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Abstract

Building on recent advances in the detection of appearadgesefrom
multiple local cues, we present an approach for detectimtusimn bound-
aries which also incorporates local motion information. &kgue that these
boundaries have physical significance which makes themiitapicfor many
high-level vision tasks and that motion offers a uniquegmftritical source
of additional information for detecting them. We provide enndataset of
natural image sequences with labeled occlusion boundariesvhich we
learn a classifier that leverages appearance cues alongnttbn estimates
from either side of an edge. We demonstrate improved pegooafor pix-
elwise differentiation of occlusion boundaries from nareloding edges by
combining these weak local cues, as compared to using theanately. The
results are suitable as improved input to subsequent mibighrlevel rea-
soning methods.

1 Introduction

Occlusion boundaries are a rich source of information ingesa Not only do they pro-
vide boundary conditions for almoahy process which reasons spatially within an image
(e.g.optical flow, shape-from-X methods, feature extractioteffihg,etc), but they also
capture important perceptual information about the 3D e{&h Rather than being con-
sidered merely a nuisance to be “handled” or outliers to lnédad, as is often the case,
these boundaries offapportunitiesfor segmentation and object discovery [3] 12, 14],
and for reasoning about shape and strucfurk [18].

Since occlusion boundaries correspond to locations wheeeobject or surface is
closer to the camera than another, we can exploit the regudépth discontinuity as an
indication of their existance. Noting that in many applicas, video rather than sin-
gle isolated images may be available, we can use lmcdionestimates as evidence of
those depth discontinuities. In addition, most occlusiouriaries are also visible as ap-
pearance edges (though we note that many appearance edgesoely due to surface
markings or illumination effects). Neither motion nor appence alone, however, is suf-
ficient for the detection of occlusion boundaries. Accutatal motion estimates may be
hard to obtain near occlusion boundaries, and appearages dd not always correspond
to occlusions. Thus we will combine multiple appearancescoaptured by state-of-the-
art edge detectors, with local motion cues to show thgetherthese distinct sources
of information produce superior results to using either ala@e. In particular, our goal
is to determine the subset of appearance edges that cancegpocclusion boundaries,
thereby framing our problem as one of classification.

*This work was partially supported by a National Science [Eation Graduate Fellowship.



After explaining in Sectiond 2 adl 3 the specifics of extraptiur motion and appear-
ance cues and their classification, we will describe our expnts in Sectiofil4, demon-
strating improved occlusion boundary detection when coingithese cues. These ex-
periments provide quantitative as well as anecdotal resulta novel dataset labeled for
this task.

2 Local Occlusion Boundary Features

Edge detectors generally assign a “strength” to each pixeich captures the degree
to which an edge exists there, based on the contributionridws perceptual cues. At
occlusion boundaries, there is often an additional cueénfohm of inconsistent image
motion. This motion may be caused by camera movement, whidhces parallax at
depth discontinuities, or it may be a result of dynamic otgjét the scene. Our approach
handles either situation equivalently and is thus more iggtigan motiordetectionwork
that relies on a static camera for background subtractian [d4],[19]. In the following
sections, we will describe our methods for extracting eddihese features, which will
then be used as cues for an occlusion boundary classifietibbesin Sectiof3.

2.1 Oriented Edge Detection

While classical edge detectors based on filtering are populast notably the Canny
detector, they rely on rather simple models of image intgreti edges. Even moving
beyond simple step edges to more complex edge typés [18hrlifiltering approaches
still perform poorly on edges which exist between cluttevetextured regions. Thisis a
serious concern for our work since we hope to extract motiahe vicinity of detected
edges (as described in the Sectionl 2.2 below). Motion is ohbkervable when there
is sufficient intensity gradient due to texture or cluttey,vee need an edge detection
approach which works well in such cases.

Thus we seek a detector capable of combining multiple cugéshadoes not rely on
overly simplistic edge models. An increasingly popularrageh to achieve these goals
computes edge strength using statistical comparisonsmfpacametric distributions of
cues on either side of a sample image patch at various dtilemég8, 10 11[ 15, 20].
These detectors produce good results even on edges ingextdclutter and are therefore
more appropriate for our task. Furthermore, they were ebdero the spatio-temporal
domain in [17], yielding a detector also capable of estingain edge’s normalpeed
Though potentially useful for future work, here we focugéasl on integratingnultiple
appearance cuesvhereas([1€, 17] only use intensity information.

