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In mobile robotics, there are often features that, while potentially powerful for improving
navigation, prove difficult to profit from as they generalize poorly to novel situations.
Overhead imagery data, for instance, have the potential to greatly enhance autonomous
robot navigation in complex outdoor environments. In practice, reliable and effective au-
tomated interpretation of imagery from diverse terrain, environmental conditions, and
sensor varieties proves challenging. Similarly, fixed techniques that successfully interpret
on-board sensor data across many environments begin to fail past short ranges as the
density and accuracy necessary for such computation quickly degrade and features that
are able to be computed from distant data are very domain specific. We introduce an on-
line, probabilistic model to effectively learn to use these scope-limited features by lever-
aging other features that, while perhaps otherwise more limited, generalize reliably. We
apply our approach to provide an efficient, self-supervised learning method that accu-
rately predicts traversal costs over large areas from overhead data. We present results
from field testing on-board a robot operating over large distances in various off-road en-
vironments. Additionally, we show how our algorithm can be used offline with overhead
data to produce a priori traversal cost maps and detect misalignments between overhead
data and estimated vehicle positions. This approach can significantly improve the ver-
satility of many unmanned ground vehicles by allowing them to traverse highly varied
terrains with increased performance. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION sion scenarios [see for example Kelly et al. (2006),
Bodta and Camden (2004), and Goldberg, Maimone
& Matthies (2002)]. Even though powerful at sensing,
modeling, and interpreting the environment, these
systems required significant tuning of parameters, ei-
ther by hand or supervised training, to best adjust
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Autonomous robot navigation in unstructured natu-
ral environments has been demonstrated extensively
in a large variety of terrain, sensor payload, and mis-
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This highlights a common problem that arises in
mobile robotics where potentially powerful sensor
data and features are often difficult to take advantage
of because they are situation or location specific. For
instance, camera imagery can potentially detect un-
paved road in the desert significantly farther than
some ladar-based systems can. Detecting such roads
from a distance proved to be a crucial component in
Stanford Racing’s winning Grand Challenge entry
(Lieb, Lookingbill & Thrun, 2005b). Unfortunately,
such data can prove very resistant to automated in-
terpretation. In particular, classifiers that prove to be
powerful indicators of road in a particular area often
do not generalize to new conditions.

Similarly, outdoor robot navigation can benefit
from the now widespread availability of high quality
overhead imagery and elevation data from satellite
and aircraft (Kelly et al., 2006; Silver, Sofman, Bagnell,
Vandapel & Stentz, 2006). Presently, nearly the entire
world has been surveyed at 1 m accuracy, with
higher resolution (better than 25 cm accuracy) data
available in certain areas. With this overhead data,
many of the difficulties associated with autonomous
robot operation can be alleviated, even with the
coarsest of terrain resolution. Systems can then dis-
pense with myopic exploration and instead pursue
routes that are likely to be effective.

In much the same way, the complete use of sensor
data (such as ladar), if interpreted correctly, can help
a robot make better decisions and increase traversal
speed through improved knowledge of the environ-
ment. Unfortunately, as the complexity of environ-
ments increases, a robot’s perception system must be
engineered to evaluate its environment by first com-
puting a set of intermediate features such as ground
slope, object density, and vegetation classification
that, while accurate and generalizable, limit the effec-
tiveness of such systems to a range of about 15 m due
to the quick decline in coverage density (see Figure 1).

Unfortunately, leveraging these tremendous re-
sources on an autonomous robot proves difficult.
Building systems that can reliably interpret overhead
image data or far-range sensor data is far from easy
as even the smallest variations in lighting, season, ter-
rain, or even sensor calibration can have significant
effects on data. Additionally, such estimates must be
well calibrated with other on-board perception esti-
mates of the terrain, or system performance may
suffer.

One way to address such limitation is through
on-line self-supervised learning where the autono-

Figure 1. Typical ladar response from vehicle’s percep-
tion system. Ladar points are color coded by elevation
with lowest points appearing in blue and highest points
appearing in yellow. Vehicle position is shown by the or-
ange square. Notice the large drop in ladar response den-
sity (especially on the ground) as distance from the vehicle
increases. Large objects such as the trees on the left gener-
ate ladar responses even at far ranges but are difficult to
interpret through fixed techniques across different
environments.

mous system adjusts itself via perception and inter-
action with the environment. In this article, we ad-
dress the problem of learning and inferring between
two heterogeneous data sources that vary in density,
accuracy, and scope of influence. The objective is to
generalize from one data source, viewed as a reliable
estimate, to be able to work with another, which may
be high performance (e.g., long range or high accu-
racy) but difficult to generalize to new environments.
We frame the problem as a simple, linear probabilistic
model for which inference results in a self-supervised
online learning algorithm that fuses the estimates
from the two data sources. We discuss the advantages
of this framework including reversible learning, fea-
ture selection, data alignment capabilities, reliable
use of multiple estimates, as well as confidence-rated
predictions.

