanical systems

that belong to this family are systems that have a one-dimensional base space. The robo-

trikke which was introduced and analyzed by Kumar and Chitta in [11, 45] is a purely

dynamic system. Moreover, this system is similar to the roller racer system analyzed by

Tsakiris et al. in [28]. Next we analyze and eventually generate gaits for a simplified Trikke

system shown in Fig. 7.17

α

θ
(x, y)

q0

q1

L

R

Figure 7.17: A schematic of the simplified Trikke.

A schematic of the simplified Trikke is shown in Fig. 7.17. It is composed of two rigid

links that are connected by a revolute joint. Additionally, we have two passive wheel sets

attached to the distal ends of the two link. The wheel axes are held rigidly perpendicular

to the respective links. We attach a body coordinate frame to the intersection of one of

the wheel axes and the links and we align the first axis of the body frame along that link

as shown in Fig. 7.17. The position and orientation of the body frame is represented by

the fiber variables, (x, y, θ), while the internal degree of freedom representing the inter link

angle is denoted by the base variable, (α1).

Hence, the simplified Trikke has a four-dimensional, (n = 4), configuration space Q =

G × M , where the associated Lie group fiber space denoting the robot’s position and

orientation in the plane is G = SE(2), the special Euclidean group. The base space
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denoting the internal degree of freedom is M = S. The Lagrangian of the simplified

Trikke in the absence of gravity is

L(q, q̇) =
1

2

2∑
i=1

(
miẋ

T
i ẋi + jiθ̇

2
i

)
(7.4)

where mi and ji represent the mass and inertia of each of the two links with the wheels

attached to them, while xi and θi represent the inertial position and orientation of the

center of mass of these rigid bodies. Moreover, the two non-holonomic constraints, one for

each wheel set, acting on the simplified Trikke are given by the following form

d

dt

(
x̃i ỹi

)⎛⎝ cos(θ̃i)

sin(θ̃i)

⎞
⎠ = 0

where (x̃i, ỹi) is the global position of the intersection point of the wheel axes and the two

links, and θ̃i is the global orientation of the wheel axes. Let the length of the two links be

L and R, their mass be ML and MR, and their inertias be JL and JR, respectively.

Given that the fiber space has an SE(2) group structure, we utilize the lifted action

given in (7.1) to compute the reduced Lagrangian and reduced non-holonomic constraints

and thus verify that they are independent of any fiber variables. The matrices associated

with the reduced Lagrangian and non-holonomic constraints for the simplified Trikke are

given below in (7.5) through (7.7).

I =

0
BB@

ML + MR 0 − (R sin(α1)MR)

0 ML + MR (L + R cos(α1)) MR

− (R sin(α1)MR) (L + R cos(α1)) MR JL + JR + L2MR + R2MR + 2LR cos(α1)MR,

1
CCA(7.5)

IA =

0
BB@

− (R sin(α1)MR)

R cos(α1)MR

JR + R2MR + LR cos(α1)MR

1
CCA , and m(r) = JR + R

2
MR, (7.6)

where I(r), the locked inertia tensor is the top left 3 × 3 sub-matrix of the reduced mass

matrix, M̃ . The non-holonomic constraints are expressed with

ω̄ξ =

⎛
⎝ 0 1 0

− sin(α1) cos(α1) R + L cos(α1)

⎞
⎠ , and ω̄r =

⎛
⎝ 0

R

⎞
⎠ , (7.7)

where we have ω̄ξξ + ω̄r ṙ = 0. Now, we verify that the simplified Trikke belongs to the
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mixed type of mechanical system. It has a three-dimensional base space, SE(2). Moreover,

it has two non-holonomic constraints, one for each wheel set. We have verified that these

constraints are invariant with respect to the group action and we know that these non-

holonomic constraints are linearly independent away from singular configurations. Thus,

we conclude that the simplified Trikke is a mixed system.

Having computed the reduced Lagrangian and non-holonomic constraints for the sim-

plified Trikke in (7.5) through (7.7), we can easily compute the generalized non-holonomic

momentum using (4.3) to get

p =

„
L cot(α1) (ML + MR) +

R csc(α1) (2ML + MR + cos(2α1)MR)

2

«
ξ1

+ (L + R cos(α1)) MRξ2 +
`
JL + JR + L

2
MR + LR cos(α1)MR

´
ξ3 + JRα̇1. (7.8)

Now, to simplify some expressions, we make the following substitutions of the param-

eters for the simplified Trikke, where we set ML = λM , MR = 1, JL = λJ , JR = 1, L = λL,

and R = 1. As for the reconstruction equation, we can easily compute it by solving the

system of equations (4.5) and (4.6) for ξ. Then for the simplified Trikke we compute the

mixed connection and the matrix multiplying the generalized momentum are shown in

(7.9) and (7.10), respectively.

A(r) =
1

Da

0
BBB@

−2 sin(α1)
`
λJ + λL

2
´

0

2 (1 + cos(α1)λL) (1 + λM )

1
CCCA , and (7.9)

Γ(r) =
1

Da

0
BBB@

2 sin(α1) (1 + cos(α1)λL)

0

sin(α1)
2

1
CCCA , where (7.10)

Da = 2
`
1 + sin(α1)

2
λJ + 2 cos(α1)λL + λL

2 + (1 + cos(α1)λL)2λM

´
. (7.11)

For the simplified Trikke, the generalized momentum evolution equation is given by
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ṗ = −

(2 cos(α1) + λL (3 + cos(2α1) + 2 cos(α1)λL)) (1 + λM )

sin(α1)Da
α̇1p

+
2λL

`
1 + λM − sin(α1)

2
λL

2λM + cos(α1)λL (1 + λM )
´

sin(α1)Da
α̇

2
1

−

λJ (2 cos(α1) (1 + λM ) + λL (1 + cos(2α1) + 2λM ))

sin(α1)Da
α̇

2
1.

Now, we compute the integrating factor, h(r), of the above first order differential

equation to get h(α1) = sin(α1)/
√

Da. Hence, rewriting the momentum evolution equation

in terms of the scaled momentum variable, ρ, to arrive at

ρ̇ =
2 cos(α1)

`
−λJ + λL

2
´
(1 + λM ) + λL

D
3

2
a

α̇
2
1

+
λL

`
2 +

`
2 − 2sin(α1)

2
λL

2
´
λM − λJ (1 + cos(2α1) + 2λM )

´
D

3

2
a

α̇
2
1. (7.12)

The latter equation is much simpler than the original momentum evolution equation

since the right hand side is composed only of one term multiplying the square of the base

velocity variable, α̇1. Thus, the new reconstruction equations, expressed in terms of the

scaled momentum variable has the from

ξ = −A(α1)α̇1 + Γ̄(α1)ρ,

where A(α1) is given in (7.9) and Γ̄(α1) =
√

Da

sin(α1)
Γ(r) where Γ(r) is given in (7.10). We

can compute the height functions using the mixed connection terms, however, for the

simplified Trikke all the height functions are zero since m = 1 in (6.6). Thus, we can

conclude that the simplified Trikke is a purely dynamic mechanical system.

As for the gamma functions, they are simply the components of the matrix Γ̄(α1) given

above. Setting the simplified Trikke parameters to λM = 1/3, λJ = 3, and λL = 2, we

plot the height and gamma functions for the simplified Trikke as shown in Fig. 7.18. Note

that, as expected, all the height function are zero. Moreover, note that the first gamma

function, G1, is even about the point α1 = 0 while the third gamma function, G3, is odd

about this point. Moreover, note that the first gamma function, G1, is equal to zero at

α1 = ±2π/3 while the third gamma function, G3, is equal to zero at α1 = kπ, where
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Figure 7.18: The three height and gamma functions for the simplified Trikke.

k ∈ Z.

All gaits for the simplified Trikke are necessarily purely dynamic since it is a purely

dynamic system as was shown in Fig. 6.1. To generate purely dynamic gaits, we have to

study the properties of the gamma functions as well as the right hand side of momentum

evolution equation expressed in terms of the scaled momentum. We have already computed

the and analyzed the properties the gamma function in the prior section. Now, we analyze

the right hand side of the scaled momentum evolution equation to eventually generate

purely dynamic gaits for the simplified Trikke.

Recall that, for purely dynamic gaits, we require that the scaled momentum is sign

definite as we explained in Section 6.2.2. Hence, for the simplified Trikke, we should ensure

that the right hand side of (7.12) is never zero. The scaled momentum evolution equation,

(7.12), has the simple form

ρ̇ =
σ(α1)√

D3
a

α̇2
1.

Since, the simplified Trikke parameters are all positive, we can verify that the denom-

inator
√

D3
a given in (7.11)is always positive. Hence, to ensure that ρ̇ 
= 0, we have to

analyze the numerator, σ(α1), which, after utilizing some trigonometric identities, we can

verify to be a quadratic expression in the variable cos(α1), that is, σ(α1) = a cos(α1)
2 +

b cos(α1)+ c, where a, b and c are functions of the Trikke parameters, (λM , λJ , λL). Thus,

we have to ensure that this quadratic expression has no roots, that is, the term Δ = b2−4ac
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Figure 7.19: Surface partitioning the simplified Trikke parameter space.

is less than zero. If the numerator has no root, and we already proved that the denomi-

nator is always positive, then we can conclude that the right hand side of (7.12) is never

zero. For the simplified Trikke, we have

Δ =
(
λJ − λL

2
)2

(1 + λM )
2

+ 4λL
2
(−λJ + λL

2λM

) (−1 +
(−1 + λJ + λL

2
)
λM

)
.

In Fig. 7.19 we plotted the surface where Δ = 0 which partitions the parameter space

for all simplified Trikkes into two regions: Δ < 0 and Δ > 0. Hence, for designing purely

dynamic gaits for the simplified Trikke, we have to ensure that the Trikke parameters

belong to a negative region as depicted in Fig. 7.19. In fact, the Trikke parameters we

used earlier to plot the height and gamma functions, (λM = 1/3, λJ = 3, λL = 2), were

picked from the negative region. It is interesting to note that for simplified Trikke whose

parameters are picked from the negative regions, the scaled momentum is sign definite

regardless of the base input, α1.

