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Abstract

We present a nonparametric mode-seeking algorithm,

called medoidshift, based on approximating the local gra-

dient using a weighted estimate of medoids. Like meanshift,

medoidshift clustering automatically computes the number

of clusters and the data does not have to be linearly separa-

ble. Unlike meanshift, the proposed algorithm does not re-

quire the definition of a mean. This property allows medoid-

shift to find modes even when only a distance measure be-

tween samples is defined. In this sense, the relationship

between the medoidshift algorithm and the meanshift algo-

rithm is similar to the relationship between the k-medoids

and the k-means algorithms. We show that medoidshifts can

also be used for incremental clustering of growing datasets

by recycling previous computations. We present experimen-

tal results using medoidshift for image segmentation, incre-

mental clustering for shot segmentation and clustering on

nonlinearly separable data.

1. Introduction

Data is being produced at ever increasing rates, record-

ing everything from weather patterns to internet traffic. One

approach to discovering the inherent structure of a collected

data set is clustering - the task of partitioning a data set

D of N points into different coherent clusters C1, · · ·CJ ,

such that Ci ∩ Cj = ∅, and
⋃J

j=1 Cj = D. Clustering has

been widely applied in fields like computer vision, speech

processing, psychology, data mining and bioinformatics. In

applications where the volume of data continually changes

or grows, it is important that clustering algorithms allow

for incremental clustering - the task of exactly updating a

clustering at the incidence of new data samples and the ex-

itance of some existing data samples. In computer vision,

analysis of data that is updated incrementally finds natural

application in online video processing. For instance, instead

of segmenting videos frame by frame or in batch mode, ef-

ficient and temporally consistent segmentation can be ob-

tained through incremental clustering.

In this paper, we propose a nonparametric clustering

approach called the medoidshift algorithm. It is a mode-

seeking procedure that computes shifts towards areas of

greater data density using local weighted medoids1. The

use of medoids to discover structure in data is natural since,

locally, the medoid can be considered a good representative

of its neighborhood. Unlike means, medoids do not need

an explicit feature space and require only a valid distance

measure to be defined. Medoids have previously been used

in clustering applications in two papers by Kaufman and

Rousseeuw, who first proposed PAM (Partitioning Around

Medoids) in [11] and then extended this algorithm by using

sampling to handle large datasets with CLARA (Cluster-

ing Large Applications) also described in [11]. CLARA

was further improved by Ng and Han in [15]. Like k-

means, these algorithms require the number of clusters to

be pre-defined and are not invariant to changes in initializa-

tions. The medoidshift algorithm automatically computes

the number of clusters and does not need initialization.

The operating concept of the proposed algorithm is sim-

ilar to the meanshift algorithm which was first proposed

by Fukunaga and Hostetler in [8], and further studied by

Cheng in [4], Carreira-Perpiñán in [2] and Comaniciu and

Meer in [5]. Like meanshift, the medoidshift algorithm

computes the number of clusters during execution. How-

ever, the medoidshift algorithm has three principal advan-

tages over the meanshift algorithm. First, the computations

performed during an earlier clustering do not have to be dis-

carded at the incidence of new samples or the exitance of

some existing samples. This allows medoidshift to be used

for incremental clustering, for applications like online key-

frame selection in video. Second, the proposed algorithm

does not require the definition of a mean and can operate

directly on a distance matrix, irrespective of the original

space in which the samples are distributed. This property

allows medoidshift to find modes even when only a distance

measure (such as the Earth Mover’s Distance or the Propor-

tional Transportation Distance) between samples is defined.

In this sense, the relationship between the medoidshift algo-

rithm and meanshift algorithm is similar to the k-medoids

algorithm ([11]) and the k-means algorithm ([13]). Finally,

the need for heuristic terminating conditions in meanshift

1The medoid is defined as the the most centrally located point in a set

of samples, i.e. it has the minimum distance from all other samples
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Figure 1. Contour plot of Equation 2 for the current point. Mean-

shift selects the location that minimizes this function exactly while

medoidshift selects the data point that best minimizes it.

is eliminated. One drawback of medoidshift is its higher

computational complexity, O(N3). To compensate for this

higher cost, we cast the core of the algorithm as a matrix

multiplication, thereby decreasing complexity to O(N2.38)
([7]).