Furthermore, we demonstrate the approach in
the context of long range navigation of a large un-
manned ground vehicle during various field tests in
complex natural environments. As it traverses an en-
vironment, the vehicle utilizes its on-board percep-
tion system and these difficult to interpret features
(computed from overhead imagery and elevation
data or far-range sensor data) to learn the mapping
from these features to computed terrain traversal
costs in order to predict traversal costs elsewhere in
the environment where only overhead data or far-
range sensor data are available, effectively extending
the range of the vehicle’s local perception system and
allowing more effective navigation of the environ-

Journal of Field Robotics DOI 10.1002/rob
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Figure 2. Sample results of terrain traversal cost predic-
tions. (a) 0.35 m resolution color overhead imagery used
by our online learning algorithm and (b) corresponding
predictions of terrain traversal costs. Traversal costs are
color-scaled for improved visibility. Blue and red corre-
spond to lowest and highest traversal cost estimates,
respectively.

ment (see Figure 2 for sample results).! This approach
removes the necessity of human involvement and pa-
rameter engineering, which limits the versatility of
many robotic systems.

Similar approaches have been demonstrated suc-

This article is best viewed in color.
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cessfully in semi-structured natural environments
(Lieb, Lookingbill & Thrun, 2005a). Numerous re-
search efforts are also underway to take advantage of
such techniques for obstacle avoidance using a mo-
nocular camera (LeCunn, Muller, Ben, Cosatto &
Flepp, 2005), estimating the depth from monocular
imagery (Michels, Saxena & Ng, 2006), terrain tra-
versability classification (Kim, Sun, Oh, Rehg & Bo-
bick, 2006), and slip prediction (Angelova, Matthies,
Helmick, Sibby & Perona, 2006).

Section 2 presents the approach in detail. In Sec-
tion 3, this approach is positioned in the context of
ground robot navigation. Section 4 contains results
from field tests in various environments with a large
autonomous vehicle, as well as several offline appli-
cations of our algorithm.

2. APPROACH

2.1. Formalization

We approach the problem of leveraging the power-
ful, but difficult to generalize, features in a Bayesian
probabilistic framework using the notion of scoped
learning (Blei, Bagnell & McCallum, 2002). The
scoped learning model admits the idea of two types
of features: “global” and “local.” Global features are
generally useful, and their predictive power extends
well to new domains, while local ones, which, al-
though often very powerful, typically generalize
poorly and are more difficult to take advantage of in
a consistent way. These local features have scope that
is limited to one particular domain. We wish to ap-
ply our system to extend the scope of such features
to many possible domains. For our canonical prob-
lem of learning to leverage the extended range of
overhead and far-range sensor data, these names
may prove counter-intuitive, so we refer to them in-
stead as general and locale-specific features. For the
remainder of this article, “global” and “local” will
refer to the proximity to the robot. Features gener-
ated from dense, vehicle-based ladar perception
serve as our general features, while features gener-
ated from overhead-based imagery and elevation
data and far-range sensor data serve as our locale-
specific features. The latter are particularly valuable
to mobile robots because of their extended range
and widespread availability.
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Figure 3. Graphical depiction of the scoped learning
model. Hyper-parameters, including priors on the locale-
specific parameters B and noise variances, lie outside the
plate indexed by L and are not depicted.

2.1.1. Model

The scoped learning approach is a very simple
probabilistic model (shown graphically in Figure 3)
that captures this notion of features that have scope.
The outer plate L represents in graphical model no-
tation that there are independent locales in which
the model will be applied (Jordan & Weiss, 2002).
These correspond to new areas of the world in
which our robot will operate.

Within the plate, we see a sequence of locale-
specific features and corresponding general feature-
based estimates. At each point in the sequence, we
wish to make predictions about c (either all or a sub-
set of them). Here, c is the true variable we wish to
predict, and ¢ is an estimate of that variable coming
from the general features, while x are our locale-
specific features. The parameters 8 common to the
locale (plate) capture the relationship between
locale-specific features and the variables of interest c.
The length of our sequence is 7.

This learning model captures the idea of self-
supervised learning (Kakade & Ng, 2005) in a
Bayesian framework and extends the idea to inte-
grate both the general feature-based estimates and
the self-supervised locale-specific estimates. Driven
by our application, we are particularly interested in
the online regression case” where the goal is to infer
the true continuous values ¢; in an online fashion as
general feature-based estimates ¢; become available.

’The original scoped learning work (Blei et al., 2002) was devel-
oped in the context of classification using discrete features, gen-
erative descriptions of those features, and in batch.

We choose a simple model for ¢ as a function of the
k locale-specific features x=(x1,...,x) by modeling
the distribution for c¢ given x as a Gaussian with
mean a linear function of x and with a variance

of o7

E(c|Bx) = Bx. 1

We assume that the estimates from the general
feature-based predictors have Gaussian noise and
thus are distributed:

¢~ Normal(c,aé).

We take the o, and o) to be hyper-parameters lying
outside the locale-specific plate.

2.1.2.

