
On the Sustained Tracking of Human Motion

Yaser Ajmal Sheikh
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
yaser@cs.cmu.edu

Ankur Datta
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
ankurd@cs.cmu.edu

Takeo Kanade
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

tk@cs.cmu.edu

Abstract

In this paper, we propose an algorithm for sustained

tracking of humans, where we combine frame-to-frame ar-

ticulated motion estimation with a per-frame body detec-

tion algorithm. The proposed approach can automatically

recover from tracking error and drift. The frame-to-frame

motion estimation algorithm replaces traditional dynamic

models within a filtering framework. Stable and accurate

per-frame motion is estimated via an image-gradient based

algorithm that solves a linear constrained least squares sys-

tem. The per-frame detector learns appearance of different

body parts and ‘sketches’ expected gradient maps to detect

discriminant pose configurations in images. The resulting

online algorithm is computationally efficient and has been

widely tested on a large dataset of sequences of drivers in

vehicles. It shows stability and sustained accuracy over

thousands of frames.

1. Introduction

Applications such as monitoring of the elderly, surveil-

lance, and human computer interfaces all stand to benefit

greatly from a system that is able to determine what posture

a person of interest is in and how their posture evolves over

time. However, tracking humans across a video is among

the most challenging problems in computer vision. In ad-

dition to inference from incomplete imaged data, which is

common to all vision problems, humans are highly artic-

ulated, highly variant in appearance, and unpredictable in

their behavior. This makes it difficult to develop useful, yet

general, models of motion and appearance for use during

motion estimation.

The traditional framework used for tracking is inherited

from data association research in radar technologies, [1].

In these approaches, predictions under a dynamic model,

e.g. constant motion, constant acceleration or nonparamet-

ric variants, are fused with measurements at each time in-

stant to minimize the variance of the location estimate. Per-

frame measurements of human body configurations have

been an active area of research recently, e.g. [14], [5], [17],

[22], [4]. On the other hand, although some attention has

been paid to dynamic models of humans, e.g. [23], [16],

[21] and [18], relatively less attention has been given to

modeling generic human motion, because of the large num-

ber of complex influences on human behavior, [20]. By and

large, dynamic models of humans are either nondescript,

like constant velocity models, or highly domain specific,

learnt from a corpus of training data.

Unlike point measurements generated from radar tech-

nology, video sequences provide far richer descriptions at

each time instant. We argue that rather than using dynamic

models that are difficult to quantify for humans, we should

exploit the fact that appearance remains approximately con-

stant across time instances to provide “predictions” at the

incident of new time frames. Frame-to-frame motion es-

timation using the appearance constancy assumptions has

generated a significant and successful body of work, e.g.

[12], [3], [2]. The key proposition in this paper is that the

framework of fusing measurements and prediction through

dynamic models can be replaced by a framework for fus-

ing per-frame detections and frame-to-frame motion esti-

mation.

In this paper, we describe a novel approach that pro-

duces accurate estimates of an actor’s posture at each time

instance in a video. Estimates from a frame-to-frame ar-

ticulated motion estimation algorithm are fused with a per-

frame detection method that uses learnt appearance models.

Key characteristics of the approach are that it is online and

sustainable, i.e. tracking that can continue processing in-

definitely and does not suffer from accumulated errors as

the video sequence progresses. At each time instance, a

measure of the covariance is maintained. The application

domain used to test and demonstrate ideas in this paper is

vehicle driver behavior.
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2. Related Work

A large body literature exists on 2D human pose detec-

tion and tracking, however, due to space constraints, we will

review only the most relevant papers dealing with 2D pose

detection and tracking of 2D configurations (with the ex-

ception of [2]). The interested reader is directed to surveys

([9], [13]) and a recent book by Forsyth et al. ([7]) for a

more comprehensive overview of the area.

Human pose detection approaches can be divided into

discriminative and generative approaches. Discriminative

approaches attempt to a learn a direct mapping between im-

age features, such as edges or image moments to the 2D

human pose. Rosales et al. in [19] train several specialized

mapping functions in a supervised setting to map from input

silhouette moments to the 2D human pose. A major limita-

tion of discriminative approaches is that their performance

degrades significantly in images where it is hard to obtain

reliable features, as is often the case in the cluttered scenes.

