High Performance Outdoor Navigation from
Overhead Data using Imitation Learning

David Silver, J. Andrew Bagnell, Anthony Stentz
Robotics Institute, Carnegie Mellon University
Pittsburgh, Pennsylvania USA

Abstract— High performance, long-distance autonomous navi-
gation is a central problem for field robotics. Efficient navigation
relies not only upon intelligent onboard systems for perception
and planning, but also the effective use of prior maps and
knowledge. While the availability and quality of low cost, high
resolution satellite and aerial terrain data continues to rapidly im-
prove, automated interpretation appropriate for robot planning
and navigation remains difficult. Recently, a class of machine
learning techniques have been developed that rely upon expert
human demonstration to develop a function mapping overhead
data to traversal cost. These algorithms choose the cost function
so that planner behavior mimics an expert’s demonstration
as closely as possible. In this work, we extend these methods
to automate interpretation of overhead data. We address key
challenges, including interpolation-based planners, non-linear
approximation techniques, and imperfect expert demonstration,
necessary to apply these methods for learning to search for
effective terrain interpretations. We validate our approach on
a large scale outdoor robot during over 300 Kkilometers of
autonomous traversal through complex natural environments.

I. INTRODUCTION

Recent competitions have served to demonstrate both the
growing popularity and promise of mobile robotics. Although
autonomous navigation has been successfully demonstrated
over long distances through on-road environments, long dis-
tance off-road navigation remains a challenge. The varying
and complex nature of off-road terrain, along with different
forms of natural and man made obstacles, contribute to the
difficulty of this problem.

Although autonomous off-road navigation can be achieved
solely through a vehicle’s onboard perception system, both the
safety and efficiency of a robotic system are greatly enhanced
by prior knowledge of its environment. Such knowledge allows
high risk sections of terrain to be avoided, and low risk
sections to be more heavily utilized.

Overhead terrain data are a popular source of prior environ-
mental knowledge, especially if the vehicle has not previously
encountered a specific site. Overhead sources include aerial or
satellite imagery, digital elevation maps, and even 3-D LiDAR
scans. Much of this data is freely available at lower resolutions,
and is commercially available at increasing resolution.

Techniques for processing such data have focused primarily
on processing for human consumption. The challenge in using
overhead data for autonomous navigation is to interpret the
data in such a way as to be useful for a vehicle’s planning and
navigation system. This paper proposes the use of imitation
learning to train a system to automatically interpret overhead

data for use within an autonomous vehicle planning system.
The proposed approach is based on the Maximum Margin
Planning (MMP) [1] framework, and makes use of expert
provided examples of how to navigate using the provided data.
The next section presents previous work in off-road naviga-
tion from prior data. Section III presents the MMP framework,
and Section IV develops its application to this context. Results
are presented in Section V, and conclusions in Section VI.

II. OUTDOOR NAVIGATION FROM OVERHEAD DATA

At its most abstract level, the outdoor navigation problem
in mobile robotics involves a robot driving itself from a
start waypoint to a goal waypoint. The robot may or may
not have prior knowledge of the environment, and may or
may not be able to gather more environmental knowledge
during its traverse. In either case, there exists some form of
terrain model. For outdoor navigation, this is often a grid
representation of the environment, with a set of environmental
features at each grid cell.

The systems we consider in this work rely upon a planning
system to make navigation decisions. This system is respon-
sible for finding an optimal path that will lead the robot to
its goal. The naturally raises the question of how “optimal”
will be defined: is it the safest path, the fastest path, the
minimum energy path, or the most stealthy path? Depending
on the context, these are all valid answers; combinations of the
above are even more likely to be desired. In practice, planners
typically function by choosing the path with the minimum
score according to some scalar function of the environment
that approximates those metrics. Therefore, for a chosen met-
ric, the robot’s terrain model must be transformed into a single
number for every planner state: that state’s traversal cost. A
planner can then determine the optimal path by minimizing the
cumulative cost the robot expects to experience. Whether or
not this path achieves the designer’s desired behavior depends
on how faithfully the cost function, mapping features of the
environment to scalar traversal costs, reflects the designer’s
internal performance metric.

