' N, p ) %'e @ n I’LAO[/Q ,/ze’("
coliazs o Hle PHRAM Works ,
Piro e eecls s @rc(«::/a//';f cnit Co c/oos! ¢ 90
Managing Resource Allocation in
Multi-Agent Time-Constrained Domains

+te Pl2irn //\j/')

Mon @& A a’ceéqaﬂfl .
spaa k£

Katia Sycara, Steve Roth, Norman Sadeh, Mark Fox

The Robotics Institute
School of Computer Science
Camegie Mellon University

Pittsburgh, PA 15213

Abstract

We present an approach to perform asynchronous,
opportunistic, constraint-directed search in maulti-agent
time-bound, and resource limited domains. Such domains
are extremely complex because of the presence of temporal
and resource constraints that give rise to tightly interacting
subproblems. In a distributed environment lacking a global
system view and global control, the complexity increases
further. Our approach relies on a set of textures of the
problem space being searched. Textures provide a
probabilistic, graph theoretic definition of the complexity
and importance of decisions in the local problem space of
each agent. In other words, they provide sophisticated local
control. In addition, textures provide good predictive
measures of the impact of local decisions on system goals.
As a result, textures can be used to make control decisions
that significantly reduce the amount of search required 1o
solve complex distributed problems. We explore the utility
of the approach in the context of cooperative multi-agent
Jjob-shop scheduling.

1. Introduction

In this paper we present mechanisms to enable efficient
distributed search for multi-agent, time-bound and
resource-limited  problems.  Such problems  are
characterized by the presence of temporal precedence
constraints and resource constraints, These constraints
result in conflicts over the use of shared resources and
make the local decisions of distributed agents highly
interdependent and interacting.  Qur investigation is
conducted in the domain of Jjob-shop scheduling. Our work
addresses concerns in three research areas: (1) managing
resource allocation in multi-agent planning, (2) constraint
satisfaction, and (3) job-shop scheduling. Research in
multi-agent planning has primarily focused on problems
where agents contend only for computational resources,
such as computer time and communication bandwidth (e.g.,

"This research has been supported, in part, by the Defense Advance
Research Projects Agency under contract #F30602-88-C-0001, and in part
by grants from McDonnell Aircraft Company and Digital Equipment
Corporation.
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[Cammarata 83, Durfee 87a]). In most real world
situations, however, allocation of (non-computatjonal)
resources that are needed by a planner to carry out actions
in a plan is of central concern, Conry [Conry 86] has
investigated (non-computational) static resource allocation
not involving temporal constraints. The  constraint
satisfaction research community has investigated the
efficiency of heuristics for incrementally building a
solution to a constraint satisfaction problem by instantiating
one variable after another within a single agent setting
[Haralick 80, Mackworth 85, Purdom 83, Dechter 88].
Job-shop scheduling has been the subject of intense
investigation by both Operations Research and Al
communities (e.g., [Smith 85,0w et al. 88, Baker
74,French 82, Rinnooy Kan 76]). With few
exceptions [Parunak 86,SmiLh&Hynynen 871, there has
been almost no research in distributed scheduling. Prosser
(Prosser 89] has investigated Job-shop scheduling within a
hierarchical distributed architecture where the high level
agent has a global view and can act as conflict arbiter. In
our system, the agents form a heterarchy, where no agent
has a global view of the problem and actions of others. We
provide mechanisms both for conflict avoidance and
conflict resolution.

Our model enables a set of agents to structure their
individual agent problem space and focus their attention
during search so as to optimize decisions in the global
search space. The beneficial effects of sophisticated local
control on the coordination of distributed problem solving
have been recognized by prior research [Durfee
87a, Durfee 87b). Our approach, based on problem Space
textures [Fox 89], allows agents to make rapid, intelligent
local decisions without the need of excessive information
exchange or the availability of detailed models of each
other’s problem solving activities, Our hypothesis is that
these textures provide good predictive measures of the
mmpact of local decisions on System goals and constitute
abstract information summaries of expectations concerning
the decision making activities of other agents. Basing local
decisions on such predictive measures is very important in
distributed problem solving by opportunistic scheduling
agents. Since the agents operate in an asynchronous and
opportunistic manner, and since each local decision



interacts with subsequent decisions of other agents, each
agent must predict and take into consideration in its local
decision making the future resource needs and problem
solving behavior of other agents.

