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Abstract— Long range navigation by unmanned ground ve-
hicles continues to challenge the robotics community. Efficient
navigation requires not only intelligent on-board perception and
planning systems, but also the effective use of prior knowledge
of the vehicle’s environment. This paper describes a system for
supporting unmanned ground vehicle navigation through the
use of heterogeneous overhead data. Semantic information is
obtained through supervised classification, and vehicle mobility
is predicted from available geometric data. This approach is
demonstrated and validated through over 50 kilometers of
autonomous traversal through complex natural environments.

I. I NTRODUCTION

Due to the recent popularity of the DARPA Grand Chal-
lenge, autonomous ground vehicle navigation has received
increasing attention. While on-road long range navigation has
been successfully demonstrated [1], off-road navigation over
long distances (multiple kilometers) without human interven-
tion remains a challenge. This is due to the highly varying
nature of off-road terrain, along with the complex surface
geometry and vegetation cover that can be encountered.

The goal of long range navigation is to achieve safe and effi-
cient traversal of an environment between two given locations.
Without any prior information about the environment, safe
navigation can be achieved by the vehicle’s local perception
system, but path efficiency will greatly suffer. Given sufficient
prior knowledge of an environment, both safety and efficiency
can be achieved. Prior data can come from a variety of
sources. Low resolution imagery (1 meter resolution gray-
scale) and topographic data (10 to 30 meter resolution) are
already available for most of the world. In addition, higher
resolution imagery and dense three-dimensional (3-D) data can
be collected commercially upon request.

Using such data sources introduces many challenges. A
system must be devised for extracting meaningful information
from such data, managing and merging data from various
sources, and using this data to improve autonomous navi-
gation. This paper deals with the general problem of using
heterogeneous overhead data sources (in time and resolution)
to support ground vehicle navigation.

We present an approach to produce (off-line, off-board)
traversal cost maps from overhead data that can be used (on-
line, on-board) for global path planning for an unmanned
ground vehicle. Traversal costs are computed from a combi-
nation of semantic and geometric data. Semantic information
of the terrain is obtained through supervised classification

using features extracted from imagery and 3-D data. Mobility
analysis is performed using the ground surface recovered from
3-D data or an available elevation map. Traversal costs are
assigned to reflect the capabilities of the vehicle.

This paper claims two major contributions: 1) the devise of
a consistent approach to support long range vehicle navigation
using heterogenous overhead data; 2) the experimental demon-
stration of the validity of the same approach by integration
on an autonomous vehicle, where vehicle performance was
evaluated systematically by an independent observer over an
accumulated distance of more than50 kilometers of natural
terrain.

The next section presents previous work in long range
navigation. Section III contains an overview of our approach.
Section IV details the semantic interpretation of the terrain,
and the methods used for mobility analysis. Finally, Section
V presents results evaluating the performance of this approach
from field tests after vehicle integration.

II. PREVIOUS WORK

A. Long Range Navigation Scenarios

The challenge of long range navigation for unmanned
ground vehicles exists under many scenarios, with many
factors that condition them. Examples are waypoint spacing,
level of prior environmental knowledge, mission context and
mission constraints [2]. One of the most important factors is
the vehicle’s mode of operation, which can be classified into
one of three broad categories:

• Path Tracking: the vehicle follows a fixed path through
the environment. If the vehicle has on-board sensing
capabilities, it may be allowed to deviate from the path if
it senses obstacles [3]. Provided paths may be human or
machine produced, and are usually based on some form
of prior knowledge of the environment.

• Full Exploration: the vehicle has no prior knowledge of
its environment, and must use on-board sensing to find
its way from waypoint to waypoint [4][5].

• Aided Exploration: prior knowledge is available, but
(unlike during Path Tracking) the vehicle is not directed
down a single, pre-planned path. Rather, the vehicle uses
the combination of prior data and its own perception
system to navigate between waypoints [6][7][8].

It is often difficult to clearly define the boundaries between
these categories. Factors such as the density of waypoints



and the quality of available prior data can heavily impact the
behavior of the vehicle.