An earlier work by Koontz et al. in [12] describes a

graph-theoretic approach to clustering that also operates on

a similar principle to the medoidshift algorithm. However,

compared to the approach proposed in this paper, the algo-

rithm in [12] is sensitive to the order in which points are

considered and additional checks are needed to ensure con-

vergence. Spectral clustering methods, such as normalized

cuts ([16]), require the number of clusters to be prespecified

and another clustering method (e.g. k-means) is needed to

finally cluster the data in the spectral domain. Both these

issues introduce arbitrariness in design and can introduce

problems in practice. Traditional incremental algorithms

such as [1] and [14] are not invariant to the order of in-

put patterns. More recently several approaches have been

proposed for incremental clustering that are more robust to

changes in the order of input including Suffix Tree Cluster-

ing in [22], DC-Tree Clustering in [20], incremental hierar-

chical clustering in [3] and cluster similarity histograms in

[9]. For a general overview of clustering methods, several

good surveys exist including [10] by Jain et al. and more

recently [21] by Xu and Wunsch.

2. Medoidshift Clustering

The medoidshift algorithm may be best explained in

terms of the mode-seeking behavior of the meanshift al-

gorithm. The N samples are denoted by the set {xi} ∈
IRd, i = 1, · · ·N . Given such a set of samples, kernel den-

sity estimation can be used to evaluate the underlying dis-

tribution function at a point by,

f(x) = c0

∑

i

Φ
(∥

∥

∥

x− xi

h

∥

∥

∥

2)

, (1)

where Φ(·) is a kernel function ([19]) using the profile no-

tation, and c0 is a positive scalar dependent on the num-

ber of samples and the bandwidth, h. In addition, Φ(x)
is the shadow of the kernel ϕ(x) ([4, 5]), i.e. ϕ(x) =
−Φ′(x). During mode-seeking, each point is initially de-

noted by y0, and the set of intermediate points traversed

during progress towards the solution is denoted by {yk} ∈
IRd, k = 0, 2, · · ·K . Each step of meanshift moves along

the direction of highest gradient from the current point. For

a single step, yk denotes the current position of the point

and yk+1 denotes the next position of the point. yk+1 is

selected from a set of candidate positions (which is the set

of samples {xi}), according to,

ymean
k+1 = argmin

y

∑

i

‖xi − y‖2ϕ
(∥

∥

∥

xi − yk

h

∥

∥

∥

2)

. (2)

Setting the first derivative to zero and solving for y we get

an estimate for the new position,

ymean
k+1 =

∑

i xiϕ
(
∥

∥

∥

xi−yk

h

∥

∥

∥

2)

∑

i ϕ
(∥

∥

∥

xi−yk

h

∥

∥

∥

2) . (3)

This can be compared to Equation 20 in [5]. For each data

point, this process is repeated until the point converges to

the locally maximum density. If the meanshift procedure

takes K iterations to converge, the mode corresponding to

the original data point y0 is yK at the time of convergence.

In the medoidshift algorithm, instead of computing the

new position yk+1, as shown in Equation 3, the weighted

medoid is used instead. A point y ∈ {xi} is therefore the

(weighted) medoid, if

ymedoid
k+1 = arg min

y∈{xi}

∑

i

‖xi−y‖2ϕ
(∥

∥

∥

xi − yk

h

∥

∥

∥

2)

. (4)

The relationship between the meanshift update and the

medoidshift update is defined by Equations 2 and 4 and il-

lustrated in Figure 1. The point selected by meanshift corre-

sponds to the minimum of the function whereas the point se-

lected by medoidshift corresponds to the sample which best

minimizes the function. For medoidshift clustering, since

∀k,yk ∈ {xi}, for any yk , yk+1 will necessarily belong to

a point in the sample set. As a result, a medoidshift need

only be computed once per data sample. Once a medoid-

shift has been computed for all points in the data set, the

next shift will already exist for all yk+1. A mode is reached

if yk is the same as yk+1, and therefore unlike meanshift,

no threshold is required to specify the terminating condi-

tion. The sequence {yk} is guaranteed to converge.
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Figure 2. Left to right: Clustering using medoidshift after 1, 2, and 3 iterations, and the final labels for each point.

