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Abstract

Robotic rovers uniquely benefit planetary exploration - they enable regional exploration with the precision of in-situ
measurements, a combination impossible from an orbiting spacecraft or fixed lander. Current rover mission planning
activities utilize sophisticated software for activity planning and scheduling, but simplified path planning and execu-
tion approaches tailored for localized operations to individual targets. Routes are coarsely hand-selected by human
operators and executed by the rover’s local obstacle detection and avoidance software. Neither route selection nor

navigation deeply considers high level mission goals, large scale terrain, time, resources or operational constraints.

This strategy isinsufficient for the investigation of multiple, regionally distributed targetsin a single command cycle.
Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional
access, the effect of route timing on resource availability; the limitations of finite resource capacity and other opera-
tional constraints on vehicle range and timing; and the mutual influence between traverses and upstream and down-
stream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow arover to

continue operating rationally despite significant deviations from an initial plan.

This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for
robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical
approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach cals on a
new incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher
than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection
and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of
interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state

and world models, and is well suited to online operation aboard a robot.

Simulations exhibit that the new methodology succeeds where conventional path planners would fail. Three plane-
tary-relevant field experiments demonstrate the power of mission-directed path planning in directing actual explora-
tion robots. Offline mission-directed planning sustained a solar-powered rover in a 24-hour sun-synchronous
traverse. Online planning and re-planning enabled full navigational autonomy of over 1 kilometer, and supported the

execution of science activities distributed over hundreds of meters.
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1. Introduction

Robotic rovers have been demonstrated as effective tools for planetary surface exploration on the moon [23] and on
Mars [43]. As aresult of early success with the Pathfinder and Mars Exploration Rover missions, NASA has pro-
jected follow-on Mars rover missions with increasing technological and scientific ambition. In the course of their
development, these programs will lay the foundation for robotic technology that will enable access to a far greater
range of locations on Mars and other bodies in the Solar System. One of the most exciting research thrusts is the
development of robot navigational autonomy. Path planning and execution components allow a robot to select and
navigate paths across planetary landscapes without human assistance. This thesis contends that to serve future mis-
sions, the scope of automated reasoning for navigation must include mission relevant parameters like time, resources,
constraints and mission objectives. This research achieves significant advances in autonomous navigation that is

cognizant of mission parameters and enables far more difficult surface operations than were previously possible.

1.1 Planetary Rover Navigational Autonomy

What will be demanded of rover navigational autonomy in future missions? Before creating a vision for future navi-
gational autonomy, it is useful to assess the approaches taken in the most recent rover missions - the Mars Pathfinder
mission and the combined Mars Exploration Rover missions - as well as a state-of-the-art research system. Over
these three examples, note the clear disparity between the growing sophistication of automated stationary activity

planning, and navigation planning, which continues to be restricted to obstacle avoidance.

1.1.1 Mars Pathfinder: Sojourner Rover
Sojourner made the first steps toward rover navigational autonomy on another planet [43]. Sojourner relied heavily

on both the Pathfinder lander and a team of Earth-based engineers and scientists to enable travel to places of interest.
The Pathfinder lander produced stereo imagery used to generate three-dimensional models of the landing site terrain.
Human operators used a graphical user interface that combined the terrain model and a kinematic model of Sojourner

to estimate safe routes of travel - routes that minimized the traversal of rock obstacles and avoided regions that pre-
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vented direct line-of-sight between Sojourner and the Pathfinder lander (and hence prevent communications and pose
estimation via stereo vision). Operators selected waypoints along these safe paths, at intervals of 1-2 meters, as inter-

mediate goals for autonomous navigation.

Using cameras and laser stripers, Sojourner executed “Go To Waypoint” commands by periodically ng the dif-
ficulty of terrain ahead of the rover, and performing scripted avoidance maneuvers to circumnavigate obstacles. The
rover avoided pursuing unreachable goals by abiding by atimeout clock that prevented travel after a set number of
hours. Sojourner managed its resources during execution - it measured solar array current as a means of determining
whether sufficient power was available for various activities. It also periodically checked its communications link
with the lander, and executed a path reversal contingency action if communications were lost. Sols, or Martian days,
weretypically devoted to one type of activity - either traverse, or one of many possible science or engineering activi-
ties. Using this general approach, Sojourner covered more than 100 meters, all within 12 meters of the Pathfinder

lander (see Figure 1-1), over 83 sols.

Figure 1-1: The Entire Pathfinder/Sojourner Mission Path
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Summary of Pathfinder Observations:

*  Human operators relied on aglobal model derived from Pathfinder lander stereo imagery for waypoint selection.

e Terrain traversability and communications line-of-sight geometric constraints were critical in selecting way-
points.

» Traverse activities were largely isolated from other focussed rover activities (e.g. science measurements), allow-
ing waypoint selection and activity sequencing to occur mostly independently.

»  Terrain, time, resources and communications remained a consideration in deciding the next course of action dur-
ing traverse execution.

» Simpleterrain sensing and scripted obstacle avoidance behaviors, combined with human operators’ strong a pri-
ori knowledge of the terrain, enabled Sojourner to navigate confidently immediately around the lander.
Sojourner’sreliance on the lander for obstacle avoidance, state estimation and communications prevented it from
travelling well beyond the landing site.

1.1.2 Mars Exploration Rovers: Spirit and Opportunity
The Mars Exploration Rover (MER) missions have far surpassed Pathfinder in autonomous operations on a planet.

Spirit and Opportunity are independent of their landing vehicles, alowing them to traverse far from their landing
sites. The MER rovers produce their own stereo imagery, both from hazard cameras (mounted at fixed angles on the
rover) and the Pancam instrument (mounted on a mast pan/tilt mechanism). Aswith Sojourner, MER operators use a
graphical user interface to assess the terrain around the rover, and hand-select waypoints that avoid hazardous terrain
on the way to long-distance goals. Distant goals are selected using imagery collected from orbit. During the Martian
winter months, when the sun was lowest on the horizon, rover operators were aso forced to find paths and loiter
points that maximized the solar array’s exposure to sunlight. Travel favored sun-facing slopes, and slopes facing

away from the sun were often removed from consideration.

Human operators must designate the navigation mode of the traverse - either “blind” whereby the rover drivesin a
straight path between waypoints without visual sensing, or in “autonomous navigation” mode that enables autono-
mous closed-loop driving. In aconservative strategy, blind mode driving is favored for the portion of atraverse near-
est the rover where a priori stereo datais most reliable, and autonomous navigation mode is used to safeguard the

rover from hazards where a priori dataisleast reliable.

Earth-based MER planning incorporates substantial autonomy. The MAPGEN system [2] combines a plan editing
system called APGEN and automated reasoning derived from the EUROPA constraint-based planner [28]. Though
plans remain largely hand-edited, EUROPA enables active constraint enforcement during the edit process, completes
partial plans and repairs plans that violate constraints or resources, and provides operators with explanations for why

certain edits areillegal.
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During a traverse in autonomous navigation mode, the MER rovers create three-dimensional maps of the terrain at
periodic intervals, and automatically segment the maps into traversability “goodness’ levels. The GESTALT algo-
rithm [19] evaluates the drive arcs available in the next move, and picks the best arc in terms of the goodness travers-
ability index. At the time of publication of this document, Opportunity achieved a maximum autonomous drive
segment of 85 meters on Sol 82 (the 82nd Martian day of operations), and Spirit, a segment of 78 meters on its Sol
133 [26].
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Figure 1-2: Spirit Traverse Route, Sol 1 to Sol 160. MER demonstratesthe scientific interest in regional
exploration. Thesedistancesmight betraversed in afraction of thetime spent by Spirit, using greater levels of
navigational autonomy.

Summary of MER Observations:

¢ Human operators use orbital imagery and local models derived from rover stereo imagery to manually select
waypoaints.

e Terrain traversability and sun, solar array and terrain geometry data are used to manually estimate the best path.
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» Loosely interleaved traverse and science activities force a greater consideration of activity interaction than for
Pathfinder. Activity planning is conducted on Earth, but with elements of autonomy. Traverse segments are
inserted into activity plans using distance measurements between waypoints to estimate the duration and energy
allocations for mobility segments.

»  Spirit and Opportunity achieve waypoint goals autonomously, using local terrain evaluation. However, beyond
consideration of the next drive arc, the rovers do not conduct planning to optimize travel to the next waypoint.
The MER missionsillustrate the current state-of-art in flight rover operations. As of thiswriting, Spirit and Opportu-
nity have operated for over three timestheir baseline lifetime of 90 sols. In 270 sols, they had covered atotal of 3641
m and 1664 m, respectively and continue to operate productively. Yet mission planning remains a very labor-inten-

sive activity, requiring extended support from large teams of experts.

1.1.3 Experimental State of the Art: CLEaR
High levels of autonomy have been achieved on orbiting spacecraft, as demonstrated by the Deep Space 1 Remote

Agent Experiment [3]. However, the surface operations environment is far less predictable and, as described above,

has historically required far more human oversight.

Recent Earth-based experiments have demonstrated limited autonomous surface science operations. As an example,
Estlin et al. have developed a system for planning and execution of position-distributed science measurements [12].
The system comprises CASPER, a constraint-based iterative-repair planner [9], the TDL task-based executive [62],
and a simple global path planner. The system processes are coordinated under the CLEaR framework, which dele-
gates responsibilities between the planner and executive for plan repair in response to new data. Rover experiments
on the Rocky 7 and 8 roversin the JPL Mars Yard demonstrated the system’s ability to devise plans given a set of
high-level measurement goals distributed over several locations in rocky terrain. The planner decomposed the high-
level goalsinto low-level activities, and selected the feasible subset of goals that maximized expected science return
and respected resource constraints. In planning motion between measurement sites, CASPER called on the global
path planner to estimate the distance of travel. Using models of the rover, CASPER then estimated the duration and

energy requirements for the traverse, and integrated the traverse segment as atoken in the activity plan.

During plan execution, the CLEaR system repaired plansin response to unanticipated data. The Morphin local navi-
gation system [59] detected new obstacles that invalidated the origina plans by requiring longer traverses between
measurements. Measurement activities occasionally took longer to complete than anticipated. In such cases, the
CLEaR system coordinated plan repair and removed lower-priority goals that could no longer be accomplished
within the allotted time.

Summary of CLEaR Observations:
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» Goa selection was performed by human operators and paths between goals were not pre-planned. However,
activity planning considered the expected time and energy costs for traverse activities, which was derived from
path planning that avoided all known obstacles.

» Traverse and science activities were closely interleaved, preventing an approach that planned them indepen-
dently. The time and resource allocations of each activity strongly affected the feasibility of the others. Despite
this, path planning to estimate the distance between goals was ignorant of mission goals, time, resource limita-
tions and geometric constraints.

* Rocky 7, Rocky 8 and FIDO achieved the goal positions autonomously like the MER rovers. Rover navigation
considered only the local terrain and immediate drive arcs. The eventual paths followed by the rovers had little
or no connection to the paths generated to estimate the distance between goals in the planning phase.

The CLEaR example represents amajor advance towards rover autonomy for localized operations. The test scenarios

enabled automated planning and execution of a number of goals that would have occupied several sols of operations

in Pathfinder or MER. For focussed site surveys, a system like CLEaR might enable a far greater collection of sci-
ence data, and could significantly reduce the number of operational staff needed to oversee daily activities. However,
for science operations distributed over greater distances, path planning would have to take a far more prominent role

in planning and execution.

In the context of missions conducted at greater scal es, with more complex terrain, dynamic lighting and resources that
vary spatially and temporally, a plan that purely avoids terrain obstacles might, at best, be inefficient or operationally

infeasible and, at worst, might endanger the rover and the mission.

1.2 Future Rover Scenarios

Future rover missions will demand far more coordination between activity planning and navigation planning. A
greater ambition for distance, and pressure to reduce operations staff, will require navigational autonomy over greater
distances - a schedule involving daily long-distance traverses cannot afford the labor of the detailed scrutiny seen in
MER. Long distance traverses will intersect a variety of terrains, whose slope and orientation affect locomotion and
solar power. Motion with respect to large-scale terrain features may entail driving through sunlight or communica
tions shadows. Missions will take greater advantage of available time, operating from dawn to dusk, and even at
night. Diurnal variations will affect power, thermal and sensing systems. Resources will continue to bein short sup-
ply. The navigation route, timing and resource profile will inevitably affect the preconditions for downstream activi-
ties, and vice versa. Under these projected circumstances, this thesis asserts the need for a new kind of path planning

that considers these factors - mission-directed path planning.

The next subsections introduce two mission scenarios that directly motivate mission-directed path planning.
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1.2.1 Mars Exploration
Mission-directed path planning is initially motivated by the needs of future missions to Mars, like Mobile Science

Laboratory [11], Mars Sample Return, and others. These missions may send highly-capable roversto Mars for multi-
year scientific surveys covering tens of kilometers of terrain. Missions such as these would benefit from reliable,
effective rover autonomy, which would ease the planning workload of human operators in support of the missions for
years at atime, and which could make intelligent decisions about the use of time and resources in unexpected situa-

tions.

Figure 1-3: Future Mars missionswill requireroversto accessincreasingly difficult terrain.

Judging from Mars Pathfinder and the Mars Exploration Rover missions, energy management will continue to be a
prime concern for future missions. Solar power remains a technologically simple means of generating power on
Mars. A solar powered rover must consider the energy cost of its path of motion and determine how the time of travel
affects the orientation of its solar array relative to the sun in the sky. Terrain may cast shadows on the route, particu-
larly at dawn and dusk. At the end of each sol, a rover must recharge its batteries in preparation for survival or lim-
ited night operations. A careful evaluation of hibernation sites may allow the rover to find slopes that receive

sunlight earlier the following morning, and tip the solar arrays to improve solar power throughout a sol.

Nuclear thermoel ectric power generation is gaining favor for rover power. The clear advantage of nuclear power is

that it removes the dependence of rover power and heating on sunlightl. Future rover missions may be able to oper-

ate at all times of day, virtually doubling the time efficiency of rover missions. Nuclear generators might also enable
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arover to survive the cold and dark of an extended dust storm. Furthermore, waste heat from the nuclear source can
be used directly to warm the rover; solar power must be converted to electricity to drive electric heaters. However,
nuclear power may not completely solve the power management problem. Thermoelectric generators may not have
sufficient output power to supply continuous locomotion or other high-power activities. Extended high-power activ-
ities might have to be supplemented with battery or solar power. A nuclear rover would till have to plan strategically
to take advantage of quiescent periods of the day and night to charge the batteries in anticipation of high-power peri-

ods. Limited power and required charge cycles may actually prevent certain paths or greatly reduce daily range.

Thermal control will be another issue influenced by exposure to the sun. A nuclear powered rover, exposed to the
waste heat from inefficient thermoel ectric cycles, might be prone to overheating. In that case, arover might adopt a
motion strategy that occasionally seeks shadow to avert thermal buildup. If staying warm is the dominant thermal

challenge, staying in sunlight could save power that would otherwise go toward heating rover electronics.

1.2.2 Lunar Polar Circumnavigation
The moon's South Pole Aitken Basin is a probable target for future rovers. Orbital missions over the past several

years indicate a high probability of water ice trapped in permanently shadowed regions of the lunar poles, and hence
present a strong scientific motivation for surface exploration (e.g. [13]). During summer months at the pole, the sun
rises no higher than 1.5°, and from the point of view of an observer there would appear to skim over the complete
horizon in the course of the moon's 29.5-day lunar month [23]. A combination of axial tilt and orbital eccentricity
cause the Earth to inscribe a tilted elliptical path in the sky that rises to 6.7° above the horizon at its high point and
falsto 6.7° below the horizon roughly two weeks later. The low sun and Earth elevation angles, combined with the
South Pol€e’s rough terrain, are cause for widespread and highly varied sun and communications shadowing. Shadow

patterns change continually with the moon's rotation and progress of the Earth/moon system about the sun.

A rover in this challenging environment could not survive without a path planner whose solutions maximize sun
exposure and communications while satisfying operational constraints. Planning could discover paths that follow the
course of sunlit regions to enable solar power and avoid extended exposure to the cold of lunar night. Such paths
could also follow regions with direct line-of-sight to the Earth and relay spacecraft to allow high-rate imagery, teleop-
erated control and continual science data return. Mission objectives might force the planner to deviate from these
zones of relative safety. Entering aregion of permanent dark to look for signs of water ice would force the rover to

abandon sunlight and to enter low-lying areas where communications might be occluded by surrounding terrain. A

1. Nuclear generators suffer from several disadvantages - launch approval for nuclear devicesis extremely difficult, and
generators are only made in afew different sizes which may be poorly matched to rover capabilities and demands.
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mission planner would aid in timing this foray to maximize science data collection and rover contact while maintain-

ing an adequate battery state-of-charge and maximizing the chance of survival.

Figure 1-4: The Lunar North Pole. Future exploration missions may investigate per manently shadowed
cratersin search of water ice deposits. Such operationswould require detailed traver se planning to anticipate
terrain hazards, power availability, thermal transitions and areas of sunlight and shadow for science.

1.3 Mission-Directed Path Planning
As part of a broad effort towards planetary rover autonomy, this research introduces a new ideal for path-based rea-

soning based on the following five desirable attributes:

1.3.1 Over-the-Horizon Foresight
A critical task in achieving rover autonomy is automatic route planning between a landing site and operations sites.

