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Abstract—Long range navigation by unmanned ground ve- using features extracted from imagery and 3-D data. Mobility
hicles continues to challenge the robotics community. Efficient analysis is performed using the ground surface recovered from

navigation requires not only intelligent on-board perception and 3.1 ‘gata or an available elevation map. Traversal costs are
planning systems, but also the effective use of prior knowledge . dt flect th biliti f1h hicl
of the vehicle’s environment. This paper describes a system for assignea to refiect the capabiliies of the venicle.

supporting unmanned ground vehicle navigation through the  This paper claims two major contributions: 1) the devise of
use of heterogeneous overhead data. Semantic information isa consistent approach to support long range vehicle navigation

obtained through supervised classification, and vehicle mobility using heterogenous overhead data; 2) the experimental demon-
is predicted from available geometric data. This approach is giration of the validity of the same approach by integration
demonstrated and validated through over 50 kilometers of . .
autonomous traversal through complex natural environments. on an autonomous' vehicle, Whgre vehicle performance was
evaluated systematically by an independent observer over an
|. INTRODUCTION accumulated distance of more thaf kilometers of natural
Due to the recent popularity of the DARPA Grand Chalerrain.
lenge, autonomous ground vehicle navigation has receivedrhe next section presents previous work in long range
increasing attention. While on-road long range navigation hagvigation. Section Il contains an overview of our approach.
been successfully demonstrated [1], off-road navigation ov@gction IV details the semantic interpretation of the terrain,
long distances (multiple kilometers) without human interverand the methods used for mobility analysis. Finally, Section
tion remains a challenge. This is due to the highly varying presents results evaluating the performance of this approach
nature of off-road terrain, along with the complex surfacom field tests after vehicle integration.
geometry and vegetation cover t_hat_can be _encountered. _ Il. PREVIOUS WORK
The goal of long range navigation is to achieve safe and effj- o .
cient traversal of an environment between two given locatiors. Long Range Navigation Scenarios
Without any prior information about the environment, safe The challenge of long range navigation for unmanned
navigation can be achieved by the vehicle’s local percepti@fiound vehicles exists under many scenarios, with many
system, but path efficiency will greatly suffer. Given sufficienfactors that condition them. Examples are waypoint spacing,
prior knowledge of an environment, both safety and efficiendgvel of prior environmental knowledge, mission context and
can be achieved. Prior data can come from a variety Bfission constraints [2]. One of the most important factors is
sources. Low resolution imageryl (meter resolution gray- the vehicle’s mode of operation, which can be classified into
scale) and topographic data0(to 30 meter resolution) are one of three broad categories:
already available for most of the world. In addition, higher « Path Tracking: the vehicle follows a fixed path through
resolution imagery and dense three-dimensional (3-D) data can the environment. If the vehicle has on-board sensing
be collected commercially upon request. capabilities, it may be allowed to deviate from the path if
Using such data sources introduces many challenges. A it senses obstacles [3]. Provided paths may be human or
system must be devised for extracting meaningful information machine produced, and are usually based on some form
from such data, managing and merging data from various of prior knowledge of the environment.
sources, and using this data to improve autonomous navie Full Exploration: the vehicle has no prior knowledge of
gation. This paper deals with the general problem of using its environment, and must use on-board sensing to find
heterogeneous overhead data sources (in time and resolution) its way from waypoint to waypoint [4][5].
to support ground vehicle navigation. o Aided Exploration: prior knowledge is available, but
We present an approach to produce (off-line, off-board) (unlike during Path Tracking) the vehicle is not directed
traversal cost maps from overhead data that can be used (on- down a single, pre-planned path. Rather, the vehicle uses
line, on-board) for global path planning for an unmanned the combination of prior data and its own perception
ground vehicle. Traversal costs are computed from a combi- system to navigate between waypoints [6][7][8].
nation of semantic and geometric data. Semantic informationlt is often difficult to clearly define the boundaries between
of the terrain is obtained through supervised classificatithese categories. Factors such as the density of waypoints



and the quality of available prior data can heavily impact thEhere are many inherent challenges in using such a broad set

behavior of the vehicle. of data sources. Overhead data sets are often heterogeneous in
lobal Planni resolution, sampling pose, and sampling time, and may not be
B. Global Planning georeferenced with sufficient accuracy. Furthermore, different

Global planning involves finding the path between waydata sets may cover different areas. Therefore, the first step in
points that best achieves mission priorities based on thsing such data sources is to align and sample them.
current knowledge of the environment. For example, it may The full data flow of the overhead system is shown in Figure
be desirable to choose the shortest traversable path, the loviegtfter alignment, the data is preprocessed by sampling into a
risk path, or the path that optimizes some other metric (feaster grid. In the case of 3-D point cloud data, the load bearing
example, energy acquisition and usage [9]). ground surface is extracted. Next, terrain-based features are

