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The S-Model arm signature identification algorithm [2,3,4,5] is a gen-
eral technique for identifying the kinematic parameters of any "n” degree-
of-freedom robotic manipulator with rigid links. This technique provides
a means to reduce the modeling errors between the actual kinematics of a
robot and the kinematic model used to control the end-effector position and
orientation. In this approach, the nominal control model whose parameters
are obtained from the robot’s mechanical design specifications, and which do
not account for the presense of random manufacturing errors, is replaced by
the identified arm signature model. In [3,4], the S-Model identification algo-
rithm has been applied to identify the kinematic parameters and improve the
kinematic performance of seven Unimation/Westinghouse Puma 560 robots.

In this paper, we apply Monte-Carlo simulation techniques to gain fur-
ther insight into the relationship between manufacturing errors and the per-
formance of a robot using either the design model or arm signature model
for control. In conventional design-model robot control, manufacturing errors
contribute most to robot positioning errors. Thus, we relate the statistical pa-
rameters which characterize a robot’s positioning accuracy to the statistical
parameters which characterize the manufacturing error probability distribu-
tion functions. In arm signature-based robot control (S-Model), the correct
arm signature model eliminates kinematic errors due to manufacturing. In
this case, robot performance is limited by sensor errors which contribute to
inaccuracy of the identified arm signature model. The relationship between
the statistical parameters which characterize a robot’s positioning accuracy
to the statistical parameters which characterize the sensor performance is
presented. Finally, we analyze and quantify the requirements of an arm sig-
nature identification system in terms of the underlying sensor performance.

1 Introduction

In this paper, we analyze and evaluate the statistical performance of
the S-Model Identification Technique and compare it to the statistical
performance of the widely used Design Model control approach. In
both cases, Monte-Carlo simulation techniques are applied to derive
the underlying statistical relationships. In conventional design model
robot control, the robot design model, whose parameters are obtained
from the robot’s mechanical design specifications and which do not ac-
count for the presence of random manufacturing errors, is used as a
basis for kinematic control. In this case, manufacturing errors con-
tribute most to robot positioning errors. In arm signature-based robot
control (S-Model) where the robot design model is replaced by the iden-
tified arm signature model, the correct arm signature model eliminates
kinematic errors due to manufacturing. In this case, robot kinematic
performance is limited by sensor errors which contribute to inaccuracy
of the identified arm signature model.

Experimental studies of D-Model and S-Model control are pre-
sented in [3,4,5]. In these studies, the S-Model control showed consis-
tent performance improvement, and demonstrated accuracy approach-
ing limits predicted by the joint encoder resolution. In this paper, we
analyze the origin of this improvement, and quantify the requirement of
an arm signature system in terms of the underlying sensor performance.

D-Model control performance depends upon the manufactur-
ing process which determines the actual geometry of the robot. Since
manufacturing errors'vary randomly from one robot to another, the per-
formance or an arbitrarily chosen robot has a random component. The
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statistical parameters which characterize a robot’s positioning accuracy
are related to the statistical parameters which characterize the man-
ufacturing error probability distribution functions. Unfortunately, the
complexity of robot kinematics prevents us from analytically deriving
this relationship. Thus, we applied Monte-Carlo simulation techniques
to gain insight into the relationship between manufacturing errors and
the performance of a design model controller. A kinematic model of
a Puma 560 robot which directly incorporates manufacturing errors as
parameters was developed for this analysis and is described in Section
3. The results of the analysis are presented in Section 4 and bring
to light some of the major disadvantages of the design model control
approach.

The performance of S-Model control is dictated by the presence
of errors in the arm signature identification process and not by the pres-
ence of manufacturing errors. In this case, errors are introduced into
the identification process by the sensor system and must be analyzed
to determine if the performance of the robot would improve relative
to the performance obtained from using D-Model control. In section
4 we analyze the relationship between target measurement errors and
the performance of S-Model control using simulation methods.

This paper is organized as follows. Section 2 provides a brief
review of the S-Model identification algorithm and our prototype iden-
tification system [3]. In Section 3 we describe the structure of our
Monte-Carlo simulator. Then, in Sections 4.1 and 4.2, we explore the
relationship between the performance of the D-Model controller and
the two types of manufacturing errors referred to as encoder calibration
errors and machining and assembly errors. Sections 4.3 - 4.5 discuss the
relationships between the performance of the S-Model controller and
the target measurement accuracy, the number of measurements, and
the length of the target radii, respectively. Finally, in Section 5 the
issue as to whether or not S-Model control improves robot end-effector
positioning accuracy is resolved.

2 Background

In {2], we introduced a new kinematic model for describing robot kine-
matics called the S-Model. This model was developed specifically to
facilitate kinematic parameter identification. The identification algo-
rithm which was also developed and is based upon the properties of
this model and the observed intrinsic properties of mechanical joints
is called the S-Model Identification Algorithm. This section presents a
brief description of the model, the identification algorithm and a proto-
type system used to identify the signatures of seven Puma 560 robots.
Our intent is simply to establish the definition of terms used later in
this paper. Detailed descriptions of the above can be found in |{2,3,4,5).