To date, path planning research for planetary rovers has focused on the problem of navigating locally through fields
of rock obstacles en route to a global position goal, over tens of meters.  In upcoming missions, long-distance and
long-duration path planning will enable robotsto travel between landing sites and operations sites. To target specific
locations for scientific study, arobot must be able to traverse at |east the size of the landing error ellipse, which could
be tens of kilometers. To complement local path planning strategies, tailored for travel amongst rocks at or below the
scale of the rover, path planning must utilize regional map data generated from orbit or during descent. Regional data

will enable a rover to anticipate opportunities and hazards and to incorporate these predictions into path selection.
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Large scale and duration introduce factors absent in local path planning, including navigation around and through
large-scale terrain, significant changes in line-of-sight geometry, and time-varying lighting stemming from planetary

motion. Long treks anticipated for future missions will demand that rover planning consider these issues.

1.3.2 Temporal Cognizance
Timeis asimportant to path planning asit is to mission activity planning. Planetary motion defines the gross sched-

ule for daylight, solar flux and opportunities for communications downlinks to Earth. A planner that considers the
paths of the sun, Earth and orbiting relay spacecraft, and determines whether they are shadowed or visible at specific
times will be better able to select routes that provide sufficient energy or enable communications at different times of
day. A path planner must also ensure that paths obey time-dependent operational constraints. Asexamples, ascience
activity may only be successful under particular time-dependent lighting or thermal conditions; communications
passes often require both geometric visibility and ground antenna availability. A path planner that operatesin amis-
sion context must use time efficiently and effectively, and tailor its paths to respect the operational constraints on

other activities.

1.3.3 Resource Cognizance
Resource management is essential to rover self-sufficiency. Resources take many forms, from metric resources like

battery energy and onboard memory, to unit resources like cameras, whose usage state is Boolean. The favored
approach for rover resource management is through Al planning and scheduling (see [3] [10]). This approach proves
effective in situations where path or orbit selection and resource management are independent. In surface vehicle
operations, a tighter coupling of path and resource considerations offers distinct advantages over the traditional
approach. Many resource expenses and gains for rovers are path-dependent and cannot be adequately considered out-
side a path planner. In the case of energy management, these include locomotion energy as a function of terrain and
solar energy as a function of position, orientation and time. A rover must consider the effects of path choices on

energy balance to determine which paths are feasible or optimal.

1.3.4 Uncertainty Robustness
Itisessential that arover planner be robust to uncertainty. Knowledge of the area of operationswill be limited. Envi-

ronment and rover models will be purposely coarse to ease the computational burden of considering long-distance
and long duration paths. Rover behavior will be impossible to predict accurately. A raobot that cannot adapt to unex-
pected events will, a best, be unable to operate for long durations because plans quickly become invalid, and at
worst, may execute inappropriate or dangerous actions that could result in mission failure. At minimum, a robot
should be able to perform quick re-planning when its state strays outside acceptable bounds of an earlier plan, or in

response to new information about itself, the environment or goals. However, by anticipating the effects of uncer-
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tainty sources on the cost of future actions, arobot can select plans that avoid hazardous situations with sufficient, but

not overly conservative margins.

1.3.5 Mission Directedness
Robot software should be designed to maximize the chances of achieving mission objectives. A path planner must

balance anumber of competing mission pressures, for example to maximize science data return, to maintain adequate
battery levels, or to remain safe, all of which impact the mission outcome. A path planner with mission focus must
represent all relevant activities - navigation, science, power generation to name a few - in a consistent framework.
Navigation affects the timing of science activities, and could enable or prevent opportunities for battery charging.
The location, timing and resource requirements for science activities impact navigation and may determine whether
batteries require dedicated charge time. By reasoning about all significant activities, at the appropriate level of gran-
ularity, a path planner can correctly integrate route selection, timing, and energy management into a cohesive mission

profile.

In considering operations over long distance and duration, it might be inappropriate to select a typical path metric
such as distance or energy to evaluate plans, or aternatively, to select an arbitrary weighting to define the balance
between several desired metrics. If the value of mission objectivesis encoded in terms of reward, then the appropri-
ate balance between these factors is achieved by maximizing the expected reward over the path. Suddenly, asingle
framework promotes the correct strategy in every situation. If ahigher reward specifies the shortest path, the planner
will seek it. If low batteries threaten rover survival, the planner will develop a course of action to charge to adequate
levels as it proceeds to the goals. Finally, a rover planner would benefit from an ability to balance reward against
risk. The expected return from amission does not take into account the variance of reward. Avoiding undue risk may
entail taking a route for which expected reward is lower, but for which the chances of failure are lower. A robot that

can evaluate risk, and balance it against potential rewards could adjust its behavior according to mission preferences.

In combination, the above five attributes define an ideal for rover navigational autonomy - mission-directed path
planning. Mission-directed path planning will enable a rover to autonomously achieve mission objectives, enforce
operational constraints, and combat the effects of uncertainty under a single framework, and optimize plans in terms
of probability of mission success. This thesis has developed an initial capability for mission-directed path planning

embodying elements of each characteristic:

Over-the-Horizon Foresight: This research develops models and planning approaches that consider large-scale ter-

rain, and execution approaches that integrate naturally with local navigation planners.

11
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Temporal Cognizance: This research enables planning in an absolute time frame, and devel ops models and planning

approaches that consider time-varying sunlight and solar power and absolute operational constraints.

Resource Cognizance: This research presents two approaches to optimizing path selection in terms of renewable

stored energy.

Uncertainty Robustness: The research presents a strategy for fast re-planning in response to updates in vehicle state

and localized changes in models of the environment.

Mission Directedness: This research integrates planning for navigation, temporal path planning, path-based resource

management and satisfaction of constraints on mission activities.

1.4 Thesis Statement
This thesis asserts that mission-directed path planning achieves a significant, practical advance in planetary rover

autonomy, and enables a new, challenging class of planetary surface rover missions.

1.5 Assumptions

Planning will occur at a spatial resolution at which the size of the vehicle and vehicle steering radii are insignif-
icant.

Planning will consider scales and vehicle speeds at which dynamics areinsignificant.

Planning will not solve the general planning and scheduling problem.

Thisresearch will not consider adversarial domains.

Theresearch will use only deter ministic modelsfor planning.

Multi-goal planning will not solve or approximate solutionsto the Traveling Salesman Problem.

Theresearch will only consider optimal or resolution-optimal planning approaches.

1.6 Dissertation Roadmap
Having introduced the concepts of mission-directed path planning and established the assertions of this research, the

remaining chapters answer the following questions:
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What techniques currently exist, and how do they fall short in solving this class of problems?
*  What approach does this research take?

»  How does the approach perform in laboratory examples?

* Isthetechnique useful in real-world problems?

Chapter 2 is an overview of current planning techniques relevant to path planning considering time, resources and

constraints.

The work in this thesis relies heavily on incremental search strategies. Chapter 3 describes a previously-devel oped

approach to incremental search, upon which thisthesis builds.

Chapter 4 isthe heart of the thesis. It further motivates and develops the ideas of mission-directed path planning, and
introduces the approach that is the foundation of thiswork. The TEMPEST planner, one of the research contributions,
is a representative mission-directed path planner. The second half of Chapter 4 presents experiments done in smula-
tion that demonstrate the utility of TEMPEST and mission-directed path planning in general on space-relevant prob-

lems.

The highlights of this research are the demonstrations of TEMPEST in support of solar-powered robots in highly
space-relevant terrestrial field trials. Chapter 5 illustrates how TEMPEST solved for plans that enabled two 24-hour,
multi-kilometer traverses exhibiting a new large scale motion strategy for polar exploration called Sun-Synchronous
Navigation. In asecond field experiment, described in Chapter 6, TEMPEST generated plans to interleave long-dis-

tance routes with science activities for two solar-powered robots in support of robotic astrobiology.

Chapter 7 discusses the findings of this research, presentsits principal contributions, and suggests several avenues of

future research.
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2. Related Work

The goal of this chapter isto prove the need for this work and its novelty relative to past approaches. The following
sections examine past accomplishmentsin the fields of path planning and classical planning and scheduling and point

out their shortcomings in the context of mission-level path planning.

2.1 Deterministic Path Planning

The objective of robot path planning is to determine atrajectory that achieves agoal state while avoiding contact with
obstacles. Path planning typically occurs in the configuration space, whose dimensions each correspond to a degree
of freedom in the robot. Motion sequences in the real world define trajectories in configuration space. Furthermore,
obstacles in the real world map to regions in configuration space encoding the ranges of state variables over which
motion is not legal. Path planning algorithms follow three basic approaches - cell decomposition, roadmap methods,
and potential field techniques. Latombe [38] treats each in significant depth. A generalization of the problem assigns
weights (non-uniformly) to all regions of the configuration space. The cost over atrgjectory is the integration of the
weights over the path. Obstacles have infinitely large weights, and free space has weight of zero. The planning prob-

lem then becomes to find the path that minimizes the cost between two points.

2.1.1 Cell Decomposition
Defining a regular grid or lattice that decomposes a space into regularly-spaced regions is formally called approxi-

mate cell decomposition. Grids are favored from a software implementation standpoint since they naturally map to
array data structures and cell adjacency is implicitly encoded. Because a grid pattern only approximates the bound-
aries of free space, approximate cell decomposition techniques are incomplete. At the expense of time and memory;,
grids can be made arbitrarily fine, but where large regions of a space are homogeneous, grids are particularly memory
inefficient. In many representations, motion in aregular grid is constrained to either the four-connected or eight-con-
nected graph directly linking adjacent cells. As aresult, planning in a grid cannot find the minimum-distance path

between two points unless they lie along the directions of allowable motion.
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Multi-resolution grids extend the regular grid approach to improve memory efficiency for spaces that contain large
regions of free space and obstacles. In two dimensions, a spaceisinitialy divided using the coarsest possible square
cells. Those cells that intersect both free space and obstacle space are subdivided into four equal cells each half the
size of the original. The process continues until remaining cells sharing free and obstacle space are of the minimum
allowable cell size and cannot be divided further. The decomposition can be represented as a quadtree, where parent
nodes are large cells and child nodes are the smaller cells. The result is that large regions of free space are repre-
sented efficiently, and borders between free and obstacle space are represented finely. Szczerba and Chen devel oped
afurther refinement, the framed quadtree [68], which provides highest-resolution cells along the borders of all coarse

cellsto enable closer approximations to the shortest-distance path on a multi-resolution grid.

Used first by Chatila [8], exact cell decompositions divide a space into cells whose union is exactly the free space.
The borders of the cells typically correspond to the borders of free space, or mark other properties of the obstacle
shape. Because the cells match the free space, the technique is complete provided the search over the cell connectiv-

ity graph is complete.

None of the cell decomposition approaches were conceived with natural terrain path planning in mind. Though one
could imagine a specialized decomposition for natural terrain, approximate decomposition techniques, especially reg-
ular grids, are attractive for their ssimplicity. Perhaps more importantly, existing data for natural terrain is amost uni-

versally stored in raster-patterned maps that form aregular grid.

2.1.2 Roadmap Approaches
Voronoi diagrams are examples of topological mappings, called retractions, that map the free configuration space to a

one-dimensional subset [48]. Theretraction isa“roadmap” graph that can be searched for afeasible or optimal path.
Voronoi diagrams have the advantage of maintaining the greatest distance between a robot following the diagram and
obstacles. Extensions to higher than two dimensions are available but are far more complicated to define. It is not

clear how the Voronoi approach might be used in weighted spaces or in the context of natural terrain.

In two-dimensional spaces with polygonal obstacles, the visibility graph approach introduced by Nilsson [46] defines
line segments between all obstacle vertex pairs that are “visible” to each other (i.e. whose inter-vertex line segments
cross only free space). Adding the start and goal state as extra vertices, path planning becomes searching the resulting
graph for the sequence of edges that connects the start and goal. The graph is guaranteed to contain the minimum-
distance path between points. The approach is simple for two-dimensiona planning around obstacles with distinct
vertices, but is poorly defined in spaces with rounded obstacles, and may not lead to efficient paths in higher-dimen-

sional spaces.
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One might also envision a specialized roadmap for travel on natural terrain.

2.1.3 Potential Fields
Potential field algorithms [33] plan by superposing an attractive field centered at a global goal with repulsive fields

surrounding obstacles. A “plan” simply follows the steepest resulting gradient to the goal. The approach is extremely
simple to encode, but under the greedy, steepest descent strategy, is vulnerable to local minima, and hence is incom-

plete.

2.2 Randomized Path Planning

Randomized search techniques were devel oped to address motion planning for robots with many degrees of freedom
(e.g. snake rabots), and hence that have high-dimensional configuration spaces. Randomized algorithms trade a sys-
tematic, optimal approach for exploring a space for a stochastic approach that enables rapid exploration of very large
state spaces. While deterministic, systematic search is complete and sometimes optimal, randomized techniques have
probabilistic bounds on time to reach a solution, and are generally not optimal. However, for high-dimensional prob-

lems where finding any feasible path is sufficient, randomized approaches are very effective.

2.2.1 Rapidly Exploring Random Trees
LaValle's rapidly-exploring random trees (RRT's) are incrementally constructed search trees that attempt to rapidly

and uniformly search the state space [36]. Their benefits include guaranteed convergence to a uniform coverage of
any non-convex space. The basic technique seeds a graph with a node at the start state. A new point is randomly
selected from a uniform distribution over the search space. In a greedy fashion, the node in the graph nearest to the
random point is then expanded in the direction of the point to a non-collision state, becoming a hew node in the
graph. The process continues until the graph connects the start state to the goal state. Despite the greedy approach,
the agorithm avoids local minimain high dimensions. Kuffner and LaValle present afollow-on algorithm, RRT-Con-
nect [35], which grows an RRT from both the start and goal and attempts to greedily connect them together. Though
non-optimal and incomplete, the algorithms are probabilistically complete and are efficient in practice for spaces with

high dimensions (e.g. 10 or more).

2.3 Temporal Path Planning
Temporal path planning seeks time-optimal solutions, typically in a dynamic environment. The bulk of research in
this area has been directed towards robotic manipulation and simple vehicle control, including dynamics and moving

obstacles.

Bobrow et al. [5] approach the time-optimal path problem for a manipulator by dividing the problem into two steps.

First, the path of the manipulator end effector is planned, using kinematic constraints, to avoid obstacles in the envi-
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ronment. Second, an algorithm solves for the optimal velocity profile, consisting of alternating segments of maxi-
mum acceleration and deceleration (bang-bang control). The algorithm considers kinematics, full manipulator
dynamics, and joint torque limits that are arbitrary functions of the manipulator state. The dynamics and constraints
result in a maximum velocity profile over the path. The optimal velocity profile follows the maximum velocity as
closely as possibl e using the bang-bang approach. Though the approach provides a convenient way to decompose the
optimal control problem, the assumed initial path may have a strong influence on the resulting maximum allowable
velocity profile, and hence on the optimal solution. A global consideration of path and velocity might lead to signifi-
cant improvements in performance. The Shiller and Gwo paper mentioned earlier [58] presents the analog to [5] for
arobotic vehicle on natural terrain. However, unlike in the manipulation paper, the authors initially solve for the top
several minimum-distance paths, then determine the optimal velocity profiles for each. This acknowledges that the
initial path selection is not straightforward and that the minimum-distance path is not necessarily the optimal-time

path.

Fraichard [17] introduces the concept of state-time space to solve temporal path plans for a 2 DOF non-holonomic
vehicle. Asinthework by Bobrow et al. [5], a path is selected in free space that avoids al static obstacles. Defining
aparameter of path length along the path, the author defines a state-time space comprising dimensions in the parame-
ter, itsfirst derivative and time. Dynamic obstacles can be represented as volumes in this new space. A second step
discretizes the space and evaluates canonical trajectories in terms of dynamic and collision constraints to derive
approximately time-optimal trajectories. The obvious shortfall is that the path is pre-selected with no consideration
of vehicle or obstacle dynamics. However, this thesis draws upon the notions of a state-time space or configuration-

time space.

Fiorini and Shiller [16] define the concept of velocity obstaclesto generate paths that avoid obstacles using the vel oc-
ity space. The approach avoids path integration to predict robot position, but rather defines regions of the velocity
space that predict imminent collisions. By superimposing regions of velocity that are accessible based on dynamic
congtraints, the technique is able to generate velocity profiles that avoid the obstacles with physically achievable
maneuvers. Though not guaranteed to be optimal, this approach cleverly removes some of the complication of repre-
sentations that consider the state-time space. It performswell for obstacle avoidance, but is not suited to the problem

of planning through dynamically-varying cost regions.

By operating at alevel in which rover dynamics can be ignored, the research in this thesisis able to avoid some of the
complexity addressed in the above examples. However, time-optimality, and certainly time-dependence will remain
important in many applications, and must be balanced against different competing factors, particularly finite
resources or other performance constraints and mission objectives. All the above approaches take a hierarchical

approach: the path is selected based only on avoiding static obstacles. The velocity profile is then selected to avoid
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the dynamic ones. Thisis seen as a substantial shortcoming. In the path-based resource management problem, path

and timing must be considered simultaneously.

2.4 Resource Path Planning

In the realm of analyzing rover resource collection and usage, Shillcut [57] combines terrain, rover and ephemeris
models to determine the evolution of solar array sun exposure and locomotion power for various coverage search pat-
terns. The research rates the coverage patterns based on driving distance each requires as compared to solar energy
collection each enables, as a function of time and rover orientation. Though the work stops short of planning paths

based on this analysis, it provides motivation for integrated path planning and resource management.

Several other authors have considered planning to minimize the energy expense (work) over a terrain path
[52][54][67]. These are described in more depth in Section 2.7.2.

