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Abstract

Recent work in machine learning has significantly
benefited semantic extraction tasks in computer vision,
particularly for object recognition and image retrieval.
We argue that the computer vision techniques that
have been successfully applied in those settings can
effectively be translated to other domains, such as audio.
This claim is supported by recent results in music vs.
speech classification, structure from sound, robust music
identification and sound object recognition. This paper
focuses on two such audio applications and demonstrates
how ideas from computer vision map naturally to these
problems.

1. Introduction

Computer vision research may initially appear to have
little to contribute to problems in the audio domain. Audio
requires processing of 1-D signals through time while
computer vision traditionally focuses on the interpretation
of one or more 2-D images. This paper argues that many
problems in the audio domain transform naturally into a
form that can be effectively tackled by computer vision
techniques. This belief is motivated by the observation that
audio researchers commonly employ 2-D time-frequency
representations, such as spectrograms, when analyzing
sound or speech. Currently, these representations are treated
as images only for purposes of visualization. Our idea is to
apply recent computer vision techniques, such as boosted
classifiers [36], scanning windowed object detectors [28],
local-descriptor based object recognition [21] and sub-
image retrieval [18, 25] to these “images”. The common
thread behind all of these computer vision approaches is that
they employ machine learning to extract semantics from
the image and utilize statistical methods to robustly cope
with noisy matches. This paper examines the merits of
such approaches in the context of several real-world audio
applications.

The remainder of the paper is organized as follows.
Section 2 reviews the related work on semantic learning
in audio, focusing particularly on recent efforts that appear
to be inspired by computer vision approaches. Section 3
describes our work in music identification from noisy
audio snippets, derived from techniques for 2-D sub-image
retrieval. Section 4 summarizes our research in sound
object detection, framed as a classical 2-D object detection
problem. Section 5 concludes the paper.

2. Related Work

Much of the computer vision research relevant to
semantic learning in audio focuses on the problem of
audio-visual fusion. Hershey and Movellan [12] developed
parametric models for the joint distribution between video
and audio data, enabling them to highlight image regions
that correspond to a particular sound. Fisher et al. [8]
present a nonparametric approach to the same problem that
exploits mutual information between the signals. More
recently, Kidron et al. [19] propose an approach based
on linear programming (termed “canonical correlation
analysis”) that associates pixels in a video with particular
sounds in the audio stream. However, the focus of this paper
is on applying computer vision techniques directly to the
audio data and is less concerned with audio-visual fusion.

Research in auditory scene analysis [4] develops
parallels between scene analysis in computer vision and
the perceptual organization of sound. Structure from
sound (SFS) [34] explores the problem of simultaneously
recovering the locations of a set of microphones and a
set of sound events that occur at arbitrary locations and
unknown times in the environment. SFS exploits the
analogy between this problem and a well-studied problem
in computer vision: structure from motion. The goal in
structure from motion (SFM) is to simultaneously recover
the scene geometry (3D positions of a set of point features)
and the camera pose at which each image was acquired.
The sensor model for the two problems is quite different:
in SFM, the cameras observe the relative angle for each
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feature point (since each location maps to a 3D ray),
while in SFS, the microphones measure time-of-arrival
(which corresponds to a relative range). However, the
two problems can still be formulated in a similar manner,
as a least squares problem over the extrinsic calibration
parameters of the sensors and the global locations (in
space and time) of the observed events. In its most
general form, solving this optimization problem can be
very challenging. The popular “factorization method” [35]
approach for SFM assumes orthographic projection, where
the rays from the feature points to each camera are assumed
to be parallel (i.e., that the observed scene is far away from
each camera). This results in an affine structure that can be
efficiently solved using SVD. An analogous simplification
is employed in [34] for SFS; the sound events are assumed
to be sufficiently distant from each microphone such that
their incident rays at each microphone are parallel. Just
as the orthographic projection ignores perspective effects
in computer vision, Thrun’s “orthocoustic” model ignores
“perspective” for an auditory scene. The success of SFS on
both simulated and real-data supports our belief that ideas
from computer vision could benefit problems in audio.

Several researchers have recently proposed the idea
of extracting semantics from spectrograms using image
processing techniques. Most of these approaches advocate
manually-engineered descriptors, such as Haitsma and
Kalker’s music recognition system [11]. In their approach,
the output of a single Haar-like feature (scanned at
specified locations over the spectrogram) is used as a song
signature that can be recognized in the presence of noise.
While such techniques can achieve reasonable results, our
experiments demonstrate that descriptors trained using real
data generally outperform engineered representations.