Generative approaches on the other hand generate a num-

ber of plausible pose hypothesis which are then evaluated

against the image for evidence. Felzenszwalb and Hutten-

locher in [5] represented the 2D human pose as a collec-

tion of parts arranged in a deformable configuration, build-

ing upon the seminal work of Fischler and Elschlager in

[6], who introduced the spring constraints for human pose

modeling. The pictorial structures, as their model is called,

represents each body part using a simple appearance model

with deformable spring-like connections between pair of

parts. Ramanan et al. in [17] built a person detector that lo-

calized limbs of people in lateral walking poses. These limb

detections were then used to build an appearance model

of the limbs which was used to detect limbs in successive

frames. Sigal and Black in [22] described an algorithm to

infer 2D human pose from a single image. Their algorithm

integrated information from bottom-up body-part proposal

processes using non-parametric belief propagation. In this

paper, we describe a generative approach towards 2D hu-

man pose detection with a search algorithm that does not

suffer from the limitations of high-dimensional search that

is usually associated with generative approaches.

The traditional framework used for tracking is a legacy

from the data association research [1]. In these approaches,

predictions from a dynamic model are fused with measure-

ments to obtain the location estimates. Recent research un-

der such a framework have involved application of complex

dynamical models to track human motion in images. Isard

and Blake in [11] describe the use of ‘factored sampling’

along with learnt dynamical models to propagate distribu-

tions over position and shape over time. Pavlovic et al. in

[15] use the human motion capture data to learn a switching

linear dynamic system model for tracking of human walk-

ing. A major difficulty with the wide-spread application

of dynamical models to human tracking under general set-
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Figure 1. Estimation Framework. (a) The frame-to-frame motion

estimation “predicts” a new location for the anatomical landmark

and the per-frame detection provides a measurement for the new

location. The mean and covariances of these two estimates are

fused using the Kalman update equation. (b) The body model used

in this paper is an articulated chain.

tings is the problem of constructing or learning an effective

model of human dynamics. In this paper, we argue that the

framework employing complex dynamical model for hu-

man tracking can be replaced by one employing frame-to-

frame motion estimation. In other words, the framework of

fusing predictions from dynamical models with measure-

ments can instead be supplanted by a framework fusing the

per-frame detections with frame-to-frame motion estima-

tion. In this paper, we show encouraging results showing

the potential of this framework for sustained human pose

tracking across thousands of frames.

3. Data Model and Estimation Framework

The problem tackled in this paper is to locate, in an

online manner, the configuration Xt ∈ R2p of p human

anatomical landmarks (see Figure 1(b)) in gray-scale im-

ages It from a sequence ordered by t = 1, · · · , F . The algo-

rithm we propose is near realtime (5 FPS) and operates on-

line (as opposed to batch mode algorithms). One common

approach to solving this problem, is to adopt an inductive

framework which separates the problem into initialization

and tracking. Initialization is defined as a base case, “given

I0, locate X0” and the tracking problem is defined induc-

tively, “given It and Xt and the new image It+1, locate

Xt+1.” This approach suffers both from sudden failure and

gradual error accumulation. In other words, if a configura-

tion is incorrectly located at t = T , then for all t > T failure

is virtually guaranteed — there is no mechanism to recover

from sudden failure. Additionally, if each configuration Xt

is located with error ǫ ∼ N (0, Σ), then at time t = T the

error would have accumulated to ǫ ∼ N (0, (T − t0)Σ).

In contrast to this inductive framework, we propose to

use filtering, [1], to combine the frame-to-frame estimates

of the configuration with the per-frame estimates. Unlike

filtering algorithms, we do not describe a dynamic model

(such as constant velocity or acceleration) or a distribution

to sample from, but instead use the frame-to-frame motion



Objective

Given the current image, It and the triple (It−1,X
+

t−1, Σ
+

t−1),

estimate (X+
t

, Σ+
t
).

Algorithm

1. Per-Frame Detection: Find the most likely configuration

and its covariance, (X̄t, Σ̄t), given the image It (Section 4).