2.5 Path Planning in Unknown Environments

Nourbakhsh and Genesereth propose an assumptive planning architecture to create limited conditional plans[47]. A
complete conditional plan must consider all possible initial conditions, percepts and actions in a search for an optimal
plan. As an aternative, the authors suggest a principled way to make simplifying assumptions about possible initial
conditions, the effects of actions and the state of the robot given percepts, and yet to preserve plan correctness and
goal-reachability in the face of wrong assumptions. In short, each function must return a proper subset of the actual
states or action effects. Along with functions that make assumptions about initial state, actions and percepts, the
architecture requires a function that can detect irreversible chains of actions (to prevent making an irreversible incor-
rect decision), and another function that detects false goals (to identify cases where actions must continue despite the
sensors’ indication of goal completion). The authors present an algorithm that interleaves planning and execution so
that at each step, the robot executes the first action, senses its environment and re-plans the remainder. This reduces
the requirements on the irreversible chain detector to look only one step ahead. The strategy was used in several suc-

cessful robot control architectures in indoor environments, allowing the robots to act optimally in navigation tasks.

Stentz presents the D* a gorithm, which is designed for global path planning in partially-known environments. Itisa
heuristic search algorithm, like A*, that visits the minimum number of statesin finding an optimal solution, but gen-
eralizes to enable optimally efficient path repair in response to changing cost information [63][64][65]. Where A* is
forced to plan from scratch if any state transition cost changes, D* determines which nodes in the graph are affected
by the changes, and isolates the repairs to those nodes. The effect is a dramatic improvement, as many as two orders
of magnitude, in speed over initia planning for cost map changes local to the robot. The algorithm has been used suc-
cessfully in a number of real-world applications. An agorithm presented by Koenig and Likhachev [34], D* Lite,

has more recently achieved even better performance than D* under a simpler design that more closely mimics A*.
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The re-planning behaviors of D* and D* Lite are ideal for mission-directed path planning. However, neither enables

global constraint satisfaction, nor are they optimized for use in state spaces of dimensionality greater than two.

A large body of research addresses the associated problem of planning under uncertainty, both for path planning and
more generally. Though atreatment of uncertainty is not the focus of thisthesis, notable path planning related works
include those by LaValle and Hutchinson [37], Takeda, Facchinetti and Latombe [69], Wellman, Ford and Larson
[76], Roy et a [55], Ferguson and Stentz [14] and Gonzalez and Stentz [21].

2.6 Path Planning Under Global Constraints

Standard heuristic search algorithms, like A*, assume the path metric can be specified in terms of a scalar-valued
objective function that encodes cost over paths. However, in many applications, several disparate factors contribute
to cost, promoting many to use a sum of weighted costs formulation. However, if any of the costs are non-linear, it is
not immediately clear how to select weightsin order to prioritize the factors to match the objectives of the search. A
more natural approach is to specify constraints on these factors, and to plan paths that satisfy the constraints over the

path. The following research is directed towards this approach.

Logan and Alechina[40] describe an extension of A* called A* with bounded costs, or ABC. ABC allowsinequality
congtraints (i.e. cost < X), equality constraints (feature = Y, and optimality constraints (cost < optimum + ¢) on alist
of path costs that are tracked through each path transition. Using a user-supplied priority on these constraints, and an

admissible heuristic on costs, ABC follows an algorithm very similar to A* that is both complete and optimal®. A
path p is preferred to path p’ if it has the same or better values for all of its cost functions. Distinct from A*, if both
paths terminate in the same state, then p will dominate p’, and hence will always represent an equal or better solution
thanwill p'. In such cases, the dominated states can be legally removed from consideration while preserving optimal-
ity and completeness. All undominated paths must be tracked through the search. In under-constrained problems, the
algorithm will add slack in prioritized constraints. The advantage of this approach is a clear flexibility in specifying
the requirements for path under a framework that is natural for many applications. However, it is not clear from the

paper how the computational and storage complexity increases with numbers and types of constraints.

Stentz also addresses the global path constraint problem, and adds a rapid re-planning feature to address applications
in environments with incomplete or uncertain information [66]. The CD* agorithm uses a weighting factor to bal-
ance an optimality cost and afeasibility (global constraint) cost. CD* performs abinary search on the weighting fac-
tor to find the path that is optimal in the weight space under the global constraint. At each depth in the tree CD* uses
D* [65] to plan an optimal path that satisfies the feasibility cost to within aweight factor error that decreases by afac-

1. Infact, in the degenerate case where ABC has a single optimization constraint, its operation isidentical to that of A*
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tor of two, on average, with each iteration. In re-planning, CD* re-uses the graphs created by D* in theinitial binary
search to find a new weight, taking advantage of the fast re-planning characteristics of D*. Changing the weight of a
D* graph is equivalent to re-specifying al the costs in the graph, eliminating the benefits of D*. Often, very few of
the weights change with updates to the costs, and so CD* is often far more efficient than planning from scratch with
A*. Attheworst case, the weight must be adjusted at the root of the binary tree, forcing CD* to plan the entire prob-
lem from scratch. The author expects that an extension to multiple constraints will add a factor of the binary search

depth D in run-time complexity.

Finally, under an approach similar to D* itself, Stentz and Tompkins offer an algorithm called Incremental Search
Engine (Chapter 3) that provides optimal planning and re-planning under multiple global constraints in high-dimen-
sional state spaces, yet with greater predictability in performance than CD*. Aswith D*, ISE runsin afashion very
similar to A* for initial planning, and re-plans efficiently because it determines which portions of the search space are
affected by new information and limits the recomputation to those portions. ISE is space efficient through the use of

dynamic state generation, state dominance and pruning within resol ution equivalence classes.

Modeling constraints is essential for managing resources. The ABC agorithm is attractive because it appears to
allow a very flexible means of specifying constraints on a path planning problem, and achieving combinations of
optimality, constraints and slack. However, because it mimics the A* algorithm, changes to underlying models will
often entail full re-plans over the state space. In this regard, CD* is an interesting alternative. However, its current
restriction to 2-D search and single constraints may limit its value for the high dimensionality of this problem. Of the
three approaches, | SE isthe most relevant to this research because it combines optimal and complete search, compat-
ibility with multi-dimensional state spaces and fast re-planning. As aresult, it was adopted for use in this research.

Chapter 3 describes ISE in full detail and demonstrates its performance under varying conditions.

2.7 Applied Path Planning: Natural Terrain

Roboticists have applied path planning to the problem of finding safe and optimal paths through rough terrain, both
for military and space applications. The majority of research has focused on the local terrain problem, though afew
efforts have developed approaches for global, long-distance planning. Note that the primary research issue in these
examples is to measure and represent natural terrain, and that finding the plan itself invokes a more general path

search algorithm.

2.7.1 Local Path Planning
In the local problem, knowledge of the terrain is typically limited to that derived from rover sensor measurements,

and henceis limited to areas immediately around the rover path. Rover navigation schemes often interleave sensing,

planning and execution at high frequenciesto re-assess local rocksin the context of finding a minimum-cost path to a
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global goal position. Furthermore, local methods often represent the rover’s volume (as opposed to representing the

rover as apoint), kinematic constraints, and occasionally, dynamic constraints.

Given the recent pull for rover technology applicable

unexplored area to Mars exploration, research has sought to achieve
the baseline required performance for the NASA

- obstacles
: Mars Exploration Rover mission [11]: local naviga

tional autonomy for up to 100 meters over rough ter-

clear area

rain.

RoverBug, as described by Laubach and Burdick
[39], utilizes local tangent graphs to construct mini-
mum-distance paths about obstacles detected by rover
sensors with limited range and fields-of-view. Using a

aged data dual strategy of “motion-to-goal” and “boundary fol-

lowing”, the algorithm has successfully demonstrated
Figure 2-1: An example of terrain classification and

arc evaluation from the CMU Mars Autonomy
software by Singh et al. [59] Mars rover prototype.

path planning and execution aboard the JPL Rocky 7

Howard and colleagues present a fuzzy logic terrain classification methodology for mobile robot navigation [24].
Using vision sensing, the approach loosely quantifies several terrain characteristics - terrain roughness, slope, discon-
tinuity, and hardness - using fuzzy variables. The method composes the resulting vector of fuzzy variables and
applies aset of rulesto classify the traversability of theterrain. The authors claim agreater stability in classifying ter-

rain traversability using noisy sensors than with analytical approaches.

Morphin, alocal path planner presented originally by Simmons et al., and in refined form by Singh et al. [59], uses
data from stereo vision or other 3D sensors to track local terrain traversability. A terrain classifier uses stereo range
data to derive a “goodness’ measure comprising ground plane orientation and surface roughness, and measurement
certainty, over grid cells approximately the size of the robot (see Figure 2-1). Morphin merges goodness maps over
time, by taking the weighted average of the goodness values, scaled by the certainty measures. It de-values older data
by reducing their certainty measures as afunction of distance traveled since the measurements. It projects a predeter-
mined set of discrete drive arcs over thislocal map and computes the goodness and certainty of each arc. Arcs inter-
secting obstacles or entering entirely unknown regions are vetoed. The overall value of an arc is computed as the
multiplication of its goodness and certainty. This local scheme has been successfully demonstrated, in conjunction
with a D*-based global path planner, on aCMU ATRV rabot [59], on the CMU Hyperion rover [78], and for tens of
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kilometers on a Honda ATV automated for the DARPA PerceptOR program [32]. A modified version of Morphin,
called GESTALT, provideslocal navigational autonomy for the NASA Mars Exploration Rovers [19].

Both RoverBug and the Morphin-based approaches coarsely categorize terrain for traversability, but generally avoid
the roughest terrain. Other approaches are working to plan paths over rough terrain, and consider a greater number of
factorsincluding vehicle kinematics and dynamics. LAAS has developed a method for planning over rough terrain in
terms of rover kinematic constraints, described in Hait and Simeon [22]. Assuming an a priori model of the terrain,
the method estimates how a rover will sit on terrain by “placing” the rover over the entire discretized terrain map.
Given estimated wheel contact, the software checks for violations in joint limits and under-body clearance. Those

cells where placement yields no violations are used for planning using terrain roughness and distance metrics.

Kinematics often impose constraints that must be considered in planning local paths. With automated fork trucks in
mind, Kelly and Nagy developed an approach for generating non-holonomic trajectories reactively [31]. Rather than
solve the general non-holonomic path planning problem, their software operates on polynomial spiral trajectories.
The spiral primitive has the advantage of roughly spanning the space of feasible steering controls while being
described by only two parameters. Optimal control laws on the polynomial coefficient parameters transform to anon-
linear programming problem which can be solved very quickly on the spiral primitives. Their results display an abil-
ity to generate and evaluate trajectories in under one millisecond. This approach was successfully adapted for usein

rough terrain navigation for the DARPA PerceptOR program [32].

Researchers at MIT are developing physics-based motion planners for planetary rovers that consider vehicle statics,
kinematics and dynamics and soil mechanical properties [25]. This approach hopes to provide a physics-grounded
means of planning paths in rough terrain such as steep embankments where simple heuristic classifications of terrain
might fail. Research by Urmson is integrating randomized kinodynamic projections of the rover state to path plan-

ning to enable travel over rough terrain that requires vehicle inertiato succeed [72].

Wellington and Stentz present an adaptive technique for local navigation through vegetated terrain [75]. In the pres-
ence of tall grass, bushes and other vegetation on terrain in front of a vehicle, laser scanning and radar data cannot
easily deduce the height of the weight bearing surface. Some measurements reflect the full height of the vegetation,
while others may represent mid-level branches and possibly the ground. The approach demonstrates both off-line and
on-line learning to determine the height of the ground from this ambiguous data. With an estimated map of the
ground height derived from learned experience, software samples from the range of possible future control actions,
taking into account steering dynamics, to project a set of possible drive arcs. The software “places’ a kinematic

model of the vehicle onto the terrain model at regular intervals along the arcs to test for violations of roll and pitch
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[imits, mechanism limits, and underbody ground contact (similar to [22]). A simple planner selects the non-violating

arc that produces the lowest cost to a given goal.

All the planners mentioned above are solutions to varying forms of the local path planning problem. Their sensor-
based models of rover-sca e terrain are of limited use in over-the-horizon navigation or in sensing, modeling or iden-
tifying large-scale terrain. Though some might address obstacles of arbitrary size, perhaps only [25] and [72] consid-
ers large-scale terrain in a more general framework of slopes and their effect on static stability, traction and
locomotion energy, as afunction of the rover. None of the local planners address time-varying parameters, for exam-
ple sunlight, in path selection. Furthermore, these approaches attempt to reduce energy expense by minimizing path
length and avoiding rough terrain, but ignore the non-monotonicity introduced by energy collection and the global
congtraint imposed by limits in storage capacity. Finaly, each of these methods only partially address uncertainty.
For example, the D*-based method interleaves sensing, re-planning and action at a high frequency to restrict execu-
tion of plans to the immediate proximity of the rover, where datais most certain and complete. The LAAS approach
anticipates uncertainty in rover state by ensuring that configurations over a corridor of positions and orientations
about the path also satisfy kinematic constraints. However, in avoiding probabilistic or worst-case uncertainty

growth over the path, its plan may not adequately prepare for the range of possible outcomes.

2.7.2 Global Path Planning
Long-distance path planning is characterized by a greater a priori knowledge of terrain over vast distances than for

local planning, albeit at very low resolution. At large scales with low-resolution terrain data, it becomes impractical
to consider obstacles at the scale of the rover, but becomes more convenient to model travel more abstractly. Terrain
map grid cells define regions of homogeneous terrain properties, and the robot is reduced to a point object travelling

from cell to cell.

Shiller and Gwo [58] present a vehicle path planning problem in which path and vehicle speed are optimized. The
approach ignores vehicle size relative to terrain, but does model basic vehicle steering kinematics and dynamics.
Based on the approach of Bobrow et al. [5], the technique splits the time-optimal problem into two by first determin-
ing the top several minimum distance paths, and then optimizing each of their velocity profiles using kinematics,
dynamics and dynamic constraints. An obvious disadvantage with this sequentia approach is that the minimum-dis-
tance path is not necessarily the time-optimal path. Aside from the approach used to optimize the path, an interesting
feature of the approach is the use of B-spline patches and B-splinesto model the terrain and paths, repectively. These
continuous parametric functions enable a smooth integration of trajectories, but prevent optimization using gradient

descent since the parameters to be optimized are the control points for the spline curves.
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Another approach, by Pai and Reissell, represents terrain at multiple resolutions using wavelets, and plans paths hier-
archically from the coarsest to finest maps [49]. The authors show that when applying wavelet filtersin natural ter-
rain, the wavelet coefficients in smooth areas shrink quickly at greater filtering levels (i.e. at higher resolutions),
while in rough terrain, coefficients persist through many iterations. Therefore, in smoother areas, the lower-resolu-
tion wavelet levels match the original datawell, whilein rough areas, the coarse levels model the original terrain with
significant error. Under this observation, the authors use an error measure at coarse terrain levels, aquantity that falls
directly from the wavelet filtering operation, as ametric for terrain smoothness. Using the smooth terrain metric, the
planning algorithm seeks smoothness-optimal paths at the lowest resolution, and then advances to higher resolutions
in an “anytime” manner to refine the original path. The authors also examine various means of computing cumula-
tive path cost, and derive a generalized worst cost function that heuristically prefers safest paths. Under experiments
using digital elevation models of actual terrain, the algorithm appears to select the best paths through terrain. The
approach here is novel, and potentialy very useful in this work as a means of terrain analysis. However, it takes a
heuristic rather than model-based approach to cost calculations, so is difficult to use in conjunction with power esti-

mation that is required of an energy-cognizant path planner.

As mentioned in Section 2.1.1, grid-based representations suffer from memory inefficiency and the restriction of
motion to paths between cell centers (or grid vertices). Another body of work plans paths on terrain approximated by
polygonal regions with homogenous properties. This representation efficiently maps homogeneous regions and
allows motion to occur in arbitrary directions. Richbourg et al. [52] introduce a technique for finding optimal paths,
in terms of energy expense, where costs within the regions are isotropic - where the path cost per unit distance does
not vary with path heading. They show that optimal paths consist of straight line segments across regions and direc-
tion changes between regions governed by Snell’s Law from optics literature. Thisrestriction of pathsto Snell’s Law
trajectories, combined with several pruning rules, enables an efficient search of the region-wise continuous space for
optimal paths. Rowe and Ross [54] extend this work, again for minimum energy expense paths, to travel through
regions of anisotropic costs - where legal directions on sloping terrain are defined by maximum vehicle power limita-
tions, sideslope tipover, and downhill braking. They prove that optimal paths can only cross these regionsin one of
four ways and, asin [52], that direction changes between regions must follow Snell’s Law. Sun and Reif [67] apply
an efficient discretization to the polygonal region boundaries, using Steiner points, and a more efficient search algo-

rithm, to display good search performance on maps of natural terrain.

In another extension of the work by Richbourg, et a., Rowe and Lewis [53] describe a method for defining paths for
both land and airborne vehicles to either minimize or maximize visibility with respect to fixed observers (e.g. repre-
senting beneficial resources or enemy observers) while minimizing path cost in terms of an energy metric. The plan-
ner divides the free space into convex visibility regions, defined by visibility to each observer, and assumes each of

these volumes to be homogeneous in terms of both energy and visibility costs. Assuming linear costs, the authors
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apply the Snell’s Law model to path propagation and minimum-cost path angle transitions between regions. Though
interesting, the method appears more directed towards flight, and in its quest to abide by Snell’s Law, uses overly
simplistic, linear cost models. However, to its credit, the method does raise the issue of effective space decomposi-

tion, and addresses the balance between visibility and energy costs.