Thus, we have chosen to use the popular BerkdRby detector for our experiments
[1Q], which already incorporates three appearance cuéghfhess, color, and texture)
and offers a publicly available implementation. As an addedefit, thePb detector’s
default parameters were learned on a large set of humanesggddata [9], allowing us
to avoid tedious parameter tuning. At each location in thage) we interpolate better
estimates for both orientatior®) and edge strengtte) by fitting parabolas around the
peakPbresponse over the set of sampled orientations. Then we esgpfirose responses
which are not local maxima along the edges’ normal direstii#]. All edges which
survive this suppression are kept for the classificatiop, & we ignore edge strength at
this stage (effectively thresholding at zero) to avoid pa&umely ruling out edges simply
because of low strength before also considering motion.cues

In Figurel, we provide an example of edges detected usirgldgitnal linear filtering
approach (b), which is based on response to a quadraturefaiented filters[[IL, 5, 13],
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Figure 1:For an input image (a), we compare (b) classical edge deteating a quadrature pair
of filters to (c) the Berkele¥?b detector (all non-zero responses after non-local maxirppregsion
are shown). Only th@b detector fires consistently on the edges which lie on oamfusbundaries
of the pole, giving subsequent classification a chance afemding. The goal of this work, then, is
to utilize appearance and motion cues in order to classifighvbf those edge detections are also
occlusion boundaries, as shown in (d).

as compared to the output of thb detector (c). Each shows all non-zero responses
after non-local maxima suppression. Note how Btedetector finds more consistent
edges at the occlusion boundaries on the sides of the pghéel&se background clutter.
At this stage, we are most interested in providingpaltentialocclusion boundaries to
the subsequent classifierg, we can tolerate false positives but not false negatives).
ThereforePb is much better suited to our classification task, an examplehich is
shown in (d).

2.2 Local Multi-Frame Motion Estimation

As with edge detection, the estimation of image motios, optical flow, is a classical
problem in computer vision (segl [4] for a recent tutoriallre} we will consider several
consecutive frames of video and computealti-framemotion estimate. As compared
to using only two frames, we find that using multiple framesdurces substantially more
robust estimates that are more discriminative for our diaation task.

Given a set of frame$l W }N_ | our goal is to find the translational motion, with
componentas andv, which best matches a patch of pixétsin the central reference
image,| ), with its corresponding patch in each of the other imagE8)} no:
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This implicitly assumes constant translation for the dorabf the set of frames, which
we find to be reasonable over brief time periods.

We employ Gaussian-shaped weighting functions,y) andh(n) (with associated
bandwidthsoy, and gy,), to decrease the contribution spatially and temporallpigéls
distant from the center of the reference patch. We itergtiestimateu and v using
a multi-frame, Lucas-Kanade style differential approathis amounts to solving itera-
tively the following least squares problem for new traristaestimates (at iteratidot- 1),
given the previous ones (at iteratiky) based on spatial derivatives of the reference patch,
Ix andly, and temporal derivativek;
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where the sums are taken over all pixels within the patclgsacall frames. (For clarity,
we have omitted the weights(x,y) andh(n), in this formulation.) In practice, we ini-
tially consider onlyl (© and its two immediate neighbors. We then gradually incrézese
temporal window, initializing with the previous transtati estimate, until finally consid-
ering all frames from-N to N. This prevents frames at extremes of the temporal window
from pulling us to poor local minima oEXf)

Aggregation of patches of data near occlusion boundar@®ldematic and address-
ing this problem specifically for optical flow estimation ket subject of extensive re-
search, including multiple motion estimation, robustrestiors, line processes, and para-
metric models[[2[ }4]. Recently, impressive results commutense flow fields in spite
of significant occlusion boundaries by using a variatiomgiraach and bilateral filtering
were demonstrated in [21].

