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Abstract— Sensory perception for unmanned ground vehicle
navigation has received great attention from the robotics com-
munity. However, sensors mounted on the vehicle are regularly
viewpoint impaired. A vehicle navigating at high speeds in off-
road environments may be unable to react to negative obstacles
such as large holes and cliffs. One approach to address this
problem is to complement the sensing capabilities of an un-
manned ground vehicle with overhead data gathered from an
aerial source. This paper presents techniques to achieve accurate
terrain classification by utilizing high-density, colorized, three-
dimensional laser data. We describe methods to extract relevant
features from this sensor data in such a way that a learning
algorithm can successfully train on a small set of labeled data
in order to classify a much larger map and show experimental
results. Additionally, we introduce a technique to significantly
reduce classification errors through the use of context. Finally,
we show how this algorithm can be customized for the intended
vehicle’s capabilities in order to create more accurate a priori
maps that can then be used for path planning.

I. I NTRODUCTION

An unmanned vehicle needs to have a complete understand-
ing of the terrain and features around it if it is to be able to
navigate complex environments safely. There are cases, how-
ever, when it is not possible to get an adequate understanding
of the environment from the vehicle-based view of terrain
without sacrificing speed or path optimality. For example, a
vehicle navigating at high speeds in off-road environments
may be unable to react to negative obstacles such as large
holes and cliffs. Even when the vehicle can safely navigate
an environment, aerial sensing can dramatically improve path
planning performance by detecting large obstacles such as
buildings and bodies of water as well as areas of preferable
terrain such as roads.

Fig. 1. Sample classification results. On the left is an overhead reference
image used for ground truth and on the right is the classification of the
corresponding high-density, colorized, 3-D data into road, grass, tree, and
building. Areas with missing data appear in white.

This work presents techniques to classify terrain from aerial
sensor data in order to produce a priori maps to support
ground vehicle navigation (see Figure1). Such maps enable
an unmanned ground vehicle to construct an accurate initial
path that results in more efficient traversal of the environment.
Current automated obstacle classifiers, however, tend to focus
predominantly (and often exclusively) on elevation data. We
show how utilizing additional sensor information such as color
and signal reflectance can significantly improve automated
sensory perception and allows accurate classification of a much
wider variety of map features.

We describe methods to extract relevant features from this
sensor data so that a neural network can successfully train on a
small set of labeled data in order to classify a much larger map
and show experimental results. Additionally, we introducea
technique to significantly reduce classification errors through
the use of context. Finally, we show how these algorithms can
model the intended vehicle’s capabilities in order to create
more accurate obstacle maps for path planning. This work
utilizes color, elevation, and signal reflectance data gathered
by an unmanned helicopter, but the outlined techniques can be
applied to any combination of sensor data gathered through a
variety of methods including from satellites. No preset rules or
assumptions are made about the environment. Since elevation
and image data for the entire world are available at various
resolutions, as the quality of global profiling improves, the
applications of such research will greatly expand.

In the following sections we outline related work in the area
of terrain classification, give an overview of our approach,and
give experimental data and results.

II. RELATED WORK

Sensory perception from aerial data has been studied by
many researchers from both within and outside the robotics
community. In this section we review only work relevant to
supporting ground vehicle navigation.

The DARPA Perceptor program contained an important
overhead component. Two strategies were implemented by two
different teams. The National Robotics Engineering Consor-
tium developed a novel semi-autonomous unmanned ground
vehicle (UGV) that utilized a dedicated unmanned helicopter
that flew ahead of the UGV to detect holes and other hazards
ahead of the vehicle [1]. The helicopter served as a scout to
explore terrain before the UGV had to traverse it, allowing the



UGV to re-plan its route to avoid certain areas entirely based
on elevation hazards detected by the helicopter. As the UGV
adjusted its route, it steered the helicopter to detect terrain
features in the direction of its new path. The second team,
led by General Dynamics Robotic Systems (GDRS), used a
priori data from a manned aircraft to perform path planning
and air-ground terrain registration for robot localization. In [2],
the authors presented techniques to classify three-dimensional
(3-D) points as load bearing surfaces or vegetation. The load
bearing surface was then convolved with a vehicle model to
produce directional cost maps. The vegetation cover was used
to estimate the confidence in the terrain recovery. Those cost
maps were then provided to a path planner off-line, prior to
the robot mission. During the mission, the robot followed the a
priori path while avoiding obstacles using on-board perception.
The load bearing surface recovered from the air and from
the ground vehicle were also co-registered in 3-D in order
to estimate the absolute pose of the robot in the prior map.

Rasmussen and Korah implemented a vision-based approach
to autonomous driving on desert roads on a system used during
the 2004 DARPA Grand Challenge [3]. Their vehicle used
on-board camera video to extract linear direction and midline
estimates of roads as well as satellite imagery immediately
surrounding the vehicle’s GPS position to trace the road ahead
for curve and corner anticipation.