Having picked parameters for the simplified Trikke that ensure that the scaled mo-
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Figure 7.20: Simulation of a translational gait, φ1, for the simplified Trikke.

φ1 : α1(t) = sin(t)

φ2 : α1(t) = 2π
3 + π

6 sin(t)

Table 7.7: Purely dynamic gaits for the simplified Trikke.

mentum is never zero, we can go ahead and design purely dynamic gaits by analyzing the

gamma functions depicted in Fig. 7.18.

Without loss of generality, lets assume that we want to design a gait that moves the

simplified Trikke along the ξ1 direction. Thus, we have to ensure that the gait remains

entirely within a positive region of the first gamma function, G1. Moreover, we have

to ensure that the gait is symmetric with respect to an odd point of the third gamma

function G3. Thus, we conclude that a gait that is centers about the origin of the base

space, α1 = 0, will yield a non-zero dynamic phase shift only along the ξ1 direction. The

gait φ1 in the first row of Table 7.7 satisfies all the above requirements.

We have simulated the gait φ1 and presented the results in Fig. 7.20. This first plot

in Fig. 7.20 depicts the gait φ1 superimposed on top of the gamma function. We can

see that this particular gait lies entirely in a positive region of the first gamma function,

G1; moreover, this gait is symmetric about an odd point, (α1 = 0), of the third gamma

function, G3, as depicted by the shaded region in the first plot of Fig. 7.20. The second

plot in Fig. 7.20 depicts a time simulation of the gait φ1, where we can see the evolution of

the fiber variables, (x, y, θ). The final plot depicts two snapshots of the simplified Trikke

at the beginning and end of the gait φ1 where we can see that the Trikke is moving along

the x direction.

Similarly, we propose another gait, φ2 in the second row of Table 7.7, that ensures that

the dynamic phase shift is non-zero only along the ξ3 direction. We designed this gait, to
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Figure 7.21: Simulation of a rotational gait, φ2, for the simplified Trikke.

lie entirely in a positive region of the third gamma function, G3 while it spans two regions

of opposite signs of the first gamma function as depicted by the shaded region of the first

plot in Fig. 7.21. We simulated this gait and we can see that it rotates the Trikke as shown

in the second plot of Fig. 7.21. Finally, the last plot in Fig. 7.21 depicts two snapshots of

the simplified Trikke at the beginning and end of the gait, φ2, where we can clearly see

that the Trikke has indeed rotated.

7.4 Mixed Systems

In this Section, we generate gaits for two mixed systems. The first of which is the Snake-

board3 which was extensively studied in the literature in [8,40]. The second mixed system

is a novel mechanical system which we term the variable inertia snakeboard. We introduce

the variable inertia snakeboard which, as the name suggest, is a variable inertia system as

opposed to the constant inertia original snakeboard. Applying our gait generation tools

to this novel system, allows us to prove the generality and applicability of our techniques.

Since both snakeboards, as we shall prove, are mixed systems, we will generate three types

of gaits for each system as we prescribed in Fig. 6.1.

7.4.1 Snakeboard

A schematic of the original snakeboard is shown in Fig. 7.22. It is composed of one rigid

link, a rotor pivoting around the center of the link and two passive wheel sets pivoting

at the each of the distal ends of the link. The no sideways slippage of these two sets of

wheels provide the two non-holonomic constraints. We attach a body coordinate frame to

3We shall refer to the system as the original snakeboard in the rest of this document.
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Figure 7.22: A schematic of the original Snakeboard.

the middle of the center link as shown in Fig. 7.22. The position and orientation of the

body frame is represented by the fiber variables, (x, y, θ), while the two internal degrees of

freedom representing the wheel axes and rotor angles are denoted by the base variables,

(α1, α2). Note that, just as was the case in the prior work, we have coupled the wheel axes

rotation to be equal in magnitude but opposite in direction.

Hence, the original snakeboard has a five-dimensional, (n = 5), configuration space

Q = G × M , where the associated Lie group fiber space denoting the robot’s position

and orientation in the plane is G = SE(2), the special Euclidean group. The base space

denoting the internal degrees of freedom, the coupled wheel angles and the rotor angle, is

M = S × S. The Lagrangian of the pivoting dynamic model in the absence of gravity is

L(q, q̇) =
1

2

3∑
i=1

(
miẋ

T
i ẋi + jiθ̇

2
i

)
(7.13)

where mi and ji represent the mass and inertia of each of the rigid bodies: the center link,

the rotor, and the wheels, while xi and θi represent the inertial position and orientation of

these rigid bodies. Moreover, two non-holonomic constraints act on the system are given

by the following form

d

dt

(
x̃i ỹi

)⎛⎝ cos(θ̃i)

sin(θ̃i)

⎞
⎠ = 0

where (x̃i, ỹi) is the global position of the intersection point of the wheel axes and the

middle link, and θ̃i is the global orientation of the wheel axes. Let the length of the

middle link be 2L and the mass and inertia of the entire system be denoted by M and
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J , respectively. The rotor and wheel inertias are denoted by Jr and Jw, respectively. To

simplify some expressions we will assume that J + Jr + 2Jw = ML2.

Given that the fiber space has an SE(2) group structure, we utilize the group action

and lifted action given in (7.1) to compute the reduced Lagrangian and non-holonomic

constraints and verify that they are independent of any fiber variables. The matrices

associated with the reduced Lagrangian and non-holonomic constraints for the original

snakeboard are given below in (7.14) through (7.16).

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M 0 0 0 0

0 M 0 0 0

0 0 ML2 0 Jr

0 0 0 2Jw 0

0 0 Jr 0 Jr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.14)

where I(r), the locked inertia tensor is the top left 3 × 3 sub-matrix of M̃ . The non-

holonomic constraints are expressed with

ω̄ξ =

⎛
⎝ − sin(α1) cos(α1) L cos(α1)

− sin(α1) − cos(α1) L cos(α1)

⎞
⎠ (7.15)

ω̄r =

⎛
⎝ 0 0

0 0

⎞
⎠ (7.16)

Note the constant reduced mass matrix for the original snakeboard. This actually sim-

plifies the problem of gait generation. In fact, this is one of the reasons we are introducing

the variable inertia snakeboard, which does not have a constant reduced mass matrix.

Now, we verify that the original snakeboard belongs to the mixed type of mechanical

system. It has a three-dimensional base space, SE(2). Moreover, it has two non-holonomic

constraints, one for each wheel set. We have verified that these constraints are invariant

with respect to the group action and we know that these non-holonomic constraints are lin-

early independent away from singular configurations. Thus, we conclude that the original

snakeboard is a mixed system.

Having computed the reduced Lagrangian and non-holonomic constraints for the orig-

inal snakeboard in (7.14) through (7.16), we can easily compute the generalized non-
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holonomic momentum using (4.3) to have

p = LM cot(α1)ξ
1 + L2Mξ3 + Jrα̇2. (7.17)

As for the reconstruction equation, we can easily compute it by solving the system of

equations (4.5) and (4.6) for ξ. Then for the original snakeboard we have

A(r) =
Jr

ML2

⎛
⎜⎜⎜⎝

0 L
2 sin(2α1)

0 0

0 sin(α1)
2

⎞
⎟⎟⎟⎠ , and (7.18)

Γ(r) =
1

ML2

⎛
⎜⎜⎜⎝

L
2 sin(2α1)

0

sin(α1)
2

⎞
⎟⎟⎟⎠ . (7.19)

For the original snakeboard, the generalized momentum evolution equation is rather

simple and it is given by

ṗ = − cot(α1)α̇1p + Jr cot(α1)α̇1α̇2.

This equation allows us to compute the integrating factor, h(r) = exp(
∫

cot α1α̇1dt) =

sin(α1). Then (5.8), the new evolution equation, expressed using the scaled momentum

variable for the original snakeboard becomes

ρ̇ = −Jr

2

⎛
⎝ α̇1

α̇2

⎞
⎠T

Σ̄(r)︷ ︸︸ ︷⎛
⎝ 0 cos(α1)

cos(α1) 0

⎞
⎠
⎛
⎝ α̇1

α̇2

⎞
⎠ . (7.20)

Now we compute the height functions for the original snakeboard. Using the mixed

connection, we can compute the exterior derivative of each row. Hence using (6.6), the

height functions will have the following expressions

F1 =
Jr

ML
cos(2α1),

F2 = 0 , and

F3 =
Jr

ML2
sin(2α1).
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Figure 7.23: The three height functions for the original snakeboard.
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Figure 7.24: The three gamma functions for the original snakeboard.

These height functions are shown in Fig. 7.23. As for the gamma functions, since the

original snakeboard has only one generalized momentum variable, we simply divide the Γ

functions in (7.19) by the integrating factor to get

G1 =
1

ML
cos(α1),

G2 = 0 , and

G3 =
1

ML2
sin(α1).

The gamma functions for the original snakeboard are depicted in Fig. 7.24. Hence, it

is self-evident from the expressions of the height and gamma functions that they do not

depend on α2, the rotor angle. This explains why the graphs of the original snakeboard

height and gamma functions are extrusions (Fig. 7.23) and (Fig. 7.24).

Referring to Fig. 7.23, note the following properties of the height functions for the



117

original snakeboard.

• F1 = 0 for {α1 = (2k + 1)π
4 , k ∈ Z},

• F2 = 0 for all {α1, α2},

• F3 = 0 for {α1 = k π
2 , k ∈ Z},

• F1 is even about the lines α1 = k π
2 , k ∈ Z},

• F1 is odd about the lines α1 = (2k + 1)π
4 , k ∈ Z},

• F3 is even about the lines α1 = (2k + 1)π
4 , k ∈ Z},

• F3 is odd about the lines α1 = k π
2 , k ∈ Z}.

Referring to Fig. 7.24, note the following properties of the gamma functions for the

original snakeboard.