In the S-Model, the matrix
Sp=B;-By-... By (1)
defines the position and orientation of a coordinate frame fixed relative

to the last link of a manipulator with respect to a coordinate frame
fixed relative to the base link. The general transformation matrices




Rot(z,f:)Trans(0.0, 0.0,d;)Trans(a;,0.0,0.0)Rot(z, @;)
Rot(z,7i)Trans(0.0,0.0,5;) 2)

in (1) describe the relative transformation between cartesian coordinate
frames 6;_, and & fixed to links i — 1 and 4, respectively. Each matrix
B; is a function of the six kinematic parameters, f;, d;, @, @, v and b;.
The parameter f; is a function of the joint ¢ position for revolute joints
and d; is a function of the joint i position for prismatic joints. As a
result of its structure, the S-Model possesses three important features
which make it directly applicable to kinematic identification. First,
there is a considerable amount of flexibility in assigning the locations of
the link coordinate frames. Second, the locations of the link coordinate
frames are independent of the locations of the other link coordinate
frames. And third, the Denavit-Hartenberg parameters can be easily
extracted from the S-Model parameters.

B;

The objective of S-Model identification is to estimate the S-
Model kinematic parameters from a set of 2n,+n, kinematic/mechanical
features inherent to the manipulator, where n, is the number of revolute
joints and n, is the number of prismatic joints. The kinematic features
of a revolute joint are the plane-of-rotation and a center-of-rotation,
and the kinematic feature of a prismatic joint is a line-of-translation.
In particular, it is recognized that the locus of point rotating about
an axis is a circle which lies in plane and that the vector normal to
this plane is parallel to the axis of rotation. In addition, the center
of the circle is a point which lies on the axis of rotation. When joint
i—1is rotated, any point which is fixed relative to the ith link defines
a plane-of-rotation and a circle-of-rotation provided that the positions
of joints 1 through i — 2 remain fixed. A similar scenario applies to
prismatic joints. A set of such kinematic features contains the essential
information required to formulate a complete kinematic model since
together the features determine the relative locations of the joint axes.

The S-Model identification algorithm consists of four steps in
which the overall identification problem is separated into a set of inde-
pendent, less complex identification problems.

In the first step, feature identification the kinematic features
are identified from measurements of the Cartesian position of targets
physically attached to the robot’s links. The positions of these tar-
gets, relative to an independent fixed coordinate frame (i.e., the sensor
frame) vary as the manipulator changes configuration. During data
collection the manipulator is programmed to move through a sequence
of joint configurations. At each configuration the position of a target is
measured. The kinematic features are described analytically by an al-
gebraic equation, and the coefficients of these equations are the feature
parameters which are estimated.

The second step in the identification algorithm is link coordi-
nate frame specification. If the manipulator configuration is known in
terms of the joints positions a set of link coordinate frames which sat-
isfy the S-Model convention [2,4,5] may be defined. By collecting target
measurements and identifying the parameters of the kinematic features
which correspond to this same manipulator configuration, we can read-
ily establish a valid set of S-Model link coordinate frames. Then, we
can apply the estimated feature parameters to construct and evaluate
the elements of the matrices S; where 5; = P x S; and P is a constant
yet unknown transformation matrix representing the spatial transfor-
mation between the sensor coordinate frame and the Link 0 coordinate
frame.

The third step, S-Model parameter computation applies the ap-
plication of the inverse kinematic parameter relationships for g, d;, @,
@;, vi and b; developed in [4). The elements of the general transforma-
tion matrices B;, which are the arguments to these inverse relatiohships,
are a function of the transformation matrices 5; determined in the pre-
vious step. Identifying the S-Model parameters requires straightfor-
ward numerical evaluation.

In the fourth and final step, Denavit-Hartenberg parameter ez-
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traction relationships developed in [4] are applied to determine the ma-
nipulators Denavit-Hartenberg kinematic parameters from the identi-
fied S-Model parameters.
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Figure 1: Measurement Collection Scenario

Figure 1 illustrates the basic scenario under which measure-
ments are obtained for the identification algorithm using our prototype
system. The figure depicts a Puma 560 robot sequencing the position
of joint 6 in order to generate a plane-of-rotation and center-of-rotation
for joint 6. (Note that a fixture has been attached to Link 6 to sup-
port the target at an appropriate location). N; measurements of the
ith link’s target positions denoted by 13; = (zj,yj,2j)for j=1,2... N;
are computed based upon the explicit measurments of the three slant
ranges S1, Sz, and S3. In our system the target (source) is an ultra-
sonic sparker and the detectors are ultrasonic microphones. Standard
triangulation algorithms are used to perform the computations and
are a function of the range sensor spatial separations. In addition to
controlling the identifier parameters N; for i = 1,2,...6 one also has
control over the nominal radius R; of the i*" target point relative to
the i** joint axis. Increasing R; with in the limitations of the sensor
system workspace tends to increase feature estimate accuracy. Nat-
urally, both the number of measurements &; and the nominal target
radii R; should be used to reduce the effects of the slant range mea-
surement noise upon feature estimate accuracy and thus the accuracy
of the identified signatures.