For our purposes, since we are interested only in motion
estimates near edges (rather than a dense flow field), we will
choose patches of daaandPk on either side of each detected ,
edge pixel, as shown in Figuk 2. In addition, because we have / i
an estimate of each edge pixel's orientatién we can align PL
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information across a potential occlusion boundary. Thitite J
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nique is related to adaptive/multiple-window techniques, oriented Edge ™
in stereo vision[]B,17], gnd was also .recently used in.OCOhUSiFigure 2-patches for mo-
reasoning[[16]. (Spatio-temporal alignment to moving esdg[%n estimation aligned to
is also performed ir [16], WhICh could be used to augment alyf yriented edge.
approach as well.) Computing the necessary derivativésrwit
each window (via standard finite differencing), we can then e
timate the motionsyi = [ u. v ]T andur =[ Ur VR ]T) of the patches on either
side of each edge using the least squares approach outhogd.aVe then compute the
difference in motion between the left and right patchgss= u. — ur. Finally, we use the
Euclidean norm of theiy vector to capture the relative motion between the surfanes o
either side of a potential occlusion boundary. This megiweas as the second feature, or
cue, used by the classifier described in the next section.

In our experiments, this Euclidean metric proved to be jastseful as a Mahalanobis
distance. This is likely due to the difficulty in obtaining @ estimates of the neces-
sary covariance information on the motion componeais.py using the Hessian ifl(2),
which is not sufficient), without resorting to expensive géing techniquesl]2]. More
advanced motion estimation methods and distance metecpaasible avenues of con-
tinued research. For example, it may be useful to use an affoteon model or to con-
sider separately the estimated components of motion nanthtangential to the edge’s
orientation.

3 Classification

Our goal is to label edges as occlusion boundaries or not.d/de dby using the posterior
probability of the existence of an occlusion boundary gieenfeatures, FB|f), where

f may represent the motion differendethe edge strengt, or both{d,e}. Given the
substantial, scene-dependent variation in the fracti@pp&arance edges that are also oc-
clusion boundaries, we assume a uniform prior ofBPand use Bayes’ Rule to estimate

1This is equivalent to gradually increasing the bandwidth(ai.



this posterior (note that estimating a prior from the tnagndata was not helpful):

p(f[B)
(f|B)+p(f[-B)

Given training data, we can sample our edge strength andmadiiference freatures to
estimate the necessary data likelihoodf|B) and p(f|—B), as described in the next
section. Thresholding this ratio yields the classifier udour experiments. In the
future, it may be possible to achieve better performanceagning adaptive priors for a
given image sequence.

PrBIT) = 5 ©)

4 Experiments

We first need a dataset with labeled occlusion boundarieslier o learn the likelihoods
for the classifier. Such a dataset currently does nofexi$ius we have constructed a new
dataset for this task, which will also be made availableranfor other research@sit
contains 30 short image sequences, approximately 8-2@famength with the ground
truth occlusion boundaries labeled in the referemnee hiddle) frame of each sequence.
Some example scenes from this dataset are depicted in Bguith their ground truth
occlusion/object boundary labels overlaid. The datasgiite challenging, with a variety
of indoor and outdoor scene types, significant noise and cessjpn artifacts, uncon-
strained handheld camera motions, and some moving objé&gplan to augment this
dataset with further examples in the future.

Figure 3:Ground truth occlusion boundaries labeled for 12 of the &8ss from our dataset. Each
example is the reference (middle) frame of a short sequeiscelly 8-20 frames. The images have
been lightened for clarity. The scene in Figllre 1 is also indataset.

For our experiments, we first extract our edge strength fedtyapplying the Berke-
ley Pb code to the reference frame of each sequence, using allldptaametersi(e.
those learned from the BSDS training data). Next we aligi dame of the sequence
to the reference frame using a global translational motgtimate, as suggested [n]16].
This stabilization step removes gross camera motionsyaltpus to focus on the (poten-
tially small) relativepatch motions which are most important for our task. In addjthe
stabilized sequence better adheres to our constant wedmsitmption. Then, as described
in SectiofZR, we align small patches< 12 pixels) on either side of each edge according
to the edges’ detected orientations (see Figlre 2). UBand.[2), we estimate the trans-
lational motion of each patch separately and compute thédean distance between the
two estimates. We use a temporal window radiusl ef 3 frames and weighting function

2The popular Berkeley Segmentation Data Set (BSIDS) [9] doepnovide imagesequencesecessary for
estimating motion, nor do the human-labeled edges nedgssarespond strictly to occlusion boundaries.
Shttp://www.cs.cmu.edu/~stein/occlusion_data/
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bandwidths o, = N andai,, = r. As shown by the distribution in FiguEé 4, most relative
motionsuy are quite small, with a mean of 0.14 pixels/frame. This sufspour claim
that the motion cue available for our task is quite subtle.