2. The Distributed Scheduling Problem

The scheduling task can be described as assigning
resources to the activities present in a plan over time in a
consistent manner, i.e., so as to avoid the violation of
resource and precedence constraints. In our model, a group
of autonomous opportunistic schedulers build a schedule in
order to synchronize their activities to avoid and resolve
conflicts. The schedule is built in a cooperative fashion
through local computation and communication. There is no
single agent with a global system view, nor any agents
whose role is coordination. In distributed  job-shop
scheduling, each agent has a set of orders to schedule on a
given set of resources. Each order consists of a set of
activities (operations) to be scheduled according to a
process plan which specifies a partial ordering among these
activities. Additionally, an order has a release date and a
due date. Each activity also requires one or several
resources, for each of which there may be one or several
substitutable resources. There is a finite number of
resources available in the system. Some resources are only
required by one agent, and are said to be local to that agent.
Other resources are shared, in the sense that they may be
allocated to different agents at different times2,

We distinguish between two types of constraints:
activity precedence constraints and capacity constraints.
The activity precedence constraints together with the order
release dates and due dates restrict the set of acceptable
start times of each activity. Capacity constraints restrict the
number of activities that can be allocated to a resource at
one time. Typically the limited capacity of the resources
induces interactions between orders competing for the
possession of the same resource at the same time. In such
an environment, schedules are constructed in an
incremental fashion. Agents make local decisions about
assignments of resources to particular activities at
particular time intervals and a complete schedule for an
order is formed by incrementally merging partial schedules
for the order. If the merging of partial schedules results in
constraint violations, the resulting schedule is infeasible.

Distributed scheduling has the following characteristics:
* To achiceve global solutions, agents must make

“This model mirrors actual factory floor situations where the factory is
divided into work areas that might share resources, such as machines,
fixtures and operators in order to process orders.

consistent allocations of resources needed tc
perform system activities. Conflicts in the
System arise due to contention over optimal
allocation of limited capacity shared resources.

* Because of conflicts over shared resources it is
impossible for each agent to optimize the
scheduling of its assigned orders using only
local information.

* Due to limited communication bandwidth, it is
not possible to exchange detailed constraint
information during problem solving,

* All the given orders have to be scheduled. In
other words, agents cannot drop any local
goals. In addition, constraints cannot be
relaxed (e.g., precedence constraints among
the operations of an order, resource capacity
constraints, and due dates).

* Because of the tightly interacting nature of
scheduling decisions, an agent’s problem
solving context is rapidly changing. Moreover,
an agent’s decisions can produce constraint
violations for other agents which may lead to
backtracking. Backtracking can have major
ripple effects on the multi-agent system since it
may invalidate resource reservations that other
agents have made.

A consequence of the above characteristics is that ag
need methods to deal efficiently with incomy
information and a rapidly changing problem sol
context. In addition, agents must maintain cohe
behavior [Durfee 87b] in a heterarchical setting.
address these requirements, our approach gives the ag
mechanisms to enable them to accomplish the follow
(1) predict and evaluate the impact of local decisions
global system goals, (2) develop and communicate j
concise form robust expectations and predictions about
resource needs and decision-making behavior of o
agents, (3) avoid and resolve conflicts over resources
time intervals, and (4) help focus the attention of the age
opportunistically on parts of their search space where j
expected that good solutions, in terms both of sched
quality and minimal interactions, will be found. Th
mechanisms, based on problem textures, result in sea
and communication efficiency.

3. Constrained Heuristic Search

Our approach to scheduling relies on the combination
local constraint propagation techniques with texture-ba:
heuristic search. We have developed a formal model
this search mechanism which we call Constrained Heuris
Search (CHS) [Fox 89]). CHS provides a methodology :
solving Constraint Satisfaction Problems (CSPs) a



Constrained Optimization Problem (COPs). A CSP is
defined by a set of variables, each with a predefined
domain of possible values, and a set of constraints
restricting the values that can simultaneously be assigned to
these variables [Montanari 71, Mackworth 77, Dechter 881
A solution to a CSP is a complete set of assignments that
satisfies all the problem constraints. COPs are CSPs with
an objective function to be optimized. The general CSP is
a well-known NP-complete problem [{Garey 79]. There are
however classes of CSPs and COPs that do not belong to
NP, and for which efficient algorithms exist. The CHS
methodology is meant for those CSPs/COPs for which
there is no efficient algorithm. A general paradigm for
solving these problems consists in using Backtrack Search
(BT) [Golomb 65, Bitner 751. BT is an enumerative
technique that incrementally builds a solution by
instantiating one variable after another. Each time a new
variable is instantiated, a new search state is created that
corresponds to a more complete partial solution. If, in the
process of building a solution, BT generates a partial
solution that it cannot complete (because of constraint
incompatibility), it has to undo one or several earlier
decisions. Partial solutions that cannot be completed are
often referred to as deadend states (in the search space).