Similar research conducted by Charaniya et al. [4] classified
terrain into roads, grass, buildings, and trees using aerial
LiDAR height data, height texture, and signal reflectance,
achieving classification rates in the range of66% − 84%.
Knudsen and Nielson attempted to classify buildings using
a previously available GIS database and RGB information for
an environment [5]. Even with the prior data, they encountered
significant difficulty in classifying accurately without utilizing
elevation data as well. Even works attempting to simply
identify man-made objects from an aerial image have been
only moderately successful [6].

Others have focused on supplementing an UGV’s LiDAR
range data with color sensors in order to perform ground level
feature analysis and improve real-time UGV navigation [7].
Classifier fusion has also been extensively studied in attempts
to improve on the quality of classification resulting from just
one feature extraction system [8][9]. Finally, methods have
been studied to improve UGV utilization of a priori data [10]
as well as techniques for testing the quality of maps generated
from such data [11].

III. A PPROACH

A. Feature Space

1) Data Representation:The sensor data was discretized
into grid cells such that each cell’s data values were the
average values of all data points that fell within that cell.
For small grid cell sizes, many cells contained no data points
while for large grid cell sizes, even though map coverage was
improved, much of the information was lost in the averaging of
the raw data. Even though the actual training and classification
was performed with these grids, our features were generated

from both raw 3-D data and the binned 2-D versions of the
data. This approach was taken in order to improve computation
efficiency.

2) Elevation: The elevation related features were computed
on elevation relative to local ground levels rather than from
absolute elevations. It is common for many environments
to have a small, constant slope. As a result, the measured
elevation of a building roof at one side of the map may
in fact be below the ground level at the other side of the
map, invalidating any feature learning based on elevation.The
local ground level of each cell was estimated by searching a
fixed distance in each direction and treating the lowest found
elevation as the ground level for that cell.

3) Color: Raw RGB color data was inadequate for our
approach due to its sensitivity to illumination variations. By
converting the point data from RGB space to HSV (hue,
saturation, value) space, we provided the classifier with values
that were much more suitable for learning and classification.
A hue ofα◦ was represented by the pair of values,sin(α) and
cos(α) to address the continuity problem at hue values close
to 0◦. Even though most of the effects of varying shadows
and lighting were negated by using HSV space, this technique
made the assumption that light is purely white, which was not
entirely true but was sufficient for this application.

4) Reflectance:The power of the laser signal reflected back
to the helicopter’s sensors from an object depended mainly on
the surface material properties and its relative orientation to
the incident angle. No additional pre-processing is neededfor
signal reflectance measurements.

5) PCA Features:Our three Principal Component Analysis
(PCA) features characterized the local distribution of a 3-D
point cloud around a point of interest. PCA features dealt
directly with the 3-D data and not the binned 2-D versions of
the data like the other features. The final results were binned
into the grid cells as before to be used with the other features.

Let {Xi} = {(x, y, z)} be a 3-D point. LetB(X) =
{Xk; |Xk − X| < r} be the set of 3-D points within the
support region centered atX and of radiusr and letN be the
cardinality ofB(X).

With X = 1
N

∑
i
Xi we have the covariance matrix:

COVB(X)(X) =
1

N

∑
(Xi − X)(Xi − X)T

This matrix was decomposed into principal components
ordered by decreasing eigenvalues:

|COVB(X)(X) − λ · I| = 0

with λ0 ≥ λ1 ≥ λ2.
The three PCA features were defined asλ2, λ0 − λ1, and

λ1 − λ2.
These features captured respectively the scatter-ness, linear-

ness and surface-ness of a local point cloud. Two large eigen-
values and one small eigenvalue corresponded to a surface.
The difference between the second largest and the smallest
eigenvalues corresponded to the saliency of the surface-ness
of the structure: the larger the difference, the more planar



the point cloud was locally. Also, if no dominant eigenvalue
existed, the points were distributed randomly in space, a
characteristic of many tree canopies. Finally, with only one
dominant eigenvalue, the point cloud was encompassed in an
ellipsoid corresponding most likely to a branch or power line.
Such features allowed us to accurately characterize complex
3-D scenes such as the one presented in Figure2b.

(a) (b)

Fig. 2. Close-up view of 3-D point cloud data (a) and 3-D pointcloud data
for a tree canopy hanging over a building, color-coded by elevation (b).

The mean and standard deviation for each of these eight
parameters were computed in a5 by 5 window surrounding
each cell to be used as features. The standard deviation
of data values was often a very good indicator of terrain
features (for example, the high standard deviation in elevation
readings throughout tree canopies.) Using such a window also
ensured that outlier points do not significantly influence the
classification while still providing a degree of robustnessto
missing data. Cells with less than three valid cells within
their window were ignored. In order to aid in neural network
training, all features were rescaled to the[−1, 1] range where
−1 corresponds to the lowest value for that feature in the map
and1 corresponds to the highest.