4.1 Training

We randomly select half of our dataset to use for training. We
first determine the correct label for all detected edge piiebn
image by matching them to occlusion boundary pixels from the
ground truth data. Because of localization inaccuracieda(
beling and detection), we use an approach similar in sjirihé
one outlined in Appendix B ol [10], which seeks to find a one=
to-one correspondence between detected edge pixels aritynea
hand-labeled boundary pixels. A given training set coasi§tl5 Figure 4: Empirical
scenes, yielding a total of approximately, 800 individual ex- distribution of relative
amples of edge pixels for training. Unfortunately, thesanpales MOtionsug.

are taken from contiguous edges and therefore the patcedsrus

generating their appearance and motion cues overlap sigmify. Thus they are highly
dependent samples, making it inappropriate to use theroratldining.

To alleviate this problem somewhat, we consider only a randobset of the edges
available in the training set. This subset is selected shatrio two samples which come
from the same image could have utilized overlapping patohdata in estimating motion
or computingPb. Thus, for these experiments, we sample edges that aresat tedl 2
pixels apart. The resulting subset contains approxim&@00 examples, which we use
for the training described below. (For testing in Seclidh e classifyall edges detected
in a given image.)

Using the edge strength and motion features for all edgelgpp@responding to
ground truth occlusion boundaries, we construct kernebitierestimates of each cue
likelihood independentlyp(e|B) and p(d|B), as well as their joint likelihoodp(e, d|B).
Similarly, we use any detected edges thatreocclusion boundaries as negative exam-
ples to learnp(e|—B), p(d|—B), andp(e,d|—B). We use a Gaussian kernel with= 1
bin, and+30 support. For each cue, we use 50 bins (and thus the joiniHiad estimate
contains 50« 50 bins). In our experience, using a kernel does offer impdaesults, de-
spite the fairly coarse binning, particularly in terms ohgealization from training to test
data. To emphasize the importance of distinguishing thg serall motion differences
(Figure[3), the bins used for estimating the likelihood af thotion-difference cue are
logarithmically spaced between 1Dand 1& (where very large motion is indicative of
noise or lack of texture). The bins for edge strength aralilyespaced between 0 and 1.

The resulting independent cue likelihoods are shown intfef§u As evidenced by the
separation of the distributions for each class, these cvesitain some distinct informa-
tion for our classification task. The distributions also ma@kuitive sense: higher edge
strength and larger motion differences more commonly spoad to occlusion bound-
aries. Itis worth noting that the motion difference cue igdyaveak (i.e. the distributions
overlap significantly). While improved motion estimati@thniques may help, this fur-
ther supports our claim that the use of optical flow alone fatifig occlusion boundaries,
as is common practice in segmentation schemes based ompidd produce poor re-
sults on natural scenes which lack texture at many true sigitboundaries.

The estimated joint likelihoods are shown in Figlite 6. Weehastimated the full
two-dimensional joint distributionp(e,d|B) andp(e,d|—B) as well as approximate joint
distributionsp(e|B) p(d|B) and p(e|—B)p(d|—B), which assume our two cues are inde-
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Figure 5:Independent distributions and ratio scores for our two cues
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Figure 6:Learned joint likelihood distributions and ratio scoresdar two cues. Left and right of
each pair shows the result using the full and approximatied, j@spectively.

pendent. Given the visually similar estimates, it wouldegpsafe to make such an inde-
pendence assumption and approximate the joint in this ntaveewill test our classifier
with both versions below.

Next we compute the posterior probability according[@o (Byr the separate cues,
the result is overlaid on the likelihoods in Figlile 5. For ¢oenbined cues, the posterior
estimates are found in the rightmost pair of Fiddre 6. Rathan fitting an arbitrary model
to the posterior, we have chosen to use the estimates asanamtric lookup tables.

Finally, we evaluate the learned classifier on the trainiatadtself. After estimat-
ing Pr(B|f) at each edge pixel, we generate Precision vs. Recall cusvearing the
threshold on that posterior estimate and counting the nuthbéwere correctly labeled.
As seen in the left plot of Figufd 7, each cue separately gesvsome information, but
the two together perform better, with the full joint providithe best result. The precision
levels of these curves also capture a notion of the difficofliyur task and dataset.