3 A Monte-Carlo Simulator

The performance evaluation of the D-Model and S-Model controllers
is complicated by the nonlinear robot kinematics, the nonlinearities of
the S-Model identification algorithm, and the presence of error sources.
Random errors are introduced into both the manufacturing and iden-
tification processes. This reality forced us to develop a Monte-Carlo
simulator to conduct a statistical evaluation. Because of the variability
of robot designs, development of a general-purpose Monte-Carlo simu-
lator was impractical. Thus, to complement our hardware experimen-
tation [3,4], we have evaluated the kinematic performance of the Puma
560 robot with both design model based control and signature-based
control. In doing so, we have established a methodology to evaluate
the kinematic performance of all robots.

In our simulator we used a three-dimensional grid touching task
to evaluate the kinematic performance of the Puma 560 with alternative
controller designs. The grid contains twelve vertices, labeled 1 through
12, whose approximate positions, relative to the robot, are depicted in
Figure 2. The desired positions of the vertices, measured with respect
to the base coordinates of an ideal Puma 560 are listed in Table 1. The
desired orientation of the end-effector is the same for all twelve vertices.
Vertices 1 through 8 define four lines parallel to the X axis (Lines 1, 4,
5, and 8) each 60.0 cm long, four lines parallel to the Y axis (Lines 2, 3,
6, and 7) each 30.0 cm long, and four lines parallel to the Z axis (Lines
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Figure 2: Definition and Location of Points in the Simulated Three-
Dimensional Grid Touching Task

Cartesian Position
Point X Y Z

(cm) (cm) (cm)
1 -30.0 40.0 30.0
2 30.0 40.0 30.0
3 -30.0 70.0 30.0
4 30.0 70.0 30.0
5 -30.0 40.0 80.0
6 30.0 40.0 80.0
7 -30.0 70.0 80.0
8 30.0 70.0 80.0
9 0.0 40.0 30.0
10 0.0 70.0 30.0
11 0.0 40.0 80.0
12 0.0 70.0 80.0

]

Table 1: Positions of Three-Dimensional Grid Vertices

9, 10, 11, and 12) each 50.0 cm loug. The four vertices 9 through 12
are the midpoints of lines 1, 4, 5, and 8, respectively.

Six types of positioning and orienting errors are used to mea-
sure and evaluate robot performance.

1. Linear Displacement Errors — These errors are defined as the dif-
ference between the actual and desired lengths of various grid
lines. Sixteen linear displacement errors are considered, twelve
corresponding to the errors between the actual and desired lengths
of Lines 1 through 12 and the four corresponding to the errors be-
tween the actual and desired lengths of the diagonal lines defined
by Vertices, 1 and 4, 2 and 3, 5 and 8, and 6 and 7.

2. Normal Deviation Errors — These errors are defined as the nor-
mal distance between the end-effector’s position at one of the
midpoint vertices and the line joining the two actual positions of
the end-effector at the lines’ endpoints. These errors represent a
measure of line straightness. For each of the lines 1, 4, 5, and 8,
and (normal deviation error) is computed.

3. Radial Displacement Errors — These errors are defined as the ra-
dial distances between the actual and desired positions of the
end-effector. Errors at Vertices 1, 4, 5, and 8 are computed.

4. Absolute Orientational Errors — These errors are defined as the
angular deviation between the actual and desired orientations of
the end-effector. Absolute orientational errors are computed at
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Vertices 1, 4, 5, and 8.

. Relative Orientational Errors — Each of these errors are defined
as the angular deviation between the actual orientation of the
end-effector at a specified vertex and the orientation of the end-
effector at the grid origin (i.e., Vertex 1).

[

6. Line Perpendicularity Errors — The X-Y Line Perpendicularity
Error is the angular deviation between Line 1 and Line 3, minus
90.0 degrees. Similarly, the angular deviations between Lines 3
and 8 and Lines 8 and 1 are the Y-Z and Z-X Line Perpendicu-
larity Errors, respectively.

A total of thirty-four positioning and orienting errors are com-
puted during each experiment (i.e., simulated event) within a simulator
run in order to measure the robot’s kinematic performance. Each error
represents an index of performance and each simulation consists of 500
experiments. Following the completion of each simulation, we compute
the mean, variance, and standard deviation of each performance index.
Different sets of input parameters are specified in each simulation. To
analyze the effects of manufacturing errors upon the performance of the
D-Model controller, the input parameters are the manufacturing error
variances while to analyze the performance of the S-Model controller,
the input parameters are the nominal target radii R;, number of points
per circle Ny, and the sensor measurement noise standard deviation o,.