Theorem 2.1 The sequence {yk}k=1,2,··· generated by

successive medoidshifts converges for all starting locations

in {xi}i=1,···N .

Proof Since yk ∈ {xi}i=1,···N and N is finite, the series
will converge if there are no cycles, i.e. if yk 6= yk+w for
all k and for all w > 0. From Equation 1,

f(yk+1)−f(yk) = c0

X
i

Φ
�yk+1 − xi

h

2�
−Φ
�yk − xi

h

2�
.

Since Φ(x) is a convex function (Appendix A.4, [5]) we

have,

Φ(x2)− Φ(x1) ≥ ϕ(x1)(x1 − x2), (5)

and therefore,

f(yk+1)−f(yk) ≥ c0
X

i

ϕ
�yk − xi

h

2��
‖yk−xi‖

2−‖yk+1−xi‖
2
�
.

(6)

From Equation 4, successive points are selected according
to the following criterion,X

i

‖yk−xi‖
2ϕ
�yk − xi

h

2� >
X

i

‖yk+1−xi‖
2ϕ
�yk − xi

h

2�,

(7)

which can be re-written as,

∑

i

ϕ
(∥

∥

∥

yk − xi

h

∥

∥

∥

2)(

‖yk − xi‖2 − ‖yk+1 − xi‖2
)

> 0.

(8)

From Inequalities 6 and 8, we can conclude strictly

that f(yk+1) > f(yk), and therefore for the se-

quence {y0,y1 · · ·yK}, the corresponding sequence

{f(y0), f(y1) · · · f(yK)} is strictly increasing. As a re-

sult, f(yk) < f(yk+w) for all w > 0, and therefore

yk 6= yk+w.

Points within the clustered data set may be interpreted as

nodes on a graph connected by directed edges, ([12]). For

a data set with multiple modes, there will exist several dis-

joint trees, where each tree consists of nodes (corresponding

to points) that belong to the same cluster. Each medoidshift

establishes a directed edge between the data point yk and its

corresponding yk+1. The root of each tree corresponds to

the mode of the cluster specified by that tree. A single tree

traversal may be used to assign the cluster to all points as-

sociated with that tree. It should be noted that the procedure

thus far can be considered non-iterative.

To complete the medoidshift algorithm, each data point

is moved to the location of its estimated mode and the pro-

cedure is repeated until no further change occurs in labeling.

Each data point xi is moved to the location of its estimated

mode yKi
, i.e. x

(1)
i ← yKi

where x
(t)
i is the updated lo-

cation of the point xi at iteration t − 1. The mode-seeking

process, as described earlier is repeated on {x(t)
i } until no

further change in labeling occurs. Figure 2 shows the clus-

tering result of a data set after each iteration. This iterative

process is guaranteed to converge for normal kernels.

Theorem 2.2 For any {xi} of finite size N , for the se-

quence

{xi}, {x(1)
i }, · · · {x

(T )
i },

generated by the medoidshift algorithm, T is always finite.

Proof Since x
(t)
i ← y

(t−1)
Ki

and y
(t−1)
Ki

∈ {x(t−1)
i }, the

number of unique points will either remain the same or de-
crease. If the number of unique points remain the same
the terminating condition is met provided there is no mode-
switching, i.e. xt

p ← xt−1
q and xt

q ← xt−1
p . We see that if

switching occurs,X
i

‖xi − xp‖
2ϕ
�xi − xp

h

2� >
X

i

‖xi − xq‖
2ϕ
�xi − xp

h

2�,X
i

‖xi − xq‖
2ϕ
�xi − xq

h

2� >
X

i

‖xi − xp‖
2ϕ
�xi − xq

h

2�,

which is a contradiction (Lemma A.1). Therefore the num-

ber of unique points remaining the same is a necessary and

sufficient condition for the terminating condition to be met.

Since the data set has a finite number of points and the num-

ber of unique points must keep decreasing (or otherwise ter-

minate), T is at most N − 1.