B. Global Planning

Global planning involves finding the path between way-
points that best achieves mission priorities based on the
current knowledge of the environment. For example, it may
be desirable to choose the shortest traversable path, the lowest
risk path, or the path that optimizes some other metric (for
example, energy acquisition and usage [9]).

Under the mission scenario where the priority is vehicle
safety, a common approach is to generate acost mapof
the environment. A cost map is a 2-D grid representation
of the environment, where the value of each cell encodes
the mobility risk inherent in traversing through that cell. The
lowest traversal cost path through the grid is therefore the
(perceived) safest path to the goal. Any grid search algorithm
can be used in conjunction with such cost maps to plan paths.

In a path tracking scenario, global planning occurs once,
before a mission even begins. In a full exploration scenario,
global planning uses the perception history of the vehicle to
continually replan to its goal. In an aided exploration scenario,
the combination of prior data (possibly from overhead data or
a previous traverse of the area) and perception history is used
for continual replanning.

C. Prior Data

In an aided exploration scenario, vehicle behavior is
strongly affected by the available quality of prior data. Even
low resolution prior data can provide significant improve-
ment to vehicle performance, as demonstrated by numerous
simulations in [10]. In [6], low resolution (25 − 30 meter)
elevation maps were used to aid long distance planning.
[11] demonstrated the extraction of features (roads, trees,
water, etc.) from aerial surveys, for later correlation by an
autonomous vehicle.

The DARPA PerceptOR program contained an important
prior data component. Aerial LiDAR data was used to predict
vehicle roll and pitch over stretches of terrain, as well as to
detect vegetation [7][8]. This information was used to generate
prior cost maps for use in global planning.

In general, prior cost maps can be human or machine
produced. However, generating cost maps manually from
high resolution data over large areas is infeasible. Automated
processing is therefore essential for the effective use of prior
data in long range navigation.

III. OVERHEAD SYSTEM OVERVIEW

Overhead data sources fall into 3 broad categories:

• Imagery can be gathered by either aerial flyover or
satellite and consists of gray-scale, color, or multispectral
information.

• Rasterized Elevation Datais available at a wide range
of resolutions and from multiple sources

• 3D Point Cloud data is usually produced by aerial
LiDAR flyovers

There are many inherent challenges in using such a broad set
of data sources. Overhead data sets are often heterogeneous in
resolution, sampling pose, and sampling time, and may not be
georeferenced with sufficient accuracy. Furthermore, different
data sets may cover different areas. Therefore, the first step in
using such data sources is to align and sample them.

The full data flow of the overhead system is shown in Figure
1. After alignment, the data is preprocessed by sampling into a
raster grid. In the case of 3-D point cloud data, the load bearing
ground surface is extracted. Next, terrain-based features are
generated for use in semantic classification. These features are
fed to a supervised classifier (specifically a neural network) to
map each raster cell into one of several classes (see Section
IV-A).

Vehicle-based features are also computed by convolving
a vehicle model with a Digital Elevation Map (DEM) or
recovered ground surface. For each raster cell, the state of the
vehicle (roll, pitch, ground clearance, etc.) is predicted (see
Section IV-B).

Finally, the results of semantic classification and mobility
analysis are interpreted to generate traversal costs to form a
cost map. The rules for computing costs are vehicle-specific.
Additional useful parameters, such as maximum safe traversal
speeds for each cell, can be computed to further improve
navigational performance.

IV. OVERHEAD SYSTEM INSTANTIATION

A. Terrain Classification

1) Related Work:Similar research conducted by Charaniya
et al. [12] classified terrain into roads, grass, buildings, and
trees using aerial LiDAR height data, height texture, and signal
reflectance, achieving classification rates in the range of66%−
84%. Cao et al. attempted to identify man-made objects from
aerial imagery [13]. Knudsen and Nielson attempted to classify
buildings using a previously available GIS database and RGB
information for an environment [14].

2) Feature Extraction:The set of features to be extracted
depends on the particular data sets that have been provided
for the environment. Multiple data sets of the same type (for
instance, multiple sets of color imagery) can also be used.