• G1 = 0 for {α1 = (2k + 1)π
2 , k ∈ Z},

• G2 = 0 for all {α1, α2},

• G3 = 0 for {α1 = kπ, k ∈ Z},

• G1 is even about the lines α1 = kπ, k ∈ Z},

• G1 is odd about the lines α1 = (2k + 1)π
2 , k ∈ Z},

• G3 is even about the lines α1 = (2k + 1)π
2 , k ∈ Z},

• G3 is odd about the lines α1 = kπ, k ∈ Z}.

Purely Kinematic Gaits

Recall that for purely dynamic gaits, we want to solve for base space curves for which

IGEO 
= 0 while IDY N = 0. Hence, we first solve the scaled momentum differential

equation such that the momentum is zero for all time. This is done by setting the right

hand side of (7.20) equal to zero. In general, the right hand side of (7.20) is a quadratic

expression with four unknowns, (α1, α2, α̇1, α̇2). However, for the original snakeboard,

(7.20) has a simple form where

ρ̇ = −Jr cos(α1)α̇1α̇2.
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Figure 7.25: Vector field defining the purely kinematic gaits of the ‘original snakeboard.

The right hand side has a single term which has a product of the two base velocities,

α̇1 and α̇2. Thus, it is clear that if we ensure that at least of the base velocities is zero at

any given time, then we must have ρ̇ = 0. Additionally, if we assume that we are starting

from zero initial momentum, that is, p = ρ = 0, then any base space curve that has at

least one of the base velocities is zero is a candidate for a purely kinematic gait for the

original snakeboard.

Hence, for the original snakeboard we plot two vector fields, α̇1 = 0 and α̇2 = 0, over

the entire base space as shown in Fig. 7.25, where any part of the integral curves of these

vector fields can be used to construct a purely kinematic gait. The integral curves of the

vector fields are the following lines

l1 = {α1 = k, k ∈ R},
l2 = {α2 = k, k ∈ R}.
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Then we can easily construct purely kinematic gaits for the original snakeboard by

flowing along the above lines. Flowing along the above lines means that we can change

only one base variable at a time, so either change the rotor angle or the wheel angles and

not both at the same time. These gaits are structurally similar to the gaits proposed by

Bullo et al. in [8]. In Figure 7.25 we have plotted a subset of these integral lines (solid

lines). Now we can easily design purely kinematic gaits which are given in Table 7.8.

PKφ1 : A − C − E − G − A

PKφ2 : A − B − F − E − C − B − F − G − A

PKφ3 : A − C − D − H − G − E − D − H − A

Table 7.8: Purely kinematic gaits for the original snakeboard.

In designing the above gaits, we have carefully chosen along which integral lines to flow.

The motions due to these three gaits are depicted in Fig. 7.26. For instance, consider the

first gait, PKφ1, which is a rectangle centered at the origin of the base space. Such a

curve envelops a non-zero volume only under the first height function shown in the first

row of Fig. 7.26. For this particular gait, we limited the wheel angles to −π
4 ≤ α1 ≤ π

4 .

This ensures that we do not include any negative volume under the first height function

as shown in the first plot in the first row of Fig. 7.26. Actually we have simulated this gait

and depicted the time simulation in the second and third plots of the first row of Fig. 7.26.

Note, that for PKφ1, ρ = 0 for all time as shown in the second plot of the first row of

Fig. 7.26. The third plot in the first row of Fig. 7.26 depicts the fiber variables versus time

while the last plot in the first row depicts two snapshots of the original snakeboard at the

beginning and end of the gait, PKφ1. Note the net motion along the x direction.

Actually, we simulated the other gaits, PKφ2 and PKφ3, given in Table 7.8 as shown

in the second and third rows of Fig. 7.26, respectively. Note that the gait PKφ2 moves

the original snakeboard along the y direction while the gait PKφ3 rotates the original

snakeboard.

Purely Dynamic Gaits

Purely dynamic gaits are relatively easier to design. The designed curves should enclose

zero volume under all height functions simultaneously. For example, purely dynamic si-

nusoidal gaits are usually gaits in which the frequencies of all inputs are identical. We

designed three purely dynamic gaits for the original snakeboard which are given in Ta-
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Figure 7.26: Simulation of the three purely kinematic gaits, PKφ1,
PKφ2, and PKφ3, for the

original snakeboard. The first column depicts non-zero motion producing purely kinematic

gaits superimposed over the height functions, the second column depicts the evolution of

the scaled momentum and the geometric phase shift along the fiber directions, the third

column depicts the time evolution of the fiber variables, and the last column depicts

snapshots of the mechanical system at the beginning and end of each gait.

PDφ1 :
α1 = π

5 (1 − 2 sin2(t))

α2 = π
3 sin(t)

PDφ2 :
α1 = 5π

11 sin(t)

α2 = 5π
11 (1 − 2 sin2(t))

PDφ3 :
α1 = π

5 (1 − 2 sin2(t)) + π
4

α2 = π
3 sin(t)

Table 7.9: Purely dynamic gaits for the original snakeboard.

ble 7.9.

The motions of the original snakeboard due to the above gaits are depicted in Fig. 7.27.
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Figure 7.27: Simulation of the three purely dynamic gaits, PDφ1,
PDφ2, and PDφ3, for the

original snakeboard. The first column depicts non-zero motion producing purely dynamic

gaits superimposed over the gamma functions, the second column depicts the evolution of

the scaled momentum and the dynamic phase shift along the fiber directions, the third

column depicts the time evolution of the fiber variables, and the last column depicts

snapshots of the mechanical system at the beginning and end of each gait.

Consider the first gait, PDφ1, which is depicted in the first row of Fig. 7.27. As expected

this gait encloses zero volume in the base space. For this particular gait, we numerically

verified that ρ ≤ 0 for all time as shown in the second plot in the first row of Fig. 7.27.

Moreover, we placed the curve in a base space region where only the first gamma function is

positive as shown in the first plot of the first row of Fig. 7.27, and we ensured that the curve

is symmetric about the line α1 = 0, which is an odd line for the third gamma function.

Then we numerically simulated this gait and computed the values of IDY N along the fiber

directions, (ξ1, ξ2, ξ3), as shown in the second plot of the first row of Fig. 7.27. Observe

that only IDY N along the ξ1 direction is non-zero after the first cycle of the gait. Then, we

numerically compute the three fiber variables, (x, y, θ), of the original snakeboard and plot
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Figure 7.28: Simulation of the three kino-dynamic gaits, KDφ1,
KDφ2, and KDφ3, for

the original snakeboard. The first and last columns depict non-zero motion producing

kino-dynamic gaits superimposed over the height and gamma functions, respectively, the

middle columns depict the evolution of the scaled momentum and the geometric and

dynamic phase shifts along the fiber directions.

them versus time as show in the third plot in the first row of Fig. 7.27. As expected, this

gait moves the original snakeboard only along the ξ1 direction4. Finally, the last plot in

the first row of Fig. 7.27 depicts to snapshots of the original snakeboard at the beginning

and end of the gait, PDφ1, where the motion along the x direction can be seen.

Similarly, we design two gaits, PDφ2 and PDφ3, which respectively encloses non-zero

volume under the second and third gamma functions as shown in the second and third

rows of Fig. 7.27. These two gaits move the original snakeboard along the y direction or

rotates it along the θ fiber direction.

4For this particular gait, the motion along the ξ1 direction, is mapped almost entirely to motion along

the x direction.



123

xxx yyy θθθ

ttt 000

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

−1−1−1

−1

−1−1

−1

−1

2

2

2

2

2

2

2

2

2

2

2

2

−2−2−2

−2

−2−2

−2

−2

3

3

3

3

3

3

3

−3−3−3
444

4

555 666

xxx
yyy

Figure 7.29: The motion of the original snakeboard as it performs the three kino-dynamic

gaits, KDφ1,
KDφ2, and KDφ3.

Kino-dynamic Gaits

As we mentioned earlier, kino-dynamic gaits are gaits for which both the geometric and

dynamic phase shift contribute to the systems motion. For these gaits, we start with the

volume analysis of the geometric gaits. For example, to design a gait that moves the

original snakeboard in the ξ1 direction, we design a curve that encloses a non-zero volume

only under the first height function shown in the first row of Fig. 7.28. We can easily

conclude that a curve with the following properties is a possible candidate.

• Closed non-intersecting curve.

• Symmetric about the line α1 = kπ/2, k ∈ Z.

• The curve is bounded by the two lines, kπ/4 � α1 � (k + 1)π/4, k ∈ Z − {0}.

The gait given in the first row of Table 7.10 satisfies all the above properties. We

have simulated this gait as shown in the first row of Fig. 7.28. The first and last plots

depict the gait in the base space superimposed on top of the height and gamma functions,

respectively, where we verify that it satisfies the above requirements. We simulated this



124

gait and plotted the values of IGEO and IDY N versus time in the second and third plots

of the first row of Fig. 7.28. Note the non-zero value of the IGEO and IDY N along the ξ1

direction at the end of the cycle. Moreover, note that at the end of each cycle, both the

geometric and dynamic phase shifts have the same sign and additively contribute to the

total motion. Finally, we plot the actual fiber variables versus time and the initial and final

configurations of the original snakeboard as shown in the first column of Fig. 7.29. Note

that this particular gait moves the original snakeboard solely along the global x direction.

KDφ1 :
α1 = π

4 cos(t)

α2 = π
2 sin(t)

KDφ2 :
α1 = π

4 sin(2t)

α2 = π
3 sin(3t)

KDφ3 :
α1 = π

4 sin(t)

α2 = π
3 sin(2t)

Table 7.10: Kino-dynamic gaits for the original snakeboard.

Similarly we generate two other gaits given in the second and third rows of Table 7.10

that move the original snakeboard along the y and θ directions. We have simulated both

gait, KDφ2 and KDφ3, which are shown in the second and third rows of Fig. 7.28. Note

that for KDG2 both IGEO and IDY N are always zero in the ξ2 direction. However, the

gait still produced a net y motion as shown in the second column Fig. 7.29. This is due

to the non-commutativity of the group fiber, SE(2). The third gait, KDφ3, rotated the

original snakeboard along the θ fiber direction as shown in the last column of Fig. 7.29.

We have plotted snapshots of the original snakeboard at the beginning and end of each of

the above gaits in the second row of Fig. 7.29.