Several robots have used the D* algorithm [63],[64],[65] in conjunction with the Morphin local planner (Section
2.7.1) to drive autonomously on rough terrain over long distances. Local maps derived from stereo camera data are
also used to populate a cost map in D* based upon estimated terrain traversability. D* produces an optimal path to a
global goa position, given all available information. Unlike Morphin, which assigns infinite cost to unknown
regions, D* planners have historically been designed to assign zero cost to areas with no existing data. Typically
these no-data regions are at the field-of-view limits of the cameras, and will ultimately contain data as the rover gets
closer. As new data is introduced, D* efficiently re-plans by repairing only those regions affected by the changes.
Hence the optimal global path updates with each stereo image set, typically several times per second. Thelocal obsta-
cle avoidance and global planner each vote with their respective arcs; the higher-value arc is sent as acommand to the
rover controller. A relative weight factor allows operators to tune the behavior of the robot. Weights emphasizing
obstacle avoidance will steer further from obstacles, but may avoid legal paths through narrow passages. Conversely,
boosting the weight of the global path planner improvesthe likelihood of finding paths, but also increases the chances
of collision with obstacles. The combination of local and global path planning has proven itself in many natural ter-

rain rover experiments [59], [78], [32].

Of recent popular interest isthe DARPA Grand Challenge automated racing contest. 1n 2004, teams devel oped vehi-
cles and software systems to drive autonomously 143 miles in under 10 hours on a combination of rough roads and
off-road conditions. Though no team completed the course, Urmson et al. describe Sandstorm, the system that drove
further and faster than all other competing vehicles[73]. Teams were supplied the race route only 3 hours prior to the
start of the race, in the form of GPS waypoints spaced an average of 89 meters apart, maximum speed limits, and
maximum allowable corridors of travel. Sandstorm path planning was a mixed-initiative system that combined auto-
mated route generation on aregular grid at 1 meter resolution to follow the GPS points while staying within corridor
bounds and minimizing travel on unknown and poor road conditions, subsequent automated route vectorization to
compress and simplify the plan representation, and human inspection, correction and smoothing of paths using vari-
ous graphical interface tools. Automated planning used coarse road classifications, as well as distance from the cen-
ter of the drive corridor, as a basis for driving cost. It appears that a velocity profile was selected in a separate step
after route planning. Onboard GPS and a scanned laser enabled Sandstorm to follow the course 7.4 miles at speeds
up to 36 miles per hour. This system clearly did not freely select its global route, but rather connected pre-sel ected
waypoints and established a speed profile that would enable completion of the route within the race deadline.
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Despite their applicability to long-distance path planning, none of these approaches considers time-dependent costs.
For example, though the representation of terrain using homogeneous cost regions and Snell’s Law in [52][54][67] is
attractive, it is not clear how to extend the model when cost regions are time-varying. Furthermore, the cases that
seek minimum-energy paths ignore sources of incoming energy, such as solar energy. They minimize resource costs,
but none models renewable resources where a balance must be achieved between input, output and storage. As a
result, none can predict how a finite battery capacity might prevent certain paths, or how resource collection might
extend the set of feasible paths. However, in terms of operational utility, the efficient re-planning provided by D*-

based plannersis clearly advantageous.

2.8 Planning and Scheduling

In an entirely different vein of research, the artificial intelligence community has evolved two related fields - plan-
ning and scheduling - whose overarching goal is to create feasible sequences of activities that start from a set of pre-
existing conditions and achieve a desired set of goa conditions. Planning decomposes high-level goals into atomic-
level activities that collectively achieve the goals. There may be many alternate ways to break tasks into subtasks,
and activities may have complex interrelationships that prevent loose ordering. Scheduling takes a set of activities

and determines an ordering that respects constraints and resource demands to accomplish an overall task.

Automated activity planning and scheduling software has been successfully deployed on spacecraft and prototype
planetary rovers. The Remote Agent Experiment demonstrated automated planning and scheduling onboard the
Deep Space 1 spacecraft [4], [3]. The planner/scheduler software (PS) accessed a database of long-term mission
objectives and planned concurrent activity schedules over multi-day planning horizons. The PS derived planning
problems by taking goals relevant to the planning horizon and projecting initial spacecraft conditions to the antici-
pated plan execution time. Beginning with an incomplete plan, the PS searched over plan space, adding constraints
and subgoal swhere necessary and reordering activities, to create full partially-ordered plans. The PS also maintained
onboard state predictions, for example resource levels, under the same model as activities in primitives collectively

termed tokens.

ASPEN was developed to automate planning and scheduling for spacecraft and rovers [10]. The software uses a
most-committed, local, heuristic iterative repair approach to decompose high-level mission goals into concurrent
action sequences that respect operational and resource constraints. Because the search is not systematic, there is no
guarantee that all combinations of actions will be searched exhaustively, or that disadvantageous sequences will not
be examined more than once. However, ASPEN achieves planning, scheduling and resource management at far less
computational expense than for more flexible, exhaustive approaches. The ASPEN system and the derivative
CASPER system each produced coordinated activity schedules, based on science and engineering team requests, for

the JPL Rocky 7 rover (see Figure 2-2). The activity planners repair plans in response to changing goals and other
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unexpected events. Rover activity scheduling considers resources and environment effects (e.g. day/night cycle, sun
angle), but demonstrates only loose coupling to path planning. ASPEN calls a path planner that is ignorant of abso-
lute time and resources to estimate the duration of small traverses. ASPEN’s primary focus is on conflict resolution
through event rescheduling or reordering. Furthermore, ASPEN and CASPER essentialy react to evolving initial
state and updated mission goals. Neither has the ability to plan in anticipation of arange of possible outcomes, and so

cannot build in contingency branches to plans.
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2.8.1 Contingency Planning
Contingency planning is addressed by Bresina and Washington under the Contingent Rover Language (CRL) and the

propagation of expected utility distributions [6]. Combining the action condition structure of classical planning and
conditional rewards characteristic of decision-theoretic planning, the authors present a means of efficiently evaluating
contingent branches in an existing plan. The method specifies probability distributions on execution times for all
events, and defines local rewards conditioned on action success or failure. Valid action execution is defined under
start, wait-for, maintain and end conditions, which include requirements on initial available resources. The method
assumes knowledge of resource availability as afunction of time. Given an existing plan with conditional branches,
the algorithm first forward-propagates distributions of possible action start times, given action duration distributions
and conditional requirements on actions, to establish temporal bounds on outcomes. Then, it backward-propagates

distributions of utility from the branch endpoints, restricting computation to the time distributions. The resulting util-
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ity distributions specify the expected value of executing each branch, conditioned on start time. The advantage under
this approach isthat the utility distributions remain valid regardliess of the temporal outcome of actions, aslong as the
resource bound model also remains valid. Though this approach pre-supposes a profile of resource availability, it
estimates contingent branch utility factoring in whether actions can be legally executed. An extension of contingent
planning that reasoned about uncertainty in activity time and resource consumption, using CRL and the Pico planner
(based on EUROPA [28]), was used to successfully demonstrate multi-target single-cycle instrument placement on
the K9 rover [50].

2.9 Summary

Mission-directed path planning seeks to solve for paths in a context historically addressed in the Al planning and
scheduling literature. Path planning is most naturally solved in a state space formulation; the planning and schedul-
ing community has almost universally used spaces of possible plans. Planning and scheduling software deals very
effectively with temporal and resource constraint problems, but has not addressed problems where spatial dimensions
are so critical, as in path planning. Specifically, planning and scheduling has been most successful at satisfying
resource constraints, but has not typically sought to optimize resource usage. Optimization of state parametersisthe
domain of the state space. Meanwhile, the path planning community has addressed temporal planning in a hierarchi-
cal fashion that prevents globally-optimal solutions, and has limited its treatment of the resource management prob-

lem to resources that are consumed monotonically over a path.

As demonstrated by ASPEN and CASPER, Al planning and scheduling software can call a path planner as a subrou-
tine to handle mobile phases of alarger activity plan. In scenarios where traverses are relatively short-distance and
duration, thistype of hierarchy might suffice. But in situations where traverse activities consume alarge share of the
time and resources in a mission plan, the system cannot tolerate a path planner that is naive to time, resources and
congtraints. Addressing the combined problem of path planning, temporal planning and resource planning is a cen-

tral contribution of this thesis.

This thesis elects to follow the path planning paradigm. The following is a brief list of problems in mission-directed
path planning that are largely absent in the robot path planning literature but have been addressed in this thesis:

» Efficient, optimal planning and re-planning, under global constraints, in a state space of greater than two dimen-
sions.

»  Simultaneous, global consideration of highly-coupled route, time and resource variables.

* Incorporation of time-varying anisotropic costs and constraints.

»  Capability to reason about, constrain and optimize non-monotonic (expendable and replenishable) resource vari-
ables.
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*  Representation of actions, either coupled with navigation actions or distinct, and both mobile and stationary, that
enable resource management or achieve non-navigational mission goals.
The Incremental Search Engine by Stentz and Tompkins embodies severa attributes that are highly desirable or even
essential to solve the mission-directed path planning problem. ISE offers the optimality guarantees and re-planning
efficiency of D*, which has proven itself in many robot applications. It is also more space and time efficient in
addressing higher-dimensiona state spaces than other existing algorithms. This is critical if we expect to consider
time and resources. Furthermore, |SE enforces global constraints on paths, for example bounds on battery energy.
The next chapter describes ISE in far greater detail as background for presenting a practical solution to mission-

directed path planning.
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This chapter describes one of the foundations for this work - an algorithm developed by Stentz and Tompkins, called
Incremental Search Engine (ISE), that satisfies many of the demands of mission-directed path planning. |SE provides
several enhancements over previous algorithms that are critical in mission-directed path planning. |ISE is agenerali-
zation of the D* algorithm (see Section 2.5 or [63][65]) that retains the planning and re-planning efficiency of
Focussed D* [63], but enforces global constraints and operates efficiently in state spaces with greater than two

dimensions. Mission-directed path planning isthe first and most exhaustive application of I1SE.

ISE is a backwards-chaining algorithm that starts its search from one or more goal states, and finds an optimal path
that “ends” at the specified start state. Like A* and D*, ISE maintains a list of states to “expand” to propagate the
search to new states. These states, beginning with the goals, are prioritized for expansion according to an objective
function which accumulates the cost from each state to the goal, and a heuristic function which estimates the cost
from the start state to each of the states. State expansion generates all possible backward “arcs’, representing actions
in the planning domain, from the final state to several initial states originating the actions. The new states are placed
on the list, and prioritized according to their own value. The optimal path emerges upon expanding the start state.
Further machinery within the prioritized state list enables I SE to efficiently repair path solutions when the transition

arcs change during a path execution.

The following sections describe the salient features of the algorithm. Section 3.1 describes how | SE encodes applica
tion domains. Section 3.2 explains several efficiency mechanisms which speed search and minimize state prolifera-
tion. Section 3.3 provides an overview of the search process (Appendix 1 describes the ISE algorithm in detail).
Throughout these sections, it should become clear that ISE is a general incremental search algorithm that can be
applied to awide range of problems. A user must define state space variables and application-specific functions of
state to compute state transitions between states, heuristics, and state priorities, and other quantities. Section 3.4

experimentally demonstrates how | SE performance varies as these parameters change.
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3.1 States, Transitions and Cost

A*, D* and other incremental graph search algorithms are best suited for two-dimensiona grid planning, or in
domains where states are abstract nodes in a graph. In factored spaces of greater than two dimensions, existing algo-
rithms fail to provide a simple means of encoding state spaces. | SE allows a natural representation of state space in

terms of discrete independent and dependent parameters.

3.1.1 Independent and Dependent State Parameters
ISE allows two types of state variables - independent parameters (IPARMS) and dependent parameters (DPARMYS).

IPARMS are the foundation of the ISE state space and search and are essential to defining a problem domain.
Changesin IPARMS are independent of other state parameters. A domain may optionally include DPARMS, param-
eters whose values change as a function of changesin IPARMS or other DPARMS. DPARMS for a state are stored in
a set corresponding to the state’'s IPARMS. An | SE state combines the IPARM S and DPARMS of the domain.

For example, a robot control problem might entail planning a path through a two-dimensional office area, where
obstacles are time-varying. The state space might define two independent spatial parameters X and Y that are posi-
tionsin aregular grid, and a dependent temporal dimension T, such that AT = f(AX, AY). The ISE stateisan (x, y, t)
tuple. ISE would represent this domain by encoding a regular grid of sets, each corresponding to an x-y cell, that

storevalues of t. Eacht value would represent a different state (x, y, t) .

3.1.2 State Transitions
Arcs are transitions between two |SE states. | SE uses two user-defined arc transition functions, one backwards (B)

and one forwards (® ), to model state transitions in adomain. Given a state space S and action space A, the arc tran-
sition functions define deterministic mappings Sx A - S that obey the Markov assumption, that is, the resulting state
is afunction only of the action and the originating state. Given a state and a choice of action, the transition arc func-
tions define the change in IPARMS and the corresponding change in DPARMS. The backward function B takes a
final state and produces the initial state from which the action was executed. In many cases, the forward function ®

takesan initial state and produces the state resulting from the execution of agiven action. Insuch cases, B and ® are

perfect inverses (B = ot ).

The forward transition function @ isnot aways single-valued. |SE state variables can be constrained to minimum or
maximum values. For example, a state variable b might represent battery charge which can never rise above the bat-
tery capacity b

max - Function B could legally take the form b, i, = min(bg, —iAt by,,) » where i and At are the

the charging current during the action and the action duration, repectively. Now, suppose there is an action A where
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—iAt, then b, b

initial — Ymax*

i isnegative (signifying a battery discharge in the forward-time direction). If by, 2 b

max

Clearly, then, the forward transition function @ for action A cannot unambiguously predict by, from

Binitial = Pmax- INstead, @ must predict the range of legal states that are possible from an initial state. Using the
above example, @ could take the form by; . = biiia 1AL fOr by iiar <Pmax: @ b5 o O [Bipitia + 1AL by, for
binitial = bmax'

Arc parameters, or APARMS, govern the effects of transitions. Each IPARMS combination has APARMS that help
define the transitions into or out of the states with those IPARMS. Most importantly, APARMS are parameters that
are allowed to change during plan execution. As discussed in upcoming sections, re-planning enables ISE to effi-

ciently repair a plan whose underlying APARMS have changed.

3.1.3 Local Constraints
Local constraints are a generalization of obstacles in the path planning literature. The satisfaction or violation of

local constraints depends solely on the specific state and the action executed to or from that state; it does not depend
on state or action history. Obstacles in traditional path planning are local constraints on locomotion actions. Local
congtraints extend obstacles by limiting arbitrary actions over any range of states in the state space. Through the
application-specific (user-defined) arc transition functions B and @, |SE permits or rejects arcs into states that vio-

late local constraints. Rejected states cannot become part of any ISE path solution.

In the running example, the office robot would be constrained to avoid people and closed doors, as defined by local
congtraints at specific (x, y, t) regionsof the state space. The office environment might further restrict its operation to

certain hours of day, a purely temporal local constraint.

3.1.4 Global Constraints
In contrast to local constraints, which operate on state parameters, global constraints operate on parameters that inte-

grate over the history of state or actions. Examples include path distance, duration, and capacity limitations on con-
sumable or replenishable resources. |SE enforces global constraintsin one of two ways. |SE stores global constraint
parameters through auxiliary variables stored alongside DPARMS state parameters o, if the parameter is to be opti-
mized, in the objective function (see Sections 3.1.6 and 3.1.7). If stored alongside the DPARMS parameters, the glo-
bal constraint parameters are evaluated inside the B state transition function. When a violation occurs, the B
function rejects the arc. Alternatively, if the parameter is stored in the objective function, ISE cannot reject the arc,
but assigns a very high cost to the arc to reduce its chances of entering into any optimal solution. Under this second

approach, if no cheaper legal path exists, ISE will yield the least expensiveillegal path.
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What are the implications of local and global constraint parameters? The addition of global constraint parameters
does not add dimensionsto the state space. However, under the Markov assumption, aside from rejecting arcs, global
constraint parameters cannot legally have any effect on DPARMS or cost for state transitions. Furthermore, | SE can
only guarantee planning completeness in the variables comprising the state space. If a parameter is not amember of
the state, | SE cannot explore trajectories that vary the parameter to find feasible path solutions. Any global constraint
can be transformed into alocal constraint by promoting its parameter to afull DPARMS state parameter. The param-
eter can then affect state transitions and costs for legal state transitions, but at the computational and memory expense

of an added dimension in the state space (see Section 3.4.2).

3.1.5 Resource Parameters
Because of its flexible treatment of state, constraints and cost, ISE is particularly well-suited to reasoning about

resources. A resource is a quantity that is essential to achieving a goal, and yet isin limited supply. ISE represents
resources as constraint-limited parameters. 1SE can be represent resources as DPARMS state variables, limited by

local constraints, or as global constraint parameters alongside DPARMS or in the objective function.

Resource parameters can be divided into two categories - monotonic and non-monotonic. Monotonic resource
parameters monotonically increase or decrease over the course of a trajectory. Examples of monotonic resources
include non-rechargeabl e battery energy or finite-lifetime components. More abstractly, if a path is constrained to be
less than a given distance or duration, then remaining distance or duration can also be considered resources. Planning
problems often involve renewable resources - parameters that can be expended and replenished over different arcs,
and hence are non-monotonic. Rechargeable energy, thermal load, available computer memory or communications

bandwidth are all examples of hon-monotonic resources.

In ISE, because of the backwards-chaining order of search, the semantics of resource parameters are different than for
typical parameters. Aswith all DPARMS and objective function parameters, values for resource parameters must be
initialized for each goal prior to search. Semantically, it isuseful to treat these values as minimum allowable resource
levels at the completion of a path. For example, a parameter to represent duration remaining to the goal (as away of
constraining duration over a path) might be set to zero. In words, at the start of a path if a robot is given an upper

bound on duration to reach the goal, it islegal in theworst case to exhaust the entire duration “resource”, but no more.