Image Based Features:The RGB color space is known
to be sensitive to variation in illumination, while the hue,
saturation, value (HSV) space is not. Therefore, HSV is used
instead of RGB. To avoid discontinuities in hue space, the sine
and cosine of hue, along with saturation and value, are used
as features.

When Near-Infrared (NIR) imagery is available, NIR itself
is used as a feature, along with the the Normalized Difference
Vegetation Index (NDVI) [15]. Because chlorophyll absorbs
red light and reflects a larger proportion in the near-infrared
channel, NDVI can be effective in detecting vegetation.

Elevation Based Features:Elevation related features are
computed relative to local ground levels rather than from
absolute elevations in order to deal with slope. We use the
minimum, maximum and average elevation for each raster cell



Fig. 1. Overview of overhead data processing system: from raw data to cost maps.

Fig. 2. Sample classification results. On the left is an overhead reference
image used for ground truth and on the right is the classification of the
corresponding high-density, colorized, 3-D data into road, grass, tree, and
building. Areas with missing data appear in white.

as features, along with the standard deviation of those features
over a small support region.

Point Cloud Based Features:3-D point clouds are first
divided into ground and non-ground points using a procedure
presented in Section IV-B. The ratio of ground points over
the total number of points for a local support region is used
as a feature to describe the density or permeability of the
occluded space over the ground surface. Additional features
are extracted through principal component analysis to describe
the local distribution of a 3-D point cloud around a point of
interest [16]. PCA based features are computed seperately for
ground and non-ground points.

3) Classification:We use a neural network with one input
node for each feature, one hidden layer, and one output node
for each desired classification category. The network is trained
on each class by a set of labeled regions selected by a human
operator. Each cell within a labeled region is used as a training
example for that class. Each training example is given a
desired output of0.9 for the output node corresponding to
that example’s class and a desired output of0.1 for all other
output nodes. The network is trained using back-propagation
with a learning rate of0.1 until the accuracy on a separate
validation set stabilizes. The entire map is then classified,
using the highest output node score to determine each cell’s
class. Figure 2 shows an example of terrain classification
following this approach. A more detailed description of the
classification system can be found in [17].

Fig. 3. 3-D points are classified as ground (brown) or non-ground (green).

B. Vehicle Mobility Analysis

1) Digital Elevation Map Processing:Due to the rasterized
nature of DEMs, it is not meaningful to predict the exact state
of the vehicle at every position in the environment. Instead,
mobility analysis with DEMs is reduced to the computation
of an estimate of the ground slope. For each cell in the DEM,
a plane is fit to all cells in a surrounding neighborhood. The
size of the neighborhood depends on the size of the vehicle
and the resolution of the DEM.

Slope analysis of DEMs operates under the assumption that
the elevation value in each cell represents the elevation of
the load bearing ground surface. However, this is not always
the case as DEMs will often include the tops of tree canopy
or other dense vegetation that does not get penetrated by the
sensor. Our terrain classification techniques (Section IV-A) can
be used to detect and eliminate many such occurrences.

2) LiDAR Processing:The vehicle’s state can be more
effectively predicted when true 3-D point clouds are available
from high resolution LiDAR.

Ground Surface Extraction: Before the vehicle state can
be predicted from a LiDAR point cloud, individual points must
be segmented into those from the supporting ground surface
and those from vegetation, rocks, or other objects resting on
the ground. Making this determination on a point by point
basis allows better modeling not only of the ground surface,
but of any non-ground objects that may come in contact with
the vehicle.

Our approach is inspired by [18] and previously demon-



Fig. 4. Example of ground surface extraction. From left to right: an image of the area, shaded relief of the maximum LiDAR return in each cell, shaded
relief of the minimum return in each cell, and shaded relief of the extracted ground surface for each cell. Each image is265× 375 meters.

strated in [8]. It is based on the observation that the volume
below a ground point should be free of any other LiDAR
returns. For each LiDAR point, the number of other points
that fall within a downward oriented cone centered at the
point of interest is computed. If the cone is empty, then the
point of interest is assumed to belong to the ground surface.
Otherwise, it is assumed to be a non-ground point (see Figure
3). This approach is far more robust than simply assuming the
minimum elevation within a window to be that of the ground
surface (see Figure 4).