7.4.2 Variable Inertia Snakeboard

In this section we introduce the variable inertia snakeboard example which is somewhat

related to the original snakeboard but as we shall see it is a rather more complicated system.

The variable inertia snakeboard shown in Fig. 7.30 is composed of three rigid links that are

connected by two revolute joints. The outer two links have mass, m, concentrated at the

distal ends and an inertia, j, while the middle link is massless. Moreover, attached to the

distal ends of the outer two links is a set of passive wheels whose axes are perpendicular

to the robot’s links. The no sideways slippage of these two sets of wheels provide the two
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Figure 7.30: Variable inertia Snakeboard.

non-holonomic constraints which act on the system. We attach a body coordinate frame

to the middle of the center link and align its first axis along that link. The location of the

origin of this body-attached frame is represented the configuration variables (x, y) while

its global orientation is represented by the variable θ. The two internal degrees of freedom

are represented by the relative angle between the links (α1, α2).

Hence, the variable inertia snakeboard has a five dimensional, (n = 5), configuration

space Q = G×M , where the associated Lie group fiber space denoting the robot’s position

and orientation in the plane is G = SE(2), the special Euclidean group. The base space

denoting the internal degrees of freedom is M = S × S. The Lagrangian of the variable

inertia snakeboard in the absence of gravity is computed using (7.13).

Let 2L and R be the length of the middle link and the outer links, respectively. To

simplify some expressions we will assume that the mass and inertia of the two distal links

are identical, that is, mi = m and ji = j = mR2. Given that the fiber space has an

SE(2) group structure, we can compute the group lifted action as shown in (7.1). The

lifted action allows us to verify the Lagrangian invariance and to compute the reduced

Lagrangian and the component of the reduced mass matrix associated with it are given by
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I = mR

⎛
⎜⎜⎜⎝

2
R 0 − sin(α1) + sin(α2)

0 2
R cos(α1) − cos(α2)

− sin(α1) + sin(α2) cos(α1) − cos(α2) 2
(

L2+2R2

R + cos(α1)+cos(α2)
1/L

)
⎞
⎟⎟⎟⎠ ,

IA = mR

⎛
⎜⎜⎜⎝

− sin(α1) sin(α2)

cos(α1) − cos(α2)

2R + L cos(α1) 2R + L cos(α2)

⎞
⎟⎟⎟⎠ , and m(r) =

⎛
⎝ 2mR2 0

0 2mR2

⎞
⎠

Note that the reduced mass matrix for the variable inertia snakeboard depends solely on

the base variables α1 and α2 and is not constant as was the case for the original snakeboard

which was studied in the prior work. Similarly we can write the non-holonomic constraints

with respect to the body coordinate frame for the variable inertia snakeboard as

ω̄ξ =

⎛
⎝ − sin(α1) cos(α1) R + L cos(α1)

sin(α2) − cos(α2) R + L cos(α2)

⎞
⎠ (7.21)

ω̄r =

⎛
⎝ R 0

0 R

⎞
⎠ (7.22)

Now, we verify that the variable inertia snakeboard belongs to the mixed type of

mechanical system. It has a three-dimensional base space, SE(2). Moreover, it has two

non-holonomic constraints, one for each wheel set. We can verify that these constraints

are invariant with respect to the group action and we know that these non-holonomic

constraints are linearly independent away from singular configurations. Thus, we conclude

that the variable inertia snakeboard is a mixed system.

Similarly, we can compute the generalized non-holonomic momentum which is given

by

p =
m
(
pξ1ξ1 + pξ2ξ2 + pξ3ξ3 + pα(α̇1 + α̇2)

)
2 sin(α1 − α2)

, (7.23)

where pξi and pα are analytic functions of the base variables which are shown in Table 7.11.

As for the mixed connection, it is given by
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Figure 7.31: The three height functions for the variable inertia snakeboard. The darker

shades indicate the positive regions which are separated from the lighter colored regions

by the solid curves.

A(r) =
1

2Da

⎛
⎜⎜⎜⎝

A1
1 A1

2

A2
1 A2

2

A2
1 A2

3

⎞
⎟⎟⎟⎠ (7.24)

where Ai
j and Da are also analytic functions of the base variables which are shown in

Table 7.11. Note how complex are the expressions for the generalized non-holonomic

momentum and the mixed connection for the variable inertia snakeboard are in comparison

to those of the fixed-inertia original snakeboard.

Similarly, we can compute the integrating factor for the variable inertia snakeboard

and then the momentum evolution equation of the scaled momentum variable is given by

ρ̇ =
2mR

Ds

⎛
⎝ α̇1

α̇2

⎞
⎠T

Σ̄(r)︷ ︸︸ ︷⎛
⎝ Σ̄11 Σ̄12

Σ̄21 Σ̄22

⎞
⎠
⎛
⎝ α̇1

α̇2

⎞
⎠ , (7.25)

where Σ̄ij and Ds are analytic functions of the base variables which are shown in Table 7.11.

Using the mixed connection and coefficients multiplying the scaled momentum in the

reconstruction equations, we can respectively compute the height and gamma functions

for the variable inertia snakeboard. The expressions for this particular system are rather

complicated and we will not present them here; however, we encourage the reader to

compute these terms as an exercise. We depict the graphs of the three height functions

and three gamma functions in Fig. 7.31 and Fig. 7.32, respectively. Referring to Fig. 7.31,

note the following properties of the height functions for the variable inertia snakeboard.
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pξ1 = 3R cos(α1) + R cos(α1 − 2α2) + 4L cos(α1 − α2)

+R cos(2α1 − α2) + 3R cos(α2) + 4L cos(α1 + α2)

pξ2 = 3R sin(α1) − R sin(α1 − 2α2) + R sin(2α1 − α2) + 3R sin(α2) + 4L sin(α1 + α2)

pξ3 = 2 sin(α1 − α2)
`
2

`
L2 + R2

´
+ LR cos(α1) + LR cos(α2)

´
pα = 2 sin(α1 − α2)R

2

A
1
1 = −2

``
L2 + R2 + 2LR cos(α2) + L2 cos(2α2)

´
sin(α1)

´
−2 (+R (R + L (cos(α1) + cos(α2))) sin(α2))

A
1
2 = 2 (R (R + L (cos(α1) + cos(α2))) sin(α1))

2
`
+

`
L2 + R2 + 2LR cos(α1) + L2 cos(2α1)

´
sin(α2)

´
A

2
1 = 2R cos(α2) (R + L cos(α2)) + cos(α1)

`
3L2 + 2R2 + 6LR cos(α2) + L2 cos(2α2)

´
−L2 sin(α1) sin(2α2)

A
2
2 = −2LRcos(α1)

2
−

`
3L2 + 2R2

´
cos(α2) − 2R cos(α1) (R + 3L cos(α2))

−L2 cos(2α1 + α2)

A
3
1 = 3L cos(α1) + L cos(α1 − 2α2) + 2R (1 + cos(α1 − α2))

A
3
2 = 2R + 2R cos(α1 − α2) + L cos(2α1 − α2) + 3L cos(α2)

Da = R
`
2

`
L2 + R2

´
+ 3LR cos(α1) + L2 cos(2α1) + L2 cos(2α2)

´
+R2 (2R cos(α1 − α2) + L (cos(α1 − 2α2) + cos(2α1 − α2) + 3 cos(α2)))

Σ̄1
1 = 2R cos(α1) ((R + L cos(α2)) (3 + cos(2α2)) + 2 (R + 2L cos(α2)) sin(α1) sin(α2))

+2 sin(α1)
`
−2

``
2L2 + R2

´
cos(α2) + LR (2 + cos(2α2))

´
sin(α1)

´
−2 sin(α1)

`
2LRsin(α2)

3 + R2 sin(2α2)
´

Σ̄1
2 = −4 (cos(α1) − cos(α2))

`
R (R + L (cos(α1) + cos(α2))) − L2 sin(α1) sin(α2)

´
Σ̄2

1 = Σ̄1
2

Σ̄2
2 = −2 (R (R + L cos(α1)) (3 + cos(2α1)) cos(α2))

−4R sin(α1)
`
R cos(α2) + cos(α1) (R + 2L cos(α2)) − Lsin(α1)

2´
sin(α2)

+4
``

2L2 + R2
´
cos(α1) + LR (2 + cos(2α1))

´
sin(α2)

2

Ds = Da
3/2

Table 7.11: Expression of the components of the generalized momentum, mixed connection,

and the evolution equation for the variable inertia snakeboard.

• F2 = 0 for α1 = α2,

• F3 = 0 for α1 = −α2,

• F1 is even about both lines α1 = α2 and α1 = −α2,

• F2 is even about α1 = α2 and odd about α1 = −α2,

• F3 is even about α1 = −α2 and odd about α1 = α2.
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Figure 7.32: The three gamma functions for the variable inertia snakeboard. The darker

shades indicate the positive regions which are separated from the lighter colored regions

by the solid curves.

There are additional curves in the base space for which the height functions are zero.

These curves are depicted by the solid curves in Fig. 7.31. Referring to Fig. 7.32, note the

following properties of the gamma functions for the variable inertia snakeboard.

• G2 = 0 for α1 = α2,

• G3 = 0 for α1 = −α2,

• G1 is even about both lines α1 = α2 and α1 = −α2,

• G2 is even about α1 = α2 and odd about α1 = −α2,

• G3 is even about α1 = −α2 and odd about α1 = α2.

There are additional curves in the base space for which the gamma functions are zero.

These curves are depicted by the solid curves in Fig. 7.32.