The performance of the D-Model controller is a direct reflection
of the manufacturing errors. To simulate the performance, we have
developed a kinematic simulator model of the Puma 560. The model

T; =Ko Ky Ko K3 Ky Ks - K 3)

where
Ky = Trans(q,62,ca)Rot(z,Q)Rot(y,es)Trans(O.O,O.O,zl)
Rot(z,ee)Rot(y, e7)Rot(z, €3) (4)
Ky = Rot(z,61)Trans(0.0,0.0,e5) Rot(z, €10) Rot(y, €11)
Trans(e12,0.0,z2)Rot(z, €13 + 23)Trans(0.0,0.0, z4)
Rot(z,€14) (5)
K2 = Rol(z,05)Trans(0.0,0.0, €15 + z5)Rot(z, e16) Rot(y, €17)
Trans(ers + ¢6,0.0,0.0) Rot(z, €19) Rot(y, €20) Rot(z, €21 X6)
KNs = Rot(z,03)Trans(0.0,0.0,e2) Rot(, €23) Rot(y, €24)
Trans(z7 + €35, T3 + €26, 29 + €27) Rot(x, 219 + €23)
Rot(y, e29) Rot(z, €30) (7)
K4 = Rot(z,04)Trans(es1,0.0,z11 + e32) Rot(z, 212 + €33)
Rot(z, €34) (8)
Ks = Rot(z,05)Trans(0.0,0.0,e35)Rot(z, 213 + €a6)
Trans(ezr,0.0,214)Rot(z, €38) (9)
K¢ = Rot(z,06)Trans(0.0,0.0,z15 + €39) (10)

incorporates both the nominal mechanical design specifications and the
manufacturing errors as parameters. The homogenous transformation
matrix 7¢ defines the position and orientation of a coordinate frame
fixed relative to the end-effector with respect to a coordinate frame
fixed relative to the base. The parameters, 21, 2o, ..., 215, represent
the nominal mechanical design specifications while the parameters ¢,
€2, ..., €39, represent the manufacturing errors. The angular positions
of joints 1 through 6, as measured by the respective joint encoders, are
denoted by 8, through fg, respectively. The transformations compris-
ing the matrix Ky describe the actual physical structure of the base
link while the matrices Ky, K, ..., K¢ describe the actual physical
structure of Links 1, 2, ..., 6, respectively, for a particular Puma 560
robot. A deriviation of the model (3) is presented in [4,5].

The values of the nominal design parameters for the Puma 560,
3 - 213, are listed in Table 2. When the manufacturing errors are zero,
the model (3) is nearly equivalent to the standard Denavit-Hartenberg
model of the Puma 560 [4]. The difference is caused by the fact that, in



(3), we consider the base frame to be located at the lower end of Link
0 (i.e., coincident with the surface to which the robot would normally
be mounted).

The values listed in Table 2 where obtained from a cursory
examination of the machanical structure of a Puma 560 and not from

Value

Parameter (cm) (deg)
T 58.500 —
Ty 8.900 —
z3 - -90.0
Z4 17.750 —
z5 2.500 —
z6 43.180 —
z7 -2.032 —
T3 -33.320 —
o -5.341 —
Z10 — 90.0
Zi1 10.050 —
T12 - -90.0
z13 — 90.0
Z14 4.445 —
Z15 1.270 —

Table 2: Nominal Design Kinematic Parameters for a Puma 560.

an exhaustive study of the actual manufacturing process. Such a study
was beyond the scope of our intended investigation. It is believed that
the model (3) is sufficiently complex and realistic enough to provide
insight into the expected performance of a Puma 560 whose kinematics
are affected by random manufacturing errors.

In simulation, the manufacturing errors are generated using
standard random number generators. Gaussian distributions are used
to model the variations in manufacturing errors from one robot to an-
other. It is assumed that all manufacturing errors have zero mean.

The manufacturing errors €y, €2, ..., €sg are divided into three
catagories; positional errors, orientational errors, and encoder calibra-

tion errors. For convenience, it is assumed that errors within a category
have the same variance. The variance of the errors in the positional er-
ror catagory is measured in cm? and is denoted by 2. The variances
of the errors in the remaining two catagories are measured in deg? and
are denoted by o2 and o2, respectively. Our experience with Puma
560 robots suggests that the orientational errors introduced during the
calibration of the joint encoders are significantly greater than the ori-
entational errors committed during machining and assembly thus the
need for two separate orientational error variances.

Simulating the performance of the S-Model controller is com-
plicated by the need to simulate the identification process. Arm sig-
nature identification in combination with signature-based contron pro-
ceeds through a sequence of five steps. Table 3 lists the inputs, the
outputs, and the potential sources of errors for each of these steps.
The table indicates how the input errors propagate through the iden-
tification algorithm to produce end-effector positioning and orienting
errors. The outputs of a step are affected by both the errors of the step
and the errors of previous steps. The error sources listed in Steps 1 and
2 are specific to the ultrasonic sensor system used in our prototype sys-
tem [3]. In practice, by interchanging simulator modules, alternative
sensor systems can be analyzed.