Vehicle Model Convolution: Once ground surface points
have been extracted, mobility analysis can be performed.
Potential positions of the vehicle control point and vehicle
orientations are used in conjuction with known vehicle dimen-
sions to determine the location of each of the vehicle’s tires.
The mean elevation of ground points in the cylinder centered
around each tire location is used to determine tire elevations. A
plane is then fit to the tire locations to predict the roll and pitch
of the vehicle. Changes in roll and pitch as the vehicle moves
can also be computed. These deltas are useful for detecting
both positive and negative obstacles.

Finally, for each pose, the set of points that exists within
the vehicle’s footprint is extracted and the distance from
the tire plane is computed for each point. This distance is
used to predict the ground clearance of the vehicle and to
identify high-centering hazards. In the case of non-ground
points, the density of such points at various heights (vehicle
undercarriage, vehicle body, vehicle sensor pod, etc.) can be
computed to better assess the traversability of certain areas.

C. Producing Cost Maps

Traversal costs are independently computed from the results
of terrain classification and vehicle mobility analysis for each
raster cell, and then summed to produce a final traversal cost.
These costs are interpreted as relative measures of mobility
risk; if the cost of one terrain type is 3 times as high as the
cost of another terrain type, then the vehicle would be willing

to risk traversing 3 times as much of the lower cost terrain.
Costs based on semantic classification are straightforward.

Each terrain class is assigned a traversal cost by a human
operator. The costs are chosen to mimic the behavior of the
on-board perception system of the target vehicle on terrain of
that class. Each raster cell is assigned the cost given to its
category.

Traversal costs from mobility analysis are assigned more
formally. A set of functions map parameters computed for
each raster cell, such as roll, pitch, ground clearance, etc., to
individual costs that are then summed. The specific functions
used depend on the map parameter and the vehicle in question;
when possible, the functions are taken directly from the
vehicle’s perception system.

Finally, each cell is assigned a driving speed limit based
on speed limits for each terrain class chosen by the human
operator. These speed limits may then be lowered on a per
cell basis by the overhead system if obstacles are detected
within its vicinity. Speed limits are especially important when
they correspond to negative obstacles, as the overhead vantage
point allows detection of negative obstacles that a vehicle may
not be able to sense until it is too late to slow sufficiently and
prevent damage.

V. RESULTS

The overhead processing system was validated through the
DARPA UPI program. These tests involved a six wheeled, skid
steer vehicle with independent suspension called Spinner (see
Figure 6). The vehicle is equipped with laser range finders
and cameras for on-board perception. The perception system
produces traversal costs that are merged with overhead costs
into a single cost map. Due to the dynamic nature of this cost
map, the Field D* [19] algorithm is used for real-time global
planning.

The entire system was demonstrated during two two-week
field tests in the fall and winter of 2005. Each of these tests
consisted of the vehicle autonomously traversing a series of



Fig. 5. Sample results of cost map production. From left to right: an image of the environment, extracted ground surface, classification cost map, convolution
cost map, final traversal cost map. Each image is368× 595 meters.

Fig. 6. Spinner, the current platform of the DARPA UPI program.

courses defined as a set of widely spaced waypoints. During
these tests, nearly every important parameter of the environ-
ment (climate, season, weather, elevation, local vegetation)
varied.

Each run of each course was scored according to two met-
rics: average speed and number of interventions per kilometer.
Interventions were defined as any instance where a human
operator interrupted the vehicle’s autonomous navigation for
the purpose of vehicle safety (such as an emergency stop to
prevent damage) or mission progress (such as an operator
decision to remotely reposition the vehicle). The number
of required interventions was recorded by an independent
observer.