Purely Kinematic Gaits

For the variable inertia snakeboard, we can design purely kinematic gaits by setting the

right hand side of (7.25) equal to zero. However, in the case of the variable inertia snake-

board, the right hand side does not simplify to a single term as was the case of the original

snakeboard. In fact, for the variable inertia snakeboard, the right hand side of (7.25) has

the following quadratic expression

ρ̇ =
2mR

Ds

(
Σ1

1α̇
2
1 + 2Σ1

2α̇1α̇2 + Σ2
2α̇

2
2

)
, (7.26)
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Figure 7.33: A plot of the Δρ function and a plot of the vector fields that define the purely

kinematic gaits for the variable inertia snakeboard.

where Σi
j and Ds are analytic functions of the base variables given in Table 7.11. Thus,

to ensure that the right hand side of (7.26) is equal to zero we have to consider the term

Δρ(α1, α2) = Σ1
2Σ

1
2 − Σ1

1Σ
2
2,

where we have to ensure that Δρ ≥ 0; otherwise, the right hand side of (7.26) will not have

roots, that is, it will never be zero. A plot of a Δρ/max(Δρ) is shown in the first plot in

Fig. 7.33. The light colored regions indicate that Δρ(α1, α2) < 0, that is, we can never

compute any velocities for which ρ̇ = 0. In other words, we should avoid these regions of

the base space while designing purely kinematic gaits.

Note that while designing purely kinematic gaits for the original snakeboard, we never

knew that such regions existed. This was due to the simplicity of the momentum evolution

equation governing the motion of the original snakeboard. We only realized the existence

of these regions when we analyzed the more general variable inertia snakeboard.

Now, that we identified regions in the base space where the right hand side of (7.26)

is equal to zero and has a solution, we can go ahead and design purely kinematic gaits

for the variable inertia snakeboard. The right hand side of (7.26) has four unknowns,

(α1, α2, α̇1, α̇2). Thus, at each point in the base space, that is, fixing (α1, α2), we need

to solve the velocities (α̇1, α̇2) for which the right hand side is zero. Since, we have two

unknowns and one equation, we solve for the ratios, α̇1

α̇2

and α̇2

α̇1

for which the right hand

side is zero. This has the effect of ignoring the magnitudes of the base velocities, (α̇1, α̇2);
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the two ratios α̇1

α̇2

and α̇2

α̇1

define the slopes of vectors at each point in the base space which

we use to define vector fields over the entire base space. A plot of these directions in the

base space is seen in the second plot of Fig. 7.33. Note that the vector fields are defined

everywhere on the base space except for the regions where Δρ(α1, α2) < 0.

Thus, any part of the integral curves of the above vector fields is necessarily a purely

kinematic gait. For example, the following families of lines are the simplest integral curves

we could define for the above vector field,

l1 = {α2 = α1 + kπ, k ∈ Z}
l2 = {α2 = −α1 + 2kπ, k ∈ Z}

These lines are depicted as solid lines in the second plot of Fig. 7.33. We did not

use the above families of lines to design purely kinematic gaits since upon inspection

we recognized that such gaits would pass through singular shapes of the variable inertia

snakeboard, (α1, α2) = {(π
2 ,−π

2 ), (−π
2 , π

2 )}, (Fig. 7.31). Alternatively, we can solve for

other closed integral curves that do not pass through singular shape configurations. We

depict such an integral curve (gray color) which is has an overall elliptical shape shown in

the second plot of Fig. 7.33.

To design a purely kinematic gait that moves the variable inertia snakeboard along

say the ξ1 direction, we pick and closed integral curve that will enclose a non-zero volume

solely under the first height function. Similarly we can pick integral curves that will move

the robot in the other two fiber direction.

Rather than numerically solving for these integral curves and selecting the ones that

enclose the non-zero volume under the desired height function, which is a tedious process,

we chose to propose an approximate purely kinematic set of gaits. After inspecting the

vector fields around the center of the base space, we can clearly see that the integral curves

are almost straight lines as shown in Fig. 7.34. So we shall expect a change in the scaled

momentum value as we traverse these gaits since they are approximate solutions. Thus,

using the properties of the variable inertia snakeboard height functions, we propose the

purely kinematic gaits given in Table 7.12.

The first gait, PKφ1 envelopes a non-zero volume solely under the first height function,

nonetheless, we should expect a small magnitude of motion as this gait has a small area

in the base space. We simulated this gait which is depicted in the first row of Fig. 7.35.
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Figure 7.34: A plot of the three purely kinematic gaits, PKφ1,
PKφ2, and PKφ3, for the

variable inertia snakeboard.

PKφ1 : A − C − E − G − A

PKφ2 : A − B − F − E − C − B − F − G − A

PKφ3 : A − C − D − H − G − E − D − H − A

Table 7.12: Purely kinematic gaits for the variable inertia snakeboard.

In the first plot, we can see that the gait envelope non-zero volume under the first height

function, moreover, in the second plot of the the first row of Fig. 7.35, we can see, as

expected, that the scaled momentum is not exactly zero. The third plot in the first row of

Fig. 7.35 depict the time simulation of the fiber variables as the variable inertia snakeboard

performs the gait PKφ1, while the forth plot depicts two snapshots of the snakeboard at

the beginning (gray color) and end (black color) of this particular gait.

Similarly, we simulated the other two gaits, PKφ2 and PKφ3, given in the second

and third rows of Table 7.12 to envelope volume only under the second and third height

functions, respectively. For example consider the gait, PKφ2. This particular gait has
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Figure 7.35: Simulation of the three purely kinematic gaits, PKφ1,
PKφ2, and PKφ3, for the

variable inertia snakeboard. The first column depicts non-zero motion producing purely

kinematic gaits superimposed over the height functions, the second column depicts the

evolution of the scaled momentum and the geometric phase shift along the fiber directions,

the third column depicts the time evolution of the fiber variables, and the last column

depicts snapshots of the mechanical system at the beginning and end of each gait.

two similar rectangular loops of opposite orientation on each side of the line α1 = −α2.

Since both the first and the third height functions are even about this line, the positive

and negative volumes under the two loops will cancel out. Whereas, the second height

function is odd about that line, hence, the volumes of the two rectangular loops add up.

This proves that this gait will definitely have a non-zero geometric phase shift only along

ξ2. Indeed, we have simulated this particular gait and the results can be seen in the second

row of Fig. 7.35. The results for the third gait, PKφ3, can be seen in the third row of

Fig. 7.35, which slightly rotates the variable inertia snakeboard.
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Purely Dynamic Gaits

As for purely dynamic gaits for the variable inertia snakeboard, we analyze the systems

gamma functions depicted in Fig.7.32. So to construct a gait that yields a zero IGEO and

a non-zero IDY N along say the ξ1 direction, we need curve that encloses zero area in the

base space, stays in a same signed regions of the first gamma function, and be centered

about odd points of the other two gamma functions. The base space curve, PDφ1, given

in the first row of Table 7.13 satisfies all these requirements.

PDφ1 :
α1 = π

4 (1 − sin(t) − 2 sin2(t))

α2 = π
4 (1 + sin(t) − 2 sin2(t))

PDφ2 :
α1 = π

10 (2 sin(3t) − 5)

α2 = π
6 (sin(t) − 3)

PDφ3 :
α1 = π

4 (2 sin(t) + 1)

α2 = π
4 (2 sin(t) − 1)

Table 7.13: Purely dynamic gaits for the variable inertia snakeboard.

We have simulated the gait PDG1 and depicted the results in the first row of Fig. 7.36.

The gait is superimposed on top of the first gamma function where we can see that the

curve lies entirely in the positive region of the first gamma function. The second plot in

depicts the values of the dynamic phase shift, IDY N , along the three fiber directions, where

we can see that this particular gait yields a non-zero IDY N only along ξ1. The third plot

depicts the values of the fiber variables as the variable inertia snakeboard performs the

gait PDG1. We see that this particular gait moves the snakeboard along the x direction.

The final plot in Fig. 7.36 depicts two snapshots of the variable inertia snakeboard at the

beginning (gray color) and end (black color) of the gait PDG1.

Similarly, we proposed two other gaits, PDG2 and PDG3, given in the second and third

rows of Table 7.13 that are supposed to yield non-zero IDY N along the ξ2 and ξ3 directions,

respectively. We depicted these two gaits in the the second and third row of Fig. 7.36.

Note that the gait PDG2 translates the variable inertia snakeboard along the y direction

while the gait PDG3 rotates the snakeboard.

Kino-dynamic Gaits

For the variable inertia snakeboard, we can generate kino-dynamic gaits by using the

volume integration analysis to produce candidate gaits. For example, to generate a gait
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Figure 7.36: Simulation of the three purely dynamic gaits, PDφ1,
PDφ2, and PDφ3, for the

variable inertia snakeboard. The first column depicts non-zero motion producing purely

dynamic gaits superimposed over the gamma functions, the second column depicts the

evolution of the scaled momentum and the dynamic phase shift along the fiber directions,

the third column depicts the time evolution of the fiber variables, and the last column

depicts snapshots of the mechanical system at the beginning and end of each gait.

that rotates the variable inertia snakeboard in place, we start by designing a curve in the

base space that envelopes a non-zero volume only under the third height function of the

variable inertia snakeboard. A curve with the following properties is a possible candidate:

• Figure-eight type curve.

• Each loop of the figure-eight curve lies on the opposite side of the line α1 = α2.

• The orientation of the loops should be in opposite directions.

The curve, KDφ3, given in the third row of Table 7.14 satisfies all the above require-

ments. A plot of the curve superimposed over the height functions of the variable inertia
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Figure 7.37: Simulation of the three kino-dynamic gaits, KDφ1,
KDφ2, and KDφ3, for the

variable inertia snakeboard. The first and last columns depict non-zero motion producing

kino-dynamic gaits superimposed over the height and gamma functions, respectively, the

middle columns depict the evolution of the scaled momentum and the geometric and

dynamic phase shifts along the fiber directions.

snakeboard is shown in the first plot of the third row of Fig. 7.37. We can clearly see that

this gait is symmetric about the line α2 = α1, where it has two loops of opposite direction

at either side of the line. Moreover, we know that only the third height function is odd

about this line. Thus, we should expect a non-zero IGEO only along the ξ3 direction, which

we can clearly see in the second plot of the third row of Fig. 7.37. Moreover, the last plot

of the first figure depicts the gait superimposed on top of the first gamma function. We

can see that this gait should yield a non-zero IDY N only under along the ξ3 direction as

shown in the third plot of the third row of Fig. 7.37. Finally, we plot the global motion

of the variable inertia snakeboard in the third column of Fig. 7.38 where we can see that

the gait KDφ3 actually rotates the variable inertia snakeboard.
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Figure 7.38: The motion of the variable inertia snakeboard as it performs the three kino-

dynamic gaits, KDφ1,
KDφ2, and KDφ3.