We develop the inference for the model in an online
fashion. Given a new data point ¢; estimating the
true variable ¢;, our goal is to compute new
estimates® of the variables ¢j, assuming we have al-
ready seen data D={{x}; _,,{¢};  _;-1}. We can com-
pute this by integrating over the uncertain param-
eters B, which describe the relationship between the
true variable and the local features:

Inference

p(cj|5i/xirD)=fdﬂp(cj|B/Ei/xi)p(ﬁ|5irxirD)-

We can compute the required distribution over 8
as

P(/J’|5i/xi/D)“P(ﬂ|D)fdCiP(5i|Ci)P(Ci|ﬂ/xi)-

In our linear-Gaussian model, this can be under-
stood as revising the posterior distribution from
p(B|D) in light of a Gaussian likelihood that takes
into account noise from both general and locale-
specific features.

Our computation of the posterior distribution
p(B|é;,x;,D) is as follows. We first initialize our dis-
tribution to the prior distribution p(B). Then, for ev-
ery training example 7, we multiply our distribution

*We assume that our prior on 8 is a priori independent of the

features x so that inference will remain the same even in the case
where the features become available in some sequence.

Journal of Field Robotics DOI 10.1002/rob
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by p(é]|B,x;). Since the prior distribution and
p(¢;|B,x;) are normal, the posterior distribution is

also normal. We use the notation /3 to represent the
mean of the posterior distribution and V4 to repre-
sent the variance. Thus, computing p(B|é;,x;,D) is
performing a self-supervised learning using a Baye-
sian linear regression model with noise variance o7
ro?

We use our current estimate of the posterior dis-
tribution when we want to predict a future outcome
¢j. We are interested in predictions in two cases: first,
when we have no general feature-based estimate ¢;
for a particular o and, second, when such an esti-
mate is available. In the first case, the predictive dis-
tribution p(c) has mean cp:xTﬁ and variance Ozp: o‘l2
+X"Vg% (Gelman, Carlin, Stern & Rubin, 2004).
When we also have an estimate Ej, inference com-
bines these two estimates:

p(c)) = Norrnal(al;z((—crz‘Yi + %),(r{f)
r Y
where

12 _ 1
VRV

We note that it is possible to compute the posterior
distribution in batch, but we prefer to maintain an
estimate of the posterior distribution as we receive
general feature-based cost estimates so that we may
immediately apply our algorithm to new data.

2.2. Advantages of the Bayesian Learning
Approach

Using the online Bayesian scoped learning model
provides a number of important benefits.

2.2.1.

The variance estimate provided by our algorithm for
the probability of each c¢ can be used as a metric of
confidence in the prediction. If a situation arises in
which we must choose which one of several pre-
dicted outcomes to trust, we could simply use the
one with the smallest variance.

Confidence Rated Prediction

Journal of Field Robotics DOI 10.1002/rob
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Algorithm 1: Hyper-parameter re-estimation procedure

procedure
Initialize all @, and o7
while « has not converged do
Compute the mean S and covariance Vg of the
distribution of our weights 3
For all K features, y, < 1—a Vg
For all K features, o<,/ 3;
end while
return «
9: end procedure
Once our ¢ values have converged, we can remove any
feature x; with a corresponding optimal «; value that tends
toward cc. Since an ¢ value controls the inverse variance of
each weight B, an a; value that tends toward < implies that
the mean of the weight S, value tends toward 0. Thus, we can
remove that feature x; since its weight B, value of 0 would
remove its contribution to predicting the output c.

B

2.2.2. Learning of the Hyper-Prior and Feature
Selection

Our algorithm depends on a number of hyper-
parameter terms that may be chosen based on data
from multiple locales. We discuss ways to choose the
noise variance terms o and o, in Section 2.1 and the
prior distribution on parameters B in Section 3.1.
The prior distribution p(B) is an isotropic Gaussian
that is independent for each weight, and each
weight is dependent on a shared hyperparameter «
that moderates the strength of our belief over the
values our weights 8 might take. That one « value
controls the inverse variance of each weight 8. We
can modify our prior p(B| ) to consist of K hyperpa-
rameters, with each «; independently controlling the
inverse variance of each weight, and define hyper-
priors over all the o, values. We can then use Tip-
ping’s hyperparameter reestimation algorithm to do
feature selection (see Algorithm 1) (Tipping, 2003).
In this way, we can both automate feature selection
and bias our algorithm to prefer certain features for
new locales (Ng & Jordan, 2001).

2.2.3. Reversible Learning

A problem that often arises in online learning is the
handling of multiple estimates of a particular quan-
tity. For instance, in our canonical example, our gen-
eral feature-based estimates ¢; may improve as we
get closer and denser laser readings of the terrain. It
is not appropriate to treat these as independent
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training examples: while they may differ in their
variance, they are generally highly correlated. Nei-
ther is it useful to simply take the first estimate
available: often this is a poor substitute for all the
data. In our model, since we maintain an exact pos-
terior distribution that lies inside the exponential
family, we may effectively remove the effects of train-
ing on a data point by dividing out the likelihood
term we had used to include it in the posterior (Gel-
man et al., 2004). In this way, we always have an
estimate of the posterior distribution of B using the
current best estimate ¢;. Minka has developed an al-
ternate use of this “removal trick” for approximate
inference (Minka, 2001).