Under the mission scenario where the priority is vehiclgenerated for use in semantic classification. These features are
safety, a common approach is to generateost mapof fed to a supervised classifier (specifically a neural network) to
the environment. A cost map is a 2-D grid representatiofap each raster cell into one of several classes (see Section
of the environment, where the value of each cell encodpsA).
the mobility risk inherent in traversing through that cell. The \ehicle-based features are also computed by convolving
lowest traversal cost path through the grid is therefore tlevehicle model with a Digital Elevation Map (DEM) or
(perceived) safest path to the goal. Any grid search algorithi@covered ground surface. For each raster cell, the state of the
can be used in conjunction with such cost maps to plan pathghicle (roll, pitch, ground clearance, etc.) is predicted (see

In a path tracking scenario, global planning occurs oncgection IV-B).
before a mission even begins. In a full exploration scenario,Finally, the results of semantic classification and mobility
global planning uses the perception history of the vehicle ghalysis are interpreted to generate traversal costs to form a
continually replan to its goal. In an aided exploration scenariggst map. The rules for computing costs are vehicle-specific.
the combination of prior data (possibly from overhead data additional useful parameters, such as maximum safe traversal
a previous traverse of the area) and perception history is usgféeds for each cell, can be computed to further improve
for continual replanning. navigational performance.

C. Prior Data

In an aided exploration scenario, vehicle behavior is . e
strongly affected by the available quality of prior data. Eveﬁ' Terrain Classification
low resolution prior data can provide significant improve- 1) Related Work:Similar research conducted by Charaniya
ment to vehicle performance, as demonstrated by numeraisal. [12] classified terrain into roads, grass, buildings, and
simulations in [10]. In [6], low resolution26 — 30 meter) trees using aerial LIDAR height data, height texture, and signal
elevation maps were used to aid long distance planningflectance, achieving classification rates in the rang® %f—

[11] demonstrated the extraction of features (roads, tre&d%. Cao et al. attempted to identify man-made objects from
water, etc.) from aerial surveys, for later correlation by amerial imagery [13]. Knudsen and Nielson attempted to classify
autonomous vehicle. buildings using a previously available GIS database and RGB

The DARPA PerceptOR program contained an importamtformation for an environment [14].
prior data component. Aerial LIDAR data was used to predict 2) Feature Extraction:The set of features to be extracted
vehicle roll and pitch over stretches of terrain, as well as ttepends on the particular data sets that have been provided
detect vegetation [7][8]. This information was used to generdigr the environment. Multiple data sets of the same type (for
prior cost maps for use in global planning. instance, multiple sets of color imagery) can also be used.

In general, prior cost maps can be human or machineimage Based Features:The RGB color space is known
produced. However, generating cost maps manually froim be sensitive to variation in illumination, while the hue,
high resolution data over large areas is infeasible. Automatsakturation, value (HSV) space is not. Therefore, HSV is used
processing is therefore essential for the effective use of priastead of RGB. To avoid discontinuities in hue space, the sine
data in long range navigation. and cosine of hue, along with saturation and value, are used
as features.

When Near-Infrared (NIR) imagery is available, NIR itself
Overhead data sources fall into 3 broad categories: is used as a feature, along with the the Normalized Difference
« Imagery can be gathered by either aerial flyover oWegetation Index (NDVI) [15]. Because chlorophyll absorbs

satellite and consists of gray-scale, color, or multispectragd light and reflects a larger proportion in the near-infrared

IV. OVERHEAD SYSTEM INSTANTIATION

IIl. OVERHEAD SYSTEM OVERVIEW

information. channel, NDVI can be effective in detecting vegetation.
« Rasterized Elevation Datais available at a wide range Elevation Based Features:Elevation related features are
of resolutions and from multiple sources computed relative to local ground levels rather than from

o 3D Point Cloud data is usually produced by aerialabsolute elevations in order to deal with slope. We use the
LiDAR flyovers minimum, maximum and average elevation for each raster cell
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Fig. 1. Overview of overhead data processing system: from raw data to cost maps.

Fig. 2. Sample classification results. On the left is an overhead referencs
image used for ground truth and on the right is the classification of the
corresponding high-density, colorized, 3-D data into road, grass, tree, and
building. Areas with missing data appear in white.