KDφ1 :
α1 = − 1√

2

(
π
2 sin(t) + π

4 cos(t)
)

α2 = 1√
2

(−π
2 sin(t) + π

4 cos(t)
)

KDφ2 :
α1 = 1√

2

(
π
2 sin(2t) + π

4 sin(t)
)

α2 = − 1√
2

(
π
2 sin(2t) − π

4 sin(t)
)

KDφ3 :
α1 = 1√

2

(
π
3 sin(2t) + π

3 sin(t)
)

α2 = 1√
2

(−π
3 sin(2t) + π

3 sin(t)
)

Table 7.14: Kino-dynamic gaits for the variable inertia snakeboard.

Similarly, we can design two other curves that envelope volumes under the first and

second height functions to move the variable inertia snakeboard in the x and y directions.

Curves KDφ1 and KDφ2 given in the first and second rows of Table 7.14 are such possible

candidates. The first and last plots of the first and second rows of Fig. 7.37 depict the

two curves superimposed over the height and gamma functions of the variable inertia

snakeboard. Moreover, we can see that for the gait KDφ1, both IGEO and IDY N are non-

zero along the ξ1 direction at the end of each cycle and they have the same sign as shown

in the second and third plot of the second row of figure Fig. 7.37 while both IGEO and
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IDY N are non-zero along the ξ2 direction at the end of each cycle for the gait KDφ2.

We have simulated both gaits curves and as expected, KDφ1 generates motion along

the x direction and the gait KDφ2 generates motion along y direction as shown in the first

and second columns of Fig. 7.38, respectively.
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Chapter 8

Experiments

In this section we implement our gait generation techniques on a variable inertia snake-

board system which was specifically constructed the applicability of our proposed gaits.

We will propose several gaits to move this robot along specified direction and compare our

simulated results the actual motion executed by the real robot.

We designed and constructed a variable inertia snakeboard as shown in Fig. 8.1. For

this specific robot, we placed the wheel axes on the distal links such that the distant

between the wheel axes and the revolute joints is identical to the length of the middle link.

Moreover, we rigidly attached two sprockets to the two ends of the middle link. We also

5.75’’

5.75’’

5.75’’

Motor

Motor
Sprockets

Distal

Link

Distal

Link

Middle

Link
Belt

Bearing

Bearing

Belt

Wheels

Wheels

Figure 8.1: The variable inertia snakeboard
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Link
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Bearing
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Wheels Wheels

Figure 8.2: The variable inertia snakeboard

rigidly attached two motors to each of the distal links. These motors drive the sprockets

on the middle link via timing belts. Thus, using the motors, this simple planar robot

can only actuate independently the inter-link angles, that is, the robot’s base variable. A

photo of the assembled variable inertia snakeboard is depicted in Fig. 8.2.

Even though, we wanted to generate a gait of each of the three types of gaits to locomote

the variable inertia snakeboard, we quickly realized the purely kinematic gaits produced

relatively smaller magnitudes. We believe that the reason behind this is the fact that

the purely dynamic gaits we generated for the variable inertia snakeboard in Section 7.4.2

produced small magnitudes of motion due to the small enclosed volume under the height

functions. We also believe that the mechanical imperfections of the system also played a

counter productive role and reduced the expected magnitudes of motion even further.

PDφ :
α1 = 3π

4 sin(t)

α2 = sin(t)

PDφ :
α1 = π

5 sin(3t) − π
2

α2 = π
6 sin(t) − π

2

KDφ :
α1 = 1√

2

(
π
3 sin(2t) + π

3 sin(t)
)

α2 = 1√
2

(
π
3 sin(2t) − π

3 sin(t)
)

Table 8.1: Implemented gaits for the variable inertia snakeboard.
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Figure 8.3: The time simulation of the purely dynamic gait, PDφ, that moves the variable

inertia snakeboard along the x direction.

Thus, we generate three gaits for the variable inertia snake two of which belong to the

purely dynamic gaits family and another that belongs to the kino-dynamic gaits family.

Moreover, we designed the gaits such that each of them will move the variable inertia

snakeboard along each of the fiber variables, (x, y, θ). These gaits are given in Table 8.1.

The first gait we implemented is a purely dynamic gait given in the first row of Table 8.1.

This particular gait moves the variable inertia snakeboard along the x direction. We
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x
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θ

θ

Figure 8.4: The actual motion of the variable inertia snakeboard while performing the

purely dynamic gait, PDφ. The frames are one second apart.

simulated this gait numerically and plotted snapshots of the variable inertia snakeboard

as it performed this gait in Fig. 8.3. One can clearly see that this mixed system is moving

along the negative x direction.

We implemented this gait on the real variable inertia snakeboard and, as expected, the
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Figure 8.5: The time simulation of the purely dynamic gait, PDφ, that moves the variable

inertia snakeboard along the y direction.

system started locomoting along the negative x direction. In Fig. 8.4 we depict snapshots

which are one second apart of the variable inertia snakeboard performing the purely dy-

namic gait, PDφ. It is clear that the variable inertia snakeboard is moving towards the left

side of the individual frames. Moreover, the intermediate motions of the variable inertia

snakeboard closely match the motions of the simulated system depicted in Fig. 8.3.

The second gait we implemented was another purely dynamic gait, PDφ, given in the
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x

x

y

y

θ

θ

Figure 8.6: The actual motion of the variable inertia snakeboard while performing the

purely dynamic gait, PDφ. The frames are one second apart.

second row of Table 8.1. This is a polygonal gait whose vertices are depicted in Fig. 7.34.

Utilizing our gait generation techniques, we proposed this particular gait to move the

variable inertia snakeboard along the y direction. This result was verified by the numerical

time simulation shown in Fig. 8.5. We implemented this gait on the actual variable inertia
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Figure 8.7: The time simulation of the kino-dynamic gait, KDφ, that rotates the variable

inertia snakeboard along the θ direction.

snakeboard and we can clearly see that the system’s motion closely resembles the numeric

time simulation as shown in Fig. 8.6. In both cases the variable inertia snakeboard moves

in the negative y direction.

The last gait we implement is of the kin-dynamic type and is depicted in the last row

of Table 8.1. This is the same gait that we proposed in the previous chapter to rotate

the variable inertia snakeboard. In Fig. 8.7, we depict snapshots of the numeric time
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Figure 8.8: The actual motion of the variable inertia snakeboard while performing the

kino-dynamic gait, KDφ. The frames are one second apart.

simulation of this particular gait, KDφ. We can see that this gait rotates the variable

inertia snakeboard along the positive θ direction. We implemented this kino-dynamic gait

on the actual variable inertia snakeboard and depicted one second apart frames of the

actual motion of the system in Fig. 8.8. The snakeboard move along the positive θ fiber
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direction. This rotation is clearly seen by comparing the first and last frames in Fig. 8.8.

We would like to shed some more light on the above experiments. Even though the gait

design process was straight forward, getting the actual system to perform the proposed

gait was more challenging. The cause of the miss-match between the simulation and

experimental results is due to the inaccurate model we used for the simulation. In fact,

in our models, we assumed that the middle link of the variable inertia snakeboard is

massless which is not the case for the real robot. Intuitively, due to this additional mass

in the system, we expected the magnitudes of motion to be smaller than the simulated

results. Indeed, this was the case and to counteract the effect of the additional mass of

the middle link, we added concentrated masses on the extremities of the outer link, thus,

effectively increasing the mass and inertia of the outer links with are directly related to

the magnitudes of motion.

Caster

Caster

Torsion bar

Vertical plane

Footpads

Footpads

Torsion bar

Figure 8.9: The Essboard. http://www.essboard.com

Finally, it is worth noting that we found a special skateboard whose free body diagram

is almost identical to that of the variable inertia snakeboard. This toy is referred to as

the Wave-board or the Essboard which is shown in Fig. 8.9. This particular skateboard

has two casters are mounted on two footpads which are connected by a torsion bar. The

axes around which the casters rotate are not vertical, they are slopped in such a way that

the casters have an equilibrium position. If the footpads are parallel to the ground, the

caster axes belong to a vertical plane containing the torsion bar. As the rider pitches the

footpads, the casters rotate about their respective axes which are no longer in the vertical

plane.
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Figure 8.10: A time simulation of a gait that resembles gaits used by riders of the Essboard.

A top view of the Essboard will have the same schematic as that of the variable inertia

snakeboard shown in Fig. 7.30. In the case of the Essboard, pitching the footpads causes

the casters contact points to follow an arc which can be represented by the base angles of

the variable inertia snakeboard.

Watching videos of riders using the Essboard to travel in a straight line, it is clear that

the casters are in phase and that they are always almost parallel. We implemented such

a purely dynamic gait on the our model and indeed we can clearly see that the variable
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inertia snakeboard locomotes along the x direction as shown in Fig. 8.10. We did not

implement this gait on the actual variable inertia snakeboard since such a gait will cause

interference between the motors and the middle link.

Another interesting fact about riding the Essboard is that the riders always yaw their

bodies with respect to the middle link of the board. This means that the riders are

“transferring” momentum from their bodies to the system in a similar way that the rotor

of the original snakeboard “transfers” momentum to the snakeboard. As a future work

problem, we would like to investigate how adding a rotor to the variable inertia snakeboard

will affect our gait generation techniques.
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Chapter 9

Future Work

In this Chapter we present several of the future work problems that we think are worthy

of pursuing. Next, we present several problems in which we will try and define the future

work directions.

9.1 Higher-dimensional Base Spaces

Throughout this thesis document we have generated gaits for numerous examples. Even

though, as per Assumption 3, most of these examples had at most a two-dimensional base

space, we claim that our geometric gait synthesis tool is still valid in higher dimensions.

