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Abstract— Sensory perception for unmanned ground vehicle  This work presents techniques to classify terrain fromaaeri
navigation has received great attention from the robotics com- sensor data in order to produce a priori maps to support
munity. However, sensors mounted on the vehicle are regularly o5nq vehicle navigation (see Figute Such maps enable
viewpoint impaired. A vehicle navigating at high speeds in off- . o
road environments may be unable to react to negative obstacles an unmanned gr.ound vehu;lg to construct an accurate initial
such as large holes and cliffs. One approach to address this Path that results in more efficient traversal of the envirentn
problem is to complement the sensing capabilities of an un- Current automated obstacle classifiers, however, tendctasfo
manned ground vehicle with overhead data gathered from an predominantly (and often exclusively) on elevation data W
aerial source. This paper presents techniques to achieve accea gy how utilizing additional sensor information such a®rco
terrain classification by utilizing high-density, colorized, three- . S .
dimensional laser data. We describe methods to extract relevant and signal refle_ctance can significantly 'mPfove_ automated
features from this sensor data in such a way that a learning Sensory perception and allows accurate classification afehm
algorithm can successfully train on a small set of labeled data wider variety of map features.
in order to classify a much larger map and show experimental  \We describe methods to extract relevant features from this
results. Additionally, we introduce a technique to significantly  gengor gata so that a neural network can successfully tmadn o
reduce classification errors through the use of context. Finally, . .
we show how this algorithm can be customized for the intended small set of Iabel_ed data in order to clg§5|fy a much larggy ma
vehicle’s capabilities in order to create more accurate a priori and show experimental results. Additionally, we introdiece
maps that can then be used for path planning. technique to significantly reduce classification errorstigh
the use of context. Finally, we show how these algorithms can
model the intended vehicle’s capabilities in order to @eat

An unmanned vehicle needs to have a complete understantbre accurate obstacle maps for path planning. This work
ing of the terrain and features around it if it is to be able tatilizes color, elevation, and signal reflectance data eyath
navigate complex environments safely. There are cases, h@y an unmanned helicopter, but the outlined techniques ean b
ever, when it is not possible to get an adequate understandipplied to any combination of sensor data gathered through a
of the environment from the vehicle-based view of terraivariety of methods including from satellites. No preseesubr
without sacrificing speed or path optimality. For example, @assumptions are made about the environment. Since elevatio
vehicle navigating at high speeds in off-road environmenigd image data for the entire world are available at various
may be unable to react to negative obstacles such as largsolutions, as the quality of global profiling improvese th
holes and cliffs. Even when the vehicle can safely navigag@plications of such research will greatly expand.
an environment, aerial sensing can dramatically improvh pa In the following sections we outline related work in the area
planning performance by detecting large obstacles such giserrain classification, give an overview of our approaar
buildings and bodies of water as well as areas of preferalgge experimental data and results.
terrain such as roads.

I. INTRODUCTION

II. RELATED WORK

Sensory perception from aerial data has been studied by
many researchers from both within and outside the robotics
community. In this section we review only work relevant to
supporting ground vehicle navigation.

The DARPA Perceptor program contained an important
overhead component. Two strategies were implemented by two
different teams. The National Robotics Engineering Consor
tium developed a novel semi-autonomous unmanned ground
o 1 Samole classificat s, on the left —— vehicle (UGV) that utilized a dedicated unmanned helicopte
T e e B emaee"ace that flew ahead of the UGV to detect holes and other hazards
corresponding high-density, colorized, 3-D data into rogass, tree, and ahead of the vehicle [1]. The helicopter served as a scout to
building. Areas with missing data appear in white. explore terrain before the UGV had to traverse it, allowing t