To explain the semantics of resource parameters at other pointsin apath, it isimportant to show how they evolve over
asearch. Goal DPARMS states and objective function values are used as a starting point for state expansions during
the search. The state transition function B generates the change in state for DPARMS parameters as well as the costs
that are reflected in the objective function. 1t subtracts quantities that would be added in the forward direction and

viceversa. Returning to the example, the duration resource declines in the forward direction, and hence accumul ates
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in backwards expansions. Figure 3-1 depicts the evolution of amonotonic duration resource over an | SE search. The
plot’s horizontal axis represents the sequence of states in a path in the direction of search, from the goa (extreme
right) to the start (extreme left). The vertical axis represents duration, from zero to the maximum allowable duration
D,ax- Thesolid curve starts at the goal at zero duration remaining. Moving left from the goal, arcs successively add
duration to the total. Under this model, it is important to understand that resource parameters do not represent the

instantaneous val ue of the quantity, but rather the minimum amount allowable to satisfy the goal conditions under the

current optimal arc sequence.
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Figure 3-1: Plots of Duration, a Monotonic Resour ce Parameter, Over an | SE Search. The solid curve depicts
apath that satisfiesthe global duration constraint, the dashed curve shows a duration profile that exceedsthe
maximum duration before reaching the start. Steeper slopesindicate slower progressto the goal.

To constrain a monotonic resource, the | SE user must design B or the objective function to reject arcs, either through
outright rejection or via high path cost, that exceed the minimum or maximum parameter value. The example dura-

tion constraint rejects arcs that force the duration parameter above D, (see the dashed curve in Figure 3-1); any

such arc would force the robot to start with a greater duration allocation to reach the goa with no less than zero upon
reaching the goal. The arc rejection mechanism is easily defined in either the state transition function g or within the
objective function, as described in Sections 3.1.3, 3.1.4 and 3.1.6. Feasible paths arrive at the start state with margin

remaining with respect to the maximum allocation (see the solid curve in Figure 3-1).
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Non-monotonic resources are not as intuitive as their monotonic counterparts. Non-monotonic resources can go
either up or down over any arc. Therefore, parameters that have finite ranges typically require upper and lower lim-
its. Take, for example, amemory resource, where some arcs correspond to net data being stored, and others, net data
being removed. Positive incrementsin memory in the forward direction (erase actions) appear as reductionsin back-
wards search, providing greater margin with respect to the memory capacity. However, successive reduction arcs
could drive the memory parameter to zero. Herein lies the subtlety: zero in the memory scale does not indicate that
ISE should reject the arc. Instead, zero indicates that the goal could be reached from the current state, even starting
with no available memory. |SE must prevent the parameter from dropping below the minimum - there is no meaning
to a resource with “less-than-empty” conditions. However, the parameter remains legal, and can remain at zero or

increase above zero in later state expansions.
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Figure 3-2: Computer Memory, a Non-Monotonic Resour ce Parameter, Over an | SE Search. Thethreecurves
depict different outcomes of the search: a path that requires more than the maximum available memory
(Rejected path 1), a path that exceedsthe memory available at the start (Rejected path 2), and a path that
meets both the maximum and initial memory requirements (L egal path).

Figure 3-2 illustrates the memory example. Similar to Figure 3-1, the horizontal axis represents a sequence of states
from the goal (extreme right) to the start (extreme left). The vertical axis represents remaining unused memory, and

ranges from zero remaining memory to M. , the full capacity of the storage device. All the example curves start at

some allowable memory level (possibly non-zero). Observe that each curve displays non-monotonic behavior. The
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curve labeled “Rejected path 1" behaves very similar to the rejected path in Figure 3-1. It ultimately exceeds the
maximum capacity of the storage device, meaning that the particular series of arcs taken by the path required there to
be more memory than available to meet the goal conditions. “Rejected path 2" is also rejected, but for different rea-
sons. In that case, the path never requires more than the storage capacity, but requires more than is available at the
start. Perhaps all the data in memory is critical and cannot be deleted or moved out of memory. A solution that
required deletion of this datawould beillegal. Thisisrejected on the basis of feasibility, and is alluded to in Section
3.3.1. Finally, the“Legal path” illustrates how a resource curve can be reduced to zero and remain valid. The portion
of the curve that dips to zero (from right to left) indicates that the arcs move more data out of memory than in. The
flat part of the curve at zero memory indicates that the capacity for data removal during those arcs is sufficient to
allow afull memory at that point in the path, and still meet the goal conditions downstream. Furthermore, the starting

memory requirement falls below the amount of memory available at the start.

To represent non-monotonic resource parameters using DPARMS, the | SE user must design transition function B to
reject states that exceed one extremum, and saturate the values that would otherwise exceed the other. A resource

parameter r represents aminimum allowable level, and has upper bound r,, and lower bound r ;.. For successive

states r; in abackwards search, where Ar(a) isthe change in resource level for agiven arc a from agiven state s in

the backward direction, the next resource level could be given by:

riyq = max(r, +Ar(s,a), r;p) 3-1

and would reject r;, ,>r The implementation of non-monotonic resources in the objective function is not as

max *

simple, and requires a special formulation, described in Section 3.1.7.

3.1.6 Path Cost
As with A* and D*, ISE combines an objective function and a heuristic function to encode the cost of a candidate

path. |1SE searches in a backwards-chaining order, from one or more goal states to a start state. Backwards arc transi-
tions between a state X and a second state Y result in a positive cost defined by the arc cost function c(X,Y). If Y
does not have a forward arc to X, then c(X,Y) is undefined. The cost to traverse a sequence of states

S = {Xg, X, ..., %} , such that x,, ; = B(x), is the sum of the arc costs incurred in backwards transitions along the

sequence.

n-1

> (X X4 1) 3-2
i=1
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The estimate of the cost of a path from an initial state R, through a state X, to agoa G is based on two functions,
h(X) and g(X, R) . Given a sequence of states S from agoal G to state X:

S = {Xg, Xg, ..., X} Withx; = Gand x, = X 3-3

function h(X) isthe objective function that returns the cost accrued over the sequence of n arcs, and can be viewed

as an estimate of the optimal cost from the goal to the state.

n

h(X) = Z (X, X 4 1) 34
i=1

Since h(X) isasummation over a path, it can represent a monotonically-increasing global constraint parameter. An
application can simultaneously optimize the parameter and limit its expansion within the same objective function. In

the case where it violates aconstraint, the cost for the arc c(x;, ; , ;) , ad hence h(X) itself, is set to avery large num-

ber that approximates infinity.

Function g(X, R) isafocussing heuristic that estimates the cost from the state X to the state R. The heuristic function
must be admissible - it must never over-estimate the cost between two states. A good heuristic approximates the
actual cost as closely as possible without ever exceeding it. Both functions must be monotonic - h(X) must monoton-
ically non-decrease with number of steps from the goal, and g(X, R) must monotonically non-decrease with number
of steps from state R. The sum (X, R) = h(X) + g(X, R) isthe estimated total cost between a goal G and a state R,
through state X.

3.1.7 Non-Monotonic Path Cost
In some cases, it is desirable to optimize a path in terms of a non-monotonic resource. As an extension of standard

cost functions like distance, duration or resource expense, | SE enables a user to encode composite objective functions
that involve more than one parameter. One use for this mechanism is to regulate the search for an optimal solution in

terms of a non-monotonic resource.

Non-monotonic parameters cannot be optimized directly using the incremental search approach. Heuristic search pri-
oritizes its effort on the estimated |owest-cost solutions, based on the objective function. If the objective functionis

the sum of successive positive or negative resource costs, then, in general, the objective function can assume arbi-
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trarily small values. In cases where negative cost arcs are consistently reachable, the search will never terminate -

pursuing negative-cost arcs will yield continually lower objective function values with continually higher priority.

One solution is to add an additional term to the objective function which causes the sum to be monotonic. The new

objective function takes the form:

h(X) = nK+ Z c(Xj, X 4 1) 35
i=1

The summation component is the same as in Equation 3-4, but may also include constraint mechanisms like in Equa-

tion 3-1. Inthe new term nK, n isthe number of arcsin the sequence, and K is defined as follows. If c;, isthe
minimum cost taken over the entire state space S and action space A:
Crmin = MiNGy o5 ana)C% B(X a)) 3-6
then K is defined by:
Crinl If Cin<O
K = ‘ m|n’ . min 3.7
0 if ¢nin20

In words, if negative costs exist in the set of possible transitions, K is the absolute value of the most negative cost

over the state space. Therefore, the following always holds true:

K +c(x, %)= 0foral i, 3-8

K exactly cancels out the largest possible negative cost, and outweighs all others. At every step, the objective func-

tion increments by the sum K + c(x;, x;) . Hence, the h(X) defined in Equation 3-5 is monotonically non-decreasing.

As with the original objective function, the summation of costs can also be governed by global constraint mecha-

nismslike in Equation 3-1. Note that the new objective function does not optimize the sum of original costs c(x;, X)) -

Because K is added at every step in the plan, the term nK is a measure of plan length. Therefore, the path solution
that results from a search under a composite objective function is optimal in combined terms of the cost and humber

of plan steps.
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This formulation is useful for optimizing non-monaotonic resources in many applications. battery energy, fuel in a

tank, datain memory, or thermal energy in an electronics component.

3.2 Efficiency Mechanisms
I SE employs three mechanisms - dynamic state generation, resolution equivalence pruning and state dominance - to
counteract state proliferation during search. The following sections describe how each is used to manage the search

memory and enable efficient path planning in greater than two dimensions.

3.2.1 Dynamic State Generation
While many search algorithms store all states in the space explicitly, ISE generates states only as they are encoun-

tered during the search, and deletes them if they become irrelevant. | SE employs the arc transition function on exist-
ing states to generate new states. ISE defines a state set for each combination of IPARMS values. Each state set
stores states with common IPARMS but potentially differing DPARMS. A state set stores the DPARMS for each
state possessing its particular IPARMS. The IPARMS are implicit in each state set.

At the beginning of search, only the goal states are stored in the sets. |SE generates states to search the space, but
manages state proliferation by continually checking for state redundancy and irrelevance. Unnecessary states are

deleted from the sets, thereby saving memory.

Returning to the earlier example, each pair of IPARMS values (xOX,yOY) defines an IPARMS set containing
DPARMS values (tOT). A transition function might describe nine legal actions - a motion to each of eight neigh-
bors, and a wait action that remains in the current (x,y) location for fixed duration. For each action, it defines
AT = f(AX,AY). APARMS for each IPARM S combination might include parameters to define robot speed as afunc-

tion of position, or encode whether an obstacle prevents the action from occurring.

I SE deletes states as they become irrelevant for planning. The following two sections describe two mechanisms for

state deletion - resolution pruning and state dominance.

3.2.2 Resolution Equivalence
In search over a discrete space, IPARMS dimensions can be represented at arbitrary resolutions, based only on

requirements of the problem domain. Since changes in each axis can be considered independently, discretizing the

space is asimple matter of independently discretizing each dimension to provide adequate resolution.

DPARMS change as functions of changes in independent or other dependent parameters. This leads to an important

difference between the independent and dependent parameters. Transitions in IPARMS are integer multiples of the
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axis interval; dependent state transitions are, in general, real-valued. DPARMS must also be integer-valued. Real
valued transitions must be rounded or truncated to the discrete intervals of the dimension. To avoid excessive round-
ing errors over many transitions, the resolution of DPARM S axes must be sufficiently high. However, in selecting an
adequately high resolution, the number of discrete intervals in the dimension multiplies, leading to a vast increase in

state space size and in time to search the space.

ISE enforces user-defined DPARMS equivalence classes to address this issue. In each IPARMS set, equivalence
classes group DPARMS over ranges of values into coarse bins. The user selects the bin size to reflect an acceptable
range over which DPARMS can be considered equivalent for the particular application. During a search, | SE usesthe
DPARMS equivalence classes to prune away states that are “resolution equivalent” but inferior in terms of cost. This
dual resolution representation enables ISE to classify and prune away sufficiently similar but inferior states while

avoiding the excessive rounding errors that would emerge in using only the coarse resol ution.

Returning to the example, assume the office areais 100 x 100 meters. From the | SE perspective, the resolutions for
the X and Y axes are arbitrary, but might be selected to be 1 meter. If transitions are only possible to the eight neigh-
boring cellsin the grid, the base resolution of T must be selected to approximate changes in time for both transitions
to principal -direction neighbors and to neighbors along diagonals. For example, if the robot in this example moves at
0.1 meters per second, then the time to cross a grid cell in the principal and diagonal directions would be 10.0 and
14.1 seconds, respectively. A time parameter T with a 10-second resolution would not differentiate between the time
costs in these directions; 10.0 and 14.1 both round to one 10-second time unit. However, a one-second resolution

might be sufficient for the application.

Problematically, if the time parameter T spans one hour, the total number of states in the space is 36 million. How-

ever, by dividing the DPARMS into 60 bins of one minute each, the state space drops to 6x 10° state bins while
maintaining the rounding error for transitions at +0.5 seconds per step. The drawback is that resolution pruning
reduces the accuracy with which path solutions match the initial state of arobot. Errors can be up to one half the res-

olution equivalence class. In this example, solutions could be mismatched to the current robot time by as much as 30

seconds.

3.2.3 State Dominance
In some applications, states obey a dominance relationship in which one state can be guaranteed to always produce a

lower cost solution than another state. More formally, let S and Q be any two states in the graph and G be the goal
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state. Let h(S Q, G) be the cost of the optimal path starting at S, passing through Q and ending at G. Let h(S Q, G)
beinfinity if no such path exists. State A dominates B for agiven G if:

h(S, A G) <h(S B, G) 39

for at least one S, and

h(S A G) = h(S B, G) 310

for all remaining states S. If a state is dominated by another, then it can never be amember of an optimal path and can

be removed from consideration.

I SE enables the user to define the specific conditions for dominance, if any, amongst states with common IPARMS
but possibly different DPARMS.

3.3 Search

| SE searchesto find optimal paths from a start state R to one or more goal states g0 G. The search isin backwards
chaining order, originating at the goal states. To search the space, ISE “expands’ states from a prioritized list called
the OPEN list. Initialy, this list contains only the goa states. Given afinal state, ISE uses the backwards arc transi-
tion function B to dynamically generate all possible initial states from which the final state is reachable. Through
state expansion from the goals, | SE builds a directed graph whose nodes are states, and whose edges are the transition
arcs. By definition, every node in the graph is a state from which one of the goalsis reachable. The heuristic function
focusses expansion on states predicted to reach the start state with minimum cost. The search terminates when the

search expands states in the state set containing R that meet the criteria for an optimal solution.

Inaninitial search, ISE results are similar to those from A* [9]. With changesto transitions, either in arcs or objective
function costs, | SE operates far more efficiently than A* in re-planning paths. The A* algorithm is forced to re-plan
the entire space from scratch if any transition arcs change. ISE, like D*, can repair the search graph in the area of the
changes, thereby drastically reducing the time for re-plans. Using incremental graph theory, 1SE repairs the feasible
set of solutions and the optimal path within it.

Sets whose arc parameters have changed have their member states placed back into the OPEN list. The effects of the
changes propagate through the search graph under the same machinery used in initial search. The focussing heuristic

limits repairs to states affecting the start state, making the algorithm much more time efficient than A*. The algo-
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rithm search direction is optimized for applications in which new arc information appears close to the robot’s current
state, for example from robot sensors. The search is backwards-chaining so that changes near the start state only
affect “leaf” states at the very edge of the graph. If the search were in the forward direction, changes near the robot’s

state might have to propagate through the entire search graph, essentially as costly as a new search from scratch.

Another advantage of a backwards-chaining search is that state variables can be expressed in terms of goa state
requirements. By initializing a goal state parameter to the minimum or maximum quantity allowed to achieve the
goal, search state expansions propagate these requirements to other states. The semantics of the state parameter isthe
same at any step, including the first step in a plan solution - it reflects the minimum or maximum quantity allowable,
from that state, to achieve the goal condition. Thisisa particularly advantageous operational tool. At any step in the
plan, arobot can monitor and immediately determine, based on its current estimate of the parameter, whether the plan
can feasibly achievethegoal. In contrast, a plan from aforward search islessinsightful. Since state parametersin a
forward search have their origin at the current robot state, they can only provide an estimate of the expected state of
the robot at each step. The plan generated with a forward search does not provide a threshold for making operational
decisions during execution. To generate a goal-referenced plan with aforward search would require multiple search

iterations; it is not clear what iteration strategy would efficiently achieve the desired result.

3.3.1 Modes and Search Termination
ISE operates in one of two search modes, selected by the user. BESTPCOST mode finds the minimum cost path.

BESTDPARMS mode finds the solution with the “best” start state DPARM Sthat falls below a maximum path cost. A

more detailed description of these modes appearsin Appendix 1.

In each case, search can terminate when the lowest value on the OPEN list equals or exceeds the path cost from the
dtart state R. Since the cost of expanded states is monotonically non-decreasing, the OPEN list cannot possibly find
a LOWER state that has alow enough path cost (effect of the objective function h(X)) and that is “close” enough to
the start state to be able to reduce the path cost from R when it reachesit through subsequent expansion (effect of the
heuristic function h(X, R) ). Candidate start states must also meet afeasibility condition, typically to guarantee suffi-

cient proximity of the candidate to the actual start state, or satisfaction of necessary start conditions.

3.3.2 Path Extraction

To extract the optimal path from the search graph, 1SE uses the forwards arc transition function @ to locate succes-
sive states in the sequence. Beginning with the start state, ISE calls ® to dynamically generate candidate parent
states in the plan. 1SE compares each generated state to existing states with the same IPARMS set to find a state with
matching DPARMS and path cost. The matching state is the next state in the optimal path, and is used to generate its

candidate parents from the search. The process repeats until a goal stateis reached.