Because the general CSP is NP-complete, BT may
require exponential time in the worst-case. CHS provides a
methodology to reduce the average complexity of BT by
interleaving search with local constraint propagation and
the computation of rexture-based heuristics.  Local
constraint propagation techniques are used to prune the
search space from alternatives that have become impossible

due to earlier decisions made to reach the current search’

state. By propagating the effects of earlier commitments as
soon as possible, CHS reduces the chances of making
decisions that are incompatible with these earlier
commitments [Mackworth 85]. Typically, pruning the
search space can only be done efficiently on a local basis
[Nadel 88]. Hence local constraint propagation techniques
are not sufficient to guarantee backtrack-free search. In
order to avoid backtracking as much as possible as well as
reduce the impact of backtracking when it cannot be
avoided, CHS analyzes the pruned problem space in order
to determine critical variables, promising values for these
variables, promising search states to backtrack to, etc. The
results of this analysis are summarized in a set of textures
that characterize different types of constraint interactions in
the search space. These textures are operationalized by a
set of heuristics to decide which variable to instantiate next
(so-called variable ordering heuristics), which value to
assign to a variable (so-called value ordering heuristics),
which assignment to undo in order to recover from a
leadend, etc.

In the factory scheduling domain, variables are activitieg
whose values are reservations consisting of a start time anq
a set of resources (e.g. a human operator, a milling
machine, and a set of fixtures). Local constraing
propagation techniques are used to identify reservationg
that have become unavailable for an unscheduled activity
due to the scheduling of another activity (e.g. a resource
that has been allocated to an activity over some time
interval, or a start time that has become infeasible due 1o
the scheduling of an earlier activity in a process plan),
Within this context, texture-based heuristics are concerned
with such decisions as which activity to schedule next,
which reservation to assign o0 an activity, which
reservation assignments to undo if the current partial
schedule cannot be completed.

4. Distributed CHS Scheduling

The model concerns a set of scheduling agents, I'={q, B,
...}. Each agent o is responsible for the scheduling of a set
of orders 0":{0?,...,01% }. Each order 0;1 consists of a set

of activities A%< [Alla,...,Aia} to be scheduled according to
la

a process plan (i.e. process routing) which specifies a
partial ordering among these activities (e.g. Agx BEFORE

Af;l). Additionally an order has a release date and a latest
acceptable completion date, which ma[y actually be later
than the ideal due date. Each activity Aka also requires one

or several resources Ri? (1<ix< pi“) for each of which
there may be one or several alternatives (i.e. substitutable
resources) Ri?- (1<gj< qi?). There is a finite number of
resources available in the system. Some resources are only
required by one agent, and are said to be Jocal to that agent.
Other resources are shared, in the sense that they may be
allocated to different agents at different times,

We distinguish between two types of constraints:
activity precedence constraints and capacity constraints.
The activity precedence constraints together with the order
release dates and latest acceptable completion dates restrict
the set of acceptable start times of each activity, The
capacity constraints restrict the number of activities that a
resource can be allocated to at any moment in time to the
capacity of that resource. For the sake of simplicity, we
only consider resources with unary capacity in this paper.
Typically the limited capacity of the resources induces
interactions between orders competing for the possession of
the same resource at the same time. These interactions can
take place either between the order of a same agent or
between the orders of different agents.

With each activity, we associate preference functions
that map each possible start time and each possible
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resource alternative onto a preference. These preferences
[Fox 83, Sadeh 88] arise from global organizational goals
such as reducing order tardiness (i.e. meeting due dates),
reducing order earliness (i.e. finished goods inventory),
reducing order flowtime (i.e. in-process inventory), using
accurate machines, performing some activities during some
shifts rather than others, etc. In the cooperative setting
assumed in this paper, the sum of these preferences over all
the agents in the system and over all the activities to be
scheduled by each of these agents defines a common
objective function to be optimized. The sum of these
preferences over all the activities under the responsibility
of a single agent can be seen as the agent’s local view of
the global objective function. In other words, the global
objective function is not known by any single agent.
Furthermore, because they compete for a set of shared
resources, it is not sufficient for an agent to try to optimize
his own local preferences. Instead, agents need to consider
the preferences of other agents when they schedule their
activities. This is accomplished via a communication
protocol described in section 6.