2. Frame-to-Frame Motion Estimation: Find the most likely

configuration and its covariance (X−

t
, Σ−

t
) given the images

It and It−1 (Section 5).

3. Update Configuration and Covariance: Fuse (X̄t, Σ̄t) and

(X−

t
, Σ−

t
) to get corrected locations (X+

t
, Σ+

t
). (Section

6.2)

Figure 2. Sustained Tracking of Human Motion

estimate as our “prediction” at time t. Detection at each

time instance serve as “measurements”. Figure 1(a) illus-

trates the concept. Thus, given (X−
t , Σ−

t ) from frame-to-

frame motion estimation, and the per-frame estimates of the

same, (X̄t, Σ̄t), we fuse both to estimate the corrected con-

figuration (X+
t , Σ+

t ). The complete algorithm is described

in Figure 2.

4. Per-Frame Detection

The per-frame detection approach described in this sec-

tion takes an image It and estimates the configuration

(X̄t, Σ̄t) for that image. The primary requirement for de-

tectors is that the false positives be minimized, so as to re-

liably correct the configurations provided by the frame-to-

frame motion estimation in Section 5. Like [17], we focus

on detecting specific discriminate configurations. The set of

configurations that can be detected may be increased at the

expense of processing time.

From a corpus of labeled training data, we learn corre-

lated appearances of each body part in isolation. The la-

beled data are aligned using procrustes analysis and the fre-

quency of observing gradients over normalized (x, y) coor-

dinate is learnt for each body part. This is recorded in a two

dimensional histogram of frequencies, Ai, each bin corre-

sponding to an (x, y) location. Figure 3 shows the distribu-

tion for each body part, and distinctive shapes (e.g. parallel

edges of lower arms) can be observed. The gradient infor-

mation generated from the clothing of particular individuals

in the corpus are damped out and the correlated gradients,

such as the parallel edges of the lower arm, are amplified.

With these appearance models for individual body parts,

{A} = [A1, · · · ,AN ], we can evaluate individual proposal

configurations, by “sketching” the expected gradient map

of the proposal. The likelihood of a given configuration is

estimated by,

f(X|{A}; ∆It) =
∏

(x,y)

e∆It(x,y)×AX(x,y), (1)

where ∆It is the gradient magnitude map of It, and AX is

the expected sketch of the configuration X. The sketch AX

takes the histograms of individual body part frequencies and

transforms them to the location of the body part defined by

X. Figure 3(b) illustrates the concept, where sketches are

generated for three different configurations. Note that the

gradient information due to the background is suppressed

before evaluation.

Another challenge in detection is efficient search of the

2P space of solutions. A naı̈ve search of the space is likely

to suffer from local minima and will be computationally ex-

pensive. Instead, we learn a low dimensional space cor-

responding to the specific body pose we are detecting. A

compact linear subspace is learnt, X , from the training set

of configurations,{X}, corresponding to the pose to be de-

tected. Principal component analysis is used to find a low

dimensional linear subspace.

X
T =











x1
1 . . . x1

p

x2
1 . . . x2

p

...

xn
1 . . . xn

p











, (2)

where each row of X
T represents Xt ∈ R2p of p human

anatomical landmarks in one of the n training examples.

Taking the Singular Value Decomposition (SVD) of

(mean compensated) X, we get X = W D V T . We can

then project the data-matrix X to a lower-dimensional sub-

space of k dimensions by retaining the first k singular values

and setting the remaining to zero. Therefore, the compact

linear space X is spanned by,

Vk =





| | |
v1 v2 . . . vk

| | |



 . (3)

We can then construct the k-dimensional approximation of

Xt ∈ R2p of p human anatomical landmarks,

X̄t =

k
∑

i=1

c̄ivi. (4)

In experiments, we have found that a low dimensional

(2 in our experiments) subspace suffices in describing the

variation for a single pose. This variation appears closely

related to the anthropometry of the actor (and does not cor-

respond to an isotropic scaling). The most likely detection

is then determined by bounded minimization (determined

by anthropometric limits in the training set),

X̄ = arg max
X̂∈X

f(X̂|{A}). (5)
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Figure 3. Configuration Sketching. (a) Appearance models for dif-

ferent body parts (left to right): left upper arm, left forearm, right

lower arm, and torso. (b) Sketching the gradient map for three dif-

ferent configurations in the one-dimensional configuration space.