Fig. 3. 3-D points are classified as ground (brown) or non-ground (green).

as features, along with the standard deviation of those featuBesVehicle Mobility Analysis

over a small support region. 1) Digital Elevation Map ProcessingDue to the rasterized
Point Cloud Based Features:3-D point clouds are first nature of DEMSs, it is not meaningful to predict the exact state

divided into ground and non-ground points using a procedué the vehicle at every position in the environment. Instead,
presented in Section IV-B. The ratio of ground points ovdpobility analysis with DEMs is reduced to the computation

the total number of points for a local support region is useY an estimate of the ground slope. For each cell in the DEM,
as a feature to describe the density or permeability of tﬁleplane is fit to all cells in a surrounding neighborhood. The
occluded space over the ground surface. Additional featu@ige Of the neighborhood depends on the size of the vehicle

are extracted through principal component analysis to descrff! the resolution of the DEM. _
the local distribution of a 3-D point cloud around a point of Slope analysis of DEMs operates under the assumption that

interest [16]. PCA based features are computed seperately ¥ €levation value in each cell represents the elevation of
ground and non-ground points. the load bearing ground surface. However, this is not always

the case as DEMs will often include the tops of tree canopy

3) Classification: We use a neural network with one inputr other dense vegetation that does not get penetrated by the
node for each feature, one hidden layer, and one output nagasor. Our terrain classification techniques (Section IV-A) can
for each desired classification category. The network is trainbd used to detect and eliminate many such occurrences.
on each class by a set of labeled regions selected by a humap) LiDAR Processing: The vehicle’s state can be more
operator. Each cell within a labeled region is used as a trainiaffectively predicted when true 3-D point clouds are available
example for that class. Each training example is given feom high resolution LiDAR.
desired output 00.9 for the output node corresponding to Ground Surface Extraction: Before the vehicle state can
that example’s class and a desired output.dffor all other be predicted from a LiDAR point cloud, individual points must
output nodes. The network is trained using back-propagatiba segmented into those from the supporting ground surface
with a learning rate of).1 until the accuracy on a separateand those from vegetation, rocks, or other objects resting on
validation set stabilizes. The entire map is then classifiethe ground. Making this determination on a point by point
using the highest output node score to determine each celiasis allows better modeling not only of the ground surface,
class. Figure 2 shows an example of terrain classificatibnt of any non-ground objects that may come in contact with
following this approach. A more detailed description of théhe vehicle.
classification system can be found in [17]. Our approach is inspired by [18] and previously demon-



Fig. 4. Example of ground surface extraction. From left to right: an image of the area, shaded relief of the maximum LiDAR return in each cell, shaded
relief of the minimum return in each cell, and shaded relief of the extracted ground surface for each cell. Each i¥fiage 3§5 meters.

strated in [8]. It is based on the observation that the volunte risk traversing 3 times as much of the lower cost terrain.
below a ground point should be free of any other LIDAR Costs based on semantic classification are straightforward.
returns. For each LiDAR point, the number of other pointSach terrain class is assigned a traversal cost by a human
that fall within a downward oriented cone centered at th@perator. The costs are chosen to mimic the behavior of the
point of interest is computed. If the cone is empty, then tten-board perception system of the target vehicle on terrain of
point of interest is assumed to belong to the ground surfatkat class. Each raster cell is assigned the cost given to its
Otherwise, it is assumed to be a non-ground point (see Figaagegory.
3). This approach is far more robust than simply assuming theTraversal costs from mobility analysis are assigned more
minimum elevation within a window to be that of the groundormally. A set of functions map parameters computed for
surface (see Figure 4). each raster cell, such as roll, pitch, ground clearance, etc., to
Vehicle Model Convolution: Once ground surface pointsindividual costs that are then summed. The specific functions
have been extracted, mobility analysis can be performadged depend on the map parameter and the vehicle in question;
Potential positions of the vehicle control point and vehiclehen possible, the functions are taken directly from the
orientations are used in conjuction with known vehicle dimewehicle’s perception system.
sions to determine the location of each of the vehicle’s tires.Finally, each cell is assigned a driving speed limit based
The mean elevation of ground points in the cylinder centereth speed limits for each terrain class chosen by the human
around each tire location is used to determine tire elevationsoferator. These speed limits may then be lowered on a per
plane is then fit to the tire locations to predict the roll and pitctell basis by the overhead system if obstacles are detected
of the vehicle. Changes in roll and pitch as the vehicle movaesthin its vicinity. Speed limits are especially important when
can also be computed. These deltas are useful for detectihgy correspond to negative obstacles, as the overhead vantage
both positive and negative obstacles. point allows detection of negative obstacles that a vehicle may
Finally, for each pose, the set of points that exists withinot be able to sense until it is too late to slow sufficiently and
the vehicle’s footprint is extracted and the distance froprevent damage.
the tire plane is computed for each point. This distance is
used to predict the ground clearance of the vehicle and to V. RESULTS