4.1. Activity-based Scheduling
. .. lo
In our model we view each activity A~ as an aggregate
variable (or vector of variables). A value is a reservation
for an activity. It consists of a start time and a set of

.. . la
resources for that activity (i.e. one resource Rkl-j for each

. oo la . I
resource requirement R, of A,7, 1 <i < pka).

Each agent asynchronously builds a schedule for the
orders he has been assigned. This is done incrementally by
iteratively selecting an activity to be scheduled and a
reservation for that activity. Each time a new activity is
scheduled, new constraints are added to the agent’s initial
scheduling constraints that reflect the new activity
reservation. These new constraints are then propagated
(local constraint propagation step). If an inconsistency (i.e.
constraint violation) is detected during propagation, the
System backtracks. Otherwise the scheduler moves on and
looks for a new activity to schedule and a reservation for
that activity. The process goes on until all activities have
been successfully scheduled.

If an agent could always make sure that the reservation
that he is going to assign to an activity will not result in
some constraint violation forcing him or other agents to
undo earlier decisions, scheduling could be performed
without backtracking. Because scheduling is NP-hard, it is
commonly believed that such look-ahead cannot be
performed efficiently. The most efficient constraint
Propagation techniques developed so far [LePape&Smith
87] for scheduling do not guarantee total consistency. In
other words the reservation assigned by an agent to an

activity may force other agents or the agent hims
backtrack later on3. Consequently it is important to
search in a way that reduces the chances of havi
backtrack and minimizes the work to be undone
backtracking occurs. This is accomplished via
techniques, known as variable (i.e. activity) and valu
reservation) ordering heuristics.

The variable ordering heuristic assigns a criti
measure to each unscheduled activity; the activity wi
highest criticality is scheduled first.  The criti
measure approximates the likelihood that the activity
be involved in a conflict. The only conflicts tha
accounted for in this measure are the ones that cann
prevented by the constraint propagation mechanism.
scheduling his most critical activity first, an agent re
his chances of wasting time building partial schedule:
cannot be completed (i.e. it will reduce both the frequ
and the damage of backtracking). The value ord
heuristic attempts to leave enough options open &
activities that have not yet been scheduled in ordi
reduce the chances of backtracking. This is don
assigning a goodness measure to each possible reserv
of the activity to be scheduled. Both activity criticality
value goodness are examples of texture measures.
next two paragraphs briefly describe both of i
measures?,

4.1.1. Variable Ordering

Each agent’s constraint propagation mechanism is b
on the technique described in (LePape&Smith 87
always ensures that unscheduled activities within an ¢
can be scheduled without violating activity preced:
constraints. This is not the case however for cape
constraints: there are situations with insufficient cape
that may go undetected by this constraint propaga
technique. Accordingly a critical activity is one wl
resource requirements are likely to conflict with
resource requirements of other activities. [Sadeh 88, S3
89] describes a technique to identify such activities.
technique starts by building for each unscheduled activi
probabilistic activity demand. An activity A'®'s demand

1 . . . .

a resource Rk(;- at ume ¢ 1s determined by the ratio
. . . I .

reservations that remain possible for A ka and require us

It . .
R,:j at ume ¢ over the total number of reservations

3This is already the case in the centralized version of the schedu
problem. Because of the additional cost of communication itis even n
s0 in the distributed case.

4For a more complete description of these measures, the reade
referred 1o [Sadeh 90].



remain possible for Aia. Clearly activities with many
possible start times and resource reservations tend to have
smaller demands at any moment in time, while activities
with fewer possible reservations tend to have higher ones.
In a second Step, each agent aggregates his activity
demands as a function of time, thereby obtaining his agent
demand. This demand reflects the need of the agent for a
resource as a function of time, given the activities that he
still needs to schedule’. Finally, for each shared resource,
agent demands are aggregated for the whole system thereby
producing aggregate demands that indicate the degree of
“ontention among agents for each of the (shared) resources
n the system as a function of time. Time intervals over
vhich a resource’s aggregate demand is very high
‘orrespond to violations of capacity constraints that are
ikely to go undetected by the constraint propagation
nechanism. The contribution of an activity’s demand to the
ggregate demand for a resource over a hi ghly contended-
or time interval reflects the reliance of the activity on the
ossession of that resource/ time interval. It is taken to be
1€ criticality of the activity.