INCREMENTAL SEARCH

3.4 Experimental Results

I SE can be adapted to a wide range of problems, and can be configured in multiple ways to solve the same problem.
The configuration that one applies affects memory and computational performance, the quantity to be optimized and
the thoroughness of the search. This section quantifies ISE performance under a variety of problem and configura-

tion parameters, and explores the other effects stemming from the I SE configuration.

3.4.1 Test Domain
At the risk of losing generality, ISE experiments were conducted in a specific planning domain. The tests all solved

for an optimal path between two positions. To emphasize | SE novel features, the problem sought optimal paths with
respect to arenewable energy resource rather than the typical path length. The test domain is atwo-dimensional grid
of positions, with arc transitions defined from any grid position to each of its eight immediate neighbors (no station-
ary actions were possible). Arc transitions result in time and energy costs, randomly pre-generated in advance of
each test for al cellsin the map. Time costs were uniformly sampled over a strictly positive range, while energy

costs were uniformly sampled over arange that enabled positive or negative costs.

The domain state space comprises four parameters: two position variables x and y, atime variable t, and the energy
variable e. Thetwo position variables define axes on aregular grid, and are | SE independent parameters (IPARMS).
The time variable represents the time left to reach the goal, and is an ISE dependent parameter (DPARMS). The
energy variableisthe battery energy required to reach the minimum goal energy. As arenewable resource, energy is
non-monotonic. Depending on the | SE mode used, as will be explained below, energy is represented in ISE in one of
two ways. In both cases, e isconstrained to be within the legal range of battery levels, from zero to some maximum

value e, .,

3.4.2 Comparison of Two Solution Approaches
This study contrasts two approaches for solving this resource management problem, summarized in Table 3-1.

Approach 1 uses the BESTDPARMS mode (Section 3.3.1). In this approach, the energy variable e isrepresented as
asecond DPARMS parameter, yielding four dimensionsfor the search.  Under BESTDPARMS, | SE finds the * best”
DPARMS solution (lowest energy requirement to reach the goal, as defined by the function better (X, Y) ) whose cost
falls below a given maximum duration. Observe that even though the objective function for Approach 1 is duration,

the BESTDPARM S uses it only to constrain the duration of solutions that have a minimal energy expense.

Approach 2 uses BESTPCOST mode (Section 3.3.1) and the composite objective function mechanism (Section
3.1.7), with energy as the non-monotonic resource parameter. Under BESTPCOST, | SE finds the minimum cost path

in combined terms of energy and number of plan steps. The objective function represents the energy variable e asa
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global constraint parameter, and hence without using a DPARMS parameter. Therefore, the DPARMS e dimension
used in Approach 1 is unnecessary in Approach 2. This yields a three dimensional search and a vast reduction in

search space. Removing the energy dimension comes at a price, however, and is discussed later.

The objective function of Approach 2 formulates the resource cost c(x;, x; . ;) of Equation 3-5 to enable arepresenta-

tion of the energy variable that is independent of the ISE IPARMS-DPARMS state. As mentioned earlier, e repre-
sents the energy required to reach the goal. This quantity can never be less than zero, since there is no meaning to
negative stored energy. Furthermore, no feasible plan can require more than a full battery to achieve agoal. Both of

these constraints must be reflected in the energy representation. If Ae; is the change in energy predicted by the arc

transition function B(x;) from state x; , the resulting energy can be constrained to be above zero:

g ,q1 = max(e +Ag, 0) 311

Under Equation 3-11, the greatest change in energy possiblein an arcis Ae, . To limit the upper bound on energy, the

resource cost term from Equation 3-5 then becomes:

€+1—8 If €41 <€y

C(X, X 4 1) = { 3-12

© if ei+l>emax

If the resulting energy does not exceed the capacity of the battery, then the cost is ssmply the change in energy. If the
resulting energy does exceed capacity, the path isinfeasible and is given an infinite cost. For feasible trajectories, the
summation of resource costs over a path correctly (Equation 3-5) represents the energy parameter e. The other term
from Equation 3-5, path length cost K, is equal to the absolute value of the most negative energy cost over all possi-
ble transitions. The sum of the resource and path length costs is always non-negative, since the resource cost can
never increment more than Ae; . So, this adaptation of Equation 3-5 continues to guarantee a monotonic increase over

the path, and also enables a full representation of the energy state parameter without the use of another state space

dimension. Finally, the domain transition model does not depend on the energy variable to derive time or energy
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costs. Hence, an energy state DPARMS is redundant with the parameter in the objective function, and can be

removed from the DPARMS of Approach 1.

Table 3-1: Summary of Experiment Approaches Using | SE M odes

e t(timetogod arrival)
* e (battery energy)

Feature Approach 1 (BESTDPARMYS) Approach 2 (BESTPCOST)
State Space IPARMS: IPARMS:
* X, Y (position) cells * X,Y (position) cells
DPARMS: DPARMS:

e t(timetogod arrival)

Transition Arcs

Arcsfrom cell to each of eight neighbors

Costs

Randomly generated, uniformly distributed time and energy costs

e Timecosts. U(5, 20)
»  Energy costs. U(-35, 40)

Start and Goal Specification

Start position, energy
Single goal position, time, energy

Planning Details

ISE Mode: BESTDPARMS
Objective function: At
Better: if e, <e,

I|SE Mode: BESTPCOST

n

Objective function: nK + 3" Ae,

Dominates: if class(t;) = class(t,) i=1
Better: if t; <t,

and e, <e, _
Dominates: never

The two approaches differ in substantial ways. Most obvioudly, they operate on state spaces of different dimensional-
ity. In terms of time and memory, the 3-D Approach 2 was expected to have a notable advantage over the 4-D

Approach 1.

The approaches also seek optimal energy paths in totally different ways. As explained in Section 3.1.7, both
approaches must either limit plan length or promote shorter plans to avoid the problems of heuristic search for non-
monotonic costs. Approach 1 (4-D BESTDPARMS) seeks an optimal energy solution indirectly, sinceit uses adura-
tion-based objective function as the mechanism for limiting plan duration. The objective function tracks the duration
of candidate paths, and prevents paths that exceed a maximum duration. This prevents the search from lingering at
states that provide negative costs. Under this limit, | SE uses state equivalence class pruning and state dominance to
remove less desirable states. Within time-energy DPARMS classes, the better (X, Y) function favors states that have
lower required energy. Within time DPARMS classes (but across energy DPARMS classes), the dominates(X, Y)

function also favors states with lower required energy. The optimal solution in Approach 1 isonethat falls below the

given maximum path duration, and whose initia state is “best”.
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Approach 2 (3-D BESTPCOST) contains energy directly in its objective function. The plan length cost in the com-
posite objective function provides incentive to avoid lingering at regions of negative cost. The objective function
applies a path length penalty K at every step in the path. This contrasts with Approach 1, which does not penalize
extra steps as long as the plan duration is shorter than the given maximum. At any step in the Approach 2 search, the
plan length cost K can potentially cancel out the resource cost Ae. Consequently, there is no admissible heuristic to
focus the search. Finally, in Approach 2, with energy removed from the DPARMS, no state dominance relationship
exists. So, despite the advantage of having fewer dimensions to search, Approach 2 has fewer other mechanisms to

help focus the search and to prune unnecessary states.

Approach 2 has some other disadvantages. Any arc transition must be a function of state (IPARMS and DPARMS)
and action alone. Since the energy parameter e isnot inthe DPARMS, costsin Approach 2 cannot depend on energy.
In this particular domain, there are no costs that depend on energy, but in general this could be limiting. For example,
it would be impossible to model a battery whose discharge rate is a function of its state of charge in the Approach 2

formulation.

More importantly, Approach 2 is incomplete (in the planning sense) with respect to energy. Reasoning about state,
defined by position and time, does not consider energy. In the event that one branch of a search does not yield feasi-
ble paths, it cannot backtrack to different regions of the energy space, since it is not represented in the IPARMS-
DPARMS state. Paths that are eliminated due to high cost cannot be regenerated. In Approach 1, states that are dom-
inated (and deleted) can be regenerated if it is discovered that the originally dominant states do not lead to afeasible
solution. In practice, the incompleteness of Approach 2 does not interfere with finding paths in awide range of situ-

ations.

Having introduced the example planning domain and the two candidate ISE approaches, the remaining sections
assess the performance of | SE in response to various parameter changes. The tests to determine performance scaling
with map size, DPARMS class resolution and branching factor (Sections 3.4.3 - 3.4.5) and to compare planning and
re-planning (Section 3.4.6) all used Approach 2 (3-D BESTPCOST mode). Sections 3.4.7 and 3.4.8 compare the
Approaches in terms of performance and solution quality. All tests were run on a Pentium 4, 2.99 GHz processor,
with 1 GB of RAM.

3.4.3 Scaling With Map Size or Start-Goal Separation
Map size refers to the number of IPARMS levels - the IPARMS dimensions of the 2-D spatial portion of the space.

The experiment varied the size of square maps (x and y axes 50, 100, 150 and 200 cells each), with start and goal
positions at opposite map corners. Tests measured the time required to solve the planning problem under increasingly

large map sizes and start-goal separation, using Approach 2 described above. Twenty tests were run for each map
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size, each on a different independently and pseudo-randomly-generated cost map.  Figure 3-3 plots the ISE initial
planning duration as a function of map size and confirms the intuition that a larger map size results in greater plan-
ning time. For each doubling of map dimension (quadrupling the number of IPARMS sets), the planning time
increases roughly by a factor of 10. Computation should, in theory, be O(NlogN) in the size of the search space.
However, this study does not examine increasing the IPARMS resolution but rather increasing the span of the
IPARMS.

On the surface, doubling the span of IPARM S would be appear to quadruple the state space. However, the DPARMS
time dimension is open ended; the DPARMS time dimension grows to contain all the states expanded in the search.
By expanding the size of the map, the distance between the start and goal increases, as does the duration of plans con-
sidered by a search. The size of the DPARMS time dimension is coupled to the distance between the start and goal
position. An increase in the IPARMS dimensions actually increases the DPARMS span proportionally. The extra

multiplicative effect seen in planning computation in Figure 3-3 may be explained by this coupling.

3.4.4 Scaling With Resolution
An ISE user can vary the resolution for DPARMS equivalence classes. Recall that DPARMS equivalence classes

group states that are considered sufficiently similar for resolution equivalence pruning (Section 3.2.2) and state dom-
inance (Section 3.2.3) at each step in the search. They also define the resolution at which goal states can be specified,
and the accuracy with which planning can match start state DPARM S parameters to actual initial conditions.

Tests in this study varied the resolution of the time variable DPARMS for various map sizes. As with the map size
study, each combination of map size and resolution was tested 20 times, using 20 independently, randomly-generated
cost maps. Figure 3-3 shows the performance benefit of decreasing resolution in the DPARMS. Given base time
units, the study examined DPARM S equivalence class resolutions of 30, 60, 120 and 240 units per bin. Each curvein
the plot corresponds to one of the resolutions. Each map size results in a different mean plan duration (the time the
plan requiresto travel from the start to the goal). Therefore, bin size represents a different fraction of the entire time
DPARMS axis depending on the separation between goal and start. The number of 30 unit bins required to span the
mean duration of plans was 27.7 for the 50-by-50 map, 62.8 for the 100-by-100 map, and 85.3 for the 150-by-150
map. The search will tend to populate approximately the number of time DPARMS hins required to span the solu-
tion. Asshown in the plot, by halving the resolution at a given map size, the planning time decreases by a factor of
between 2.4 and 2.7.
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Figure 3-3: Approach 2 (3-D BESTPCOST) Performance for Initial Planning Timevs. Map Sizeand Time
DPARM S Resolution

3.4.5 Scaling with Branching Factor
The number of available transition arcs from each IPARMS state is application-specific. This number equates to a

branching factor in the search graph that affects both performance and path cost. For Approach 2 (3-D BESTP-
COST) planning, experiments recorded the time required to solve for a plan under two transition arc models - the
original, eight-neighbor arc set, and a reduced, four-neighbor arc set in which arcs were restricted to horizontal and
vertical motions. In both cases, the start and goal positions were on opposite corners of a square map. Twenty exper-

iments were run for each combination of map size, DPARM S time resolution and branching factor.

In astandard state representation, with afine resolution in the dependent variable, the branching factor determinesthe
exponential rate of state proliferation. A larger branching factor would lead to exponentially more states. Figure 3-4
demonstrates the power of state resolution pruning, with the eight-connected planning shown in solid lines and the
four-connected planning shown in dotted lines. Somewhat counter-intuitively, Figure 3-4 shows that the eight-con-

nected state space requires nearly the same time as the four-connected case. For ISE, branching factor does not sub-
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stantially affect the time complexity of the search, because at each step, state resolution pruning discards states that
are deemed inferior in each DPARMS dtate resolution bin. At each expansion step, the number of states in each
IPARMS set remains roughly constant over the search, regardless of the branching factor. The number of states to
expand depends more on the number of DPARM S equivalence bins are spanned by the search. |1SE preventsthe state
explosion that would have occurred in a standard search, and yet represents dependent state variables at a fine resolu-

tion.
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Figure 3-4: Timefor Four and Eight Connected State Spacesfor Approach 2 (BESTPCOST).

3.4.6 Re-Planning Performance
| SE re-planning was designed to efficiently repair plans in response to changes in arc costs near the start state. A set

of tests compared the time required to plan from scratch versus re-planning in response to changes on an existing cost
map. Cost map updates were restricted to four modifications within 4 x 4 cell windows for various map sizes and
DPARMS resolutions (30, 60, 120 and 240 time units). In each test, planning was first conducted on a base cost map.
The modifications were made to the costs on the original map, and re-planning repaired the initial I1SE graph. The

time required for the re-plan was compared against the time required to plan from scratch on the modified cost map.
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Figure 3-5 compares the time to re-plan in comparison to planning from scratch, in response to cost updates near the
start position. All cases show improvement over planning from scratch, especially at lower resolution. For larger
map sizes, re-planning enables a factor of better than 100 speedup relative to initial planning. For smaller maps,
modifications affect a greater portion of the entire map. The work of re-planning comes closer to replicating the work
of initia planning, explaining the reduced benefits shown in the left side of the figure. Lower resolution in DPARMS
axes reduces the influence of changes in the cost map on other DPARMS equivalence classes, thereby reducing the

work to repair the graph.
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Figure 3-5: Ratio of Re-Plan Timeto I nitial Plan Time for Approach 2 (3-D BESTPCOST). Re-planning
shows oneto two orders of magnitude improvement on speed over initial planning.

3.4.7 Scaling With Solution Approach
Tests compared the time demands for the BESTDPARMS (4-D) mode and BESTPCOST (3-D) modes. Experiments

demonstrate that varying the number of state parameter dimensions strongly affects the time demands of the algo-
rithm. For these experiments, a set of 50 cost maps was generated for each combination of map size (50, 100 and 150
cells per IPARMS dimension) and DPARM S time resolution (60, 120 and 240 time units). First, the experiments ran
Approach 2 on 50 maps to record the planning performance for 3-D search, as well as the durations of the resulting

plan solutions for each cost map. The experiments then ran Approach 1 on the same 50 cost maps, using the

Approach 2 solution plan duration as an upper bound on plan cost!.
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Figure 3-6 compares the time demands of Approach 1 (4-D BESTDPARMYS) and Approach 2 (3-D BESTPCOST) for
these experiments. The dotted lines correspond to Approach 1, and solid lines, to Approach 2. We immediately
observe that the lower dimensionality of Approach 2 yields a sizeable time performance gain - for a given resolution
and map size, Approach 2 is several times faster than Approach 1. This conforms to the notion that adding a dimen-

sion exponentially increases the number of states that a search must expand and represent in the search graph.
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Figure 3-6: Comparison of Approach 1 and Approach 2 Time Performance

3.4.8 Qualitative Comparison of Approaches
Figure 3-7 and Figure 3-8 illustrate the qualitative differences between Approach 1 (BESTDPARMYS) and Approach

2 (BESTPCOST) through plots of path, energy and progress distance. The path plots show the physical routein X-
Y spacetaken by the plan, starting at the start position in the upper right corner, to the goal in the lower left corner. In
line with the description of ISE resource variables in Section 3.1.5, each energy plot shows the profile of minimum
required energy in the battery in order to reach the goal, as afunction of plan step. Progress distance is a measure of

the direct progress made to toward the goal. It is calculated as the Euclidean distance between the start and godl,

1. Admittedly, this may have disadvantaged Approach 1 in terms of minimum energy solution, but provided
away to more evenly compare the two approaches. Section 3.4.8 suggeststhat Approach 1 isableto find
shorter duration solutions than Approach 2 (making this a viable test strategy for performance tests), but
that the shorter duration solutions are typically far inferior in terms of energy.
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minus the Euclidean distance remaining to the goal from the current robot position (for a more detailed definition,
consult Appendix 2). Under this definition, progressis only made when the radius between the robot and the goal is

reduced. The progress plots show progress distance as afunction of plan step.

Figure 3-7 compares the BESTPCOST mode (the left column of plots - Figure 3-7a, b, c¢) to the BESTDPARMS
mode (the right column of plots - Figure 3-7d, e, f). In this experiment, the upper bound on plan duration for the
BESTDPARMS approach was set to the duration of the BESTPCOST solution (5150 time units), as in the perfor-
mance comparison of Section 3.4.7. Thisisthe BESTDPARMS Case A.

Figure 3-7a and d show the paths from both cases. Interestingly, the BESTDPARMS solution is shorter in duration
than the BESTPCOST solution (4864 units) and yet wanders more by taking more steps (272 steps versus 158). The
BESTPCOST solution, because it is penalized at every step for plan length and the better (X, Y) function prioritizes
shorter duration, deviates little from the direct diagonal path between the start and goal (8 additional steps above the
minimum 150). Meanwhile, the BESTDPARMS solution is not penalized for extra steps, as long as the duration falls
below the maximum. The path loiters aimlessly for some duration at the upper right of the plot and deviates from the

direct diagonal for the remainder, all in order to seek low-cost energy states.