Previous work [2] [3] has demonstrated the effectiveness of
overhead data for use in route planning. Overhead imagery,
elevation maps, and point clouds are processed into features
stored in 2-D grids. These feature maps can then be converted
to traversal costs. Figure 1 demonstrates how this approach
can lead to more efficient navigation by autonomous vehicles.

Fig. 1.
from top-right to bottom left. The green run had no prior map, and made
several poor decisions that required backtracking. The red run had the prior
costmap shown at right, and took a more efficient route. Brighter pixels
indicate higher cost.

The path traveled during two runs of an autonomous robot moving

Despite good results, previous work has depended on hand
tuned cost functions. That is, an engineer manually determined
both the form and parameters of a function to map overhead
features to a single cost value, in an attempt to express a
desired planning metric. By far, human engineering is the
most common approach to generating cost functions. This
is somewhat of a black art, requiring a deep understanding
of the features being used, the metric to be optimized, and
the behavior of the planner. Making the situation worse,
determining a cost function is not necessarily a one time
operation. Each environment could have drastically different
overhead input data available. One environment may have
satellite imagery, another aerial imagery and an elevation map,
another may have multispectral imagery, etc. Therefore, an
entire family of cost functions is needed, and parameters must
be continually retuned.

One approach to simplifying this problem is to transform
the original “raw” feature space into a “cost” feature space,
where the contribution of each feature to cost is more intuitive.
Classifiers are a common example of this approach, where
imagery and other features are transformed into classifications
such as road, grass, trees, bushes, etc. However, the tradeoff
that is faced is a loss of information. Also, while the cost
functions themselves may be simpler, the mapping into this
new feature space now must be recomputed or retrained when
the raw features change, and the total complexity of the
mapping to cost may have increased.

Regardless of any simplifications, human engineering of
cost functions inevitably involves parameter tuning, usually
until the results are correct by visual inspection. Unfortunately,
this does not ensure the costs will actually reflect the chosen
metric for planning. This can be validated by planning some
sample start/goal waypoints to see if the resulting paths are
reasonable. Unreasonable plans result in changes to the cost
parameters. This process repeats, expert in the loop, until the
expert is satisfied. Often times, continual modifications take
the form of very specific rules or thresholds, for very specific

shortcomings of the current cost function. This can result in a
function with poor generalization.

Hidden in this process is a key insight. While experts have
difficulty expressing a specific cost function, they are good at
evaluating results. That is, an expert can look at the raw data
in its human presentable form, and determine which paths are
and are not reasonable. It is this ability of experts that will be
exploited for learning better cost functions.

III. MAXIMUM MARGIN PLANNING FOR LEARNING COST
FUNCTIONS

Imitation Learning has been demonstrated as an effective
technique for deriving suitable autonomous behavior from
expert examples. Previous work specific to autonomous nav-
igation [4, 5] has demonstrated how to learn mappings from
features of a state to actions. However, these techniques
do not generalize well to long range decisions, due to the
dimensionality of the feature space that would be required to
fully encode the such a problem.

A powerful recent idea for how to approach such long
range problems is to structure the space of learned policies to
be optimal solutions of search, planning or general Markov
Decision Problems [1, 6, 7] . The goal of the learning
procedure is then to identify a mapping from features of a state
to costs such that the resulting minimum cost plans capture
well the demonstrated behavior. We build on the approach of
Maximum Margin Planning (MMP) [1, 7], which searches for
a cost function that makes the human expert choices appear
optimal.

In this method, an expert provided optimal example serves
as a constraint on cost functions. If an example path is
provided as the best path between two waypoints, then any
acceptable cost function should cost the example as less then
or equal to all other paths between those two waypoints. By
providing multiple example paths, the space of possible cost
functions can be further constrained.

Our interest in this work is in applying learning techniques
to ease the development of cost functions appropriate for out-
door navigation. The approach to imitation learning described
above directly connects the notion of learning a cost function
to recovering demonstrated behavior. As we introduce new
techniques that improve performance in our application, we
sketch the derivation of the functional gradient version [8, 9]
of MMP below. This approach allows us to adapt existing,
off-the-shelf regression techniques to learn the potentially
complicated cost function, leading to a modular and simple
to implement technique.