To choose the next activity to schedule, each agent looks

nong the resource/ time intervals that he may need and
lects the one with highest aggregate demand. He then
cks his activity with the highest contribution (i.e. highest
iticality) to the aggregate demand for that resource/time
terval. In other words, each agent looks for the
source/time interval over which he has some demand that
the most likely to be involved in a capacity constraint
dlation. He then picks his activity with the highest
»bability of being involved in the conflict.

-2. Value Ordering
Jdnce an agent has selected an activity to schedule next,
nust decide which reservation to assign to that activity,
e several strategies can be considered. In particular, we
inguish between two extreme strategies: (1) a least
straining value ordering strategy (LCV) and (2) a
:dy value ordering strategy (GV). Under LCV an agent
select the reservation that will be the least constraining
1 to itself and to other agents. LCV is a mechanism for
ding conflicts over resources and over time intervals,
i heuristic can be viewed as resulting in altruistic
wior on the part of an agent. Under the GV strategy,
igent can select reservations based solely on its local
>rences, irrespectively of its own future needs as well
hose of other agents.  This heuristic results in

tice that, an agent’s demand at some time ¢ for a resource is
¢d by simply summing the demand of all his unscheduled activities
> . Because these probabilities do not account for limited capacity,
im may actually be larger than 1
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egotistic/myopic behavior on the part of the agent. In thig
paper, we report experimental resulis obtained using the

LCV value ordering strategy.

S. Using Textures for Decentralized
Scheduling

This section describes additional theoretical concerns
and new mechanisms that arose in our application of the
texture approach to decentralized, multiagent, resource-
constrained scheduling. The issues that we addressed

include:

* scheduling with incomplete information about
the intentions and future behavior of other
agents.

* scheduling with uncertain/changing
information  (i.e. even when  detailed
information regarding other agents’ intentions
is communicated, this information is not stable

over time, since agents are scheduling
asynchronously), and

* scheduling without the help of coordinating
agents for avoiding conflicts and achieving
global goals,

The following subsections describe our approach to
addressing these issues.

5.1. Incomplete information

In a multi-agent System, complete information is
unavailable to each agent about the constraints, partial
plans/schedules and heuristic analyses of other agents.
Incomplete information results because of limitations in the
amount of inter-agent communication that can reasonably
occur. Hence, some level of summarization and abstraction
is needed. In our approach, summarization information is
expressed in terms of the texture measures that have been
effective for centralized problems. Specifically, we
represent an agent’s intentions with respect to resource use
in terms of that agent’s demand density for the resource for
different time intervals. Al agent densities are further
abstracted to produce an aggregate density, which

represents  the  system-wide expectation for resource
utilization over time,

An important outcome of this approach is the ability to
efficiently communicate those aspects of an agent’s partial
schedules which are most relevant to each of the other
agents in a system, without the need to explicitly determine
relevance. An element of a partial schedule is relevant to
another agent if it influences the agent’s expectations
regarding the demand for resources the agent requires.
Since the effects of most scheduling decisions indirectly




influence the computation of an agent’s expected demand
for shared resources, these implicitly include an abstraction
of all relevant decision making elements.

5.2. Rapidly changing information

The continuous, asynchronous behavior of agents can
reduce the validity of information they exchange,
regardless of how complete that information may be.
Therefore, an agent cannot depend on the certainty of
information when it elects to use it, because other agents’
decisions interact with its already constructed partial
schedules as well as with its future scheduling decisions
thus producing new expectations. In addition, because of
the associated communication costs, agents cannot afford
to communicate, update and evaluate information with
every change that occurs. Hence the information
communicated must remain predictive robustly in the face
of communication lags.

There are several aspects of the texture approach that
address the problem of rapid information obsolescence in
asynchronous, multi-agent systems: First, texture measures
produce relatively accurate early predictions of agent
behavior, as long as expectations are communicated by all
agents at the initiation of scheduling and constraints remain
constant. Second, the uniform representation of
expectations as densities and the incremental nature of
activity scheduling allows changes in expectations to be
incorporated as soon as they are received. Third, agents can
monitor their current expectations to determine when these
have changed significantly from those that were last
communicated.