This iterative process is similar to the original formula-

tion of meanshift proposed in [8], which has been referred

to as “blurring” meanshift. Unlike meanshift, no additional

heuristic is required to merge modes of the same cluster to-

gether into a single mode, and unlike blurring meanshift no

additional heuristic is required to terminate the iterations

before all points become coincidental. The complete algo-

rithm is detailed in Figure 3.

In addition to removing the heuristics for a stopping cri-

terion and mode merging, the medoidshift algorithm allows

the idea of mode-seeking to be applied to problems where



the meanshift algorithm is inapplicable. When compar-

ing datasets, often distances can be defined without explic-

itly defining a feature space (and therefore a mean). Ex-

amples include the Earth Mover’s Distance for Image Re-

trieval, the Proportional Transportation Distance for Signal

Matching and manifold clustering where the manifold can-

not be analytically defined. Distances between two points

are computed using d(xi,xj), which satisfies the proper-

ties of symmetry, triangular inequality and positivity. As

we show later, medoidshift also allows clustering where the

data set may evolve over time without requiring a complete

re-evaluation at each time instance.

While this algorithm has the above-mentioned advan-

tages over the meanshift algorithm, its clustering behavior

is similar to that of meanshift. In fact, as the sample size

increases, the intermediate clustering yielded by the non-

iterative part (Figure 3, steps 1 and 2) of the medoidshift al-

gorithm can be shown to tend towards the clustering yielded

by meanshift. For the underlying distribution function f ,

f(ymean
k+1 ) > f(ymean

k ), (9)

from Theorem 1 in [5]. From the law of large numbers, as

N tends to infinity the ratio of number of samples at any

x to the total number of samples will tend towards f(x).
Thus, if a sample x exists then f(x) > 0. Since ymean

0 ∈
{xi} we have f(ymean

0 ) > 0 and because of Inequality 9,

∀k f(ymean
k ) > 0. If follows that,

∀ymean
k p

(

lim
N→∞

ymean
k+1 ∈ {xi}

)

= 1. (10)

As a result, since ymedoid
k+1 is the sample closest to ymean

k+1 ,

lim
N→∞

ymedoid
k+1 → ymean

k+1

and therefore, limN→∞ Cmedoid → Cmean, where Cmedoid

and Cmean are the clusterings yielded by the medoidshift

and meanshift algorithms respectively.

3. Implementation

The computations involving medoidshifts can be com-

pactly expressed in terms of a matrix product. The two ma-

trices that are computed are an N ×N symmetric matrix of

distances, D whose (i, j)th entry is defined as the distance

between the ith and jth point,

D(i, j) = d(xi,xj), (11)

and an N ×N weight matrix K,

K(i, j) = ϕ(d(xi,xj)). (12)

Once these matrices have been computed their product ma-

trix, S = DK, is computed. The next position for the ith

data point is denoted by the index with the minimum value

in the ith column of S. Once the new position is computed

Objective

Given N data points estimate the modes of the underlying data

distribution function and associate each point with its mode.

Algorithm

1. For each data point, xi, i = 1, 2, ..., N , compute its shift:

• For each candidate data point xj , j = 1, 2, ..., N ,

compute the sum of its weighted distance from all

other data points:

score (xj) =

NX
k=1

d (xj ,xk) ϕ (d (xi,xk)) .

• Select xj with the minimum distance from all other

data points as the next position.

2. Perform tree traversals to associate each point with its corre-

sponding root node (which is its mode).

3. Replace each xi with its mode, and perform Steps 1 and 2

with the new xi as initial data points. Repeat this step until

no further change occurs.

Figure 3. The Medoidshift Algorithm

Implementation

1. Compute N × N distance matrix D and the N × N weight

matrix K, e.g. K = exp(−D/2).

2. Compute S = DK.

3. Calculate the data point indices that correspond to the mini-

mum along each column of S. These indices correspond to

y+ for all data points y−.

Figure 4. Compact Implementation of Step 1 of the Medoidshift

Algorithm

in this manner for all xi, tree traversal is used to find the

unique root (or mode) for all points. In Figure 3, the first

step is replaced by steps shown in Figure 4.