3. APPLICATION TO GROUND ROBOTICS

3.1. Context

A natural application of our algorithm is to the im-
provement of autonomous navigation capabilities
for unmanned ground vehicles. Our algorithm lends
itself well to addressing many of the issues that arise
due to the diversity in the environments and data
that robotic systems must encounter. In many ro-
botic systems, variables most relevant to an un-
manned ground vehicle, such as terrain traversal
cost, are computed directly by the vehicle’s on-board
perception system through the processing of high
density ladar data gathered by on-board sensors.
Techniques to process such data are often generaliz-
able to many environments so that the vehicle’s per-
ception system does not require much adjustment
when dealing with new terrain, yet the limited range
for this type of data source is a major shortcoming
(see Figure 1). While data sources such as overhead
imagery are widely available at high resolutions, de-
veloping fixed techniques to process such locale-
specific data sources is difficult because even though
they may be extremely useful in specific areas, they
do not generalize well to new domains due to varia-
tions in terrain, lighting conditions, weather, and
even time of data gathering.

We demonstrate how our algorithm can be ap-
plied to the domain of mobile robotics in order to
derive the most benefit from the availability of both
general and locale-specific data sources without any
human involvement. The performance of our algo-
rithm is evaluated through actual field testing in a

complex off-road environment on-board a rugged,
all-terrain unmanned ground vehicle. Our results
show how combining the adaptive performance of
our algorithm with the inherent mobility of such a
vehicle leads to more efficient navigation of complex
environments. Additionally, we show several offline
applications of our algorithm such as the ability to
detect misalignments between overhead data and
the vehicle’s estimated position, a common problem
in robotic systems that utilize such data. Finally, we
demonstrate how our feature selection technique can
be used to shorten the time required for training by
reducing the feature space.

3.2. Terrain Traversal Cost Prediction

Our robot performs local sensing using ladar sensors
and assigns traversal costs to the environment from
features computed by interpreting the position, den-
sity, and point cloud distributions of sensed ob-
stacles (these features generalize across most do-
mains and therefore serve as our general features as
defined in Section 2.1). The robot replans in real-time
by finding minimum cost paths through the environ-
ment using the D" algorithm (see Figure 4) (Stentz,
1994). We demonstrate how our algorithm can learn
to predict terrain traversal costs computed by the
on-board perception system of our unmanned
ground vehicle from both overhead data and far-
range sensor data that are currently discarded. We
also compare the predictive performance of our al-
gorithm to that of a hand-trained classifier using su-
perior data sources. We chose to predict traversal
cost rather than intermediate results such as slope,
density, or presence of vegetation because traversal
cost is the metric that most closely governs a vehi-
cle’s navigation strategy through an environment.
Our robot’s perception system is proficient at effec-
tively assessing terrain traversal costs, so it is desir-
able to be able to mimic its predictive abilities. We
therefore use estimates from the robot’s perception
system to evaluate the accuracy of traversal cost
predictions.

The characteristics of an environment change
with varying conditions. However, even outdated
overhead data can be useful since most distinct areas
in an environment will maintain uniformity in their
characteristics despite these variations. By relaxing
restrictions on the recency of overhead data, our al-
gorithm further increases its impact on improving
robot navigation. Overhead data are relatively inex-

Journal of Field Robotics DOI 10.1002/rob
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Figure 4. (a) Robot used for all field tests in its typical
operating environment and (b) an illustration of how the
online learning algorithm runs on-board the robot. Algo-
rithm learns mapping from locale-specific data features
(overhead or far-range sensor data) to locally computed
terrain traversal costs (computed from general features) to
make prediction elsewhere in the environment.

pensive and available at various resolutions for the
entire world, so as the quality of global surveying
improves, the applications of such research will
greatly expand.

3.3. Features

3.3.1. Overhead Data

A set of feature maps for the vehicle’s environment
was generated from each overhead data source for
use as input to the algorithm (these are our locale-
specific features as defined in Section 2.1). In our
implementation, HSV (hue, saturation, value) fea-
tures were used to represent color imagery data
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while the pixel intensity of the black and white im-
agery data was used as a single feature. Raw RGB
(red, green, blue) color data were inadequate for our
approach due to their sensitivity to illumination
variations.

A feature containing the maximum response to a
set of ten Gabor filters at various orientations cen-
tered at each pixel was also generated to capture
texture in each type of imagery. Additional features
for the black and white imagery data were generated
by computing the means and standard deviations in
intensity within windows of 5 m around each pixel.
Additional elevation-based features [similar to those
described in Silver et al. (2006)] were computed
when such data were present. All features were res-
caled to the [-1,1] range and a constant feature was
also included.