A. Single Example

Consider a state space S, and a feature space F defined
over S. That is, for every x € S, there exists a corresponding
feature vector F, € F. C is defined as a cost function over
the feature space, C' : F — R™T. Therefore, the cost of a state
x is C(Fy).

A path P is defined as a sequence of states in S that lead
from a start state s to a goal state g. The cost of P is simply
the sum of the costs of all states along the path.

Fig. 2. Left: Example paths that imply different metrics (From top to bottom:
minimize distance traveled, stay on roads, stay near trees) Right: Learned
costmaps from the corresponding examples (brighter pixels indicate higher
cost). Quickbird imagery courtesy of Digital Globe, Inc.

If an example path P, is provided, then a constraint on cost
functions can be defined such that the cost of P, must be
lower cost than any other path from s, to g.. The structured
maximum margin approach [1] encourages good generaliza-
tion and prevents trivial solutions (e.g. the everywhere O cost
function) by augmenting the constraint to includes a margin:
i.e. the demonstrated path must be BETTER than another path
by some amount. The size of the margin is dependent on the
similarity between the two paths. In this context, similarity is
defined by how many states the two paths share, encoded in a
function L.. Finding the optimal cost function then involves
constrained optimization of an objective functional over C'

min O[C] = REG(C) (1)
subject to the constraints

Z(C(Fz) — Le()) — Z (C(Fy)) >0

zep € P,

VP st.P#P., §=5¢, §=ge

1 ifxelP,
Le(2) = { 0 otherwise

where REG is a regularization operator that encourages gen-
eralization in the the cost function C.

There are typically an exponentially large (or even infinite)
number of constraints, each corresponding to an alternate path.
However, it is not necessarily to enumerate these constraints.

For every candidate cost function, there is a minimum cost
path between two waypoints and at each step it is only
necessary to enforce the constraint on this path.

It may not always be possible to achieve all constraints
and thus a “slack” penalty is added to account for this. Since
the slack variable is tight, we may write an “unconstrained”
problem that captures the constraints as penalties:

min O[C] = REG(C)+ Y _ (C(Fy)) — min > (C(Fy)—Le(x))

z€P,
)
For linear cost functions (and convex regularization) O[C] is
convex, and can be minimized using gradient descent.
Linear cost functions may be insufficient, and using the
argument in [8], it can be shown that the (sub-)gradient in
the space of cost functions of the objective is given by 2

VOr[Cl= Y 6p(F) —) or(F) ©)

xeP, xEP,

zep

Simply speaking, the functional gradient is positive at values of
F' that the example path pass through, and negative at values
of F' that the planned path pass through. The magnitude of
the gradient is determined by the frequency of visits. If the
example and planned paths agree in their visitation counts
at I, the functional gradient is zero at that state. Applying
gradient descent in this space of cost functions directly would
involve an extreme form of overfitting: defining a (potentially
unique) cost at every value of F' encountered and involving
no generalization. Instead, as in gradient boosting [9] we take
a small step in a limited set of “directions” using a hypothesis
space of functions mapping features to a real number. The
result is that the cost function is of the form:

C(F)=> niRi(F) 4)

where R belongs to a chosen family of functions (linear,
decision trees, neural networks, etc.) The choice of hypothesis
space in turn controls the complexity of the resulting cost
function. We must then find at each step the element R, that
maximizes the inner product (— 57 Op[C], R.) between the
functional gradient and elements of the space of functions we
are considering. As in [8], we note that maximizing the inner
product between the functional gradient and the hypothesis
space can be understand as a learning problem:

R, = arg mI%X Z axyzR(Fm) (5
rE€P. NP,

a; = |V OR,[C]| y. = —sgn(VOF,[C])

In this form, it can be seen that finding the projection of
the functional gradient essentially involves solving a weighted
classification problem. Performing regression instead of clas-
sification adds regularization to each projection [8].
Intuitively, the regression targets are positive in places the
planned path visits more than the example path, and negative