To see why this works, we can consider each entry in S

as an evaluation of the summand in Equation 4. For xi, the

N values of the ith column of S contain the eligibility score

according to

S(i, j) =

N
∑

k=1

d(xj ,xk)ϕ(d(xi,xk)), (13)

of each of the N data points of being the weighted medoid

given xi. By taking the minimum of a column of S, we

choose that data point which satisfies the criterion in 4. This

approach is straightforward to implement (a few lines of

code in MATLABr), and has a computational complexity

of O(N2.38), [7].

For the iteration step, the same procedure needs to be

performed on data points that have been replaced by their

modes. This procedure has a lot of redundancy since the N
original points are moved to a smaller set of locations. Mul-
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Figure 5. Incremental clustering. In the leftmost image, medoidshift algorithm was applied to 4 clusters. From left to right, the remaining

images illustrate the algorithm’s response to the data after: 2 original clusters were merged, 1 original cluster was split into 2, 1 original

cluster was destroyed and a new one was created.

tiple identical computations will be performed when the dis-

tance of a point at a mode is being computed from all other

points. This redundancy may be removed by applying the

procedure on the modes alone, and premultiplying each col-

umn of D with the number of points at the mode associated

with that column. Thus Equation 13 becomes

S(t)(i, j) =
M
∑

m=1

λmd
(

x
(t)
j ,x(t)

m

)

ϕ
(

d
(

x(t)
m ,x

(t)
i

))

, (14)

where λm is the number of points currently at location

xm, M is the current number of unique positions (corre-

sponding to the number of modes of points from the pre-

vious iteration). Both matrices D(t) and K(t) are of size

M ×M , where M denotes the number of modes computed

in the previous iteration. Instead of multiplying the ma-

trices together directly, the product D(t)Λ(t)K(t) is com-

puted, where matrix Λ is a diagonal matrix. Each diagonal

element Λ(t)(m, m) = λm denotes the number of points

associated with the mth mode. As the number of modes

is typically very small compared to the number of original

data points, the computations saved in each iteration after

the first one are significant.

4. Incremental Clustering

Incremental clustering is the problem of updating the

clustering of N earlier points on the incidence of P new

points and the removal of Q existing points. Not only does

the incoming data need to be clustered, but earlier clustering

may also need to be revised to make it equivalent to cluster-

ing from scratch or clustering within a window of observa-

tion. When a set of N data points,D, has already been clus-

tered as CD, incremental clustering is the task of efficiently

updating the clustering on the incidence of Dnew, a set of

P new data points that have not yet been clustered, and the

exitance of Dold ⊆ D, a set of Q data points that have al-

ready been clustered. In general, there are four events that

may occur as data enters and exits the current set: (1) clus-

ter creation, (2) cluster destruction, (3) cluster splitting and

(4) cluster merging. Methods that require the number of

clusters to be predefined (like k-means or normalized cuts)

are inapplicable here since each of the four events involve a

D
old

K
old

S1 S2

S3
S4

K2

K2 K3

D2

D2 D3

=

T T

Figure 6. Incremental Clustering. The matrices Sold, Dold and

Kold can be recycled when computing Snew.

change in the number of clusters and it is unlikely that the

number of clusters is provided at each time instant. Figure 5

illustrates this concept. With medoidshift clustering, earlier

computation can be recycled making incremental cluster-

ing viable. The values in the original product matrix Sold,

distance matrix Dold and kernel matrix Kold contain useful

information that can be reused in the evaluation at the next

time instant.

If P points are being added to the data set and no points

are being discarded, we can compute the different subma-

trices S1, S2, S3 and S4 (see Figure 6) as follows

S1 = Sold + D2K
T
2 , (15)

S2 = [Dold D2][K
T
2 KT

3 ]T , (16)

S3 = [DT
2 D3][Kold K2]

T , (17)

S4 = [DT
2 D3][K

T
2 KT

3 ]T . (18)

If the data set were to be completely re-evaluated the num-

ber of operations would be (N + P )3. When the process

described is applied, the number of computations drop to

P 3 + 3N2P + 3P 2N , a savings of N3 computations (the

number of computations required to estimate the original N
data points). Once again the index of the minimum of each

column gives the medoid for the data point corresponding to

that column. The resulting clustering is exactly equivalent

to clustering from scratch.