Casagrande et al. [6] address the problem of
distinguishing music from speech in audio streams
using an approach that is also motivated by the Viola-Jones
face detector architecture [36]. They employ AdaBoost [9]
in conjunction with Haar-like wavelet features [26] to learn
a windowed classifier that can be efficiently scanned over
the spectrogram “image”. Casagrande et al. report that
this approach significantly outperforms the best earlier
results [30] on the same dataset. This lends further support
to our claim that audio problems can often easily be
transformed into computer vision problems for which good
solutions have already been developed.

There is some similarity between music vs. speech
recognition and music identification. The former is
analogous to the computer vision problem of detecting a
known object (e.g., a human face) in an image; the latter
is analogous to sub-image retrieval, where the goal is to
find the best match for a partial noisy query. The former
can be tackled using a single binary classifier, whereas the
latter is a multi-class problem with thousands of classes,

none of which is known at training time. Thus, an
important challenge in music identification is to develop
a discriminative yet general representation for audio that
can generalize to unknown songs. Section 3 describes our
approach to music identification, and additional details are
given in [16].

There has been some research in the audio community
regarding detection of auditory objects in spectrogram
images. Smaragdis [33] employed non-negative
factorization (NMF) to spectrograms to discover auditory
objects in audio scenes. The work appears to have been
motivated by observations that NMF, on 2-D images
(such as human faces) often recovers sparse, parts-based
representations [20]. Section 4 describes how we frame
sound object detection as a classical 2-D object detection
problem to recognize sounds in audio streams; additional
details are available in [13].

3. Music Identification as Sub-image Retrieval

The goal of music identification is to reliably recognize
a song from a small sample of noisy audio. For instance,
a user who wants to know the name of a song playing
at a party could send a few seconds of audio using her
mobile phone to a music identification server and receive
a text message with the title of the song. This task is
challenging for several reasons. First, the query can be
significantly corrupted by the distortions induced by typical
portable recording devices or due to noise from ambient
sounds. Second, the audio sample from the query will
typically match only a small portion of the target song,
such that a traditional digital signature computed over
the query is unlikely to match the signature of the entire
song. Third, a practical music identification system should
scale, both in accuracy and speed, to databases containing
hundreds of thousands of songs. Finally, the system’s
representation must be able to handle a growing database
of songs; for a learning system, the challenge is that the
songs in the training set are not the same as the ones in
the testing set — in other words, music recognition is
a multi-class classification problem where the classes are
not specified until the testing phase. Recently, the music
identification problem has attracted considerable attention,
both from commercial companies [1–3] and researchers [5,
11]. However, the task remains challenging, particularly for
noisy real-world queries.

Our approach casts music identification into the
framework of sub-image retrieval. In sub-image retrieval,
the goal is to find the best match between a partial
query image and images stored in a database. The query
image is typically a transformed version of the original
(e.g., cropped, scaled, rotated) and often corrupted by
noise (e.g., illumination effects or encoding artifacts).
One successful approach [18] to sub-image retrieval relies
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on local descriptors [17, 22] to identify likely candidate
matches at a patch level and verifies the hypotheses at a
subsequent stage using RANSAC [7]. The benefits of the
approach are that local descriptors are robust to cropping
and occlusion since many patches remain unaffected by
such transformations, whereas a global descriptor would
be severely impacted. In music identification, the noisy
sample of audio corresponds to the query sub-image and
the database of clean song recordings corresponds to the
database of complete images. Under this analogy, the query
audio snippet is a “cropped” version of one of the originals,
and portions of the query could be “occluded” by loud
sounds or corrupted by encoding/recording noise. However,
it is important to understand that the analogy alone does
not solve the music identification problem; rather, it enables
researchers to identify a series of important questions:

1. What is the class of “geometric” transformations to
which our representation must be robust?

2. Are there good interest point detectors for spectrogram
images?

3. What are appropriate local descriptors for spectrogram
images?

4. Is there an appropriate analog for “geometric
verification” in music identification?

We briefly examine each of these in turn. First, although
spectrograms are 2D images, they do not exhibit all of the
variations of camera-generated natural scene images. For
instance, rotation- and scale-invariance is not required (nor
desirable) in spectrogram matching. Similarly, invariance
to illumination is not an issue. On the other hand,
spectrograms will typically contain superpositions of the
various sound sources in the environment (analogous to a
visual scene containing many translucent and transparent
objects). Second, while it would be intellectually-
interesting to find good “SIFT-like” interest point detectors
for audio, the need for locating keypoints in audio is less
important since a dense, scanning search is more feasible
in the absence of rotation and scaling. Third, it is clear
that one cannot blindly apply existing descriptors from
computer vision, such as PCA-SIFT. Proposed descriptors
such as Haitsma and Kalker’s corner features [11] are the
first step in the right direction. However, we strongly
believe (and demonstrate) that a better approach is to learn
the right descriptor from real data using machine learning
(as detailed below). Finally, the idea of RANSAC-based
“geometric verification” in sub-image retrieval translates
well to the music identification problem: one can verify that
several local matches between a query and a candidate song
are “geometrically consistent” in terms of temporal offset.

3.1. Local Descriptors for Audio

Given a short segment of distorted audio data, we would
like the music identification system to quickly find the

matching segment of undistorted audio in a large database.
The system should meet the following performance
requirements: high recall, high precision, query using
short audio clips, and fast retrieval. To achieve high
recall, its representation must be sufficiently descriptive to
distinguish between similar-sounding songs. High recall,
on the other hand, demands that the representation also be
highly resistant to distortions caused by background noise
or poor recording quality. For instance, a song played over
low-quality speakers and recorded using a laptop’s built-
in microphone will sound significantly different from the
same song played over high-fidelity speakers and recorded
using a professional microphone. Since we want the
ability to identify a song based on only a few seconds
of audio sampled at an arbitrary point in the song, the
representation should be local and robust to small shifts
in time. Furthermore, a music identification system should
scale to large music databases, returning accurate responses
in a few seconds on queries against hundreds of thousands
of songs. This scaling requirement indicates that the
representation should be computationally inexpensive and
efficiently indexable.

Creating a feature representation that meets all of these
criteria is a challenging task. The raw representation of an
audio signal (as amplitude vs. time) is extremely sensitive
to small distortions and perceptual information is difficult to
extract directly (Figure 1a). The spectrogram representation
is computed using the short-term Fourier transform
and represents the power contained in contained in
33 logarithmically-spaced frequency bands, measured over
0.372 s windows in 11.6 ms increments (our spectrogram
images are generated using the parameters given by
Haitsma and Kalker [11]). In the spectrogram image
(Figure 1b), corrupted audio bears some visual similarity
to its original but the signal differences due to different
audio sources are also highly visible. Although the process
of converting the time-domain signal into a spectrogram
image illuminates important similarities and differences in
the audio, simply comparing spectrograms using correlation
would be inaccurate and slow. Instead, we advocate
learning a small set of filters whose responses are robust
to expected distortions while preserving the information
needed to distinguish between different songs (Figure 1c).
Rather than attempting to manually engineer such a suitable
set of filters, we define a broad class of candidate filters and
apply machine learning techniques to identify a small subset
that performs well together. To determine an appropriate
family of filters for this task, it is helpful to examine the
characteristics of spectrogram images that are distinctive
(sensitive to the particular song) while being resistant to
expected distortions. These characteristics include: (a)
differences of power in neighboring frequency bands at
a particular time; (b) differences of power across time
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Figure 1. Representing audio. Three 10-second snippets of audio
are shown: John Mellencamp original, Waterworld soundtrack,
and John Mellencamp recorded. It is difficult to determine which
snippet matches the song in the waveform audio representation
(a). In the spectrogram images (b), certain similarities between
the two Mellencamp snippets and distinguishing differences
between the Mellencamp and Waterworld snippets become
noticeable. Matching snippets are easily identified using our
learned descriptions (c).

Figure 2. Candidate filter set. We select a compact set of filters
from the filter class employed for object detection by Viola and
Jones. When applied to spectrogram images, these filters capture
important time-frequency characteristics of audio.

within a particular frequency band; (c) shifts in dominant
frequency over time; (d) peaks of power across frequencies
at a particular time; and (e) peaks of power across time
within a particular frequency band. The proposed filter
family should be able to capture these aspects while
operating along different frequency bands with different
bandwidths and over different extents of time. Filters
with large bandwidths and time-widths are more robust to
certain distortions, but filters with short bandwidths and
time-widths can capture discriminative information that the
former filters cannot. If we view the spectrogram as a
simple 2-D grayscale image, we can see that the class of
Haar wavelet-like filters [26, 36] meets these requirements
(Figure 2).