Finally, clustering of all previously computed
features was performed that allowed the algorithm
to identify patterns in the feature input space that
are relevant to the output regression. The Gaussian
mixture model algorithm was chosen to cluster the
input data because of its ability to generate member-
ship features by assigning each data point a frac-
tional degree of membership in each output cluster
(see Figure 5) (Duda, Hart & Stork, 2000). Six clus-
ters were chosen for our implementation.

3.3.2.

Ladar and camera data were used to create the far-
range sensor features used for training (once again,
these are our locale-specific features as defined in Sec-
tion 2.1). Ladar points in the environment were
tagged with color values from the camera sensors by
computing the pixel the ladar would appear in
within the camera image. Color features were com-
puted as described in the previous section. Addition-
ally, the positions of the ladar points were used to
compute the maximum vertical point spread and
standard deviation of point heights. Additionally, in
order to incorporate contextual information about
the neighbors of a location, similar features were
computed from the location’s neighbors within a
small window. A constant feature was included as
well. As a robot travels toward a location, features
for that location are computed regularly (to account
for variations in features due to distance from the
robot) and stored to be used as possible future train-
ing examples.

Finally, it should be noted that the lack of ladar

Far-Range Sensor Data
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Figure 5. Sample clustering results from using the Gauss-
ian mixture model algorithm on generated features. (a)
Overhead color imagery data used to generate features
and (b) resulting clustering into six clusters. Membership
features were generated by computing the fractional de-
gree of membership of each pixel in each cluster.

data in an area in front of the robot can serve as a
confirmation of free space (since ladar hits are rarely
available on road or grass past about 30 m due to
the angle with respect to the sensor). We identify
such free space by tracing away from the robot until
a sensed object is encountered (up to 40 m away)
and setting a tracing feature in all encountered cells.
This feature is the sole feature for such areas.

Similar techniques may be used to generate fea-
tures from any combination of data sources gathered
through a variety of methods.

3.4. Training and Prediction

Traversal cost is difficult to quantify, so choosing ap-
propriate values often requires careful engineering.
In order to produce desired behavior when used
with a path planning algorithm such as D', traversal
costs for undesirable areas such as heavy vegetation
must be higher than traversal costs for ideal areas
such as roads (our robot works with traversal costs
in the range of 16 to 65535). For example, the robot’s
on-board perception system assigns traversal costs
of 16 (the minimum) to roads while grass is assigned
a traversal cost of 48, implying the robot would be
willing to take a detour of three times the distance in
order to stay on a road as opposed to driving over
grass. Meanwhile, dense vegetation is often assigned
traversal costs of over 10000 in order to encourage
the robot to traverse elsewhere except under extreme
necessity. Because of these traversal distance ratios,
errors in traversal cost estimates in low-cost areas
are more detrimental than similar errors in high-cost
areas. An error of 100 to an area of extremely high
traversal cost would have negligible effect, while the
same error at an area of desirable terrain would radi-
cally change the behavior of the robot.

In order to work with a linear model, we deal
with traversal costs within our algorithm on a loga-
rithmic scale, converting from the normal traversal
cost space for the purposes of training and predic-
tion. The Gaussian error assumption embedded in
our probabilistic model is a much better approxima-
tion when we measure error on this scale. Unlike in
the regular traversal cost space, small errors in the
log space lead to small errors in the traversal dis-
tance ratios.

Training examples are constructed from x;, the
vector of feature values (either from overhead data
or far-range sensor data), and ¢;, the average of all
traversal cost estimates that have been calculated
within the corresponding area. As with many robotic
systems, the performance of our robot’s on-board
perception system quickly degrades as the distance
from the robot increases (due to the lowered accu-
racy and density of sensor data), so the quality of a
training example is measured by its proximity to the
robot. Rather than struggling to decide at which
point to utilize an example for training, the revers-
ible learning capabilities of our algorithm allow us
to maintain an optimal level of predictive abilities by
ensuring that only the highest quality data available

Journal of Field Robotics DOI 10.1002/rob
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(b)

(d)

Figure 6. Training progress of online learning algorithm using overhead color imagery data for traversal of environment
shown in (a) is shown in (b)-(d). Dimensions of shown areas are 150X 150 m?2. Accumulated ground truth traversal costs
computed by the robot’s on-board perception system and vehicle path (shown in red) are overlaid on estimated traversal
costs generated by the algorithm. Lower costs appear as darker colors and predictions that the algorithm lacked confi-
dence in (due to insufficient representative training examples) are shown in blue.

impact its state. As the robot approaches locations
that had previously been used for training, obsolete
examples are unlearned in favor of higher quality
training examples available for those areas. Esti-
mates greater than 12 m from the robot are ignored
since such estimates are very unreliable and would
only corrupt the quality of training in cases where
they cannot be replaced with better estimates. An
example of this training process can be seen in Fig-
ure 6. As the vehicle explores more of the environ-

Journal of Field Robotics DOI 10.1002/rob

ment, the greater sample of training data allows it to
more accurately interpret the locale-specific data.
Notice how the shadow from the tree at the top right
is initially estimated incorrectly as a very high-cost
area [Figure 6(c)], but as the robot explores more of
the environment, it begins to recognize its error and
lower its estimate [Figure 6(d)].