In a similar manner, previous computations may also be

recycled if Q existing points are being discarded from the

data set. The columns in D and rows in K, corresponding

to the Q points, are first selected. The rows and columns

corresponding to the Q points are then removed from the

modified D and K respectively. Both rows and columns

corresponding to the Q points are removed from Sold. Next,



the modified D and the modified K, of size (N − Q) × Q
and Q × (N − Q) respectively, are multiplied together to

form matrix S∆ of size (N − Q) × (N −Q). This matrix

consists of computations that are due to the Q points, and is

therefore subtracted from Sold to give Snew,

Snew = Sold − S∆. (19)

The minimum value is computed along each column of

Snew as before, to find the (possibly new) modes of the re-

maining points.

As may be seen, all computations used to generate Snew

are reused from Sold. Only the extra computations (due

to the Q points) need to be removed. The matrix mul-

tiplication involved to determine the contribution of these

points requires Q × (N − Q)2 computations, instead of

(N − Q)3. The number of computations saved are there-

fore N3 − 4N2Q + 5NQ2 − 2Q3. The savings are not

always positive as may be seen in the following inequality.

(N −Q)
3

> Q (N −Q)
2
, (20)

which upon simplification gives

Q < N/2. (21)

It is therefore beneficial to reuse previous calculations when

the number of discarded points is less than half the total

number of points in the data set.

In the case where P points are being added and Q points

are being discarded from the data set, the following inequal-

ity needs to hold to make reuse of computations beneficial.

(N −Q + P )
3

> (Q+3P ) (N −Q)
2
+P 3+3P 2(N−Q).

(22)

This inequality also simplifies to Inequality 21, suggesting

that incremental clustering should be used regardless of how

many points are being added to the set.

5. Experiments

The first experiment demonstrates that the algorithm pro-

posed in this paper does not require linearly separable clus-

ters. In Figure 7(a) we show the clustering of four crescent

shaped distributions each of differing radius and orientation,

each containing 1000 data points. The bandwidth h was set

to 4 for this experiment. Clustering with grid data is shown

for 100 data points evenly spaced at three different scales in

Figure 7(b). The bandwidth h was set to 8 for this result.

We compared the results of meanshift and medoidshift

by using them to cluster 4 swiss-roll type data distributions

in Figure 8. Each swirl has 500 data points that are nor-

mally distributed on each manifold. If we naively use the

Euclidean distance the resulting clustering does not respect

the manifold on which the data is distributed. Instead, we

used the distance measure defined by Tenenbaum et al. in

[18]. Note that the meanshift algorithm will not work well

here since there is no direct way to compute the mean or to
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Figure 7. Data Clustering. (a) Clustering on Nonlinearly Separable

Data. (b) Clustering on uniformly distributed data.
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Figure 8. Clustering results obtained by using meanshift (left) in

Euclidean space and medoidshift (right) using the manifold dis-

tance function described in [18].
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Figure 9. Image Segmentation using Medoidshift.

ensure that the mean would lie on the manifold. In contrast,

since every mode is contained in the set of observations

in medoidshift, each mode must lie on the manifold. Re-

cently, a method to apply meanshift on nonlinear manifolds

has been proposed in [17], however an analytic manifold is

required.

Medoidshift clustering was applied to image color seg-

mentation and results are shown in Figure 9. A 5 dimen-

sional feature space was used (including color and spatial

features), and the bandwidth matrix for both images was

set to 5I5×5. The result is comparable to the segmentation

achieved in [5].

We have also used medoidshift to cluster a collection of

images. We applied the algorithm to a set of 162 images of

11 different scenes. To compute the distance between two



Figure 10. Clustering a collection of images. Each row shows images selected from a single cluster found by medoidshift

1 2 3 4 5 6 7 8 9

Figure 11. Key-frames selected from a video of 1500 frames. Each key-frame corresponds to a mode as estimated by our algorithm.

images, we used the modified Bhattacharya coefficient (as

described in [6]) on a 5D histogram of the Labxy values

in the images. The Bhattacharya coefficient between two

distributions p and q is defined as ρ =
∫

(pxqx)
1

2 dx. In

order to give this coefficient a metric structure, Comaniciu

et al. proposed the modified Bhattacharya coefficient, d =√
1− ρ. For two histograms, p̂ and q̂, each with b bins, the

estimator is,

d̂ =
(

1−
b

∑

i=1

(p̂iq̂i)
1

2

)
1

2

. (23)

A coarse histogram was used, where the space was quan-

tized into [5 5 5 2 2] bins. The algorithm clustered these

images into 11 clusters, 4 of which are shown in Figure 10.