UGV to re-plan its route to avoid certain areas entirely dasérom both raw 3-D data and the binned 2-D versions of the
on elevation hazards detected by the helicopter. As the U@NMta. This approach was taken in order to improve computatio
adjusted its route, it steered the helicopter to detechiterr efficiency.
features in the direction of its new path. The second team,2) Elevation: The elevation related features were computed
led by General Dynamics Robotic Systems (GDRS), usedoa elevation relative to local ground levels rather tharmmfro
priori data from a manned aircraft to perform path planningbsolute elevations. It is common for many environments
and air-ground terrain registration for robot localizatitn [2], to have a small, constant slope. As a result, the measured
the authors presented techniques to classify three-dioraals elevation of a building roof at one side of the map may
(3-D) points as load bearing surfaces or vegetation. The lom fact be below the ground level at the other side of the
bearing surface was then convolved with a vehicle model toap, invalidating any feature learning based on elevafitve.
produce directional cost maps. The vegetation cover was usecal ground level of each cell was estimated by searching a
to estimate the confidence in the terrain recovery. Those cfiged distance in each direction and treating the lowest doun
maps were then provided to a path planner off-line, prior ®levation as the ground level for that cell.
the robot mission. During the mission, the robot followed &h ~ 3) Color: Raw RGB color data was inadequate for our
priori path while avoiding obstacles using on-board petioep approach due to its sensitivity to illumination variationgy
The load bearing surface recovered from the air and frosonverting the point data from RGB space to HSV (hue,
the ground vehicle were also co-registered in 3-D in ordeaturation, value) space, we provided the classifier withega
to estimate the absolute pose of the robot in the prior mapthat were much more suitable for learning and classification
Rasmussen and Korah implemented a vision-based approAdiue ofa® was represented by the pair of values;(a) and
to autonomous driving on desert roads on a system used during(«) to address the continuity problem at hue values close
the 2004 DARPA Grand Challenge [3]. Their vehicle useth 0°. Even though most of the effects of varying shadows
on-board camera video to extract linear direction and médli and lighting were negated by using HSV space, this technique
estimates of roads as well as satellite imagery immediatehade the assumption that light is purely white, which was not
surrounding the vehicle’s GPS position to trace the roaé@heentirely true but was sufficient for this application.
for curve and corner anticipation. 4) ReflectanceThe power of the laser signal reflected back
Similar research conducted by Charaniya et al. [4] claskifigo the helicopter’s sensors from an object depended maimly o
terrain into roads, grass, buildings, and trees using laeriae surface material properties and its relative orieotato
LIDAR height data, height texture, and signal reflectanceéhe incident angle. No additional pre-processing is nedded
achieving classification rates in the range 6% — 84%. signal reflectance measurements.
Knudsen and Nielson attempted to classify buildings using5) PCA Features:Our three Principal Component Analysis
a previously available GIS database and RGB information fPCA) features characterized the local distribution of B 3-
an environment [5]. Even with the prior data, they encowetter point cloud around a point of interest. PCA features dealt
significant difficulty in classifying accurately withoutilizing  directly with the 3-D data and not the binned 2-D versions of
elevation data as well. Even works attempting to simplpre data like the other features. The final results were kinne
identify man-made objects from an aerial image have begfo the grid cells as before to be used with the other feature
only moderately successful [6]. Let {X;} = {(=,y,2)} be a 3-D point. LetB(X) =
Others have focused on supplementing an UGV’s LiDAI{eXk,; | X, — X| < r} be the set of 3-D points within the
range data with color sensors in order to perform ground levgpport region centered &t and of radius- and letN be the
feature analysis and improve real-time UGV navigation [7ardinality of B(X).
Classifier fusion has also been extensively studied in @tem \With X = % >, X; we have the covariance matrix:
to improve on the quality of classification resulting fronsgu
one feature extraction system [8][9]. Finally, methods ehav COVp(x)(X) = 1 Z(X’i - X) (X, - x)T
been studied to improve UGV utilization of a priori data [10] N
as well as techniques for testing the quality of maps geedrat This matrix was decomposed into principal components

from such data [11]. ordered by decreasing eigenvalues:
[1l. A PPROACH |COVp(x)(X) = A-1]| =0
A. Feature Space with Ao > \; > Ao

1) Data RepresentationThe sensor data was discretized The three PCA features were defined)as \o — A1, and
into grid cells such that each cell’s data values were thg — As.
average values of all data points that fell within that cell. These features captured respectively the scatter-neeayi
For small grid cell sizes, many cells contained no data poimess and surface-ness of a local point cloud. Two large eigen
while for large grid cell sizes, even though map coverage weaalues and one small eigenvalue corresponded to a surface.
improved, much of the information was lost in the averagihg @he difference between the second largest and the smallest
the raw data. Even though the actual training and classditat eigenvalues corresponded to the saliency of the surfagg-ne
was performed with these grids, our features were generatéddthe structure: the larger the difference, the more planar



the point cloud was locally. Also, if no dominant eigenvalue 2) Context-Based RetrainingA cell's neighbors should
existed, the points were distributed randomly in space, be@ considered as context for the task of classifying the cell
characteristic of many tree canopies. Finally, with onlyeontself. The classification of an area, therefore, should be
dominant eigenvalue, the point cloud was encompassed insarongly correlated with the classification of its neighdor
ellipsoid corresponding most likely to a branch or poweelin This trained network was used to classify both the training
Such features allowed us to accurately characterize compiaap and the larger testing map. The average output values
3-D scenes such as the one presented in Figbre of each cell's neighbors in & by 5 window around it was
calculated and used as an additional feature. The network
was retrained on the training map now containing neighbor
classification information. This new network was then used
to reclassify the testing map, taking into account neigsbor
average initial classifications. This resulted in a smowhi
effect that eliminated many outlier classifications. This
procedure is similar to mean field inference in a graphical
model [12]. This retraining process can be iterated ungl th

@ ®) desired classification consistency is achieved.
Fig. 2. Close-up view of 3-D point cloud data (a) and 3-D pailoiud data
for a tree canopy hanging over a building, color-coded byatlen (b).