As the algorithm acquires more training data, its
predictive performance improves, allowing it to re-
vise previously made traversal cost estimates. The
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algorithm specifies a degree of confidence for each
prediction based on the similarity of the example to
past training data (as indicated by the variance esti-
mate), so predictions in which the algorithm lacks
confidence can be ignored in favor of an alternative
source of predictions or a default value. Notice how
in Figure 6(b) the algorithm is able to identify its
estimates for the trees in the environment as areas of
low confidence (shown in blue) until the robot first
encounters the tree below its starting position.

3.5. Applications of Trained Algorithm

This algorithm can be used in a variety of ways to
aid in unmanned ground vehicle navigation, both in
real-time on-board a robot and offline once it has
been trained. In the case of online terrain traversal
cost prediction, the algorithm can be used to periodi-
cally update traversal cost estimates within a region
around the robot where features have been com-
puted so that a real-time path planning algorithm
such as D’ can revise the vehicle’s global path to
account for the changes. As shown in the following
section, the use of this algorithm to extend the ro-
bot’s field of view results in significantly shorter and
more intelligent paths.

When using overhead data, one can make tra-
versal cost predictions for a large area without ever
having to traverse or acquire training examples from
that area beforehand since the predictive state of the
algorithm can be captured at any time by the vector
B at that moment. Instead, as long as identical fea-
tures are computed for the two areas, one can simply
drive through a representative area for a short pe-
riod of time in order to train the algorithm to make
predictions in a much larger area. The following sec-
tion will also show that a priori traversal cost maps
produced by this technique are more accurate than
even those produced from hand-trained techniques
that utilize superior data sources.

It is important when using overhead data that
the data be aligned with the estimated position of
the robot. Even slight misregistration can signifi-
cantly hinder the performance of algorithms such as
ours that are sensitive to such errors. An advantage
of using an online Bayesian linear regression model
is the ability to detect and correct such misalign-
ments with relative ease.

When predicting a new traversal cost Cj, the
model creates a predictive distribution p(c) with a

mean u, and a variance 2. Evaluating the predictive
distribution at the traversal cost c; of a training ex-
ample gives the probability of having seen that tra-
versal cost given its corresponding feature vector.
We can use the probability of having seen all of our
data, p(¢y,...,C,), to detect map misalignments be-
tween overhead data sources and estimated vehicle
positions by searching through a space of potential
alignments for the one that maximizes the probabil-
ity of the data.

Since p(éy, ...¢,) can be computed via the chain
rule as the product of the predictive distributions
evaluated at every ¢; used for training, the log data
probability is the cumulative sum of -loga,—(y
—,up)z / of, for every predictive distribution. After all
examples have been received, we compute the aver-
age log data probability over all training examples
and use this to compare against other alignments. As
shown in the following section, correcting such mis-
alignment produces traversal cost maps with better
defined obstacles that more accurately reflect the
true environment.

Note that for the results in the following section,
we chose the hyper-parameter for noise variance o7
with ML-II and chose an isotropic Gaussian with
high variance for the prior on 8 based on observa-
tions from previous robot traversals (Gelman et al.,
2004).

4. RESULTS

When operating with overhead data, our algorithm
will be referred to as OOLL (overhead on-line learn-
ing) and when operating with far-range sensor data,
our algorithm will be referred to as FROLL (far-range
on-line learning). All imagery data were gathered
from satellite on average several months prior to tra-
versal and all elevation data were gathered by sur-
veying from helicopter. Both OOLL and FROLL were
run on a 1.8 GHz processor with 2 GB of memory. Be-
cause of the large amount of aerial data potentially
required by OOLL, we implemented a paging system
so that only currently relevant areas of overhead data
are kept in memory.

4.1. Field Test Results

The algorithm was tested with both overhead data
and far-range sensor data in real-time on-board our
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Figure 7. Comparison of paths executed by our robot for
shown course when using only on-board perception (in
solid red) and with OOLL (in dashed blue) and FROLL (in
dotted cyan) used in real-time on-board the robot. Course
started at the top right and ended at the bottom left.

unmanned ground vehicle to measure its impact on
navigation performance. The test environments con-
tained a large variety of vegetation, various-sized
dirt roads (often leading through narrow passages in
dense vegetation), hills, and ditches. The vehicle tra-
versed series of courses defined by series of way-
points by using only its on-board perception system
for navigation. It then traversed the same courses
with the help of OOLL, first with 40 cm resolution
overhead imagery and elevation data to supplement
the on-board perception system with traversal cost
updates computed within a 75 m radius once every
2 s and then with FROLL used to interpret and make
predictions from far-range sensor data every 1 s. The
algorithm was initialized for each course with no
prior training (see Figures 7 and 8 for sample re-
sults). Notice how in Figure 7 the OOLL path shows
how the robot learned to avoid the dense area of
trees after its initial encounter with the area: it im-
mediately chose to follow the road to the goal. The
FROLL path shows how the robot chose a similar
path to the baseline system but was able to give up
on dead ends quicker and was able to avoid the
large detour at the end of the course due to its ex-
tended perception range.