identify high-centering hazards. In the case of non-groundThe overhead processing system was validated through the
points, the density of such points at various heights (vehigfznRPA UPI program. These tests involved a six wheeled, skid
undercarriage, vehicle body, vehicle sensor pod, etc.) candiger vehicle with independent suspension called Spinner (see
computed to better assess the traversability of certain areagigure 6). The vehicle is equipped with laser range finders
and cameras for on-board perception. The perception system
produces traversal costs that are merged with overhead costs
Traversal costs are independently computed from the resuftto a single cost map. Due to the dynamic nature of this cost
of terrain classification and vehicle mobility analysis for eacap, the Field D* [19] algorithm is used for real-time global
raster cell, and then summed to produce a final traversal cgganning.
These costs are interpreted as relative measures of mobilityrhe entire system was demonstrated during two two-week
risk; if the cost of one terrain type is 3 times as high as tHeeld tests in the fall and winter of 2005. Each of these tests
cost of another terrain type, then the vehicle would be willingonsisted of the vehicle autonomously traversing a series of

C. Producing Cost Maps



Fig. 5. Sample results of cost map production. From left to right: an image of the environment, extracted ground surface, classification cost map, convolution
cost map, final traversal cost map. Each imag868 x 595 meters.

Fig. 6. Spinner, the current platform of the DARPA UPI program.

Fig. 7. Representative terrain at Test Site 1.

courses defined as a set of widely spaced waypoints. During
these tests, nearly every important parameter of the envireftea consisted of lowlands leading up to mountains, with both
mept (climate, season, weather, elevation, local vegetatigfburses approaching and then ascending the mountains.
varied. Each course consisted of waypoints spaced friia to
Each run of each course was scored according to two Mgt meters apart, with an average separation of approximately
rics: average speed and number of interventions per kilometgfg meters. Each course was run with and without prior
Interventions were defined as any instance where a humgferhead data. Some courses were run multiple times under
operator interrupted the vehicle’s autonomous navigation fgfe same conditions to test the determinism of the system.
the purpose of vehicle safety (such as an emergency Stop i@y the North area, the available overhead data consisted
prevent damage) or mission progress (such as an opergiprsy centimeter resolution aerial color imagery. For the
decision to remotely reposition the vehicle). The numbgfanier and South area) centimeter IKONOS color and NIR
of required interventions was recorded by an independqmagery (pansharpened frod2 meters) pluss meter IFSAR

observer. elevation maps were available. 10 meter USGS DEMs were
) also available for all three test areas. This dataset therefore
A. Test Site 1 serves to test the performance of the system with lower

Test Site 1 consisted of off-road desert terrain with largesolution prior data. The classifier accuracy on a hand labeled
variations in elevation (see Figure 7). Vegetation consistedlidation set was1% using only color imagery, and1%
mostly of low to medium high scrub brush. Hazards includedsing both color and NIR imagery.
steep slopes, drop offs, and dry washes. The site was dividedrigure 8 demonstrates the types of situations where lower
into three test areas. The North area consisted of a brush filkedolution prior data proved most useful. The second to last
valley between two mountains, with courses running along tleypoint of the course placed the vehicle on top of a ridge.
valley. The Center area consisted of flatter terrain, with cours@sthout prior data, the vehicle had no knowledge of how far
leading around and over small to medium hills. The Southe ridge continued, causing the vehicle to follow its border



Fig. 8. Vehicle paths overlayed on satellite imagery. The vehicle’'s paths
with no prior data, planned path from prior data, and actual executed path
using prior data appear in red, green, and blue, respectively. Image size is

260 x 300 meters. IKONOS imagery courtesy of Space Imaging Inc. Fig. 9. Representative terrain at Test Site 2.
Experiment Mean Net Mean Inter. | Mean Speed
N _ Dlstazngg (km) p66r gm ((f)ﬂé%) level until a vehicle (human driven or autonomous) was a few
ort| WO prior . . . H H
North 1 w prior 249 12 121 me_ters away. In gerleral, 'Test Site 2 was conS|d_ered more
North 2 wo prior 1.55 2.6 1.24 difficult than Test Site 1; in some cases, the vehicle chase
North 2 w prior 1.65 12 123 team was unable to follow in a HMMWYV, and was forced to
Center 4 wo prior 3.66 11 1.59 ;
Center 4 w prior 3.68 0.8 1.71 Commue.on foot. . .
Center T wo prior 2.07 05 183 Tegt Site 2 was alsq d|V|ded_|n_to three_ areas. The South area
Center 1 w prior 4.42 0.1 1.96 consisted of flat terrain containing a mix of forest and open
South 4 wo prior 2.19 4.7 0.92 grass. Courses required either traversing through or around
South 4 w prior 2.13 0.9 1.85 . f f The C isted of |
South 3 wo prior 139 80 078 sections of forest. The Center area consisted of grassy low-
South 3 w prior 1.37 2.9 0.89 lands with large hills. Courses involved maneuvering through
Total wo prior 216 25 126 the lowlands as well as ascending hills or plateaus. The North
Total w prior 20.2 0.7 154 area consisted of ditch-filled lowlands, with courses requiring
TABLE | ascending and descending a large, forested plateau.
EXPERIMENTAL STATISTICS FORTESTSITE 1. Each course consisted of waypoints spaced fizii to