Since it would be impractical to simulate all of the errors listed
in Table 3 and interpret the results, our primary objective has been to
evaluate on the effect of sensor errors (i.e., the errors which affect the ac-
curacy of the target measurements) on the performance of the S-Model
Controller. In our simulation of the Puma 560, we have considered
only the sensor errors which most strongly affect the measurement of
the target loci. These include slant range errors and sensor system
calibration errors.

The S-Model identification algorithm is applied, in simulation,
to identify the kinematic parameters of a perfectly manufactured Puma
560 robot in the presence of slant range errors and sensor system cal-
ibration errors. The assumption that the actual robot has no manu-
facturing errors merely simplified the simulator design task. Since the
S-Model identification algorithm is a general method and does not re-
quire a priori knowledge as to the nominal kinematic structure of the
robot, the statistical performance of a S-Model Controller for a per-
fectly manufactured Puma 560 will be identifical to the performance of
an S-Model Controller for a Puma 560 with an arbitrary set of manu-
facturing errors.

Step Description Inputs Outputs Sources of Error
1 Sensor Model Actual Target Range Filtered Target Range Temperature,
’ Acoustic Noise,
Numerical
2 Sensor System Model Filtered Target Ranges Cartesian Target Position Sensor Misalignment,
Numerical
Joint Wobble,
3 Feature Model Cartesian Target Positions | Feature Parameter Vector Link Compliance,
Gear Backlash,
Transmission Compliance
4 - S-Model Feature Vectors §-Model Parameters Numerical
5 D-H Modet S-Model Parameters Denavit-Hartenberg Numerical
Model Parameters
Steady-State Joint
Denavit-Hartenberg Position Control Errors,
6 Control Mode! Model Parameters Actual End-Effector Encoder Resolution,
Desired End-Effector Position Link Compliance,
Position Backlash
Numerical

Table 3: Propagation of Identification and Control Errors.
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To initialize the simulator, a variety of input parameters must
be specified such as the true locations of the target points with respect
to the links, and spatial transformation between the sensor coordinate
frame and the robot base coordinate frame. A list of the input param-
eters and the values used in our simulation experiments can be found
in [4,5]. The values coincide with our hardware implementation of the
S-Model identification algorithm and our prototype system.

The first computational task performed by the simulator is to
use the Puma 560 design model to compute the actual locations of the
target points with respect to the sensor coordinate frame. Then, the
actual slant ranges are computed based upon the known positions of
the microphones. Next, zero mean gaussian noise is added to each of
the slant ranges. The standard deviation of this noise depends upon
the range. The linear approximation

o = 9.6432¢ — 5X + 0.003 (11)
models the relationship between the noise standard deviation, o, and
the range, X. In (11), ¢ and X are measured in centimeters. The cor-
rupted slant ranges are also quantized to two decimal places to simulate
the limited resolution of the GP-8-3D ultrasonic digitizer [1]. Using
these corrupted slatn ranges, the S-Model identification algorithm is
applied to determine the robot’s arm signature. This procedure is re-
peated 500 times producing 500 arm signatures. The Newton-Raphson
algorithm [4] is then applied to control the actual Puma 560 robot in
performing the grid touching task based upon each of the identified sig-
natures. Finally, the means, variances, and standard deviations of the
thirty four performance indices are computed and tabulated for later
analysis. Prior to its use in our analysis a series of specially designed
experiments were conducted to validate the behavior and numerical
values generated by the simulator. A detailed description of the vali-
dation procedure and results can be found in [4,5]. The results therein
confirm that the simulator produces realistic and reliable data.

4 Results

Our analysis of the statistical effect of manufacturing errors and iden-
tification errors upon end-effector positioning accuracy is divided into
five parts. In Section 4.1, we consider the effects of encoder calibration
errors upo the performance of the D-Model Controller. The effects of
machining and assembly errors upon the performance of the D-Model
Controller are discussed in Section 4.2. Sections 4.3 - 4.5 discuss the
relationship between the performance of the S-Model Controller and
sensor system accuracy, the number of measurements, and the target
radii, respectively.

4.1 Encoder Calibration Errors

The procedure for calibrating the joint encoders of a Puma 560 can
often lead to significant encoder calibration errors. These errors result
in fixed biases between the actual and measured positions of the joints.
Five simulations were conducted using model (3) to evaluate the effect
of random encoder calibration errors upon robot performance. In these
simulations, the positional error standard devaition and orientational
error standard deviation were g, = 0.0lem and ¢, = 0.01deg, respec-
tively. The standard deviation of the encoder calibration error ¢, was
varied from 0.1 deg to 0.5 deg. The statistical variations in the 34 per-
formance indices of 500 simulated robots are plotted as function of o,
in Appendix G, in [4,5]. (Due to space limitations, it is impossible to
present all of these results in this article).