Recall that the reconstruction equation for the generalized mixed mechanical system

type is given in (4.12), where ξ = −A(r)ṙ + Γ(r)pT . A higher-dimensional base space

does means that the components of the mixed connection, A(r), as well as the gamma

functions, Γ(r), are still functions mapping the base space to the reals. In this section we

analyzed how higher dimensional base spaces affect the kinematic part of the reconstruc-

tion equation. Recall that, integrating each row the kinematic part of the reconstruction

equation, is equivalent to evaluating a line integral of an m-dimensional one-form along a

base space curve, that is,

∫ τ

t

Ai(r)ṙdt =

∮
φ

Ai(r)dri.

Recall that we require our gaits to be cyclic, that is, φ(0) = φ(τ). Thus, we can use

Stokes’ theorem to convert the above line integral to a volume integral given by
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∫ ∫
Φ

Ā
ij

(r)dridrj ,

where the integrand is an m-dimensional two-form such that i < j, i 
= j, and i, j =

1, · · · ,m. Here, Φ is an arbitrary smooth two-surface embedded in the base space whose

boundary is φ. Finally, since Ai(r)dri is an m-dimensional one-form, we know that the

two-form, Ā
ij

(r)dridrj , has m
2 (m − 1) components.

For example, in the two-dimensional base space case, we had one height function for

each of the fiber direction. For three-dimensional base space, we will have three height

functions for each of the fiber direction. Thus, if we are dealing with systems that have

l-dimensional fiber spaces, we need and analyze l(m−1)m
2 height functions simultaneously,

which is a tedious process.

α1

α2

α3

θ

(x, y)

q0q1

q2

q3

Figure 9.1: Floating four-link snake.

Consider a four-link floating snake as shown in Fig. 9.1. This example is an extension of

the three link floating snake we studied in the previous chapter. We compute the reduced

Lagrangian in a similar way from which we can solve for the local form of the mechanical

connection. Note that since we attached the body frame to the system’s center of mass, we

know that the components of the first two rows of the mechanical connection are zeroes.

Moreover, assuming zero initial momentum we can compute the change in orientation

using the following equation
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Figure 9.2: The three height functions along the θ direction for the four link snake robot.

Δθ = 8

(∫ ∫
Φ

F 12
3

D2
dα1dα2 +

∫ ∫
Φ

F 13
3

D2
dα1dα3 +

∫ ∫
Φ

F 23
3

D2
dα2dα3

)
,

where F ij
3 are the three eight functions associated with the θ fiber direction. These height

functions have the following expressions

F
12
3 = 5 sin(α1) − 3 sin(α2) + sin(α1 − α3) + sin(α1 + α3) − sin(α2 + α3),

F
13
3 = 2 sin(α1) + sin(α1 − α2) + sin(α1 − α3) − 2 sin(α3) − sin(α2 + α3),

F
23
3 = − (cos(α2) sin(α1)) + (3 + cos(α1)) sin(α2) + (5 + 2 cos(α1)) sin(α3) , and

D = 22 + 5 cos(α1) + 3 cos(α1 − α2) + 9 cos(α2)

+ cos(α1 − α2 − α3) + 5 cos(α3) + 3 cos(α2 + α3).

A plot of all three height function is depicted in Fig. 9.2 where for each height function,

we plot the two-surface zero level set, F ij
3 = 0, that partitions the entire base space into

positive and negative regions.

Having identified the positive and negative regions of the base space, we can go ahead

and generate gaits using the tools we presented in Chapter 6; however, we have to simul-

taneously analyze three height functions for each fiber direction. The simplest gait we can

construct is a non-intersection closed curve that lies entirely within a positive region of all

three height functions.

The curve φ1 given in the first row of Table 9.1 is such a curve which belong to the

positive regions of all three height functions as shown in the first plot of Fig. 9.3. Recall,
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Figure 9.3: A non-intersecting gait for the four link snake robot.

φ1 :

α1 = π
2 (sin(t) + 2)

α2 = π
2 (cos(t) + 2)

α3 = π
12 cos(t)

φ2 :

α1 = 3π
2 sin(t) − π

9 sin(2t)

α2 = 3π
2 sin(t) + π

9 sin(2t)

α3 = π

Table 9.1: Purely kinematic gaits for the floating four link snake robot.

that each height function maps the entire three-dimensional base space to the reals. Thus,

if we ensure that the entire curve in lies within a positive region of the height function,

then there should exist a smooth two-surface that lies entirely within the positive region of

the height function such that the designed curve is the boundary of that surface. Hence,

we are integrating a two-from over an entirely positive surface, which must yield a non-

zero positive value. Moreover, if this curve is in the same signed region of the three height

function, then the three surface integrals must yield non-zero values with the same sign.

Thus, we conclude that such a gait must yield a non-zero rotation of the entire robot.

We have simulated the gait φ1 which belongs to the positive regions of all three height

function and indeed, as expected, it rotated the four link snake after each cycle as shown

in the second plot of Fig. 9.3.

Similarly, we designed another self-intersecting gait, φ2, given in the second row of

Table 9.1. However, for this particular gait, we ensured that the intersection occurs at the

zero level set for all three height functions. Moreover, we ensured that the curve belongs

to the positive regions of all three height functions for the first half cycle and it belongs
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Figure 9.4: A self-intersecting gait for the four link snake robot.

to the negative regions of the three height functions for the second half cycle as shown in

the first plot of Fig. 9.4. Thus, using the second rule in Section 6.2.1 we know that such

a gait should yield non-zero values along all three height functions.

The intuition behind this reasoning is that each loop of the self-intersecting curve

belongs to the same signed regions of all height functions. Thus, there should exist a

smooth two-surface that lies entirely within those regions whose boundary is the curve

itself such that the integral of the components of the two-form, that is the height functions,

is non-zero. Moreover, since the two loops of the gait φ2 have opposite orientation and

belong to regions of opposite signs we know for fact that the integral along the entire cycle

is non-zero. We actually simulated the gait φ2 and indeed, as expected, it rotates the

entire four link snake after each cycle as shown in the second plot of Fig. 9.4.

Thus far, we analyzed the geometric phase shift for systems with higher-dimensional

base spaces. As for the dynamic phase shift, the second term in the right hand side of

the reconstruction equation, our analysis which we presented in Section 6.2.2 is still valid.

The only difference is the fact that the Γ functions are m-dimensional. Thus, we have to

solve for the m − 1 dimensional surfaces that separate the positive and negative regions

of the Γ functions. The second part of the dynamic phase shift is the scaled momentum

variable which we analyze in the next section.

9.2 Higher-dimensional Generalized Momentum

Another main assumption, Assumption 1, for this dissertation was to set, for mixed sys-

tems, the number of constraints to be at most one less than the dimension of the fiber
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space, that is, l−k = 1 where l is dimension of the fiber space and k is the number of non-

holonomic constraints acting on the system. This assumption lead us to verify that the

generalized momentum evolution equation is first order and it has an integrating factor.

Utilizing this integration factor we were able to introduce the scaled momentum variable

which simplified the expression of the dynamic phase shift and eventually allowed us to

generate purely dynamic gaits.

Thus, we would like to analyze systems that have at least two generalized momentum

variables, that is, l − k > 1. For such systems, the evolution of the momentum variables

will be governed by a set of first order differential equations. We would like to investigate

the existence of integrating factors for such a system of differential equation and eventually

define scaled momentum variables whose time evolution is of the form

ρ̇i = ṙT Σi(r)ṙ.

If such momentum governing equations exist, then we can use our intuitive dynamic

phase shift evaluation to generate purely dynamic gaits as we explained in Section 6.2.2.

9.3 Body Versus Global Representation

At the core of our gait generation analysis is the integration of the reconstruction equation

expressed in body coordinates. Thus, we are integrating a body representation, ξ, of the

fiber velocity, ġ. The two velocities are related to each other by the lifted action map, that

is, ξ = TgLg−1 ġ.

For commutative fiber spaces, the lifted action, TgLg−1 , is the identity map, thus only

for this case, the position change in body representation, Δζ, and global coordinates,

Δg, are identical. Recall that ζ is the integral of ξ, that is, Δζ =
∫

ζ̇dt =
∫

ξdt. For

non-commutative fiber spaces, Δζ 
= Δg, in general.

For example, for a system whose fiber space is SE(2) designing a gait that ensures that

Δζ1 
= 0 does not necessarily mean that Δx 
= 0. This is due to the non-commutativity

of the special Euclidean group, SE(2). In fact, for SE(2) the relations between the global

and body representations are given by
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Δx =

∮ (
cos(θ)dζ1 − sin(θ)dζ2

)
,

Δy =

∮ (
sin(θ)dζ1 + cos(θ)dζ2

)
, and

Δθ = Δζ3.

Only the rotation variables θ and ζ3 are identical. This explains why for most of the

examples we presented in Chapter 7, even though the second height function was zero over

the entire base space, that is, I2
GEO must be identically zero, we were still able to design

purely kinematic gaits, (Δζ2 = I2
GEO = 0) where Δy 
= 0. The gait PKφ2 for the original

snakeboard depicted in the second plot of Fig. 7.26 is an example of such a gait.

Another approach we used to overcome this discrepancy between body and global

representation is by designing gaits that have at least Δζ1 
= 0 or Δζ2 
= 0. Then,

by varying the starting position along these gaits, we were able to identify two starting

positions where each of them yields a pure translation along either along the x or y

directions. The two gaits φ1 and φ2 in Fig. 7.15 constitute such an approach. Note that

by simply changing the initial position of the gait we were able to translate the kinematic

snake along the x and y directions.

Another possible approach is to utilize different fiber space representation as was de-

scribed by Tsakiris et al. in [56]. We would like to investigate how using different Lie

groups to represent the fiber space, affect the expressions of the lifted action. Another

approach we would like to investigate is by performing a local analysis of the gaits as we

shall explain in the next section.

9.4 Localizing Volume Integration Analysis

Throughout this thesis, we generated gaits which ensure that the mechanical system moves

along a specified direction after the proposed input gait is completed. Thus, we only know

the robot location after the gait completed, however, we can not say anything about the

set of locations that the robot traverses as it was performing the gait. For instance, for a

designed gait that moves the robot along the x direction, the robot might have also moved

along the y direction and counteracted this motion before the gait is completed.