In the multi-agent system, other agents can make
reservations throughout an agent’s search, making it
difficult to determine which set of previous reservations
were responsible for a constraint violation when it is
eventually detected. The task facing an agent at this point
is to find the last set of reservations it made which, together
with those made by other agents, does not violate
constraints. A simple backtracking procedure will
eventually find this state, but is extremely inefficient.

In order to deal with this problem, we have developed a
variation of backjumping [Dechter 89] for uncertain, multi-
agent environments. In our approach, backjumping
involves iteratively undoing each activity’s scheduled
reservation and determining whether constraint violations
Iemain, until the set of acceptable activity reservations has
been partitioned. No alternative values are tried for any one
activity until this set has been determined. This procedure
avoids the inefficient testing of alternate values for
variables when, in fact, violations already exist for values

assigned to previously addressed variables. Our version of
backjumping locates the appropriate search point with
computation that is just a linear function of the number of
variables traversed, a tremendous saving  over
chronological backtracking.

5.3. Absence of explicit coordination

Coordination within the texture approach to multi-agent
scheduling is achieved through mutual acceptance and
adherence to shared policies of decision-making. In our
system, the goal of supporting other agents’ attempts to
achieve a solution to their portions of the global scheduling
problem is realized through three policies. First, agents use
information about other agents’ expectations to avoid over-
constraining them through the application of LCV value
ordering heuristics. Second, reservations for resources are
granted without contest when requested by an agent (i.e.
reservations granted on a first-come, first served basis).
Reservations are also surrendered promptly by agents if
they decide not to use them as a result of local constraint
violations. Third, once an agent has made a reservation, it
is not required to surrender it i.e., no provision is made for
one agent to request another to backtrack. An important
principle is that all agents assume that the global good is
best realized through the application of these policies and
therefore, do not depart from them to maximize local
objective functions.

6. A Communication Protocol for Distributed

Scheduling

The agents make decisions using local available
knowledge as well as information communicated by the
other agents. In our model, resources are passive objects
that are monitored by active agents. Each resource has a
monitoring agent and each agent monitors one or more
resources. Thus, monitoring responsibility is distributed
among many agents. Monitoring resources does not give
an agent either a global view or preferential treatment
concerning the allocation of the monitored resources but is
simply a mechanism that enables agents to perform load
balancing in bookeeping efforts and efficient detection of
capacity constraint violations. Since there is no single
agent that has a global system view, the allocation of the
shared resources must be done by collaboration of the
agents that require these resources (one of which is the
monitoring agent).

The multi-agent communication protocol is as follows:

1. Each agent determines required resources by
checking the process plans for the orders it has to
schedule. It sends a message to each monitoring agent
informing it that it will be using shared resources.



2. Each agent calculates its
resources (local and shared) that

demand profile for the
it needs.

3. Each agent determines whether its new demand
profiles differ significantly from the ones it sent
previously for shared resources. If jts demand has
changed, an agent will send it to the monitoring agent.

4. The monitoring agent for each resource combines
all agent demands when they are recejved and
communicates the aggregate demand to al) agents
which share the resourceS.

5. Each agent uses the most recent aggregate demand
it has received to find its most critical resource/time-
interval pair and its most critical activity (the one with
the greatest demand on this resource for this time
interval). Since agents in general need 1o use a resource
for different time intervals, the most critical activity and
time interval for a resource will in general be different
for different agents. The agent communicates this
Teservation request to the resource’s monitoring agent
and awaits a response.

6. The monitoring agent, upon receiving these
Teservation requests, checks the calendar of the resource
it is monitoring to find out whether the requested
intervals are available. There are two cases:

o If the resource is available for a requested time
interval, the monitoring agent of the resource (a)
communicates "Reservation OK" 0 the
Tequesting agent, (b) marks the reservation on
the resource calendar, and (c) communicates the
reservation to all concerned agents (i.e. the
agents that had sent positive demands on the
resource).

If the resource had already been reserved for the
requested interval, the request is denied. The
agent whose request was denied will then
attempt to substitute another Teservation, if any
others are feasible, or otherwise perform
backjumping.