In our system, each filter type can vary in band
location from 1 to 33, in bandwidth from 1 to 33, and in
time from 1 frame (11.6 ms) to 82 frames (951 ms) in
exponential steps of 1.5, resulting in a set of roughly 25,000
candidate filters. From this large candidate set, we select
M discriminative filters and corresponding thresholds
to generate an M -bit vector that represents overlapping
segments of audio (Figure 1c).1 This vector, termed
the descriptor, can be quickly computed using integral
images [36] and is sufficiently stable across distortions to
enable retrieval by direct hashing in the database. We

1Our current implementation uses M = 32.

describe how to learn the description below.
Of course, a single descriptor cannot contain enough

information to accurately identify the song matching the
given query from among hundreds of thousands of full-
length songs. To represent several seconds of an audio
snippet, we compute descriptors for overlapping windows
of audio every 11.6 ms. Thus, for a ten-second snippet
of audio, our signature consists of 860 descriptors. This
signature is the basis for matching and retrieval.

3.2. Filter Selection and Modeling

The previous subsection described how we can treat
the time-frequency representation of an audio signal as
an image and outlined the set of candidate filters that
operate on the spectrogram image. This subsection
details our method for selecting a subset of those
filters (and corresponding thresholds) to create a compact
representation for each local region of the spectrogram
image. The goal is to build a representation in which
an original audio segment and its distorted versions
will generate highly-similar descriptors, while audio
segments from two different songs will generate dissimilar
descriptors.

The descriptors capture only the local similarity between
a pair of short segments of audio. To correctly evaluate the
match between the query snippet and a song in the database,
we need to compute the probability that an entire signature
(the series of descriptors computed on overlapping audio
windows) matches the other.

Additionally, we account for “occlusion” due to
background noise that drowns out the signal or due to
a poor mobile phone connection. We assume that each
descriptor in the signature was generated either by the
original song or by an occluding signal. We employ
the Expectation Maximization (EM) algorithm [24] and
a simple dependency model to automatically determine
whether a given descriptor in a sequence corresponds to the
song or an occlusion and to compute the likelihood that one
signature matches another (see ?? for additional details).

3.3. Learning Compact Audio Descriptions

Our goal is to build a description that enables us to
determine the probability that two (potentially distorted)
audio snippets were both sampled from the same position
of the same song. Formally, this entails learning a classifier
H(x1, x2) → y={−1, 1}, where x1 and x2 are two
spectrogram images and the label y denotes whether the
images derive from the same original audio source (y=1) or
not (y=−1). One popular method of building a description
for object recognition is to define a large class of filters
and use AdaBoost [9, 29] to select a small subset of those
filters for classification. We apply a novel pairwise variant
of this method. Our classifier is an ensemble of M weak
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classifiers, hm(x1, x2), each with an associated confidence,
cm. Our weak classifiers are composed of a filter fm

and a threshold tm, such that hm(x1, x2)=sgn[(fm(x1) −
tm)(fm(x2) − tm)]. In other words, if two examples
generate filter response values on the same side of the
threshold, they are labeled by the weak classifier as deriving
from the same portion of audio; otherwise, they are
labeled as coming from different audio snippets. Note
that this formulation differs from standard AdaBoost in
that labels are assigned to pairs of filter responses. Once
the weak classifiers are learned, any spectrogram x can be
transformed into an M -bit vector, allowing fast indexing
through hashing techniques.

One way to learn these weak classifiers would be through
the standard AdaBoost framework in which, iteratively,
weak classifiers are learned and all of the data is re-
weighted. Such an approach, however, would produce
poor results in this case for the following reason: no weak
classifier can perform better than chance, on average, on
the non-matching example pairs! This may seem an odd
assertion, but the proof is summarized as follows. Suppose
we have x randomly drawn from distribution D, a filter
fm, and a threshold tm, such that P (fm(x) < tm) = p,
with 0 ≤ p ≤ 1. If we independently and randomly draw
two non-matching examples x1 and x2 from D, then the
probability that x1 and x2 fall on different sides of tm is
given by

P (hm(x1, x2) = −1) = 2p(1− p) ≤ 0.5. (1)

Thus, a pair of non-matching (y=−1) examples will
incorrectly be classified as matching at least half of the
time for a sufficiently large sample size, violating the weak
classifier condition of AdaBoost. We resolve this issue by
employing an asymmetric pairwise boosting algorithm, in
which only the matching (y=1) pairs are re-weighted and
the weights of matching pairs and non-matching pairs are
normalized such that the sum of each is equal to one-half.
Our algorithm is detailed in Figure 3.