A. Test Site 1

Test Site 1 consisted of off-road desert terrain with large
variations in elevation (see Figure 7). Vegetation consisted
mostly of low to medium high scrub brush. Hazards included
steep slopes, drop offs, and dry washes. The site was divided
into three test areas. The North area consisted of a brush filled
valley between two mountains, with courses running along the
valley. The Center area consisted of flatter terrain, with courses
leading around and over small to medium hills. The South

Fig. 7. Representative terrain at Test Site 1.

area consisted of lowlands leading up to mountains, with both
courses approaching and then ascending the mountains.

Each course consisted of waypoints spaced from100 to
400 meters apart, with an average separation of approximately
250 meters. Each course was run with and without prior
overhead data. Some courses were run multiple times under
the same conditions to test the determinism of the system.

For the North area, the available overhead data consisted
of 54 centimeter resolution aerial color imagery. For the
Center and South areas,80 centimeter IKONOS color and NIR
imagery (pansharpened from3.2 meters) plus3 meter IFSAR
elevation maps were available. 10 meter USGS DEMs were
also available for all three test areas. This dataset therefore
serves to test the performance of the system with lower
resolution prior data. The classifier accuracy on a hand labeled
validation set was81% using only color imagery, and91%
using both color and NIR imagery.

Figure 8 demonstrates the types of situations where lower
resolution prior data proved most useful. The second to last
waypoint of the course placed the vehicle on top of a ridge.
Without prior data, the vehicle had no knowledge of how far
the ridge continued, causing the vehicle to follow its border



Fig. 8. Vehicle paths overlayed on satellite imagery. The vehicle’s paths
with no prior data, planned path from prior data, and actual executed path
using prior data appear in red, green, and blue, respectively. Image size is
260× 300 meters. IKONOS imagery courtesy of Space Imaging Inc.

Experiment Mean Net Mean Inter. Mean Speed
Distance (km) per km (m/s)

North 1 wo prior 2.39 6.3 0.80
North 1 w prior 2.49 1.2 1.21
North 2 wo prior 1.55 2.6 1.24
North 2 w prior 1.65 1.2 1.23
Center 4 wo prior 3.66 1.1 1.59
Center 4 w prior 3.68 0.8 1.71
Center 1 wo prior 4.07 0.5 1.83
Center 1 w prior 4.42 0.1 1.96
South 4 wo prior 2.75 4.7 0.92
South 4 w prior 2.13 0.9 1.85
South 3 wo prior 1.39 8.0 0.75
South 3 w prior 1.37 2.9 0.89

Total wo prior 21.6 2.5 1.26
Total w prior 20.2 0.7 1.54

TABLE I

EXPERIMENTAL STATISTICS FORTEST SITE 1.

in hopes of finding an easy path down. Eventually, the vehicle
was forced to take a steep path down to achieve the final
waypoint. With prior data, the vehicle possessed knowledge
about the full extent of the ridge, and took the least dangerous
path down at the beginning of the ridge.

Cumulative statistics for each course, with and without prior
data, are presented in Table I. Overall, prior overhead data led
to significant improvements in navigational performance. With
prior data, the number of required interventions per kilometer
decreased by better than a factor of three, and the average
speed increased by22%.

B. Test Site 2

Test Site 2 consisted of flatter terrain with a much greater
variety of vegetation as compared to Test Site 1 (see Figure
9). Vegetation consisted of not only grass and small bushes,
but trees of varying sizes. Tree canopy varied from low to the
ground and dense, to sparse and high off the ground. Narrow
passageways through areas of forest were often covered by
tree canopy. The entire site was also heavily populated with
ditches. Many of the ditches were not visible from the ground

Fig. 9. Representative terrain at Test Site 2.

level until a vehicle (human driven or autonomous) was a few
meters away. In general, Test Site 2 was considered more
difficult than Test Site 1; in some cases, the vehicle chase
team was unable to follow in a HMMWV, and was forced to
continue on foot.

Test Site 2 was also divided into three areas. The South area
consisted of flat terrain containing a mix of forest and open
grass. Courses required either traversing through or around
sections of forest. The Center area consisted of grassy low-
lands with large hills. Courses involved maneuvering through
the lowlands as well as ascending hills or plateaus. The North
area consisted of ditch-filled lowlands, with courses requiring
ascending and descending a large, forested plateau.