The classification results were then used to create a cost

. .map based on the obstacle costs for each class derived from
The mean and standard deviation for each of these EIéﬁé mobility model for the UGV

parameters were computed in5aby 5 window surrounding
each cell to be used as features. The standard deviation IV. RESULTS
of data values was often a very good indicator of terraiN. Experimental Data

features (for example, the high standard deviation in ¢iewva

di th hout t . Usi h ind The capabilities of the described feature classification al
readings throughout tree canopies.) -sINg such a Window &g, i are demonstrated in the following example. An un-
ensured that outlier points do not significantly influence t

lassificat hile stil i q f robustnés anned helicopter was used to gather raw point cloud sensor
classiication while Still providing a degree ol TobusINeSS o from the site shown in Figudeduring the summer season.

missing data. Cells with less than three valid cells Wlth"?his urban environment consisted of grass, roads of various

the_ir.window were ignored. In order to aid in neural networgurface type, buildings of various sizes, trees of variopess
training, all features were rescaled to thel, 1| range'where with dense foliage, and occasional other objects (cargs,sil
—1 corresponds to the lowest value for that feature in the m%?c)

and1 corresponds 1o the highest. Approximately 1 million data points in &83 x 358 x 48

m?3 area were gathered. Each data point contained the global
spacial position of that point, color measurements (RGBJ, a

1) Neural Network ClassifierA neural network with one laser reflectance power measurement.
input node for each feature, one hidden layer containingethr A grid cell size of0.3 m? was chosen as a good compromise
nodes, and one output node for each desired classificagsa cbetween map coverage and limited loss of information fa thi
was used. The sixteen computed features for each cell weeaticular sensing density. At this grid cell size, the nemb
used as inputs to the neural network for classifying that cebf points in each cell ranged froia to 53 with an average
Three hidden nodes proved to be optimal for this particulaf 1.648 points in each cell that contained at least one point
classification task, but if the environment were to becomeemq(18.31 points per m). The density of data points varied greatly
complex, additional types of sensor data were used, or tfeoughout the map with some areas completely lacking data.
number of classification classes were increased, the size oThis environment was classified using a neural network into
the hidden layer could be increased accordingly. The highésur classes (road, grass, tree, and building). The netwaik
output node score was used to classify each cell. The neurained on parts of the south-west section of the map (see
network was trained on each class by a set of labeled regidfigure 3). Even though the training map was a subset of the
selected by the user from the training map. Each cell withintasting map, the cells that belonged to the training set were
labeled region was used as a training example for that claset used in the calculations of classification rates. Theltb
Each training example was given a desired output.6ffor cells used for training constitute®l24% of the total cells in
the output node corresponding to that example’s class antha map containing enough data to be classified.
desired output 00.0 for all other output nodes. The network Results before context-based reclassification are shown in
was trained using backpropagation with a learning rate@f Figure5 and final results using all presented features and two
until improvement stabilized. In order to avoid favoringteén iterations of context-based reclassification are showrignre
classes, the algorithm alternated picking training exaspl6. Overhead imagery used for visual comparison and ground
between the classes. For best results, the sizes of thingairtruth is presented in Figuré Notice how the reclassification
sets for each class should be similar. created sharper feature boundaries and eliminated mdirout

B. Training and Classification



Fig. 4. Overhead imagery of test site. This image was used onigentifying ground truth for our data.
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Fig. 5. Classification results using all features beforet@arbased reclassification. The light gray, medium grayk daay, and red areas are those classified
as roads, grass, trees, and buildings respectively. Gelisdid not contain enough data for a valid classificationeappn white.
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Fig. 6. Classification results using all features after eribased reclassification. The light gray, medium grayk daay, and red areas are those classified
as roads, grass, trees, and buildings respectively. Gelisdid not contain enough data for a valid classificationeappn white.



TABLE I
CLASSIFICATION RATES IN PERCENT BY CLASS WITHOUTPCA FEATURE
UTILIZATION WITH CONTEXT-BASED RECLASSIFICATION(DOES NOT
INCLUDE CELLS USED IN TRAINING).

Ground Truth / Classified Road | Grass| Tree | Building

Road 75.13 | 10.63 6.76 7.48

Grass 22.65 | 62.24 1.79 13.33

Tree 6.97 26.43 | 45.61 20.99

Building 3.15 0.39 0.28 96.18
TABLE Il
Fig. 3. Selected training examples for each class. The bleitow; green,  CLASSIFICATION RATES IN PERCENT BY CLASS USING ALL FEATURES
and red arleas contain training examples for roads, grass, @ed buildings 1,1 cONTEXT-BASED RECLASSIFICATION(DOES NOT INCLUDE
respectively.
CELLS USED IN TRAINING).