From Equation 1, we also note that we can explicitly
calculate the probability of error for non-matching pairs for
a particular filter and threshold if we know the distribution
of the filter responses. We observe that this distribution
can be estimated from the single members of the matching
pairs, providing two results: (1) the median is the optimal
threshold for non-matching pairs; and (2) when the filters
are loosely correlated, we do not need non-matching
pairs — providing a two-fold speed-up in training or
the ability to employ a larger training set of matched
pairs at no additional computational cost. Experiments
reveal that all thresholds learned by the pairwise boosting
are approximately at the median of the filter response
distribution and that approximating non-matching error in
this manner has minimal impact on classification accuracy.

Pairwise Boosting

input: sequence of n examples
〈(x11, x21)〉..〈(x1n, x2n)〉, each with label yi ∈ {−1, 1}

initialize: wi = 1

n
, i = 1..n

for m = 1..M
1. find the hypothesis hm(x1, x2) that minimizes

weighted error over distribution w, where
hm(x1, x2) = sgn[(fm(x1)− tm)(fm(x2)− tm)]
for filter fm and threshold tm

2. calculate weighted error:
errm =

∑n

i=1
wi · δ(hm(x1i, x2i) �= yi)

3. assign confidence to hm: cm = log(1−errm

errm

)
4. update weights for matching pairs:

if yi = 1 and hm(x1i, x2i) �= yi, then
wi ← wi · exp[cm]

5. normalize weights such that∑n

i:yi=−1
wi =

∑n

i:yi=1
wi = 1

2
.

final hypothesis:
H(x1, x2) = sgn(

∑M

m=1
cmhm(x1, x2))

Figure 3. Summary of our pairwise boosting algorithm for learning
a hypothesis that can determine whether the members of a pair, x1

and x2, belong to the same class (match) or belong to different
classes. Note that the algorithm is asymmetric in that only the
matching example pairs are boosted. This is necessary because
our simple classifiers cannot achieve better accuracy than chance
on the non-matching pairs and, thus, fail to meet the AdaBoost
weak classifier criterion.

We note that several other researchers have proposed
related pairwise methods for pose estimation, face
recognition, and object recognition. Shakhnarovich et
al. [32] independently select the filters that most preserve
similarity. Ren et al. [27] learn features for identifying
human motion from silhouette images using this technique.
Jones and Viola [15] select a set of filters using AdaBoost,
with weak classifiers based on thresholding the difference of
responses for same-face and different-face pairs. Mahamud
and Hebert [23] model the distance between two data points
as the probability that the points have different labels and
estimate that probability.

Our learned set of filters (M=32 in our implementation)
greatly improves upon the descriptors recently developed
by Haitsma and Kalker for music identification [11]. The
Haitsma-Kalker filters compute the difference between
neighboring frequencies at neighboring times. These
filters are equivalent to the diagonal Viola-Jones filters
(Figure 2c) with a bandwidth of 2 bands and a time-width of
2 frames. After learning our description, we noticed several
commonalities among the filters. One is that the time-
widths tend to be large (usually 54 frames or longer out of
a maximum of 82 frames). Filters that have a smaller time-
width tend to have a large band-width. These characteristics
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support our belief that filters that have a large extent in a
particular dimension can “average out” much of the noise
and distortion induced by poor-quality recordings. We also
noticed that, out of the 32 filters, 31 either measure the
difference in two sets of frequency bands at a particular time
interval or a peak across frequency bands at a particular time
interval. Thus, the learned filters are highly robust to noise
that affect all bands intermittently but are more susceptible
to distortions that affect a particular frequency range over
long durations.