B. Training and Classification

1) Neural Network Classifier:A neural network with one
input node for each feature, one hidden layer containing three
nodes, and one output node for each desired classification class
was used. The sixteen computed features for each cell were
used as inputs to the neural network for classifying that cell.
Three hidden nodes proved to be optimal for this particular
classification task, but if the environment were to become more
complex, additional types of sensor data were used, or the
number of classification classes were increased, the size of
the hidden layer could be increased accordingly. The highest
output node score was used to classify each cell. The neural
network was trained on each class by a set of labeled regions
selected by the user from the training map. Each cell within a
labeled region was used as a training example for that class.
Each training example was given a desired output of1.0 for
the output node corresponding to that example’s class and a
desired output of0.0 for all other output nodes. The network
was trained using backpropagation with a learning rate of0.05
until improvement stabilized. In order to avoid favoring certain
classes, the algorithm alternated picking training examples
between the classes. For best results, the sizes of the training
sets for each class should be similar.

2) Context-Based Retraining:A cell’s neighbors should
be considered as context for the task of classifying the cell
itself. The classification of an area, therefore, should be
strongly correlated with the classification of its neighbors.
This trained network was used to classify both the training
map and the larger testing map. The average output values
of each cell’s neighbors in a5 by 5 window around it was
calculated and used as an additional feature. The network
was retrained on the training map now containing neighbor
classification information. This new network was then used
to reclassify the testing map, taking into account neighbors’
average initial classifications. This resulted in a smoothing
effect that eliminated many outlier classifications. This
procedure is similar to mean field inference in a graphical
model [12]. This retraining process can be iterated until the
desired classification consistency is achieved.

The classification results were then used to create a cost
map based on the obstacle costs for each class derived from
the mobility model for the UGV.

IV. RESULTS

A. Experimental Data

The capabilities of the described feature classification al-
gorithm are demonstrated in the following example. An un-
manned helicopter was used to gather raw point cloud sensor
data from the site shown in Figure4 during the summer season.
This urban environment consisted of grass, roads of various
surface type, buildings of various sizes, trees of various sizes
with dense foliage, and occasional other objects (cars, silos,
etc).

Approximately 1 million data points in a783 x 358 x 48
m3 area were gathered. Each data point contained the global
spacial position of that point, color measurements (RGB), and
laser reflectance power measurement.

A grid cell size of0.3 m2 was chosen as a good compromise
between map coverage and limited loss of information for this
particular sensing density. At this grid cell size, the number
of points in each cell ranged from0 to 53 with an average
of 1.648 points in each cell that contained at least one point
(18.31 points per m2). The density of data points varied greatly
throughout the map with some areas completely lacking data.

This environment was classified using a neural network into
four classes (road, grass, tree, and building). The networkwas
trained on parts of the south-west section of the map (see
Figure 3). Even though the training map was a subset of the
testing map, the cells that belonged to the training set were
not used in the calculations of classification rates. The labeled
cells used for training constituted9.24% of the total cells in
the map containing enough data to be classified.

Results before context-based reclassification are shown in
Figure5 and final results using all presented features and two
iterations of context-based reclassification are shown in Figure
6. Overhead imagery used for visual comparison and ground
truth is presented in Figure4. Notice how the reclassification
created sharper feature boundaries and eliminated most outlier



Fig. 4. Overhead imagery of test site. This image was used only in identifying ground truth for our data.

Fig. 5. Classification results using all features before context-based reclassification. The light gray, medium gray, dark gray, and red areas are those classified
as roads, grass, trees, and buildings respectively. Cells that did not contain enough data for a valid classification appear in white.

Fig. 6. Classification results using all features after context-based reclassification. The light gray, medium gray, dark gray, and red areas are those classified
as roads, grass, trees, and buildings respectively. Cells that did not contain enough data for a valid classification appear in white.



Fig. 3. Selected training examples for each class. The blue, yellow, green,
and red areas contain training examples for roads, grass, trees, and buildings
respectively.

points. The entire training and classification process completed
in 83 seconds on a3.2 GHz computer with2.0GB of RAM.
A large majority of this computation time was due to the
inefficiency of the ground level estimation technique used.

B. Classification Performance

The classified map was compared against a fully hand-
labeled map of the environment to test the performance of
the algorithm (see TableI). Since ground truth labeling was
performed manually, the true accuracy of the classificationwas
likely higher than reported. Deciding on true boundaries (such
as boundaries between trees and grass) proved to be very dif-
ficult and was the primary cause of error. Despite the reported
error, all major terrain features were successfully classified.
Additionally, our context-based reclassification technique suc-
cessfully eliminated a majority of scattered misclassifications
and helped generate well-defined object boundaries.