Each course consisted of waypoints spaced from200 to
1100 meters apart, with an average separation of approxi-
mately 500 meters. This increased waypoint spacing places
more responsibility for efficient traversal on overhead process-
ing. Unlike at Test Site 1, only the South courses were run
with and without prior data due to time constraints.

For the entire site,35 centimeter aerial color and NIR
imagery was available, along with10 meter USGS DEMs.
Further, LiDAR scans were available for the Center and
North areas, at varying resolutions (20-40 points per square
meter). This data set therefore tested the performance of the
system with high resolution data. Using imagery and LiDAR,
classification accuracy on a hand labeled validation set was
98%.

Figure 10 demonstrates the types of scenario where replan-
ning with prior data performs differently from path tracking.
The planned path from prior data chooses a more direct path
between waypoints. However, the vehicle’s onboard perception
system finds the first section of the planned path to be of higher
cost than expected. Instead of going around this area and then
coming back to the prior planned path, the vehicle replans an
entirely new path, making use of a road that appears in the
prior data.

Figure 11 shows the result of one traversal of course Center
1 over four kilometers of complex terrain. The course skirted



Fig. 10. Vehicle paths overlayed on satellite imagery. The vehicle’s paths
with no prior data, planned path from prior data, and actual executed path
using prior data appear in red, green, and blue, respectively. The area shown
is 450× 300 meters.

Experiment Mean Net Mean Inter. Mean Speed
Distance (km) per km (m/s)

South 1 wo prior 3.41 1.5 1.14
South 1 w prior 3.86 0.3 1.89
South 2 wo prior 2.54 0.8 1.22
South 2 w rior 3.57 0.6 1.49
Center 1M w prior 4.44 0.1 1.75
Center 1N w prior 4.52 0.0 1.90
Center 2 w prior 3.19 0.3 1.83
North 1 w prior 6.15 1.44 0.80

Total wo prior 5.95 1.2 1.17
Total w prior 30.2 0.3 1.62

TABLE II

EXPERIMENTAL STATISTICS FORTEST SITE 2.

the edge of a large plateau before eventually ascending it. The
prior global plan for this course used all of the available prior
data. When available, roads or road-like areas were used. Open
paths through areas of dense trees were found. Ditches were
avoided if possible; if not, the easiest place to cross them
was found. Finally, the route chosen to ascend the plateau
made use of the lowest grade and best maintained road. The
fastest autonomous traverse of this course took42 minutes
with an average speed of1.97 m/s (7.1 km/hr). For comparison
, human navigation of the course in a HMMWV occurred at an
average speed of approximately15 km/hr. The fact that human
driving was limited to such a low average speed conveys the
difficulty of the course. It is important to note that after several
days on site, the route chosen by the human driver between
waypoints was nearly identical to the prior planned path.

Cumulative statistics for each course, with and without prior
data, are presented in Table II. Due to system wide changes
between Test Sites 1 and 2, the overall system performance
improved with and without prior data, despite increased terrain
difficulty. High resolution prior overhead data proved even
more effective than at Test Site 1. The number of required
interventions per kilometer decreased by a factor of four, and
the average speed increased by38%.

VI. CONCLUSION

This paper addressed the problem of using prior overhead
data of an environment to aid in long range navigation for an
unmanned ground vehicle. The proposed approach relies on
the geometric and semantic interpretation of heterogeneous

data sources to produce traversal cost maps that can be used
to generate accurate global paths through an environment.
This approach was shown to significantly improve the average
vehicle speed while decreasing the amount of human interven-
tion required during navigation. This approach was evaluated
through over50 kilometers of autonomous traversal through
complex natural environments.

Future research will focus on improving classification rates
and more accurately predicting vehicle mobility. Future field
testing will also provide the opportunity to better compare
the effect of data resolution on performance, as well as
determine the minimum requirements for overhead data to
support efficient ground vehicle navigation.
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