3.4. Retrieval

Using the representation described in the previous
sections, we build signatures for all of the songs in the
database. During retrieval, we perform a similarity search
for each of the query snippet’s descriptors against this
signature database. The large size of our database and the
high number of queries required for each snippet motivates
us to seek efficient schemes for similarity search in high-
dimensional (typically 32-bit) descriptor space. A natural
choice is locality-sensitive hashing (LSH) [14], a technique
that enables approximate similarity searches in sub-linear
time, particularly since it is so well-suited for the Hamming
distance metric [10]. Our initial experiments using LSH
gave excellent results, but, somewhat surprisingly, we
discovered that our descriptors are so robust that direct
indexing, using a classical hash table, greatly reduced
running time without significantly impacting accuracy. We
describe this indexing approach in the remainder of this
section.

We hash all of the signatures into a standard hash table
(keyed by appropriate M -bit descriptors). We define those
descriptors within a Hamming distance of 2 from the given
query to be near-neighbors. These are retrieved with the
following sequence of exhaustive probes. First, we probe
the hashtable with the query; this retrieves all matches
within a Hamming distance of 0. Next, we make M

additional probes in the hash, each consisting of the query
descriptor with a single bit flipped; this finds matches at
a Hamming distance of 1. Finally, we repeat this process
with every combination of two-bit flips to retrieve those
descriptors at a Hamming distance of 2. While such an
approach may initially appear to be inefficient, we have
observed that it is significantly faster than LSH for our
application because each probe is so inexpensive and it
returns exact rather than approximate results. We have
observed that the use of unweighted Hamming distance
instead of classifier confidence as a basis for descriptor
similarity is a reasonable approximation, since we found the
confidence values for different weak classifiers to be nearly
equal in our experiments.

Once all of the near neighbors have been found, we need
to identify the song that best matches the set of descriptors

in the query. Rather than simply voting based on the number
of matches, we employ a form of geometric verification
that is similar to that used in object recognition using local
features [21]. For each candidate song, we determine
whether the matched descriptors are consistent over time.
For this, we use RANSAC [7] to iterate through candidate
time alignments and use the EM score, the likelihood of the
query signature being generated by the same original audio
as the candidate signature, as the distance metric. We have
explored two alignment models. The first assumes that the
query can be aligned to the original once a single parameter
(temporal offset) has been determined. In this case, the
minimal set is a single pair of matching descriptors. The
second model assumes that the query could be a temporally
scaled (linearly stretched or compressed) version of the
original. This model is defined by two parameters (speed
ratio and offset) and requires a minimal set of two matching
descriptors. More complicated temporal distortion models
are certainly possible. In practice, we have found that
the first model gives accurate results, particularly since
our query snippets are short. We find that RANSAC
converges in fewer than 500 iterations even in the presence
of significant occlusion. Once all of the retrieved candidates
have been aligned, we select the song with the best EM
score, assuming that it passes a minimum threshold.

3.5. Experimental Results

This paper summarizes some key experimental results.
Additional experiments on descriptor-level and song-level
accuracy, as well as the impact of different parameter
settings are reported in [16].

We need to train the two parts of our system: the filters
for extracting descriptors and the EM noise model. Both
requires training data consisting of aligned pairs of filter
outputs. This poses a chicken-and-egg alignment problem:
how can we accurately align noisy recordings to original
songs before learning good descriptions? Our solution is to
bootstrap the learning process with synthetically-distorted
songs, for which the alignment is known. From these we
learn a set of filters that, while insufficiently accurate for
music identification in noisy environments, is suitable for
training data alignment.

The training data consists of 78 songs played through
low-quality speakers and recorded using low-quality
microphones, aligned to the originals using the bootstrap
filters. We learn the 32-bit filters and the EM noise
parameters as described above. Next, we record test
data in a completely different environment using different
microphones, speakers, computers and recording rooms.
The experiments use two challenging real-world test sets
designed to exemplify worst-case scenarios. The first
consists of 71 songs played at a low volume and recorded
with a distorted microphone (denoted as “Test A”). The
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Figure 4. To detect sound objects, we follow a similar approach
to the windowed object detection approach, with a representation
suited for detecting sounds in the audio domain.

second more difficult set contains 220 songs captured with
a very noisy recording setup (denoted as “Test B”). In many
cases, the noise drowns out the music to such a degree that
the song is barely audible to humans. These recordings
are drawn from a database of 145 albums with 1862 songs
spanning a large variety of music genres including classical,
vocal, rock and pop. Since each query could match up to
1861 false positives, the baseline accuracy of the tasks is
only 0.05%. On Test A, our system achieves a precision of
over 97% at a recall of 90%, and on Test B, a precision of
93% for a recall of 80%. These results are dramatically
better than those of [11], and confirm our hypothesis
that learning descriptors from real data can significantly
improve recognition accuracy in this domain.