To demonstrate incremental clustering, we show an ex-

ample on key-frame selection in a video. The problem is

to find a representative set of frames from the video in an

online fashion. The challenge in this problem is that as

the video progresses the number of modes change. Fur-

thermore, it is difficult to define a feature space on which

meanshift may be applied. Using the modified Bhattacharya

coefficient on a coarse space-color histogram once again,

we define these key-frames as the modes of clusters formed

from the frames of the video. The procedure was tested on

a 1500 frame video sequence. The bandwidth h was set to

1 for this experiment. Figure 11 shows the final set of 9
key-frames.

Finally, we demonstrate application on block-

diagonalizing distance matrices. A random permutation of

points is applied to the distance matrix shown in Figure

12(a) to produce a re-ordered distance matrix in Figure

12(b). Note that darker values specify small distances while

brighter values specify larger distances between points.

The distances were computed between samples from four

bivariate normal distributions. 50 samples each were taken

from the first and fourth distributions, 150 from the second

and 100 from the third. The data-points were clustered

using medoidshift and the points were ordered into a

new distance matrix shown in Figure 12(c). Points were

reordered so that points belonging to the same cluster were

placed together. The ordering of the clusters themselves

is arbitrary, but the association of data points to clusters is

completely accurate.

6. Conclusion and Future Work

In this paper we have proposed a new clustering ap-

proach that inherits most of the desirable properties of

meanshift clustering while allowing the idea of mode-

seeking to be applied in problems where meanshift cannot.

The following observations can be made about medoidshift

clustering: First, the clustering achieved by the medoid-

shift algorithm is not restricted to spherical or ellipsoidal

clusters, i.e. medoidshift does not require linearly separa-

ble clusters. Second, data points distributed in any metric

space can be clustered. Third, an evolving data set can be

incrementally clustered efficiently. Finally, the number of

clusters do not need to be pre-specified.

In future work, we intend to investigate a further speed

up. The requirement that for the current location yk, yk+1

be the data point that minimizes Equation 2 is not strictly

required for convergence. The sufficient condition in Equa-

tion 7 in Theorem 2.1 is simply that the new point yk+1

have a score better than yk. If this condition is used instead

of the exact condition the computation can be terminated

early. An implementation showed that the computational

saving obtained from this was roughly 80% greater than that

of the exact algorithm. Further investigation is needed to

determine the degree of approximation error. The extension
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Figure 12. Clustering distance matrices. (a) Original Distance Ma-

trix, (b) Rearranged by random permutation and (c) Reconstructed

distance matrix after medoidshift clustering

of medoidshift to a k-nearest neighbor type estimator and

the use of variable bandwidth are other future directions.
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A. Appendix

Lemma A.1 If

∑

i

aie
−ai >

∑

i

bie
−ai (24)

then,
∑

i

aie
−bi >

∑

i

bie
−bi . (25)

Proof Let αi = (ai− bi)e
−ai and βi = (ai− bi)e

−bi , then

αi

βi

= e−(ai−bi). (26)

The sign of (ai − bi) determines three possibilities,

1. (ai − bi) > 0: Here αi and βi are both positive, and
αi

βi

< 1, thus αi < βi.

2. (ai − bi) < 0: Here αi and βi are both negative, and
αi

βi
> 1, thus αi < βi.

3. (ai − bi) = 0: αi and βi are equal, i.e. αi = βi.

In all cases, αi ≤ βi and therefore,
∑

i αi ≤
∑

i βi. From

Inequality 24,
∑

i αi > 0 and we can infer
∑

i βi > 0
which is a rearrangement of Inequality 25.