As shown in Table I, our algorithm allowed the
vehicle to complete the courses using OOLL in
26.94% less time while traversing 7.38% less distance
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and with FROLL in 34.47% less time while travers-
ing 13.26% less distance. Additionally, while we
were forced to manually intervene during the tests
with only the perception system in order to correct
the vehicle’s heading when it became trapped in
heavy vegetation and could not escape on its own,
no manual interventions were necessary when using
our algorithm.

While it appears from the shown statistics that
FROLL overall resulted in more effective paths than
OOLL, we found that with OOLL, the vehicle chose
to drive further distances on more preferable terrain
in order to avoid difficult or dense areas that pre-
sented a larger possibility of damage to the sensors
or the need for human intervention. Such an in-
stance can be seen in Figure 8(a).

Figure 8(b) shows a situation where OOLL can
be most useful. Since each traverse began with an
untrained algorithm, the OOLL course was given an
additional waypoint at the right of the image in or-
der to give it an opportunity to train on a small
sample of the environment. As seen in Figure 8(d),
this small amount of training allowed it to identify
the wall of trees that heavily hindered the progress
of the vehicle in the traverses using only the percep-
tion system or FROLL.

Both techniques not only improved the quality
of the path chosen by the vehicle but also allowed
higher speed navigation by increasing the time the
vehicle had to react to upcoming obstacles and iden-
tifying safer terrain such as roads.

4.,2. Field Test Data Post-Processing Results

OOLL was also used to produce a priori traversal
cost maps for a multi-kilometer course over a large
area of complex terrain with heavy vegetation and
elevation obstacles defined by a series of GPS way-
points (see Figure 9). The algorithm was trained for
about 7 min using two types of overhead imagery
data by driving the vehicle by remote control at
about 5 m/s through the training course outlined by
the red box in Figure 9(a). The trained algorithm was
then used offline to generate a traversal cost map
and plan an initial path through the much larger
course. Closeups of generated traversal cost maps
and resulting planned paths are shown. For com-
parison, we also included the resulting path from a
traversal cost map generated by a supervised learn-
ing algorithm with human-picked examples from
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(d)

Figure 8. Comparison of paths executed for shown situations when using only on-board perception (in solid red) and
with OOLL (in dashed blue) and FROLL (in dotted cyan) are shown in (a) and (d). In (a) the course started at the bottom
and ended at the top and in (d) the course started at the top right and ended at the left. Predictions of terrain traversal
costs for the environment by our algorithm at the times the vehicle chose to avoid the large obstacles in front of it are
shown for OOLL in (b) and (e) and for FROLL in (c) and (f). Traversal costs are color-scaled for improved visibility. Blue
and red correspond to lowest and highest traversal costs areas, respectively, with roads appearing in black. In (a) the
OOLL path chose to travel slightly further on the road in order to avoid the more difficult passage to the left while the
FROLL path was able to detect the opening to the left much sooner than the baseline path. In (b) OOLL helped the vehicle
avoid the area of the dense trees by executing a path that is 42.89% shorter in 72.62% less time.

the actual course and features generated from both We evaluated the performance of OOLL against
overhead imagery and high-density elevation data  the human-trained technique by accumulating all
(see Table II for a description of data sources) (Silver ~ the traversal costs generated by the vehicle’s on-
et al., 2006). board perception system during a traversal of the

Table I. Statistics for course traversals with and without online learning algorithm

Without algorithm With OOLL With FROLL
Total Traversal time (s) 1369.86 1000.82 897.61
Total distance traveled (m) 1815.71 1681.73 1574.91
Average speed (m/s) 1.33 1.68 1.75
No. of interventions 1 0 0
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Figure 9. Circular course with the GPS waypoints for which a priori paths were planned is shown in (a). OOLL was
trained during a short traversal of the training course outlined in the red box. Shown area is 2000 X 750 m?. A priori paths
generated by a human-trained algorithm (solid red), OOLL using color imagery data (dashed cyan), and OOLL using
black and white imagery data (dotted blue) are shown in (b). Traversal cost maps produced by OOLL for the closeup area
in (c) using overhead color imagery and black and white imagery are shown in (d) and (e), respectively. See Table I for
description of data sources. Traversal costs are color scaled for improved visibility where blue and red correspond to
lowest and highest traversal cost areas, respectively.
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Table Il. Types of overhead data used by overhead online
learning (OOLL) and hand-trained algorithms used to pro-
duce prior cost maps.

Algorithm Data used Resolution
OOLL (color) Color imagery 0.35m
OOLL (B & W) Terraserver B & W 1.0m
imagery
Human-supervised Color imagery 0.35 m
Elevation <02 m

course shown in Figure 9 and comparing those costs
to the estimates from each of the generated prior
cost maps. The average absolute error in traversal
cost (on a log scale as described earlier) for each
method is shown in Figure 10 as a function of train-
ing time. This result shows that OOLL is competitive
with respect to the human-trained algorithm using
only imagery data after only a short period of train-
ing. However, it should be pointed out that main-
taining a tight correspondence from traversal costs

assigned by the human-trained algorithm to those
assigned by the perception system was difficult to
strictly enforce. This highlights another advantage of
the online learning approach over a human-trained
approach: by relieving the need for manual manipu-
lations of traversal cost assignment strategies, the
entire system is more adaptable to changes in both
the environment and the perception system.