TABLE I

FINAL CLASSIFICATION RATES IN PERCENT BY CLASS USING ALL

FEATURES WITH CONTEXT-BASED RECLASSIFICATION(DOES NOT

INCLUDE CELLS USED IN TRAINING).

Ground Truth / Classified Road Grass Tree Building
Road 82.79 11.71 1.06 4.43

Grass 21.51 66.73 2.57 9.18

Tree 7.69 18.35 66.81 7.15

Building 4.94 0.51 0.68 93.87

C. Sensitivity Analysis

Figure 7 shows close-ups of classification results when
relying only on subsets of the available features. Because of
the high density of this sensor data, the PCA features played
a critical role in achieving high classification accuracy. Figure
7a and TableII show the results of classifying without utilizing
PCA features. Specifically, the high error rate at the boundaries
of trees demonstrated the importance of PCA features when
differentiating between buildings and foliage.

Similarly, results were visibly degraded because of a lack
of local classification consistency (see Figure5 and TableIII )
when context-based reclassification was not performed. Such
spurrious classification error could corrupt a cost map and
impede the planner.

TABLE II

CLASSIFICATION RATES IN PERCENT BY CLASS WITHOUTPCA FEATURE

UTILIZATION WITH CONTEXT-BASED RECLASSIFICATION(DOES NOT

INCLUDE CELLS USED IN TRAINING).

Ground Truth / Classified Road Grass Tree Building
Road 75.13 10.63 6.76 7.48

Grass 22.65 62.24 1.79 13.33

Tree 6.97 26.43 45.61 20.99

Building 3.15 0.39 0.28 96.18

TABLE III

CLASSIFICATION RATES IN PERCENT BY CLASS USING ALL FEATURES

WITHOUT CONTEXT-BASED RECLASSIFICATION(DOES NOT INCLUDE

CELLS USED IN TRAINING).

Ground Truth / Classified Road Grass Tree Building
Road 81.42 12.72 1.14 4.72

Grass 24.08 63.12 2.40 10.40

Tree 8.88 17.97 66.53 6.62

Building 6.32 0.78 2.34 90.56

Figures 7b, 7c, and 7d, show classification results when
relying on only elevation, color (RGB), and signal reflectance
data respectively. The absence of elevation data introduced
heavy difficulties in differentiating between classes at ground
level as well as detecting boundaries between various objects.
Likewise, relying only on color information created confusion
in classifying similarly colored objects such as grass and
trees. In this particular environment, roads and building roofs
were similarly colored as well. Finally, even though signal
reflectance was shown to be a weak classifier when used
alone, it was helpful in identifying distinct surface typesin the
environment. These results clearly show that even though these
features were extremely effective when used in combination,
no single feature type can be used as a successful classifier.

D. Integration with Planner

Cells classified as roads, grass, trees, and buildings were
assigning costs of40, 100, 180, and255 (infinite) respectively
in order to create a cost map that modeled the capabilities of
a particular UGV. A path through several way points specified
by the user was then planned using the D* path-planning
algorithm (see Figure8) [13].

Fig. 8. Planned path through environment for the UGV: notice the strong
tendency toward roads.



(a) (b)

(c) (d)

Fig. 7. Sensitivity of classification performance to withholding PCA features (a), relying only on elevation features (b), relying only on color (RGB) features,
(c), and relying only on signal reflectance features (d). Thelight gray, medium gray, dark gray, and red areas are those classified as roads, grass, trees, and
buildings respectively. Cells that did not contain enough data for a valid classification appear in white.

V. CONCLUSIONS

In this work, we addressed the problem of performing
overhead terrain classification to support ground vehicle navi-
gation. We proposed a two-step approach to classifying high-
density, colorized, 3-D laser data. In the first step, 2-D and3-D
features were extracted and supervised classification through
a neural network was performed. In the second step, the
classification context was taken into account by using the clas-
sification results as additional features in an approach similar
to mean field inference. We showed how such classification
results could be used in computing cost maps to performed
path planning for an UGV in a dense environment.

We presented results from an urban setting containing two
story barracks, grass, and trees with dense canopy. We demon-
strated the usefulness of our two-step approach in handling
complex 3-D scenes and demonstrated the relative importance
of each feature. The classification performance was evaluated
against ground truth extracted from an independent overhead
data source.

By introducing new features based on local point distribu-
tions and by iteratively utilizing classification context infor-
mation, we obtained high classification rates and accurate 3-D
structures delineation. We are currently testing our algorithm
on larger data sets and in various environments as well as
comparing the computed planned paths against paths executed
by an UGV without an a priori map.
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