ITechnically, sub-gradient descent as the function is non-differentiable
2Using § to signify the dirac delta at the point of evaluation

CO = 1;
for ; =1...T do
D = ()
foreach P, do
M=
buildCostmapWithMargin (Ci_1, Se, e, F);
P, = planPath (s¢, ge, M) ;
D= DU{P67 _1};

D=DU{P.. 1}
end
R; = trainRegressor (F,D);
Ci = Ci_y x el

end

Algorithm 1: The proposed imitation learning algorithm

in places the example path visits more than the planned path.
The weights on each regression target are the difference in
visitation counts. In places where the visitation counts agree,
both the target value and weight are 0. Pseudocode for the
final algorithm is presented in Algorithm 1.

Gradient descent can be understood as encouraging func-
tions that are “small” in the I norm. If instead, we consider
applying an exponentiated functional gradient descent update
as described in [7, 10] we encourage functions that are
“sparse” in the sense of having many small values and a few
potentially large values. Instead of cost functions of the form
in (4) this produces functions of the form

C(F) = exnfu®) (6)

This naturally results in cost functions which map to R,
without any need for projecting the result of gradient descent
into the space of valid cost functions. We believe, and our
experimental work demonstrates, that this implicit prior is
more natural and effective for problems of outdoor navigation.

B. Multiple Examples

Each example path defines a constraint on the cost function.
However, it is rarely the case that a single constraint will
sufficiently inform the learner to generalize and produce
reasonable planner behavior for multiple situations. For this
reason, it is often desireable to have multiple example paths.

Every example path will produce its own functional gradient
as in (3). When learning with multiple paths, these individual
gradients can either be approximated and followed one at a
time, or summed up and approximated as a batch. To minimize
training time, we have chosen the later approach.

One remaining issue is that of relative weighting between
the individual gradients. If they are simply combined as
is, then longer paths will have a greater contribution, and
therefore a greater importance when balancing all constraints.
Alternatively, each individual gradient can be normalized, giv-
ing every path equal weight. Again, we have chosen the latter
approach. The intuition behind this is that every path is a single
constraint, and all constraints should be equally important.
However, this issue has not been thoroughly explored.

IV. APPLIED IMITATION LEARNING ON OVERHEAD DATA

At a high level, the application of this approach to overhead
data is straightforward. S is SE(2), with features extracted
from overhead data at each 2-D cell. Example paths are drawn
over this space by a domain expert. Paths can also be provided
by driving over the actual terrain, when access to the terrain
is possible before the learned map is required. However, there
are several practical problems encountered during application
of this algorithm that require solutions.

A. Adaptation to Different Planners

The algorithm suggested in the previous section requires
determining the visitation counts for each cell along both the
example and the current planned path. For some planners this
is straightforward; a simple A* planner visits each cell on the
path once. For other planners, it is not so simple. Since the
goal of this work is to learn the proper cost function for a
specific planner, planner details must be taken into account.

Many planners apply a configuration space expansion to an
input cost map before planning, to account for the dimensions
of the vehicle. When such an expansion does take place, it
must also be taken into account by the learner. For example, if
the planner takes the average cost of all cells within a window
around the current cell, then the visitation count of all the
cells within the same window must be incremented, not just
the current cell. If the expansion applies different weightings
to different cells within a window, then this weighting must
also be applied when incrementing the visitation counts.

More complicated planners may also require non-unit
changes to the visitation counts, regardless of an expansion.
For example the interpolated A* algorithm [11] used in
this work generates paths that are interpolated across cell
boundaries. Therefore, the distance traveled through a cell may
be anywhere in the interval (0,+/2] (in cells) As the cost of
traveling through a cell under this scheme is proportional to
the distance traveled through the cell, the visitation counts
must also be incremented proportional to the distance traveled
through the cell.

B. Regressor Choice

The choice of regressor for approximating the functional
gradient can have a large impact on performance. Simple
regressors may generalize better, and complex regressors may
learn more complicated cost functions. This tradeoff must be
effectively balanced. As in a classification task, one way to
accomplish this is to observe performance on an independent
validation set of example paths.