During postanalysis of this test, we discovered
that the overhead imagery data and the estimated
position of the vehicle were in fact misaligned by
about 1.5 m. While this result shows that our algo-
rithm is robust to such map misalignment, this ar-
ticle also demonstrates how our algorithm can be
used to detect such errors in alignment in order to
achieve optimal performance.

Performance of FROLL was similarly evaluated
by comparing its estimates to all computed percep-
tion costs during a course as a function of training
time. Only estimates that had not been used for
training yet were included in this calculation (so as
not to use the training set for testing). The results
can be seen in Figure 11. Notice how after only
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Figure 10. Average absolute error between log scale traversal costs computed by the robot’s on-board perception system
over the course of a multi-kilometer traverse of terrain and traversal cost estimates computed using three techniques:
human-trained supervised learning algorithm using high resolution imagery and elevation data (solid red) and OOLL
using only color imagery (dashed cyan) and black and white imagery (dotted blue) as a function of training time by
driving in a similar environment. See Table II for a description of data sources. The erratic performance for the first few
minutes of training is due to the large effects of new training examples when so few previous data were available. In the
case of OOLL with black and white imagery, the initial sample of terrain happened to correspond well to the rest of the
course. OOLL training takes longer with color imagery due to a greater number and variety of features.
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Figure 11. Average absolute error between log scale tra-
versal costs computed by the robot’s on-board perception
system and traversal cost estimates generated by FROLL
as a function of training time.

3 min of training the algorithm has mostly con-
verged to its final predictive performance.

4.3. Offline Map Alignment

We applied our map alignment technique to a manu-
ally misaligned log of perception data and overhead
imagery features. A brute force search across all po-
tential map alignments in 0.35 m increments in the
four cardinal directions detected a misalignment of
3.85 m west and 4.9 m north. Such a search is too
computationally expensive to be performed in real-
time but was completed in several hours through
offline processing. Computed probabilities of ob-
served perception data and the corresponding im-
provement in traversal cost estimates can be seen in
Figure 12. As expected, correcting the misalignment
improved the definition of obstacles in the traversal
cost maps and resulted in a stronger correspondence
with the actual environment, correctly showing that
the traveled path is clearly on the road.

4.4, Feature Selection

We applied our feature selection imagery to a set of
33 overhead imagery and elevation data based fea-
tures. While these features were all relevant to the
environment, we assumed that many of them were
redundant and therefore selected the 14 most impor-
tant from the set. Figure 13 depicts the accuracy of
cost predictions as a function of training time using
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Figure 12. Example of how misalignment between over-
head data sources and estimated vehicle position can be
detected using our algorithm. Computed log probability
of the perception system sensor data encountered over a
12.6 X 12.6 m? search space of alignment shifts is shown in
(a). OOLL cost prediction for area shown in (b) before
alignment correction and after correcting detected mis-
alignment of 3.85 m west and 4.9 m north appear in (c)
and (d), respectively (best alignment is assumed to be that
which produces the highest probability of seen perception
data). Darker colors in the images correspond to lower
traversal costs. The robot’s path is shown in red.

this reduced set of features compared to the original
set. As expected, the smaller set of selected features
resulted in a decreased training time.

5. CONCLUSION

We have proposed a self-supervised online learning
algorithm to learn and infer between different types
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Figure 13. Average absolute error between log scale tra-
versal costs computed by unmanned ground vehicle’s on-
board perception system over the course of a multi-
kilometer traversal of terrain and traversal cost estimates
computed by DOLL before and after feature selection: re-
sults of using the full set of 33 features from both imagery
and elevation data (dotted blue) and a subset of 14 fea-
tures selected using the feature selection algorithm (solid
green) are shown.

of data sources that vary in density, reliability, and
scope. By applying the scoped learning model, we
were able to generalize from one type of data source
to be able to work with another that may be difficult
to generalize to new environments. As a result, we
were able to extend the scope of such features to
many possible domains.

We showed how the algorithm can be used to im-
prove the navigation capabilities of unmanned
ground vehicles by learning in real-time to interpret
overhead and far-range sensor data to predict terrain
traversal costs generated from an on-board percep-
tion system. We demonstrated this approach through
field tests on-board a large robot in complex natural
environments. Both online and offline results were
given to demonstrate several applications of the al-
gorithm. While performance could be hampered be-
cause of limitations in the available features or avail-
ability of representative training examples, the use of
this algorithm was shown to significantly improve
the quality of robot navigation performance. Allow-
ing robots to adapt to and improve their performance
in diverse environments without human involve-
ment through such techniques greatly expands effec-
tiveness and potential applications of robotic
systems.
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