The configuration best corresponding to the image gradient is for

c = -39.

The covariance of the detection X̄ is then computed as fol-

lows,

Σ̄ = VkV T
k . (6)

5. Frame-to-Frame Motion

To estimate frame-to-frame motion we use the algorithm

for computing articulated motion in [3]. This approach

adopts the cardboard model, proposed by Ju et al. in [12],

where each rigid part of an articulated object as a plane con-

nected at different joints. The motion of each plane is ap-

proximated by the six parameters of a 2D affine transforma-

tion. The set of affine transformations relating It and It+1

are denoted as At ∈ R
6N . In the model used in this pa-

per there are five planes related by four joints, i.e. N = 5
and j = 4. Articulation induces a set of linear constraints

that At must satisfy, i.e. Θ(Xt)At = 0 (we follow the

constraint described in [3]).

The transformations At are estimated by minimizing the

sum of squared difference,

g(At|Xt−1, It−1, It) = ‖w(It−1;At) − It‖2, (7)

where w(·) is a warping function that transforms an im-

age according to the affine transformations in At
1. Gauss-

Newton minimization of this function yields an algorithm

1This requires the support of each affine transformation to be defined.

This is done by specifying a rectangle around each pair of points.

that iteratively solves a linear least squares system, ΓÂt =
b subject to Θ(Xt)Ât = 0, where Ât is the current esti-

mate of At. The matrix Γ is a block diagonal matrix where

each block contains the gradient information to solve for

the affine coefficient of a single body part. The ‘interac-

tion’ between the motion of body parts is captured in the

linear constraints. To solve the linearly constrained least

squares problem, at each iteration a Karush-Kuhn-Tucker

(KKT) system is solved,

[

Γ
T
Γ Θ

T

Θ 0

] [

Ât

λ

]

=

[

Γ
T
b

0

]

. (8)

6. Correction

In this section, we describe how to propagate the covari-

ance across frames and how to obtain the corrected localiza-

tion and covariance from the per-frame detection and frame-

to-frame motion estimates.

6.1. Covariance Propagation

To propagate the covariance matrix at each time instance,

we have to consider both the uncertainty introduced by solv-

ing the KKT system and the transformation induced by the

affine motion. From [10] we have,

Σ′
x

= JxΣxJ⊤
x

+ JAΣAJ⊤
A

(9)

where

JA =

[ ∂u
∂a1

· · · ∂u
∂a6

∂v
∂a1

· · · ∂v
∂a6

]

(10)

=

[

x1 y1 1 0 0 0
0 0 0 x1 y1 1

]

. (11)

and

Jx =

[

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]

(12)

=

[

a1 − 1 a2

a4 a5 − 1

]

. (13)

The matrix Σx is the covariance at the previous time in-

stance and ΣA is the inverse of the information matrix of the

least squares system in Equation 8, i.e. (Ω⊤
Ω)−1, where

Ω =

[

Γ
T
Γ

Θ

]

. (14)

6.2. Update

Given the per-frame detection, (X̄t, Σ̄t), and the frame-

to-frame prediction, (X−
t , Σ−

t ), the update formulae are



Figure 4. Update of configuration and covariance. The red dot

and ellipse represent the per-frame detection, (X̄t, Σ̄t), the blue

dot and ellipse represent the frame-to-frame prediction (X−

t
, Σ−

t
)

and the green dot and ellipse represent the correct configuration

and covariance (X+
t

, Σ+
t
).

used to obtain the corrected configuration and covariance

(X+
t , Σ+

t ). They may be computed as, [8],

X
+
t = X

−
t + Σ−

t (Σ−
t + Σ̄t)

−1(X̄t − X
−
t ), (15)

Σ+
t = (I − Σ−

t (Σ−
t + Σ̄t)

−1)Σ−
t , (16)

where I is an identity matrix. Figure 4 shows the fusion

of location and covariance of the detection (red) and mo-

tion (blue) estimates, along with the corrected configuration

(green).