Linear regressors offer multiple advantages in this context.
Aside from simplicity and good generalization, a weighted
combination of linear functions simply produces another linear
function. This provides a significant decrease in processing
time for repeated cost evaluations.

The MMPBoost [8] algorithm can also be applied. This
algorithm suggests using linear regressors, and then occasion-
ally performing a nonlinear regression. However, instead of
adding this nonlinear regressor directly to the cost function,

Fig. 3. Top Left:The red path is an unachievable example path, as it will be
less expensive under any cost function to cut more directly accross the grass.
Bottom Left: With standard weighting, the unachievable example forces down
the cost of grass, and prevents the blue example from being achieved. Bottom
Right: Balanced weighting prevents this bias, and the blue path is achieved
Top Right: The ratio of the balanced to the standard costmap. The cost of
grass is higher in the balanced map.

it is added as a new feature for future linear regressors. In
this way, future iterations can tune the contribution of these
occasional nonlinear steps, and the ammount of nonlinearity
in the final cost function is tightly controlled.

C. Unachievable Example Paths

The derivations in Section III operate under the assumption
that the example paths are either optimal or are just slightly
sub-optimal, with the error being taken into the slack variables
in the optimization problem. In practice, it is often possible to
generate an example path such that no consistent cost metric
will make the example optimal.

Figure 3 provides a simple example of such a case. The
red example path takes a very wide berth around some trees.
All the terrain the path travels over is essentially the same,
and so will have the same cost. If the spacing the path gives
the trees is greater than the expansion of the planner, then
no cost function will ever consider that example optimal; it
will always be better to cut more directly across the grass.
In practice, such a case occurs in a small way on almost all
human provided examples. People rarely draw or drive perfect
straight lines or curves, and therefore generate examples that
are a few percent longer than necessary. Further, a limited set
of features and planner limitations mean that the path a human
truly considers to be optimal may not be achievable using the
planning system and features available to learn with.

It is interesting to note what happens to the functional
gradient with an unachievable example. Imagine an example
path that only travels through terrain with an identical feature
vector . Under any cost function, the planned path will be
the shortest path from start to goal. But what if the example
path takes a longer route? The functional gradient will then be
positive at F”, as the example visitation count is higher than
the planned. Therfore, the optimization will try to lower the

cost of . At the next epoch, neither path will have changed.
So unachievable paths result in components of the functional
gradient that continually try to lower costs. These components
can counteract the desires of other, achievable paths, resulting
in worse cost functions (see Figure 3).

This effect can be counteracted with a small modification to
the learning procedure of the functional gradient. Simplifying
notation, define the negative gradient vector as

—VOF[C] =U,—-U,

Where U, and U, are the visitation counts of the planned and
example paths, respectively.

Now consider a new gradient vector that looks at the feature
counts normalized by the length of the corresponding path

U U
|P| | Pl
In the unachievable case described above, this new gradient
would be zero instead of negative. That is, it would be satisfied

with the function as is. It can be shown that this new gradient
still correlates with the original gradient in other cases:

(—V Or[C],Gavg) >0

Gavg = (7)

U. U
U, — U, —= — =%y >0
[Pl [Pl
<U*7U*> - <U*7 Ue> <Ue>Ue> - <U*7Ue> >0
| P |Pe

The term (U.,U.) can be understood as related to the
similarity in visitation counts between the two paths. If the
two paths visit terrain with different features, this term will
be small, and the inequality will hold. If the paths visit the
exact same features (U, = U,) then the inequality does not
hold. This is the situation discussed above, where the gradient
is zero instead of negative.

In terms of the approximation to the gradient, this modifica-
tion suggest performing a balanced classification or regression
on the visitation counts as opposed to the standard, weighted
one. As long as the classifier can still separate between the
positive and negative classes, the balanced result will point in
the same direction as the standard one. When the classifier
can no longer distinguish between the classes, the gradient
will tend more to towards zero, as opposed to moving in the
direction of the more populous class (see Figure 3). This bal-
ancing also accomplishes the functional gradient normalization
between paths described in section III-B.