7. Upon receipt of a message indicating its Tequest
was granted, an agent will perform consistency
checking to determine whether any constraint violations
have occurred. If none are detected, the agent proceeds
to step 2. Otherwise, backjumping occurs with undoing
of reservations until a search state is reached which does
Not cause constraint violations. Any reservations which
were undone during this phase are commumicated 1o the
monitor for distribution 10 other agents. After a
consistent state is reached, the agent proceeds to step 2.

The system terminates when all activities of al] agents
have been scheduled e, when all demands on resources
become zero. 1In thig version of the protocol we assume

-_—

*With the exception of the first time demands are exchanged, agents do not wait
for aggregate demands 1o be computed and returned prior to continuing their
scheduling operations (although they can postpone further scheduling if desired).
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that reservations are not changed because of backtmcking,

7. Experimental Results

The main goal of our experiments was to determing (he
feasibility of the texture approach to multi-agent scheduling
across a number of different scheduling experiments ang
across a vanety of system configurations, We have
developed a testbed and performed experiments with 1-, 2.
and 3-agent configurations. The experiments were rup
asynchronously on a number of machines corresponding 1o
each of the agent configurations. In addition, we wanted (o
test particular mechanisms and parameters that influence
System performance. In particular, our experiments
considered:

¢ the effects of agents’ incomplete knowledge of
each other’s plans (ie. the robustness of
lexture measures when aggregated across
multiple agents and with the resulting loss of
detailed information),

e the effects of rapidly changing expectations on
performance (i.e. the robustness of these
measures  with respect 1o delays in  the
communication of densities),

* the consequences of asynchronous scheduling
(e-g., asynchronous use of van'able-ordering
strategies) without external coordination,

The experiments summarized here were created from
problems found to be difficult in previous research on
centralized scheduling [Sadeh 89] and they reflect system
performance with respect to search efficiency rather than

technique [Sadeh 89,
selected and distributed across the agents in a way that
maximized resource coupling within orders and across
agents. The problems were constructed so that a change in
reservation for any activity or resource would influcnce
expectations for every other.

All experimental problems were selected so that orders
could be distributed evenly between two agents, all
Tesources were shared by the two agents (high inter-agent
Tesource coupling), every order used all resources (high
intra-order resource coupling), and problems ranged from
40 - 100 activities.

Over 100 experiments were run in order to vary several
properties of each problem. The asynchrony in the system
prevents exact replication of experiments. So, we repeated
cach experimental run g minimum of three times. If
different runs of the Same experiment produced wide



variations in the results, we repeated the experiment five
times. The reported results (see figure) are the average of
these runs. In each case, the dependent variable was the
efficiency with which the scheduling system found a
solution.  Efficiency is expressed in terms of the total
number of states needed to reach a solution. For example,
for a problem with 40 activities, the minimum number of
states needed to assign a reservation to each activity is 40.
Every reservation that needed to be redone added an
additional state to the total. This allowed comparing a

40-activity 1-agent problem to a pair of 20-activity

problems solved simultaneously by 2 agents, ora 10, 15, 15
split of the 40 activities among three agents. There were 5
resources (all shared among all the agents). These
resources were used by 8 orders, each having S activities.

Problem versions differed in several ways. First, to
establish a baseline, we created a 1-agent system, which
was similar to the 2-agent and 3-agent systems in every
way, except that the aggregate densities were constructed
from a single agent. This was still different from the
original centralized system in that decisions were based on
an abstract aggregate demand profile that did not include
detailed information about the number of activities which
contributed to the densities. Furthermore, we varied the
frequency with which the aggregate was computed, thereby
isolating the effect of uncertain expectations caused by
infrequent and delayed communication of densities in the
2-agent and 3-agent systems.

Specifically, we implemented several simplified versions
of the heuristic used by agents t determine when to
communicate their changed densities. In the minimum
delay condition, a single reservation on any resource by
any agent initiated the exchange of densities for all
resources. In the increased delay conditions, densities
were exchanged for each resource independently,
whenever N reservations were made on it, where N =1, 3,
and 5. This provided a way to observe the effects of wide
ranges in communication bandwidth in the 2-agent and 3-
agent systems and comparable conditions in a 1-agent
system.

Another version of the 1-agent system was created which
used a semi-random version of the variable-ordering
heuristic. The goal was to isolate and assess the effects of
less accurate variable ordering that might occur in a multi-
agent system. Recall that variable ordering is performed in
parallel in a multi-agent system (each agent selects the best
aclivity to schedule from its subset of all activities which
Tequire a critical resource). Agents do not coordinate the
selection of activities to schedule to ensure that the globally
most critical ones are scheduled first. As a result, variable
ordering is probably less effective than in a 1-agent system.