1100 meters apart, with an average separation of approxi-

mately 500 meters. This increased waypoint spacing places

more responsibility for efficient traversal on overhead process-
in hopes of finding an easy path down. Eventually, the vehicley ynlike at Test Site 1, only the South courses were run
was forced to take a steep path down to achieve the fingky and without prior data due to time constraints.
waypoint. With prior data, the vehicle possessed knowledgegq, the entire site35 centimeter aerial color and NIR
about the full extent of the ridge, and took the least dangerq%gery was available, along with) meter USGS DEMs.
path down at the beginning of the ridge. Further, LIDAR scans were available for the Center and

Cumulative statistics for each course, with and without priqjorth areas, at varying resolution80¢40 points per square
data, are presented in Table I. Overall, prior overhead data |@dter). This data set therefore tested the performance of the
to significant improvements in navigational performance. W"%ystem with high resolution data. Using imagery and LiDAR,
prior data, the number of required interventions per kilometg[assification accuracy on a hand labeled validation set was
decreased by better than a factor of three, and the avergge;
speed increased B2%. Figure 10 demonstrates the types of scenario where replan-
. ning with prior data performs differently from path tracking.
B. Test Site 2 The planned path from prior data chooses a more direct path
Test Site 2 consisted of flatter terrain with a much greatbetween waypoints. However, the vehicle’'s onboard perception

variety of vegetation as compared to Test Site 1 (see Figwegstem finds the first section of the planned path to be of higher
9). Vegetation consisted of not only grass and small bushesst than expected. Instead of going around this area and then
but trees of varying sizes. Tree canopy varied from low to thming back to the prior planned path, the vehicle replans an
ground and dense, to sparse and high off the ground. Narremtirely new path, making use of a road that appears in the
passageways through areas of forest were often coveredppyr data.
tree canopy. The entire site was also heavily populated withFigure 11 shows the result of one traversal of course Center
ditches. Many of the ditches were not visible from the grountl over four kilometers of complex terrain. The course skirted



data sources to produce traversal cost maps that can be used
to generate accurate global paths through an environment.
This approach was shown to significantly improve the average
vehicle speed while decreasing the amount of human interven-
tion required during navigation. This approach was evaluated
through over50 kilometers of autonomous traversal through
complex natural environments.

Fio 10, Vehidl o aved e 1 The vefidle: Future research will focus on improving classification rates
Wi no prior ate, planned paih from prior data. and actual exeouted pdjd MOre accurately predicting vehicle mobility. Future field
using prior data appear in red, green, and blue, respectively. The area shé@®ting will also provide the opportunity to better compare
is 450 x 300 meters. the effect of data resolution on performance, as well as

determine the minimum requirements for overhead data to

Experiment Mean Net | Mean Inter.| Mean Speed support efficient ground vehicle navigation.

Distance (km) per km (m/s)
South 1 wo prior 3.41 15 1.14
South 1 w prior 3.86 0.3 1.89 ACKNOWLEDGEMENTS
South 2 wo prior 2.54 0.8 1.22 This work was sponsored by the Defense Advanced Re-
South 2 w rior 3.57 0.6 1.49 h Proi A DARPA d "y d
Center TM w prior WV 01 175 search Projects Agency ( ) under contract "Unmanne
Center IN w prior 452 0.0 1.90 Ground Combat Vehicle - PerceptOR Integration” (contract
Center 2 w prior 3.19 0.3 1.83 number MDA972-01-9-0005). The views and conclusions con-
$c’t”lh 1 w prior 2';: 11'424 2'?3 tained in this document are those of the authors and should
otal wo prior . . . . ) .. .. .
Total w prior 302 03 162 not be mterpr_eted_ as representing the official policies, either

TABLE I expressed or implied, of the U.S. Government.
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