Essentially, our approach is doing a “macro” Lie bracket motion. Recall that Lie bracket

motions, as were described in the prior literature in [5, 13], are high frequency motions
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that inefficiently locomote the mechanical system along unactuated fiber direction. Thus,

one can argue that shrinking our gaits and performing them differentially, we could use

our gait generation to move the robot along the specified directions. Nonetheless, there

will still be infinitesimal motions along other directions.

Another approach, we would like to investigate is the local analysis of the height

functions. We believe that the curvature of the height functions as the system flows along

certain curves in the base space is related to how the system will move. So if we localize

the height functions analysis, we could possible design gaits that minimize motions along

the unspecified directions.

9.5 Optimal Magnitude Position Change

In this section we formulate a variational problem that maximizes the fiber motion mag-

nitude for all gaits with a given length. For a detailed description of calculus of variations

ideas used in this section, the reader is referred to [15].

Even though the variational problem for generating optimal gaits is well-defined in

higher dimensions, we will formulate the problem in two dimensions for the sake of clarity

and simplicity. Hence, the each row of A(r)dr is a two-dimensional one-form, that is,

(A(r)dr)
i
= f i

1(r
1, r2)dr1 +f i

2(r
1, r2)dr2 where r = (r1, r2) is the base variable. Then, the

functional which we are maximizing is a one-form given by

J i(γ) =

∮
γ

f i
1(r

1, r2)dr1 + f i
2(r

1, r2)dr2. (9.1)

For this problem it is convenient to parameterize the gait by its arc length, s. This

yields a well-defined functional that we are trying to maximize, that is,

max J i(γ(s)) =

∫ s1

s0

(
f i
1(r

1, r2)
∂r1

∂s
+ f i

2(r
1, r2)

∂r2

∂s

)
ds. (9.2)

Next we enforce an essential fixed length requirement. This constraint on the length

of the curves is represented by the following integral

L =

∫ s1

s0

√√√√((∂r1

∂s

)2

+

(
∂r2

∂s

)2
)

ds (9.3)

If such a bound is not enforced we can get unbounded volume for a gait with unbounded

length. The above two integrals in (9.2) and (9.3) define a constrained calculus of variations
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problem. We would like to solve this variational problem by first computing its Euler-

Lagrange equations and then finding a maximizer solution which is an optimal gait.

Another flavor of this variational problem is to solve for a fixed magnitude fiber position

change rather than an optimal one. This constraint will not affect the structure of the

above variational problem, however, it will impose additional constraints. We would like

to formulate and analyze such a problem which might be helpful in coupling the motion

and path planning problems.

9.6 Purely Mechanical Systems with Non-zero Initial

Momentum

One of the mechanical types of mechanical systems we analyzed in this thesis, was purely

mechanical systems for which we assumed that momentum is zero for all time. This allowed

us to relate the motion of this system solely to the geometric phase shift. Hence, we used

the geometric gait analysis to design gaits for such systems.

Representing the reconstruction equation in body coordinates was essential for our

analysis. However, this representation actually complicated the expression of the momen-

tum evolution equations that prescribe the generalized momentum variables. To illustrate

this point, we reconsider the floating three link snake robot presented in Section 7.1.1.

Since this system does not have any non-holonomic constraints acting on it and since

the fiber space is three dimensional, we know that it will have three generalized momentum

variables, that is, p =
(

p1 p2 p3

)
. Computing the momentum evolution equations

for this system in body representation we get

ṗ
b
1

=
(−5 − 3 cos(α1) − cos(α1 − α2))p2α̇1 + (−5 − 3 cos(α2) − cos(α1 − α2))p2α̇2 − 3

ML2
p1p2

19 + 6 cos(α1) + 2 cos(α1 − α2) + 6 cos(α2)
= τ

e
x

ṗ
b
2

= − (−5 − 3 cos(α1) − cos(α1 − α2))p2α̇1 + (−5 − 3 cos(α2) − cos(α1 − α2))p2α̇2 − 3

ML2
p1p2

19 + 6 cos(α1) + 2 cos(α1 − α2) + 6 cos(α2)
= τ

e
y

ṗ
b
3

= 0

where τe
x and τe

y are the generalized forces τx and τy, mapped to the group identity, e.

Recall that τθ = 0 since we are dealing with an underactuated system. However, if we

expressed the momentum variables in spacial coordinates, the above expressions will have

the following simpler froms
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ṗ
s
1

=
∂L

∂ẋ
= Mẋ = τx

ṗ
s
2

=
∂L

∂ẏ
= Mẏ = τy

ṗ
s
3

=
∂L

∂θ̇
=

L2M

3
((5 + 3 cos(α1) + cos(α1 − α2)) α̇1 + (5 + cos(α1 − α2) + 3 cos(α2)) α̇2)

+
L2M

3
(19 + 6 cos(α1) + 2 cos(α1 − α2) + 6 cos(α2)) θ̇ = 0

Thus, we propose to use the body representation to study how the three link snake

robot rotates due to the body motion. Then if there were external forces acting on the

system, we should use the spatial representation to compute how the position of the center

of mass evolves with time. We believe that the above two motions are decoupled and the

total motion of the system is a superposition of the two motions.

9.7 Time Scalability of Families of Gaits

Another interesting problem we would like to pursue, is the time scalability of the types of

gaits we are proposing in this dissertation. We believe that the purely kinematic gaits are

time scalable, that is, if the gaits is performed twice as fast, the magnitude of motion will

be doubled in magnitude. The main reasoning behind this is due to the fact that purely

kinematic gaits are related to the geometric phase shift which is in turn related to a line

integral. Thus, if we do the gait twice as fast, we are effectively doing the same gait but

tracing it twice. Thus, we expect the gait to yield exactly twice the volume under the

height function which means that the magnitude of motion is doubled.

9.8 Path Planning Using Our Motion Planning Tools

Finally, we would like to use our gait analysis to design primitives of motion, that is, we can

design families of gaits, each of which will move the robot using along a specified direction.

Then by concatenating these primitives, we would like to drive the robotic system from a

start to a goal configuration.

Some interesting sub-problems would be to choose which gait families to use in order

to minimize a specified cost function. For example, we would like to partition our gait

families by analyzing the volume swept by the robot. Thus, if we are in a tight location,
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we should use gaits that correspond to the smallest swept volume possible.

Moreover, we would like to integrate obstacles into the base space, and thus are limited

to designing gaits solely in the free base space. This will ensure that the robot will not hit

the obstacles as it is performing a certain gait.
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Chapter 10

Conclusion

The main goal of this dissertation was to present an intuitive gait generation technique

that is applicable to several types of mechanical systems. We achieved this goal first by

utilizing results from the mechanics of locomotion. In fact, we re-derived most of these

results in what we believe to be more intuitive approaches which we later use to generate

gaits. Secondly, we were able to relate position change, expressed in body coordinates,

to two decoupled quantities: the geometric and dynamic phase shifts. Analyzing and

intuitively evaluating both phase shifts constitute this dissertation’s main contributions.

We were able to evaluate the geometric phase shift using Stokes’ theorem by computing

the volume integrals of two-forms on two-dimensional surfaces embedded in the base space.

In the case of two-dimensional base spaces, we verified that the value of geometric phase

shift along a specified fiber direction is equal to volume under the graph of a well-defined

height function, the only component of the two-form, and bounded by a proposed gait, a

closed base space curve. Analyzing these height functions, we prescribed rules to propose

gaits for which the geometric phase shift is non-zero.

On the other hand, for computing the dynamic phase shift, we introduced a new scaled

momentum variable. This new momentum variable not only simplified the expression of

the dynamic phase shift where it was simply transformed into the product of another set

of well-defined gamma function and the scaled momentum itself, but it also simplified the

momentum evolution equation in such a way that we can intuitively analyze the sign-

definiteness of this new scaled momentum variable. Then, by analyzing these gamma

functions and the sign of the scaled momentum variable, we were able to propose gaits

which ensure that the dynamic phase shift is non-zero along a specified fiber direction.

Both evaluation tools of the geometric and dynamic phase shifts were simple enough
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that we actually utilize them to generate gaits. Moreover, the rules we devised to generate

gaits are non-restrictive and allowed us to eliminate the requirement of sinusoidal inputs

that was imposed in the prior work. The introduction of the height and gamma functions

as well as the scaled momentum variable constitute other contributions of this dissertation.

A feature of our gait generation technique, beside its intuitiveness, is the generality

of our approach. In fact, we unified the gait generation techniques for four types of

mechanical systems: purely mechanical, principally kinematic, purely dynamic, and mixed

systems. These types of systems span a spectrum where on one end are systems whose

motion is governed solely by the laws of momentum conservation while the other end

represents systems whose motion is governed solely by the existence of non-holonomic

velocity constraints. This generality allowed us to generate gait for six robotic example

systems that span the entire spectrum. Moreover, two of these example systems are

complex enough that prior gait generation techniques were inadequate and the systems

are unconventional enough that simple educated guesses of gaits was not possible.

Finally, utilizing our gait evaluation techniques we defined a partition on the space

of allowable gaits. Specifically, we proposed three families of gaits: purely kinematic and

purely dynamic gaits which respectively ensure that either the geometric phase shift or the

dynamic phase shift is non-zero while the third type of gaits, kino-dynamic gaits, ensure

that both the geometric and dynamic phase shifts are simultaneously non-zero. This

partition allowed us to generate: purely kinematic gaits for both the purely mechanical

and principally kinematic systems, purely dynamic gaits for purely dynamic systems, and

the three typed of gaits for mixed systems.

As a conclusionary remark, we would like to highlight what we believe is the true

value of this dissertation. Even though this thesis is closely related to the prior works of

specifically Ostrowski et al. and Bullo et al. whose approaches to the motion planning

problem are seemingly quite different, our work presents both approaches as being rather

complementary components of one unifying theory. There still a long way ahead of us to

develop this generalized motion planning theory for underactuated mechanical systems,

however, the work presented here shows promising preliminary results geared towards not

only assisting in devolving a unifying theory for the motion planning problem but also in

forming a bigger picture that helps understanding this quite challenging research topic.
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