The progress distance plotsin Figure 3-7c and f illustrate the tendency of the BESTDPARMS plan to be moreindirect
than the BESTPCOST counterpart. In Figure 3-7c, note that the progress trajectory heads at a steady slope towards
the goal. In contrast, the trgjectory of the BESTDPARMS solution (Figure 3-7f) oscillates at the beginning (corre-
sponding to the period of loiter near the start) and then makes a slow but more direct approach to the goal for the

remainder of the steps.

Despite being penalized for plan length, the BESTPCOST plan does a better job at minimizing energy requirements
over the path. Figure 3-7b and e show the energy profiles for both solutions. In the plots, the curvesrise in anticipa
tion of a future energy cost. The curves rest at zero when energy costs are negative (net battery charging), and
descend when costs are positive (net battery discharge). The BESTPCOST solution results in lower minimum
required battery charge averaged over time (16.3 units versus 25.9 units) and a smaller peak energy requirement (91
versus 99 units). Presumably, this is because energy is treated directly in the objective function of the BESTPCOST
approach, and indirectly through state dominance and resolution pruning in the BESTDPARMS approach.
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Figure 3-7: Qualitative Comparison of Planned Routes and Energy Profiles between BESTPCOST Mode (a
and b) with BESTDPARM S Mode (c and d) with T ,,5x=T gesTPcOST

Figure 3-8 continues the study, with two more examples of BESTDPARMS solutions. In these tests, the BESTD-
PARMS solutions were given more freedom by raising the upper bound on plan duration to 2 times the BESTPCOST
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duration (BESTDPARMS Case B, shown in Figure 3-8a, b, ¢) and 3 times the BESTPCOST duration (BESTD-
PARMS Case C, in Figure 3-8d, e, f). Observefirst that the Case B path in Figure 3-8aloiters over awider areathan
the solution in Case A in Figure 3-7d. The progress plot for Case B in Figure 3-8c confirms this - it oscillates more
than the solution from Case A. This behavior results from the greater upper bound in plan duration - the plan is 440
steps long instead of 272. Interestingly, the extra duration allowed for the Case C path in Figure 3-8d does not appear
to cause path further path growth from the Case B path in Figure 3-8a. The progress plots indicate differently. The
progress plot for Case C (Figure 3-8f) shows an even greater period of oscillation over Case B (Figure 3-8c), even
though the path didn’t change from the shorter plan. The explanation is that the plan traverses the same ground more

than once before moving to the goal. The planner has evidently determined the optimal loiter pattern.

The energy plots further substantiate this claim. Observe that the energy profile for Case B (Figure 3-8b) has aperiod
of relatively low values (shown with a bracket labeled “1”) corresponding to the early part of the oscillatory behavior
in the progress plot below it. This interval is followed by a sequence that completes the oscillatory steps and then
continues to the goal (shown with a bracket labeled “2"). Looking closely at the Case C plot, one observes that these
identical profiles also appear there. Profile 1 repeats four times in the Case C solution, and the last of these is fol-

lowed by Profile 2 which continues to the goal L Apparently, ISE determines the optimal path to the goal (by follow-
ing Profile 2), and the optimal loiter pattern (Profile 1), which it repeats as many times as possible prior to moving to
the goal. The longer the plans are allowed to be, the longer the plans linger near the start state in the optimal loiter
pattern. This strategy yields improvements in time-averaged energy requirements for longer plans - the Case A, B,
and C averages are 25.9, 22.1 and 18.4 units respectively. Note that none of the BESTDPARMS solutions can match
the energy performance of the BESTPCOST solution.

In conclusion, it is important to state that these results are particular to the specific parameters used for the tests.
Tests done on other cost maps and under different DPARMS time resolutions resulted in different behaviors. How-
ever, for this domain, tests do seem to display several patterns. The BESTPCOST approach yields more direct paths
and better time-averaged energy solutions. Interestingly, the direct paths do not typically correspond to the mini-
mum-time path. To meet the time-averaged energy performance of the BESTPCOST solution, a BESTDPARMS
solution seemsto require far greater time to repeatedly follow an optimal loiter pattern that drives the average energy

lower.

1. A portion of Profile 2 also appears at the end of the energy plot for BESTDPARMS Case A, in Figure 3-7b.
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Figure 3-8: Qualitative Comparison of Planned Route, Energy Profile and Progress Distance between
BESTDPARM S Modewith T,,2x=2T gestpcost (@ through ¢) and T,,2=3Tgestpcost (d through f)

Many questions about ISE behavior remain. For instance, what is the effect of atering the better(X,Y) or

dominates(X, Y) functions? How might they be altered in the BESTDPARMS approach to yield better results? What
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if time and energy costs are selected differently, for example with larger contiguous regions of low or high cost? Are

there other objective functions that better achieve desired results? These questions are reserved for future work.
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4. Mission-Directed Path Planning

This chapter describes the challenges posed by mission-directed path planning and introduces the TEM PEST planner,
a central development of the thesis, that meets many of these challenges. The chapter defines several agorithms of
increasing sophistication that enable planning in a domain combining spatial, temporal and resource dimensions, and
shows how the advantageous qualities of ISE are leveraged to achieve efficient performance. Finaly, the chapter
demonstrates TEMPEST in asimulated multi-goal mission. TEMPEST enacts contingency planning to survive over-

night in response to an unanticipated but necessary detour.

4.1 Problem Definition

The principal goa of path planning is to determine a feasible or optimal route between one position and another.
What qualifies as feasible or optimal varies with the specific application problem. Mission-directed path planning
seeks to derive routes for rovers exploring planetary surfaces. In contrast to other planners developed for planetary
surface motion, mission-directed path planning is intended to plan over comparatively larger scales and over longer
durations. Furthermore, where a mgjority of planetary-oriented work focuses on obstacle avoidance, the mission-
directed planning domain seeks a much stronger connection with other important factors in mission planning - time,
resources, operational constraints and mission returns. The following sections examine the central issues in this new

domain.

4.1.1 Terrain Interaction and Obstacle Avoidance
Planetary navigation requires a robot to travel over terrain while avoiding features that impede progress to a goal

position. Terrain features that might pose difficulties for navigation span a continuum of spatial dimension, from
rocks at or below the scale of a vehicle to mountains many orders of magnitude larger. Much of the prior work has
addressed obstacle detection, classification and avoidance for terrain features near the scale of avehicle, called loca

navigation. In contrast, thiswork concentrates on the other end of the scale spectrum - global navigation.
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In the local planning problem, kinematics and dynamics are central in determining whether terrain is trafficable. In
wheeled vehicle configurations, the wheel diameter often strongly influences the size of obstacles the vehicle can
drive over. A vehicle's steering scheme limits the minimum radius of curvature it can follow while driving. In some
cases, dynamics are also important - a vehicle might use its forward momentum to aid in surmounting a steep slope
and a fast-moving vehicle must consider its speed, center of mass and traction with the ground in evaluating the
safety of candidate steering arcs. Since local navigation considers the area near the vehicle, it is often practical to rep-
resent the terrain in at a resolution smaller than the vehicle footprint. At this high resolution, path planning must con-

sider the vehicle size and the radii of turns.

For practical reasons, global navigation de-emphasizes vehicle kinematics and dynamics. Data of the resolution
required by local navigation are rarely globally available, and representing large regions at small scale is computa-
tionally impractical. Absence of high resolution data means that typical kinematic and dynamic effects cannot be
adequately modeled. Global terrain is often represented at a granularity at or above the size of the vehicle. Rocks and
holes at the rover scale might be totally ignored in the global context, and turning arcs might be completely encom-
passed within asingle terrain model cell. Dynamics might affect the traversal of asmall slope, but would not signifi-
cantly impact the ascent of a large dope. Often, global navigation represents the vehicle as a point, and analyzes

global terrain data solely in terms of gross characteristics - elevation, slope, mean obstacle density, etc.

One immediate impact of ignoring kinematics and dynamics is that the state space parameters need not include joint
angles, velocities or accelerations. This makes it computationally tractable to consider other state variables like time

and energy in planning.

Navigation in the large scale demands a new set of considerations. Large scale terrain units include hills, valeys,
mountains, canyons and craters. In the local navigation problem, it is often convenient to classify rocks as obstacles
that cannot be traversed and hence must be avoided at all cost. At the global scale, while a planner might reasonably
classify steep-sided canyons or mountains as intraversible, it cannot rule out navigation over smoothly varying hills
and valleys. Rather than classify entire features as obstacles, the global path planner must consider how avehicleis
affected by gross terrain properties. For example, to determine whether an areais traversable, a planner might evalu-
ate terrain slope, vehicle heading and vehicle mass properties to determine the likelihood of tipover; gross terrain
roughness to determine likely vehicle speed and mechanism wear and tear; and slope, heading, roughness and soil

cohesion to estimate locomotion power. Rather than prevent access to large areas on a map, the mission-directed

approach seeks to provide models of access to as much of the terrain as possible?.

1. A problem that local and global planetary navigation share is that the places most interesting to explore and the
places most challenging to navigate are often the same.
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Large scale terrain affects more than just vehicle locomotion. Large positive terrain features occlude sunlight and
prevent direct line-of-sight visibility to the Earth or orbiting relay spacecraft. Loitering next to alarge hill could sig-
nificantly reduce the duration of a communications pass or inhibit solar battery re-charging, but might keep an over-
heating vehicle sufficiently cool. Going to high elevation might enable arover to view lower surrounding terrain, and
might improve visibility to communications assets. Gross slope of the local terrain influences the angle of antennas
or solar arrays on therover. Driving on one side of aridge might point a solar array towards the sun, affording a vehi-
cle extra hours of driving time. It istheintent of this work to capture these added effects in the navigation planning

process.

4.1.2 Temporal Planning
The planetary exploration domain is dynamic. Planetary motion affects sunlight, shadows, solar flux and visibility to

communications assets like orbiting spacecraft or Earth-based ground stations. Loca environmental parameters
change as a vehicle moves from place to place. A vehicle expends and collects resources at rates that vary as afunc-

tions of the activity and the environment.

To date, path plannersintended for planetary surface exploration have ignored time. Local planetary navigation plan-
ners have had two principal objectives - first, to avoid obstacles that might harm the vehicle; and second, to follow a
minimum distance (or minimum time) path to agoal position. Neither objective forces a consideration of time - rock
obstacles are static, and the minimum-distance path to a goa is determined entirely by the placement of obstaclesin
the local environment. For short-distance traverses, where local terrain parameters remain roughly constant, activity
planning and scheduling software can adequately incorporate time-varying effects into predictions of daylight, shad-

owing and resource profiles.

In contrast, route selection in amission-directed context must consider time. Mission success depends on having ade-
quate resources, whose availability varies with time and position (i.e. route). Mission activities must often satisfy
time-varying geometric constraints or time-based operationa constraints - traverses in advance of these activities
must not prevent them from being met. Depending on terrain conditions, two separate paths of equal distance might
require vastly different amounts of time to follow - traversing flat, smooth terrain with few obstacles might take far
less time than traveling on terrain covered with obstacles that must be either avoided or carefully crossed. In such

cases, one cannot ignore time and adequately address path planning.

Planetary motion defines the gross schedule for daylight, solar flux and opportunities for communications downlinks
to Earth. Exposure to the Earth or the sun is governed by whether line-of-sight visibility exists between the surface
position and the source object. Lighting and communications shadows cast by large terrain features (mentioned in

Section 4.1.1) vary with time. At afixed position, shadow and sunlight schedules vary little day to day, and can be
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captured in a simple model that repeats. Since shadowing is alocalized phenomenon, the schedule of lighting and
shadow will not be repeatable for arover that moves sufficiently far. Line-of-sight visibility to an orbiting communi-
cationsrelay isfurther complicated by the spacecraft’s own motion. Consequently, the ephemerides for orbiting com-
munications spacecraft may change dramatically opportunity to opportunity, even for a stationary vehicle. Therefore,
planning for communications visibility must capture position and time dependencies. Predicting the ephemerides of
the sun, Earth and orbiting relay spacecraft, and to determine whether they are shadowed or visible at specific timesis

critical in selecting routes that provide sufficient energy or enable communications at particular pointsin the path.

A mission-directed path planner must also ensure that paths obey navigational and other operational constraints.
Many of these are time-dependent. A mission might dictate geometric constraints on activities, where the geometry
istime-varying. Asan example, consider stereo vision for autonomous navigation. Stereo vision is strongly affected
by lighting levels. Glinting sunlight on camera lenses and entry of the solar disk into the camerafield of view causes
“phantom obstacles” to be generated in depth maps, or causes the rover to be blinded. To prevent glinting and blind-
ing, locomotion actions might be disallowed when the sun is within a specified angle from the camera boresight.
Assuming the cameras point at or below horizontal, driving would be prevented in certain directions in the morning
and evening, but would be unconstrained during midday. Restricting photographic measurements to times when the
sun is shining on the desired target is a second example of a constraint on time-varying geometry. Operational con-
straints may also be purely temporal. A communications downlink to Earth might be geometrically feasible over a
range of times, but operationally feasible only over a shorter time window allocated to the mission. Low power, low

activity phases like hibernation might only be allowed during nighttime.

A central theme of this work is the modeling and long-distance path planning in the presence of time-dependent

effects, time-varying geometry, and variability of traverse speed as a function of terrain or other effects.

4.1.3 Resource Planning
A centra problem of mission planning is ensuring the availability of resources for activities. A resourceisaquantity

that must be expended to achieve goals, but that isin limited supply. There are different types of resources. Metric
resources are storable quantities, for example time, energy or fuel, that are expended through activities that require
the resource. From aplanning perspective, metric resources can also be more abstract - the finite lifetime of amotor,
or the temperature margin on a thermally-sensitive instrument. Metric resources further subdivide into monotonic
resources and non-monotonic resources. Monotonic resources can only be expended; non-monotonic resources can
also be replenished through collection activities. Metric resources are described by continuous, real-valued variables.
Unit resources describe components that are fully committed during an activity and become uncommitted at the ter-
mination of the activity. These are described by Boolean variables describing either commitment or availability, asin

acameraor amotor. This research addresses metric resources and not unit resources.
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Metric resources are acritical factor in planning paths in the mission context. Without the required energy, a vehicle
cannot perform its primary activities. The route a vehicle follows from place to place has a substantial effect on both
the expense and collection of resources. Contrary to the assumption of many simple path planners, the shortest route
is not necessarily the least costly. Steep, soft, dippery or rocky terrain requires more power than level, firm and flat
terrain. For vehicles that collect resources like solar energy from the environment, the choice of path can dramati-
cally influence the available resource levels. All other parameters being equal, a path in shadow cannot yield the

same energy as a path that is fully exposed to the sun.

A mission-directed planner must, at minimum, guarantee satisfactory resources for desired mission activities, and
may also provide a plan that is optimal in terms of resources. It must consider the balance between resource con-
sumption and collection, and, based upon specified activity models and stated requirements, provide the necessary
resources at all phases of the plan. Another focus of this work isto enable metric resource planning to achieve satis-

factory or optimal energy profilesin the context of planetary mission exploration.

Science &
/7 Exploration
Vehicle Battery
Wear Charge Data
T Return
Thermal < Sunllght Communications
Cycles Bandwidth

Terrain —%» Time

Figure 4-1: Coupling Between Terrain, Time, Resourcesand Mission Return

4.1.4 Coupling of Variables
The effects of terrain, time, resources and mission return are highly interwoven. None can be considered in isolation

from the others. The diagram in Figure 4-1 illustrates some of the common interrelationships in surface mission
operations. Terrain affects the speed of travel and causes vehicle wear. It also causes shadowing of sunlight and
communications. Sunlight provides solar energy for battery charging, and enables imagery for navigation and sci-
ence, but also causes thermal cycling and resulting wear on the vehicle. The mission objectives, science and explora
tion activities, are supported by battery charge and constrained by vehicle wear. Once data has been collected,

communications with Earth enablesits transfer to an operationsteam. Therefore, to achieve the ultimate objective of
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retrieving data from the robot, mission planning must consider avariety of factorsin concert. The challenge for auto-

mated planning research isto provide a method for solving this problem in a computationally practical way.

4.2 TEMPEST

TEMPEST (TEmporal Mission Planner for the Exploration of Shadowed Terrain) is a path planner designed for mis-
sion-directed reasoning. It combines five models that define the relevant features of the mission-directed planning
domain, and uses the Incremental Search Engine (ISE) to search for plans that achieve mission objectives while satis-

fying operational constraints (see Figure 4-2). The following sections describe the TEMPEST models, and explain

how they collectively contribute to the more formally-defined functions required by | SE.
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Figure 4-2: Principal TEM PEST Components

Mission-directed path planning must consider the interactions between several elements:

Planetary environment through which a path must be planned

Robotic vehicle that is operating




MIsSION-DIRECTED PATH PLANNING FOR PLANETARY ROVER EXPLORATION

» Actionsthe vehicle can take that are relevant to the problem
» Physical and operational constraints on the available actions
* Mission objectives

TEMPEST composes five models corresponding the above elements. A World Model captures relevant environmen-
tal phenomenafor the planetary surface; a Rover Model describes relevant components of the vehicle operating in the
planetary environment; an Action Set comprises the activities the vehicle can execute to traverse across terrain, main-
tain resources, and achieve mission objectives, and the effect they have on vehicle state; a Constraint Set imposes
restrictions on the available actions, in terms of the state of the World Model and Rover Model; and finally, a Mission
Soecification describes theinitial state of the vehicle, the immediate goal s of the mission, and the specific actions and

conditions under which the goals can be satisfied.