. . - A Ground Truth / Classified Road | Grass| Tree | Buildin
points. The entire training and classification process deted Road 84 (1272 | 114 %) g
in 83 seconds on 8.2 GHz computer with2.0GB of RAM. Grass 24.08 | 63.12 | 2.40 10.40
A large majority of this computation time was due to the Tree 8.88 | 17.97 | 66.53 |  6.62

Building 6.32 0.78 2.34 90.56

inefficiency of the ground level estimation technique used.

B. Classification Performance

The classified map was Compared against a fu||y hand-FigureS 7b, 7c, and 7d, show classification results when
labeled map of the environment to test the performance @lying on only elevation, color (RGB), and signal reflectan
the algorithm (see Tablg). Since ground truth labeling wasdata respectively. The absence of elevation data intrabiuce
performed manually, the true accuracy of the classificatiaa heavy difficulties in differentiating between classes atugd
likely higher than reported. Deciding on true boundarieslis €vel as well as detecting boundaries between various tbjec
as boundaries between trees and grass) proved to be very ldifewise, relying only on color information created corifus
ficult and was the primary cause of error. Despite the regorté classifying similarly colored objects such as grass and
error, all major terrain features were successfully cfassi trees. In this particular environment, roads and buildiogfs
Additionally, our context-based reclassification techieiguc- were similarly colored as well. Finally, even though signal
cessfully eliminated a majority of scattered misclassifices reflectance was shown to be a weak classifier when used

and helped generate well-defined object boundaries. alone, it was helpful in identifying distinct surface typashe
environment. These results clearly show that even thouggeth
TABLE | features were extremely effective when used in combination
FINAL CLASSIFICATION RATES IN PERCENT BY CLASS USING ALL no single feature type can be used as a successful classifier.
FEATURES WITH CONTEXFBASED RECLASSIFICATION(DOES NOT
INCLUDE CELLS USED IN TRAINING). D. |ntegration with Planner
Ground Truth / Classified Road | Grass| Tree | Building Cells classified as roads, grass, trees, and buildings were
Road 82.79 | 11.71 | 1.06 4.43 assigning costs of0, 100, 180, and255 (infinite) respectively
Grass ool I I U I in order to create a cost map that modeled the capabilities of
Building 494 | 051 | 068 03.87 a particular UGV. A path through several way points specified

by the user was then planned using the D* path-planning
algorithm (see Figur®) [13].

C. Sensitivity Analysis

Figure 7 shows close-ups of classification results whe
relying only on subsets of the available features. Becatise
the high density of this sensor data, the PCA features playf
a critical role in achieving high classification accuracigure |
7a and Tablél show the results of classifying without utilizing
PCA features. Specifically, the high error rate at the borieda
of trees demonstrated the importance of PCA features wi
differentiating between buildings and foliage.

Similarly, results were visibly degraded because of a lag
of local classification consistency (see Fig@rand Tablelll)
when context-based reclassification was not performedh Sugg. 8. Planned path through environment for the UGV: nothe strong
spurrious classification error could corrupt a cost map afffidency toward roads.
impede the planner.




Fig. 7. Sensitivity of classification performance to withiiog PCA features (a), relying only on elevation featurés (&ying only on color (RGB) features,
(c), and relying only on signal reflectance features (d). Tidgjet gray, medium gray, dark gray, and red areas are thossifitd as roads, grass, trees, and
buildings respectively. Cells that did not contain enougkador a valid classification appear in white.

V. CONCLUSIONS [2]

In this work, we addressed the problem of performing
overhead terrain classification to support ground vehialé-n 3]
gation. We proposed a two-step approach to classifying-high
density, colorized, 3-D laser data. In the first step, 2-D&ml  [4]
features were extracted and supervised classificatiorughro
a neural network was performed. In the second step, t
classification context was taken into account by using ths-cl
sification results as additional features in an approacliasim
to mean field inference. We showed how such classificatiol§’
results could be used in computing cost maps to performed
path planning for an UGV in a dense environment. [7]

We presented results from an urban setting containing two
story barracks, grass, and trees with dense canopy. We dem¢s)
strated the usefulness of our two-step approach in handling
complex 3-D scenes and demonstrated the relative imp(mang,]
of each feature. The classification performance was ewuat
against ground truth extracted from an independent ovdrhea
data source.

By introducing new features based on local point distribyo]
tions and by iteratively utilizing classification contextfar-
mation, we obtained high classification rates and accurile 3
structures delineation. We are currently testing our algor [11]
on larger data sets and in various environments as well as
comparing the computed planned paths against paths egecute
by an UGV without an a priori map. [12]
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