D. Alternate Examples

When example paths are unachievable or inconsistent, it
is often by a small amount, due to the inherent noise in
a human provided example. One way to address this is to
slightly redefine the constraints on cost functions. Instead of
considering an example path as indicative of the exact optimal
path, it can be considered instead as the approximately optimal
path. That is, instead of trying to enforce the constraint that no
path is cheaper than the example path, enforce the constraint
that no path is cheaper than the cheapest path that exists

completely within a corridor around the example path. With
this constraint, the new objective functional becomes

>

O[C] =min » C(F,) — min > C(Fy) = Le(z) (®)

zeP, zep

Where P, is the set of all paths within the example corridor.
The result of this new set of constraints is that the gradient
is not affected by details smaller than the size of the corridor.
In effect, this acts as a smoother that can reduce noise in the
examples. However, if the chosen corridor size is too large,
informative training information can be lost.

One downside of this new formulation is that the objective
functional is no longer convex (due to the first min term).
It is certainly possible to construct cases with a single path
where this new formulation would converge to a very poor
cost function. However, empirical observation has indicated
that as long as more than a few example corridors are used,
all the local minima achieved are quite satisfactory.

More complicated versions of this alternative formulation
are also possible. For instance, instead of a fixed width
corridor along the example path, a specified variable width
corridor could be used. This would allow example paths with
high importance at some sections (at pinch points) and low
importance elsewhere. Another version of this formulation
would involve multiple disjoint corridors. This could be used
if an expert believed there were two different but equally
desirable “best” paths from start to goal.

V. EXPERIMENTAL RESULTS
A. Algorithm Verification

In order to understand the performance of this approach, a
series of offline experiments was performed on real overhead
data. The dataset consisted of Quickbird satellite imagery and
a 3-D LiDAR scan with approximately 3 points per m?. The
metric used to evaluate the results of these experiments is
the average cost ratio over all paths. The cost ratio is the
cost of the example path over the cost of the planned path,
and is proportional to the normalized value of the objective
functional. As the cost function comes closer to meeting all
constraints, this ratio approaches 1. All experiments were
performed using linear regressors, unless otherwise stated.

1) Simulated Examples: In order to first verify the algo-
rithm under ideal conditions, tests were run on simulated
examples. A known cost function was used to generate a
cost map, from which paths between random waypoints were
planned. Different numbers of these paths were then used as
input for imitation learning, and the performance measured on
an independent test set of paths generated in the same manner.

Figure 4 shows the results using both the balanced and
standard weighting schemes. As the number of training paths
is increased, the test set performance continues to improve.
Each input path further constrains the space of possible cost
functions, bringing the learned function closer to the desired
one. However, there are diminishing returns as additional

128

T T T
== palanced weigting

1.26 == standard weighting ||

1.24 e

1.2z b

116 b

cost ratio

116 1

114 1 7
L

112r 7

1 -

1.08 1 1 1 1 1 1 1 1 Mi— .|
1} 10 20 30 40 a0 G0 70 G0 a0 100
number of training paths

Fig. 4. Learning with simulated example paths. Test set performance is
shown as a function of number of input paths.

] T T T T I I I I
= phalanced weigling
24+ =8 ctandard weighting

cost ratio

1) 2 4 [g 10 12 14 16 18 20
number of training paths

Fig. 5. Learning with expert drawn example paths. Test set performance is
shown as a function of number of input paths.

paths overlap to some degree in their constraints. Finally, the
performance of the balanced and standard weighting schemes
is similar. Since all paths for this experiment were generated
by a planner, they are by definition optimal under some metric.
2) Expert Drawn Examples: Next, experiments were per-
formed with expert drawn examples. Figure 5 shows the results
of an experiment of the same form as that performed with
simulated examples. Again, the test set cost ratio decreases
as the number of training examples increases. However, with
real examples there is a significant difference between the two
weighting schemes. The balanced weighting scheme achieved
significantly better performance than the standard one. This
difference in performance is further shown in Figure 6. Both
the training and test performance are better with the bal-
anced weighting scheme. Further, with the standard weighting
scheme, the distribution of costs is shifted lower, due to the
negative contribution to the gradient of unachievable paths.
To demonstrate the differences in performance when using
different regressors, cost functions were trained using linear

s} T T T T T T T T T
= palanced weighting training set

= palanced weighting test set
standard weighting training set

standard weighting test set

z2r |

cost ratio

I I 1 1 1 1 1 1 1
1} z 4 [i} 10 12 14 16 18 20
epoch

Fig. 6.