The standard deviations of all 34 performance indices are seen
to increase linearly as the standard deviation of the encoder calibration
errors increase. To illustrate, the radial position errors are Vertices 1,
4, 5, and 8 are plotted as a function of o, in Figure 3. From Figure
3, it is also observed that the rate at which different index standard
deviations increase varies. For instance, the standard deviation of the
Vertex 1 radial position error increases 1.4 times faster than that at
Vertex 4. It is believed that the variability in the rate at which the
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Figure 3: Radial Position Error Standard Deviations as a Function of
Te.

performance index standard deviations increase as the encoder calibra-
tion error standard deviation increases is partly due to the variability
in robot performance over the workspace. Robots with revolute joints,
particularly those with revolute joints in the positioning system (i.e.,
the first three joints), tend to amplify joint positioning errors. Roughly
speaking, the amplification factors are the effective radii between the
axes where the errors occur and the end-effector. Thus, as a robot
extends its reach the various amplification factors tend to increase. In
design model control, encoder calibration errors translate into joint po-
sitioning errors. Thus, we would expect robot kinematic performance
to decrease as the desired end-effector position approaches the outer
limits of the robot’s workspace. Figure 3 and the remaining plots in [7]
clearly support this hypothesis. The standard deviation of the radial
error at Vertices 4 and 8 are .299 cm and .282 cm, respectively, while
the standard deviation of the radial error at Vertices 1 and 5 are .225
cm and 202 cm, respectively — when ¢? = 0.3deg. From Table 1 we
see that Vertices 4 and 8 lie near the maximum reach of the Puma 560
while Vertices 1 and 5 lie relatively close to the base of the robot.

There is another important feature of the effect of manufac-
turing errors upon performance which is not apparent from the plots.
Even though the simulated manufacturing errors have zero mean, the
means of the performance indices are nonzero. In fact for certain per-
formance indices, the indices’ mean values may be larger than their
standard deviations. Furthermore in some cases, the index means vary
linearly with the encoder calibration error standard deviation.

The mean value of the Line 11 link length error decreases from
0.0268 cm to 0.0038 cm as o, increases from 0.1 deg to 1.5 deg. Other
index mean values may even change sign. Robot kinematics, especially
those of the Puma 560, are highly nonlinear and coupled. As is often
the case for nonlinear systems, the expected value of the system out-
put, in this case robot performance, is both a function of the mean
and standard deviation of the input noise. These results are in direct
contradiction to the analytic results derived by Wu [6]. Our results
indicate that in the presence of zero-mean gaussian random manufac-
turing errors the expected positioning accuracy of an arbitrary robot
will be nonzero. While a reduction in manufacturing errors will tend
to increase robot positioning accuracy, this approach by itself will not
necessarily eliminate the expected positioning errors inherent to robots
which utilize a design model control strategy.

4.2 Machining and Assembly Errors

To evaluate the effect of positional and orientational machining and
assembly errors upon robot performance, five more simulations were
performed. In these simulations, the standard deviations of the posi-
tional and orientational errors, op and o, were varied simultaneously
from 0.01 cm and 0.01 deg to 0.05 cm and 0.05 deg, respectively, while
the encoder calibration error standard deviation, o,, was fixed to 0.1
deg. The standard deviations of the 34 performance indices are again
plotted in [4,5] as a function of op and o,. These sample standard
deviations are based upon the performance of 500 robots.
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The variations in the performance index standard deviations
in these simulations are quite different from those in Section 4.1. For
instance, consider Figure 4 where the radial position error standard
deviations at Vertices 1, 4, 5, and 8 are plotted as a function of g, and
¢,. In contrast to Figure 3, the relationships shown in Figure 4 are
distinctly nonlinear. Similar nonlinear relationships are exhibited by
the remaining performance index standard deviations. Except for the
Vertex 1 and Vertex 4 absolute orientational error standard deviation,
the performance index standard deviations all increase monotonically
as 0, and o, increase. Furthermore, the slopes of all 34 curves increase
monotonically.

In further contrast to the curves in Figure 3, the curves in
Figure 4 do not all diverge from one another. For example, as o, and o,
increase the difference between the variability in the radial positioning
error at Vertex 1 and at Vertex 5 decreases from 0.0224 to 0.0138. In
some cases the curves may even intersect.

The variations in the performance index means as a function
of o, and o, are much more predictable than when as a function of
oe. As 0, and o, increase, all of the performance index means increase
monotonically. For D-Model Control, the presence of positional and
orientational manufacturing errors leads to an average decrease in end-
effector positioning accuracy.

The effect of positional and orientational manufacturing errors
on the variability of end-effector positioning accuracy is more complex
than that for encoder calibration errors as evidenced by the nonlinear
relationships in Figure 6. However, the effect of these manufacturing
errors upon the expected end-effector positioning accuracy of a robot is
much more simple than for the effect due to encoder calibration errors.
Finally, the sensitivity of the performance index standard deviations to
simultaneous variations in ¢, and o, is less than the sensitivity of the
performance index standard deviations to variations in oe.

4.3 Sensor Measurement Errors

In [4], equations were derived empirically to describe the relationship
between feature estimate accuracy and sensor system accuracy, o, as
well as the identification parameters, N; and R;. Unfortunately, the ef-
fect of feature estimate accuracy upon the performance of an S-Model
Controller cannot be derived analytically. Therefore, the simulator was
applied to empirically determine the qualitative relationship between
measurement noise standard deviation, o, and the expected perfor-
mance of a Puma 560 robot which uses signature-based control. Six
separate simulations were conducted each using a different value of o
in (11), to identify the robot’s arm signature. In each simulation, the
value of (sigma) was computed according to (11) and then multiplied
by a factor k£ ranging from 1.0 to 10.0.