4. Detecting Sound Objects

In sound detection, the goal is to identify particular
classes of sounds, such as dog barks, gunshots, screams,
laughing, and speech. Often, these sounds often have a
finite extent in the audio stream, and, similarly to detecting
visual objects, the task becomes one of segmenting the
objects of interest from the remaining signal and classifying
them. In visual detection, the segmentation step is often
bypassed by performing a windowed search over locations
and scales [28, 31, 36], which provides an over-complete
segmentation of the image that is effective when the
object has a fixed shape (e.g., human faces or cars). For
sound object detection using SOLAR [13], we use the
same general approach, segmenting the audio stream into
overlapping windows and classifying each window into the
object of interest or background.

Figure 4 illustrates our algorithm. We compute a short-
time Fourier transform (STFT) of the audio signal and
divide it into overlapping, equal-length windows in time.
The length of time is set to be the median duration of the
training sound objects, and the overlap is one-eighth of
the duration. Because the “scale” of audio (the duration)
is meaningful, we do not search over scale in our audio
stream. We represent each time-window of the STFT,
first decomposing it into an average total power and the

percent of power in each frequency band. We compute
138 statistics that measure mean and variance of the power
percentile in each frequency channel and of the total
power, bandwidth, the most powerful frequency channel,
the number of peaks in power over time, the regularity of
power peaks, the range of the total power over time, and
time-localized frequency percentiles over various frequency
ranges. Analogous to the manner in which computer vision
researchers develop an independent detector for each object
of interest (such as faces, cars, pedestrians), SOLAR learns
a binary classifier for each sound object from training
data. SOLAR detectors use boosted decision trees [29] to
perform the binary classification. Each tree makes decisions
based on a discriminative subset of the statistics and outputs
a confidence based on the class-conditional log likelihood
ratio at each leaf node.

Unlike traditional object detection, where thousands of
positive examples are used to learn each object category, our
goal is to build useful sound object detectors using a small
number of examples. We have trained and tested SOLAR
using sound clips obtained from www.findsounds.com

for the following sound classes: car horn, close door, dog
bark, door bell, explosion, gunshot, laser gun, light saber,
male laugh, meow, scream, and sword clash. Positive test
examples included these sounds mixed with background
sounds randomly selected from audio streams from movies.
The background class consisted of the audio streams from
several movies that did not contain the sound object of
interest. At false positive rates of 10 FP/hr, 50 FP/hr, and
100 FP/hr, we obtain average detection rates of 37%, 60%,
and 72%, respectively. The highest accuracy was obtained
for door bells, meows, and phone rings, which may be
attributed to the sounds’ high pitch or regularity. The most
difficult classes were gunshots, explosions, door closings,
and male laughs, likely due to the low pitch that blends
with the background noise, and, in the case of male laughs,
confusion with voices. Further details of our approach
are available in [13] and at www.cs.cmu.edu/∼dhoiem/

projects/solar/.

5. Conclusion

Extracting semantics from audio data is a challenging
and active research area. We observe that many tasks
in audio transform naturally to problems that can be
effectively addressed using computer vision techniques.
This observation is supported by recent work in structure
from sound, music vs. speech discrimination and audio-
visual fusion. This paper describes our contributions to the
field, specifically in the areas of music identification and
sound object detection. We explore the analogy between
music identification and 2-D sub-image retrieval and
show that a local descriptor based approach significantly
outperforms current approaches in content-based music

Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06) 
0-7695-2646-2/06 $20.00 © 2006 IEEE 



identification on real-world data. We frame sound object
detection in the context of a scanning windowed binary
classifier for each “object” of interest that can detect the
given sound under noisy conditions. In both of our systems,
machine learning plays a pivotal role in finding the right
representation for audio. For music identification, we use
a novel pairwise variant of boosting to learn a generic
discriminative descriptor for music that can tackle a multi-
class classification problem with thousands of classes. For
sound object detection, we build boosted binary classifiers
that can recognize the target sound object with only a small
amount of training data. We believe that computer vision
ideas have immediate applicability and direct relevance to
semantic extraction in many domains and we hope that this
paper encourages computer vision researchers to explore
such opportunities.
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