m— halanced weigting

= standard weighting ||

i] 50 100 150 z00 £50 300
log cost

Left: The training and test cost ratio, under both weighting schemes, as a function of the number of epochs of training. This test was run with 20

training and 20 test paths. Right: histogram of the costs produced by both weighting schemes. The standard weighting scheme produces lower costs.

% Change in Cost Ratio

halanced weighting training set

= palanced weighting test set
standard weighting training set
= standard weighting test set

1 Z 3 4 g
corridor size in cells

Fig. 7. Improvement in final cost ratio as a function of the corridor size

regressors, and simple regression trees (maximum 4 leaf
nodes). The training/test cost ratio with linear regression was
1.23/1.35, and 1.13/1.61 with regression trees. This demon-
strates the lack of generalization that can occur with even
simple nonlinear regressors.

3) Corridor Constraints: A seres of experiments were
performed to determine the effect of using corridor constraints.
Figure 7 shows the results as a function of the corridor size
in cells. Small corridors provide an improvement over no
corridor. However, as the corridor gets too large, this improve-
ment disappears; large corridors essentially over-smooth the
examples. The improvement due to using corridor constraints
is larger when using the standard weighting scheme, as the
balanced scheme is more robust to noise in the examples.

B. Offline Validation

Next, experiments were performed in order to compare the
performance of learned costmaps with engineered ones. A cost
map was trained off of satellite imagery for an approximately

60 km? size area. An engineered costmap had been previ-
ously produced for this same area to support the DARPA
UPI program (see section V-C). This map was produced by
performing a supervised classification of the imagery, and then
determining a cost for each class [3]. A subset of both maps
is shown in Figure 8.

The two maps were compared using a validation set of paths
generated by a UPI team member not directly involved in the
development of overhead costing. The validation cost ratio was
2.23 with the engineered map, and 1.63 with the learned map.

C. Online Validation

The learning system’s applicability to actual autonomous
navigation was validated through the DARPA UPI program.
These tests involved a six wheeled, skid steer autonomous
vehicle. The vehicle is equipped with laser range finders
and cameras for on-board perception. The perception system
produces costs that are merged with prior costs into a single
map. Due to the dynamic nature of this fused cost map, the
Field D* [11] algorithm is used for real-time global planning.
The full UPI Autonomy system is described in [12].

The entire UPI system was demonstrated during three large
field tests during the past year. Each of these tests consisted of
the vehicle autonomously traversing a series of courses, with
each course defined as a set of widely spaced waypoints. The
tests took place at different locations, each with highly varying
local terrain characteristics.

Previous to these latest tests, prior maps for the vehicle
were generated as described in [3]. Satellite Imagery and aerial
fixed wing LiDAR scans were used as input to multiple feature
extractors and classifiers. These features were then fed into a
hand tuned cost function. During these most recent three tests,
example paths were used to train prior cost maps from the
available overhead features. The largest map covered an area
of over 200 km?. Overall, learned prior maps were used during
over 300 km of sponsor monitored autonomous traverse.

In addition, two direct online comparisons were performed.

Fig. 8.
Experiment Total Net Avg. Total Cost | Max Cost

Distance(km) | Speed(m/s) Incurred Incurred
Experiment 1 6.63 2.59 11108 23.6
Learned
Experiment 1 6.49 2.38 14385 264.5
Engineered
Experiment 2 6.01 2.32 17942 100.2
Learned
Experiment 2 5.81 223 21220 517.9
Engineered
Experiment 2 6.19 1.65 26693 224.9
No Prior

TABLE I

These two tests were performed several months apart, at
different test sites. During these experiments, the same course
was run multiple times, varying only the prior cost map given
to the vehicle. Each run was then scored according to the
total cost incurred by the vehicle according to its onboard
perception system.