The standard deviations of the 34 performance indices as funec-
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Figure 5: Radial Position Error Standard Deviation as a Function of
the Measurement Noise Factor k.

tion of k are plotted in [4,5]. The plot of the Radial Position Error
standard deviation is reproduced below in Figure 5. The standard de-
viations of all the performance indices increase linearly with the noise
measurement factor. The more inaccurate the sensor system is the
more inaccurate the identified signatures are and hence the greater the
variability in the performance of the S-Model Controller. The signifi-
cance of these results is that the sensitivity of the performance of the
S-Model Controller to variations in sensor system accuracy is consistent
with the relationships in [4] which govern the feature estimate accuracy.
In these equations, the orientational accuracy of the estimated planes-
of-rotation and positional accuracy of the estimated centers-of-rotation
are both directly proportional to the measurement noise standard de-
viation. Clearly, feature estimate accuracy has a direct impact upon
the performance of an S-Model Controller.

Nineteen of the performance indices are defined such that they
can take on any real value (e.g., the various Line Length Error indices).
Using S-Model control the mean values of these nineteen indices are all
zero which is in strong contrast to the effect which manufacturing errors
have upon the performance of the D-Model Controller. The significance
of this is that on the average we can expect the S-Model identification
algorithm to correctly identify the true kinematic parameters of a robot
and thus eliminate end-effector positioning errors. For the remaining 15
performance indices, the index’s mean values are directly proportional
to the measurement noise standard deviation, o.

4.4 Number of Measurements

The effect of feature estimate accuracy upon the performance of an
S-Model Controller can not be derived analytically. Therefore, the
simulator was again applied to empirically determine the qualitative
relationship between N; and the expected performance of a Puma 560
robot which uses S-Model Control. Five separate simulations were
conducted each using a different number of measurements per joint,
Nj, to identify the robot’s arm signature.

The standard deviations of the 34 performance indices for N; =
20, 40, 60, 80, and 100, are plotted in [4,5]. For comparison purposes,
the plot of the Radial Position Error standard deviation is reproduced
below in Figure 6.

In general, the standard deviations of all 34 performance in-
dices are inversely proportional to the square root of N;. By increasing
the number of measurements used in identifying a robot’s arm sig-
nature, substantial increases in end-effector positioning accuracy can
be achieved. For instance, in Figure 6 the Radial positioning errors
are reduced by a factor of 2.34. Such findings are consistent with the
analytic relationships developed in [4] regarding feature estimate ac-
curacy. In these relationships, the orientational accuracy of the esti-
mated planes-of-rotation and the positional accuracy of the estimated
centers-of-rotation are both inversely proportional to the square root
of the number of measurements. Feature estimate accuracy thus has a
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direct impact upon the performance of the S-Model Controller.

Consider again the nineteen performance indices which are de-
fined such that they can take on any real value. Using signature-based
control the mean values of these nineteen indices are all zero (i.e., negli-
gible in comparison with the corresponding standard deviations) which
is in strong contrast to the effect which manufacturing errors have upon
the performance of D-Model Control. On the average we can expect
the S-Model identification algorithm to correctly identify the true kine-
matic parameters of a robot and thus eliminate end-effector positioning
errors. For the remaining 15 performance indices, the index’s mean val-
ues are inversely proportional to the square root of N;.

4.5 Effect of Target Radius

In this section, we apply the simulator to analyze the relationship be-
tween end-effector positioning accuracy and the target radii. Naturally,
the values of certain target radii will have greater impact upon the
overall performance of the robot than will others. Since it would be
impractical to simulate all the possible combinations of the values of
the six target radii and interpret the results, we limited our analysis to
the situation in which all the target radii are equal. Thus in each simu-
lation, R; = Ry = ... = Rg = Rnom. Five simulations were performed
in which the value of Ry, is varied between 30.0 cm and 50.0 cm.
The standard deviations of the 34 performance indices as a function
of Rpom are plotted in [4,5]. The plot of the Radial Error standard
deviations is reporduced in Figure 7.

While the parameter N; has an effect upon both the accuracy of
the identified planes-of-rotation and centers-of-rotation, the parameter
Rpom only effects the accuracy of the planes-of-rotation. Taken inde-
pendently, N; and Ryom are both inversely proportional to the accuracy
of the identified planes-of-rotation. From previous findings we might
thus expect that increasing Rpom would have less of an overall effect
upon the performance index standard deviations than does N;. How-
ever, from Figure 7 and the remaining plots this is not the case. The
curves in Figure 7 are approximated more closely by an inverse square
relationship rather than by an inverse relationship. The cumulative
accuracy of an identified arm signature appears to be more sensitive to
orientational errors than positional errors. This could be explained by
the fact that orientational errors, especially those involved in the de-
scription of a manipulators positional subsystem, not only propagate
into orientational errors at the end-effector but they are also trans-
formed and amplified into positional errors at the end-effector. The
amount of amplification being proportional to the lengths of the links
and the configuration of the robot.