We can repeat the entire training process with a differemtioanly-selected set of
sequences for training. Doing so allows us to compute thee bars on the precision recall
curves show in FigurEl 7. These error bars represent plusmine standard deviation
(6) for n= 50 trials. Thus they indicate the typical distribution of tturves for various
divisions of the data. The confidence intervals based omlatdrerrors §/./n) are very
tight and visually imperceptible from the mean (and thusteshown). This indicates a
statistically significant difference between the mean esiin the plots.

4.2 Testing

For testing, we use the remainder of the dataset, extractoigpn and edge strength cues
as before. This includes the other half of the scenes, agélinapproximately 80000

examples to be classified. We classify each edge pixel bgltiotding the estimated pos-
terior. We can vary this threshold to produce the PrecisiorRecall curves shown in the
right plot of Figurd¥. Here we see confirmation that the ledrdassifier can generalize
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Precision vs. Recall
Edge Strength Only
Motion Only
------ Combined Cues

— 60% Recall Point

S W

.

Original Image + Ground Truth

2

Ground Truth  Edge Strength Only
. R

Motion Only  Combined Cues

N

0 02 04 06 08 1 Precision =0.21 Precision =0.30 Precision = 0.50

Figure 8:Example classification result at a chosen operating poi6be6 recall. Combining ap-
pearance and motion cues produces superior precision ithen eue alone. Note in the combined
result the increased detection on the left of the leg as cordp® using edge strength alone, and
the decreased spurious detections as compared to usingmadoine.

to novel scenes. We see similar performance between tharfdlhpproximated joint dis-
tributions, with marginal improvement using the approxiima This may indicate that
the full joint estimate is slightly overfitting the trainimata. And once again, by repeating
the experiment with different test sets, we can generatdifiptayed error bars.

Aggregated results as provided in Figlite 7 give a generalesehperformance, but
here we also provide a few anecdotal examples from the dateesehibit more concretely
the information sometimes hidden in such cumulative coispas. Figurdl8 shows a
scene with ground truth overlaid. To illustrate the impmmemt when using both cues
together, we have selected the threshold for each clasgifieresults in 60% recall, as
indicated on the Precision vs. Recall plot. For the indidatandow of the original scene,
the right four boxes compare the ground truth labeling aed:thssification results using
the cues individually and together. As shown, the best téwith significantly higher
precision) is achieved using both cues. For example, coadbines yield improved de-
tection with fewer false positives on the left side of thedsgcompared to the result using
individual cues alone. Similarly, the examples in Figureetndnstrate classification im-
provement using combined cues.

5 Discussion & Conclusion

Because the performance of any local edge detector is timé@me edges will always
be missed. By restricting ourselves to the classificationrdy the appearance edges
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Figure 9: Two additional example classification results. Combinipgearance and motion cues
produces superior precision at the selected recall opgrabint than using either cue alone. Note
the decreased false positives when using the combined cues.

which are detected, we therefore inherit those limitations. As detsdmprove €.g.in
detecting very weak edges), so too will our approach. Fodatmset, however, the edge
detector fires with non-zero strength on 83.5% of the grouurtti boundaries, indicating
that our technique is viable in practice. A complementagraach may include finding
motion boundariefirst and subsequently incorporating appearance reasoning.nfdy
allow the detection of occlusion boundaries visibidy due to motion, but these cases are
relatively rare and such an approach could come at high ctatipnal cost.

Local estimates of any kind, including thb detector and our motion difference
feature, are inherently noisy and ambiguous. They are msefuliwhen incorporated
into more global reasoning,g.using a graphical model. Rather than blindly using local
estimates for mid- and high-level tasks, however, we belieis important, if not crucial,
to evaluate the utility of these low-level cues themselgepérately and in combination).
Having verified here the benefit of using motion, we are culyateveloping methods
of globally reasoning about object/occlusion boundaries @bject segmentation which
build on the combined local cues described in this work.

Our goal of detecting occlusion boundaries could potdgttznefit many computer
vision methods, which often rely on spatial aggregatiorthla work, we have presented
experiments demonstrating anecdotal and quantitativétsdsr two local, low-level fea-
ture types useful for future research into globally reasgribout occlusion boundaries.
While further investigation into augmenting and strengthg each of our chosen fea-
tures is warranted, particularly in the better estimatiod aomparison of local motion,
we have demonstrated that considerable improvement isifylamgy occlusion boundaries
is possible when combining these two distinct, individpalieaker cues. We have also
provided a novel, labeled dataset as an additional reséarfigure research on occlusion
boundary detection.
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