The results of these experiments are shown in Table I.
In both experiments, the vehicle traveled farther to complete
the same course using MMP trained prior data, and yet
incurred less total cost. Over both experiments, with each
waypoint to waypoint section considered an independent trial,
the improvement in average cost and average speed is statisti-
cally significant at the 5% and 10% levels, respectively. This
indicates that the terrain the vehicle traversed was on average
safer when using the learned prior, according to its own
onboard perception system. This normalization by distance
traveled is necessary because the learned prior and perception
cost functions do not necessarily agree in their unit cost.

The course for Experiment 2 was also run without any prior
data; the results are presented for comparison.

VI. CONCLUSION

This paper addresses the problem of interpreting overhead
data for use in long range outdoor navigation. Once provided
with examples of how a domain expert would navigate based
on the data, the proposed imitation learning approach can learn
mappings from raw data to cost that reproduce similar behav-
ior. This approach produces cost functions with less human
interaction than hand tuning, and with better performance in
both offline and online settings.

A 10 km? section of a UPI test site. From left to right: Quickbird imagery, MMP Cost, and Engineered Cost

Future research will focus more on interactive techniques
for imitation learning. By specifically prompting an expert
with candidate waypoint locations, it is hoped that more
information can be derived from each path, thereby requiring
fewer examples. The adaptation of these techniques to an
onboard perception system will also be explored.

ACKNOWLEDGMENTS

This work was sponsored by the Defense Advanced Re-
search Projects Agency (DARPA) under contract "Unmanned
Ground Combat Vehicle - PerceptOR Integration” (contract
number MDA972-01-9-0005). The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government.

REFERENCES

[1] N. Ratlift, J. Bagnell, and M. Zinkevich, “Maximum margin planning,”
in International Conference on Machine Learning, July 2006.

[2] N. Vandapel, R. R. Donamukkala, and M. Hebert, “Quality assessment
of traversability maps from aerial lidar data for an unmanned ground
vehicle,” in Proceedings of the IEEE/JRS International Conference on
Intelligent Robots and Systems, October 2003.

[3] D. Silver, B. Sofman, N. Vandapel, J. A. Bagnell, and A. Stentz, “Ex-
perimental analysis of overhead data processing to support long range
navigation,” in Proceedings of the IEEE/JRS International Conference
on Intelligent Robots and Systems, October 2006.

[4] D. Pomerleau, “Alvinn: an autonomous land vehicle in a neural net-
work,” Advances in neural information processing systems 1, pp. 305 —
313, 1989.

[5] C. Sammut, S. Hurst, D. Kedzier, and D. Michie, “Learning to fly,”
in Proceedings of the Ninth International Conference on Machine
Learning, 1992, pp. 385-393.

[6] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforcement
learning,” in International Conference on Machine Learning, 2004.

[7]1 J. A. Bagnell, J. Langford, Y. Low, N. Ratliff, and D. Silver, “Learning
to search,” 2008, manuscript in preparation.

[8] N. Ratliff, D. Bradley, J. Bagnell, and J. Chestnutt, “Boosting structured
prediction for imitation learning,” in Advances in Neural Information
Processing Systems 19. Cambridge, MA: MIT Press, 2007.

[9]1 L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms
as gradient descent,” in Advances in Neural Information Processing
Systems 12. Cambridge, MA: MIT Press, 2000.

[10] J. A. Bagnell, J. Langford, N. Ratliff, and D. Silver, “The exponentiated
functional gradient algorithm for structured prediction problems,” in The
Learning Workshop, 2007.

[11] D. Ferguson and A. Stentz, “Using interpolation to improve path
planning: The field d* algorithm,” Journal of Field Robotics, vol. 23,
no. 2, pp. 79-101, February 2006.

[12] A. Stentz, “Autonomous navigation for complex terrain,” Carnegie
Mellon Robotics Institute Technical Report, manuscript in preparation.