The variations in R,om have no effect upon the mean values of
the standard deviations of the performance indices which are defined
over all the real numbers. Again, the mean values for these 19 perfor-
mance indices are zero. For the remaining 15 performance indices, the
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indices’ mean values are, in general, inversely proportional to RZ, .

These findings suggest that the best strategy for increasing sig-
nature accuracy is to first increase the target radii followed by increases
in the number of measurements. The cost of increasing the number of
measurements is the increased time required to obtain all the target
measurements. This cost is incurred during the identification of each
individual signature. In contrast, the cost associated with increasing
Rpom is simply the reconstruction of a set of target mounting fixtures.
This cost has only to be incurred once since a single set of fixtures can
be applied to all robots of the same model.

5 Conclusions

In this paper, we have formualted a methodology by which to evalu-
ate and compare the statistical performance of a conventional design
model-based kinematic controller and a signature-based kinematic con-
troller. The design model controller incorporates the robot kinematic
parameters obtained from the mechanical design specifications. In con-
trast, the signature-based controller incorporates the robot kinematic
parameters estimated by the S-Model Identification algorithm. Fur-
thermore, we have applied this methodology to evaluate and compare
the statistical performance of these two controllers when applied to
control the joint positions of a Puma 560 robot. This work comple-
ments our experimental evaluation of the performance of seven Puma
560 robots described in [3,4,5].

Our methodology utilizes Monte-Carlo simulation techniques
for the generation of end-effector positioning and orienting error distri-
butions. The evaluation of the performance of the D-Model Controller,
requires the formulation of a robot kinematic model which explicitly in-
corporates the manufacturing errors as parameters. A kinematic model
of a Puma 560 robot with manufacturing errors was developed and
serves to illustrate how such a model could be developed for other
robots. The performance of the S-Model Controller depends upon the
types of the errors introduced into the arm signature identification pro-
cess and not upon the presence of robot manufacturing errors. Having
developed a model of our ultrasonic sensor system, we simulated the
arm signature identification process using a Puma 560 robot and ap-
plied the identified signatures to control the robot in performing a series
of standardized tasks. The positioning and orienting accuracy of the
end-effector was then used to evaluate how well the S-Model Controller
performed. This approach can be applied to analyze the statistical
performance of the S-Model Controller for any robot with any type of
sensor system by interchanging simulator modules.

In Sections 4.1 and 4.2, we applied our Monte-Carlo simulator
to investigate the relationship between encoder calibration errors and
robot performance, and the relationship between machining and assem-
bly errors and robot performance, respectively. From this investigation
we have discovered that



The performance indices standard deviations increase linearly
with the standard deviation of the encoder calibration errors.

The performance indices standard deviations increase nonlinearly
and monotonically with simultaneous changes in the standard de-
viations of the positional and orientational manufacturing errors.

The performance of a D-Model Controller is more sensitive to
encoder calibration errors than to the positional and orientational
manufacturing errors.

The expected performance of a D-Model Controller is a function
of both the means and standard deviations of the manufacturing
errors.

In practice then, the average performance of a robot using design model
based control will be less than perfect. This finding clearly supports our
earlier claim that arm signature identification techniques are needed to
improve end-effector positioning and orienting accuracy.

In Sections 4.3 - 4.5, we have also applied our Monte-Carlo sim-
ulator to understand the relationships which govern the performance of
an S-Model Controller. Specifically, we were interested in the relation-
ships between the sensor system accuracy, the identifier parameters N;
and R;, and the end-effector positioning accuracy. We have found that,

The performance indices’ standard deviations are directly propor-
tional to the sensor measurement error standard deviation o and
that this relationship is consistent with the analytic relationships
between & and the measures of feature estimate accuracy derived
in [4].

The performance indices’ standard deviations are inversely re-
lated to the square root of the number of measurements, N; and
that this relationship is consistent with the analytic relationships
between N; and the measures of feature estimate accuracy derived
in [4].

The performance indices’ standard deviations are inversely re-
lated to the square of the target radii.

L

The performance of an S-Model Controller is more sensitive to
orientational identification errors than to positional identification
errors.

The expected performance of an S-Model Controller depends only
upon the expected value of the measurement errors.

The identifier parameters, N; and R;, provide a simple mechanism
for increasing the accuracy of the identified arm signatures and hence
the performance of an S-Model Controller by a predetermined amount.
These parameters can thus be used to reduce the need for extremely
accurate sensor systems to measure the targets positions. Finally, the
S-Model identification algorithm and control approach will, on the av-
erage, provide perfect end-effector positioning and orienting accuracy in
the presence of zero-mean target measurement errors. The elimination
of biases in the expected performance of a robot is an important ad-
vantage of the S-Model identification algorithm and control approach.
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