The semi-random heuristic still selects activities to
schedule from those which require the most critical
resource/time-interval (which narrows the selection to a
maximum of 20% of the activities in these problems).
However, it then randomly selects from this subset, instead
of selecting the activity with the greatest demand for the
critical resource. Relative to completely random variable
ordering, the semi-random condition is still highly selective
in that only activities which use the most critical
resource/time interval are considered. In fact, we found that
random variable ordering resulted in terrible performance,
even in the 1-agent case. Solutions were not found in over
500 states.

Two system versions were created to compare the use of
backtracking and backjumping search techniques. As
expected, the use of a backjumping strategy substantially
reduced the search in the 2- and 3-agent systems. The
results presented in the Figure are results of the
backjumping version. The reported results are for a
representative group of 40-activity experiments (8 orders, 5
activites per order, and 5 shared resources). The four
curves represent the effects of increasing the delay (from 0
to 5) prior to initiating creation of aggregate demand
densities for 1-, 2- and 3-agent configurations and for a
I-agent case with a semi-random variable ordering strategy
(labelled 1-agent SR variable ordering in the figure).

80 —
1-agent, SR
* of 70 - variable
States ordering
to Solve 60— 2-agents
Problem S0 - J-agents
{-agent
40 ~

I | T I
o] 1 3 S

Communtcation Delay

Figure 7-1: Experimental Comparisons of Distributed
Scheduling Systems

The first important observation is that the use of
abstracted texture measures was sufficient to allow near
perfect performance (solving the problem in 40 states)
when the texture information was updated frequently
(minimum delay conditions, expressed as 0 on the X-axis)
i all experimental configurations. This matches
performance obtained in the original centralized scheduling
system [Sadeh 89]. Thus, despite the incompleteness of
information available in the 2- and 3-agent systems, texture
measures provide satisfactory summarizations. Second, as
expected, performance of the 2- and 3-agent systems does



deteriorate as the communication of changing texture
information is delayed. Since current texture information is
used to perform both variable and value ordering, it is
likely that both these processes deteriorate. An interesting
observation is that in this set of experiments, the 3-agent
system did better in terms of search efficiency than the
2-agent system’.

The effect of delaying communication/computation of
demand densities is greater for the 2- and 3-agent systems
than the 1-agent system. This interaction may reflect the
compensatory relation between variable and value ordering
observed in [Sadeh 89]. Note that 2- and 3-agent
performance is still better than the semi-random condition,
suggesting that variable ordering strategy is robust with
respect to the conditions of the multi-agent environment
(incomplete, changeable information and asynchronous
behavior without external coordination).

8. Concluding Remarks

In this paper we have presented mechanisms to guide
distributed search. The domain of investigation is
distributed job-shop scheduling. In particular, we have
presented measures of characteristics of a search Space,
called textures, that are used to focus the attention of agents
during search and allow them to efficiently find scheduling
solutions that satisfy all constraints. In addition, the
textures express the impact of local decisions on system
goals and allow agents to form expectations about the
needs of others. This ability is critical in multi-agent
complex environments, such as the factory floor, where
agents have to plan under considerable uncertainty, We
have presented two types of textures (activity criticality and
value goodness), their operationalization into variable and
value ordering heuristics and their use in distributed
problem solving. In addition, a communication protocol
that enables the agents to coordinate their decisions has
been presented.

A testbed has been implemented that allows for
experimentation with a variety of distributed protocols that
use variable and value ordering heuristics. The testbed also
provides unique opportunities to compare closely maiched
single- and multi-agent scheduling systems. This
comparison helps establish baseline performance measures
and isolate conditions that influence performance in multi-

"This was tme in the majority of comparisons between the 2- and
3-agent systems. No easy generalization can be made, however, since in
some of the experimental groupings, the 3-agent system performance was
very bad in the increased delay conditions, whereas the 2-agent system
performed with graceful deterioration for the corresponding increased
delay conditions.

agent systems.

Our results demonstrated that a texture approach g
mult-agent scheduling can produce search efficiency tha
approximates that of a centralized system, even for
problems that are difficult for traditional approaches g
constraint satisfaction. Furthermore, the texture approach
proved to be robust in the face of decreasing
communication frequency, thus substantially decreasing
communication overhead.
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