7. Results

We have tested extensively on videos of drivers inside

vehicles. The data set contained seven different subjects

wearing (on average) four different outfits each. Each se-

quence contained actors engaged in seven typical driver be-

haviors (e.g. adjusting the rear view mirror, opening the

glove compartment and changing gears) and the duration of

each sequence was 3566 frames on average captured at 60

FPS at a resolution of 320×240. This algorithm was used

to track the upper torso of person from video. Six points

were tracked of which four were joints between five body

parts. A least squares system of 30 unknowns and 8 linear

constraint equation was solved. On a QuadCore 2.66 Ghz,

with 4GB RAM, a C++ implementation of the system runs

at 58 frames per second (at a resolution of 160×120).

We trained detectors for two poses, the neutral pose of

the driver with both hands on the steering wheel and ‘adjust-

ing the rear view mirror’ pose. For neutral poses, the detec-

tion was trained on a relatively small training set of twenty

five labeled images (containing five of the seven subjects,

each in three different outfits). The pose space was also

(a)

(b)
Figure 5. Detections for various individuals wearing a variety of

different clothes in the neutral pose (a) and reaching for the rear

view mirror (b).

Sc
or

e

Major Coefficient

Figure 6. Detection score against various coefficient values across

multiple frames (left). The function is well-behaved usually dis-

playing a distinct unique maxima. The maxima corresponds to the

correct configuration (right).

learnt from this small data set. Figure 5 shows the result on

six images outside of the training set for the neutral pose

and for the rear-view mirror pose. Figure 6 shows the cost

function varying across time for different poses (in terms

of the major projection coefficient). The cost function is

smooth with a distinct maxima that corresponds to the cor-

rect configuration.

The frame-to-frame motion estimation algorithm is able

to accurately track across hundreds of frames with only ac-

cumulated drift error. Figure 7 shows several sequences

where the body is tracked in the absence of detections for

hundreds of frames. Each row corresponds to frames from

a single sequence. As the sequence progresses without de-

tections, the uncertainty of the location accumulates (cor-



responding to drift error). The ability of the approach to

recover from drift and localization errors is shown in Figure

8. The first row shows actors reaching for the rear view mir-

ror and accumulating significant drift errors along the way.

As the actors return to the neutral configuration, the detec-

tor is fired and this reduces the covariance. In the second

and third rows, significant errors are introduced because of

self-occlusion of the face with the shoulder. Once the actors

return to neutral poses, the error in configurations is quickly

corrected and covariance is controlled again.

8. Summary

In this paper, we propose an algorithm that fuses per-

frame detections with frame-to-frame motion estimates for

sustainable tracking of articulated objects, like humans. The

detection algorithm learns part based appearance models

of gradient information from training data. During detec-

tion, “sketches” of candidate configurations are compared

against (background suppressed) gradient maps of the cur-

rent image and the configuration corresponding to the most

likely sketch is selected. During frame-to-frame motion es-

timation, an articulated motion algorithm is used that iter-

atively solves a linearly constrained least squares system.

Frame-to-frame location and covariance estimates are up-

dated (when detections are available) to produce corrected

estimates of body configuration. This framework keeps es-

timation errors introduced by drift, occlusion or appearance

variations under control. A C++ implementation of the al-

gorithm runs at 58 frames per second and has been tested

on over 30 sequences, each containing seven distinct opera-

tions performed over thousands of frames.
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Figure 7. The detector automatically initializes the first frame in the neutral pose. As the actor leaves the neutral pose, the frame-to-frame

motion estimate is the only cue for tracking. In the absence of detections, the covariance of the configuration steadily grows.
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Figure 8. Recovery from drift and error. The first row shows the actor reaching for the rear view mirror and accumulating significant drift

errors along the way. As the actor returns to the neutral configuration, the detector is fired and reduces the estimate covariance. In the

second and third rows, significant errors are introduced because of self-occlusion of the face with the shoulder. Once the actors return to

neutral poses, the error in configurations is quickly corrected and covariance is reduced.