The models must be tailored to the planning problem to encompass all of the desired rover-environment-mission
interactions. However, as stated earlier, it is not computationally practical to represent the domain at high resolution
when plans are intended to span kilometers and tens of hours. Hence, the models are purposely coarse. They provide
reasonable projections of action outcomes under various environmental conditions, but at a resolution that permits
sufficiently high performance on a rover processor. Each of these models is described in greater detail in Sections
4.2.1 through 4.2.5.

The models are the foundation for defining the | SE state space, the start and goals, transition arcs between states, and
the constraints on them. Section 4.2.6 briefly describes how model information is used to define these ISE domain

components.

4.2.1 World Model
A model of the planetary environment is fundamental in producing plans that avoid hazardous terrain, consider sun-

light exposure and follow the most time and energy efficient routes. The World Model captures the relevant features
of the planet environment in which a vehicle operates. It is one of two basis models for defining the state space, for

computing arc transition costs and for determining the conditions under which constraints are satisfied or violated.

To reflect local conditions defined by the underlying models, the World Modél is set to a particular state, defined by a
position on a planetary surface, time and surface orientation. With each update to the state, the World Model calls on
its underlying components to compute the local conditions. It currently includes, but is not limited to, the following

components:
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Geodetic Reference - All maps in the World Model are referenced to a geodetic reference, areference biaxia ellip-
soid (ellipsoid of rotation) that approximates the shape of the planetary body, from which transformations between
coordinate frames can be defined [7]. The coordinate frames that apply to all maps are:

» Planet Cartesian: aframe whose origin is at the center of the reference ellipsoid, and whose axes are defined by
the following:

- X: inthe plane of the equator of the reference ellipsoid, and in the plane of the prime meridian of the system.
- Z: the axis of symmetry of the ellipsoid, and parallel to the axis of rotation of the planetary body.
- Y = Zx X to make aright-handed frame.

» Geodetic: a system comprising latitude, longitude and atitude. The geodetic system has two variants, based
loosely on the NASA Planetary Data System convention [27], planetocentric and planetographic. In the World
Model, they are defined as follows:

Planetocentric
- Latitude:

- Longitude:

- Altitude:

Planetographic
- Latitude:

- Longitude:

- Altitude:

»  Topocentric: a Cartesian frame whose origin is a point on the planetary surface. Its axes are defined as follows:

- X in the plane tangent to the surface of the reference ellipsoid, in the direction of constant latitude East.
- Z: the reference ellipsoid surface normal.
- Y = Zx X suchthat Y points North along a meridian.

Elevation Map - A map of the operations area encodes elevations, above the reference ellipsoid, in a two-dimen-
sional grid of positions. Spatial resolutions for this data are typically 10-30 meters per pixel, far larger than the vehi-
cle footprint. Though the model alows smaller ratios of map pixel to vehicle size, a high ratio preserves the
assumption that vehicle turning radius isinsignificant with respect to cell size. The elevation map also computes vec-

tors between points on the map.

Slope Map - The World Model derives slope and slope aspect from the elevation map, and encodes each quantity at
the same spatial resolution asin the elevation map. In addition, the slope map computes the transformations between

the topocentric frame and two other frames:

» CGradient: aframe whose origin coincides with the origin of the topocentric frame, and whose axes are defined
by:

- X: inthe plane of the local terrain surface, in the direction of steepest ascent (gradient).
- Z: theterrain surface normal.
- Y = Zx X to make aright-handed frame.
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» Pointing: aframe that describes the orientation of an object on the terrain surface. Its origin coincides with that of
the gradient and topocentric frames, but its axes are defined by:

- X:inthe plane of thelocal terrain surface, at an arbitrary angle from the direction of steepest ascent.
- Z: theterrain surface normal.
- Y = Zx X to make aright-handed frame.

Ephemeris - The ephemeris model predicts the vector of source bodies in the planet Cartesian frame of an observing
body at a particular time. The ephemeris model uses CSPICE, ephemeris generation software that provides relative
position and orientation for al major bodies in the Solar System [1]. In counterpoint to the guiding principle of
coarse modeling, CSPICE is avery accurate tool, accounting for speed-of-light delays and stellar aberration in deter-
mining abody’s apparent location. The ephemeris time standard - barycentric dynamical time - isthe basistime refer-
encein the World Model.

Figure 4-3: Example LOS map for sunlight on natural terrain, in this case a system of canyons exposed to the
sun from the direction of the top of theimage.

Line-of-Sight Maps - Line-of-sight (LOS) maps encode the elevation angle of a source object above the local ground
plane as defined by the slope map (see Figure 4-3 for an example). They also map shadowed locations, where the
source is below the ground plane or occluded by other terrain features. LOS maps currently represent incident sun-
light for the purpose of modeling solar energy, lighting and shadowing. However, they could also represent line-of -

sight to orbiting spacecraft or visibility to fixed points elsewhere on the terrain surface. A ray tracing algorithm
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projects from the source position (e.g. a Solar System body) onto the terrain model. Sequences of LOS maps, at regu-

lar timeintervals, represent time-varying visibility.

Solar Flux - Theincident energy per unit areais modeled by the peak flux (as experienced under perpendicular inci-
dence) multiplied by the sine of the sun elevation angle to capture foreshortening effects. Atmospheric attenuation
must be captured in the peak flux value - the World Model currently assumes no variation in flux with angle from
zenith. We currently ignore all other effects. This model is used principally for the computation of available solar

power, but might also be used to compute the sun’s thermal influence on vehicle components.

4.2.2 Rover Model
The path planner must be able to predict the effects of activities undertaken under different environmental conditions.

The basic unit of the Rover Modél is the rover component model. Components model mission-relevant units or capa-
bilities of the rover, and include parameters relevant to operational constraints on the rover. Each component in the
Rover Model can be activated or de-activated based on the activity being performed. Active components can be set to
a continuous range of activity level, defined by a duty cycle. The Rover Model aggregates components and utilizes

the World Model to predict how activated components affect the rover internal and external state.

Aswith the World Model, the Rover Model must be set to a particular state which in turn defines the behavior of rover
components. In thisthesis, since the emphasis of TEMPEST has been on path planning that enables energy manage-
ment, the Rover Model uses only battery energy state. The Rover Model predicts power load as a summation of the
powers from each activated component, scaled by their duty cycles. However, one could envision modeling other
resources similarly, for example component wear, component thermal state, or available computer memory. Science
data might be anal ogous to energy, and onboard memory the equivalent of abattery - science data collection and com-
munications with Earth would then be the activity equivalents of battery charging and discharging, respectively. The

following are afew examples of rover components that are possible in the Rover Model:

Locomotor - A component that models the speed and power of a vehicle as a function of terrain, and determines
whether or not terrain is traversable. One simplified instantiation of the model is parameterized on vehicle mass,
drivetrain efficiency, and effective coefficient of friction. Other, more sophisticated models might incorporate models

of bulldozing resistance, rolling resistance and slippage.

Battery - A component that models energy storage capacity. A basic model might simply encode minimum and max-
imum bounds on charge. More sophisticated models could incorporate charge and discharge rate limits, transmission

losses, and might model individual cellsin the battery.
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Solar Array - The solar array is a pointed component model. A simple model encodes the array normal vector with
respect to the vehicle frame, the array area, and the solar cell efficiency. More complicated models might incorporate

models of individual cells, the strings of cells, and degradation effects due to dust collection or radiation.

Power L oad Component - A generic component type, the power |oad component describes a fixed power load (pos-
itive) or power source (negative) in the system. The component models steady loads for onboard electronics (positive

loads) or the power coming from a radioisotope thermoelectric generator (RTG - a negative load).

Field Of View Component - A generic pointed component type that models the field of view of sensing devices on
the vehicle. Used in defining geometric constraints, this component might define cameras, sun sensors or communi-

cations antennas, and is not required to specify the component power.

To date, the emphasis of TEMPEST planning has been on path planning that enables energy management. Therefore,
most rover components predict power load as a summation of the powers from each active component, scaled by their
duty cycles. One might envision modeling other resources similarly. Components might also model thermal energy

or component wear as a function of World Model conditions.

4.2.3 Constraint Set
Constraintsin TEMPEST encode the set of world and rover state values under which an action isillegal. They can

represent either physically impossible conditions, or conditions that are undesirable operationally. The Constraint Set
aggregates anumber of individual constraints, each of which can be activated or de-activated for selective application

to different actions.

To test for constraint satisfaction or violation under certain conditions, the Constraint Set sets the World Model and
Rover Model states to the test condition, then checks each activated constraint for a violation. The individual con-
straints access the World Model and Rover Model local state parameter values to compute Boolean constraint viola
tion functions. Because they depend only on current world and rover state, Constraint Set constraints are local as

opposed to global. The following examples give a flavor for the kinds of constraints that are possible:

Position - Actions might either be restricted to or restricted from operating within a particular area on a map. The
position constraint enables a user to specify a set of positions, and whether the positions define a legal or illegal
region. This constraint is useful for defining hazardous regions not otherwise modeled in the World Model, or per-

haps scientifically interesting regions within which a particular set of measurements is useful.
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Maximum Slope - Slopes present a hazard to rover driving. Driving on a steep slope can risk vehicle tipover. Even
if tipover is not an issue, steep slopes may be impossible to climb due to limited traction. In the smplest model, a

user can select amaximum slope that is legal to operate on. This model cals exclusively on the World Model.

Direct Line of Sight - Line-of-sight (LOS) geometry isimportant for anumber of applications, including solar power
collection, communications and remote sensing. A source iswithin LOS of the vehicleif aray from the source to the
vehicle does not intersect the terrain surface. The LOS constraint allows a user to specify a source object in the World
Model with which LOS geometry must be evaluated during search. The constraint can be defined either to succeed or
fail if LOS conditions exist. A user might define a “shadowed” constraint to define the illegal conditions for solar
charging, or a “sunlit” constraint to define illegal conditions for a thermal cooling action. Note that a “shadowed”
constraint does not distinguish between simple terrain occlusion and below-horizon conditions. Similar constraints
could be generated for other sources (e.g. “out of view of Earth”, “in view of Mars Odyssey”, or “out of view of allu-
vial fan X").

Elevation Angle - The elevation angle constraint limits the geometry of a Solar System object with respect to the
local horizontal plane. A user must define the source object, the threshold elevation angle and whether the illegal
range is above or below the threshold elevation. The primary use of the elevation angle constraint isto define the ele-

vation angle threshold for “daytime” or “nighttime” conditions.

Field of View - Sensor geometry can often be defined in terms of a boresight vector and its field of view (FOV), an
angle about the boresight defining its cone of sensitivity. The user defines an FOV constraint by selecting an FOV
component from the Rover Model and a source object from the World Model (for example the sun), and designates
whether the constraint is violated when the object falls within or outside the FOV. One might define the range of sun-
boresight angles for which a sun sensor returns accurate vehicle heading estimates, or the spacecraft-boresight angle

range when communication are possible to an orbiting relay satellite.

Time Bounds- A mission might require or disallow actions to fall within afixed timerange. Thisconstraint permits

actions to be constrained within or outside a time bounds.

Battery Charge - This constraint specifies the legal range of battery state-of-charge. To specify this constraint, a
user associates the constraint with a specific battery model defined in the Rover Model. Hence the range is defined by
the Rover Model. A particularly power-hungry activity might require a high state of charge. Alternatively, stopping

to charge a battery using solar energy might only be justified when the state of charge is below a certain threshold.
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Multiple constraints can be applied to a single action to dictate more complicated constraint conditions. For example,
one could define a“Prevent Sun Blinding” constraint, to specify the conditions under which a camera is blinded by
the sun. It might combine the “Direct Line of Sight” and camera “FOV” constraints, since the FOV constraint by
itself would ignore whether the sun is actually visible or occluded from view. A constraint to identify times near sun-
rise and sunset might combine two sun elevation constraints, for example “ Sun Above the Horizon” and “ Sun Below

10 Degrees Elevation”.

4.2.4 Action Set
The Action Set aggregates the actions that are most relevant to the planning problem. The central theme of path plan-

ning is to plan for motion through an environment - therefore motion actions are required in all domains. Other
action types are optional. I1n domains where resource management is important, the Action Set might include actions
for resource collection (e.g. battery charging) and must represent salient resource consumption activities. If mission
goal-related actions (e.g. science data collection) consume significant time or resources, or if constraints imposed on

them might affect the route or schedule, then they must a so be included.

Table 4-1 lists the data required to define a TEMPEST action. The World Model and Rover Model play a substantial
role in the behavior of the action. Given the target change in state (Line 1), the active rover components (Line 2)
determine the change in other state variables. For instance, if a Drive action targetsachangein X and Y position, the
rover components determine, through speed and power equations, the resulting change in time and battery energy.
Through Line 4, constraints can modify the behavior of the Rover Model by allowing actions in some states and pre-
venting themin others. Line 3isacondition that allows TEMPEST to remove vehicle heading from the search space.
In most cases the optimal rover orientation is either a direct function of the target change in state, or more a function
of local state than of global path state history.

Table 4-1: Data Required to Definea TEMPEST Action

1. A target changein state. Mobile actions specify atarget change in position. Stationary actions result in zero
net change in position, and so specify changes in other state parameters.

2. Alist of active Rover Model components and their duty cycles. The components must enable the target state
change, and must uniquely determine the resulting change in all other state parameters.

3. A function 6 = f(s a) that uniquely determines the vehicle orientation as a function of state.

4, A list of active Constraint Set members to be actively enforced.

An important limitation is that TEMPEST only solves for plans that are sequences of fully-ordered actions. This

research has not actively sought a scalable means of representing parallel actions. Currently, parallel actions can be
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approximated by combining the behaviors of each action into a single action model, but representing all possible

action combinations would result in an exponential growth of the action space.

The following examples of TEMPEST actions illustrate how the conditions in Table 4-1are met:

Drive - An action to enable vehicle mobility in aplan. The datarequired to define adrive action are listed in Table 4-
2. The simplest drive actions enable motion to each of the eight neighbors in an eight-connected grid map. Each cell
destination defines a separate action. The vehicle orientation is a direct consequence of the position target - the vehi-
cle must face in the driving direction to achieve the target celll. Vehicle speed is defined by local terrain parameters

and rover parameters.

Table 4-2; Drive Action Data

Data Type Data
State Change Changein position Ax, Ay
Minimum Active Rover Components L ocomotor that specifies vehicle speed v = f(s, a) .and

power p = (s, a)

Heading Function 8 = f(Ax, Ay) such that vehicle faces the target.

Active Constraints Arbitrary (Maximum Slope, Position, etc.)

One or more rover components must yield the change in time and resource state variables for the target position
change. Specifically, the component must specify the vehicle speed and power given the state (e.g. as a function of
local terrain, available solar power and sunlight, vehicle mass, etc.). Fixing the speed is not a substantial limitation of
the model. Current planetary rovers are typically designed to drive at a single speed. Control strategies may com-
mand lower speeds when following sharper turns or when in hazardous terrain. Though neither turning radii nor local
obstacles are explicitly represented at the low resolution of global planning, their long-term effects can be captured in
an average speed model. If a single speed does not adequately model the vehicle’'s motion, one can define multiple

drive actions that have the same position change but utilize locomotor components with different speeds.

Constraints for drive actions are optional. However, it may be useful to constrain driving to below a maximum slope,
to avoid hazardous terrain, or to times and headings that keep the sun disk out of the field of view of the navigation

cameras.

1. Note that for omni-directional vehicles, the drive action must define an explicit function for vehicle ori-
entation.
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Solar Charge - An action to enable stationary solar-powered battery charging. Being a stationary action, the solar
charge action must target a duration or atarget energy. At minimum, the action must call on two rover components -
asolar array to collect energy, and a battery to store incoming energy. The vehicle heading for a solar charge can be
defined to optimize the incoming solar energy over the duration, as a function of terrain slope, absolute time, and the

orientation of the solar array with respect to the rover frame.

Table 4-3: Solar Charge Action Data

Data Type Data
State Change Duration At or Energy Ae
Minimum Active Rover Components Solar Array that specifies solar power p = f(s, a)

Battery to store incoming energy.

Heading Function 8 = f(t, slope, az el) such that vehicle faces the opti-
mal direction for solar power collection.

Active Congtraints Arbitrary (Sun LOS, etc.)

As for drive actions, constraints for solar charge actions are optional, but can be added to limit their use to certain

state conditions (e.g. only when the sun isvisible).

Hibernate - An action to enable stationary operations at low power levels. Thisaction is actually a variation of the
Solar Charge action, but uses different Rover Model components (e.g. low power electronics), has potentially a differ-

ent duration target, and employs a different set of constraints (e.g. Nighttime).

Science Data Collection - An action to model the activity of science data collection within asingle position grid cell.
Since the action remains within a single position cell, Science Data Collection is also a variation on the Solar Charge
action. It uses Rover Model components to approximate the power of various instruments, overhead electronics
power, and perhaps power for limited locomotion about the site. The activated constraints for this action type would
have to match the requirements of the particular measurements being employed. One could envision designing con-

straints to impose lighting conditions, certain geometric conditions, or even thermal conditions at the site.

Via Point - A placeholder action, inserted at a goal position, that has no effect on state, but satisfies the goal of reach-

ing a particular position. The following section explains why this type of action can be useful.

4.2.5 Mission Specification Set
The Mission Specification encodes the basic objectives for the planning run - the starting conditions for the plan and

alist of goalsto be achieved.
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The rover start specification defines the start position and time in World Model coordinates, and the current resource

levels, defined by the Rover Model, that cannot be exceeded by the starting resource levels of any feasible path.

The goal specification is afully-ordered goal sequence, each defining, at minimum, the position of the goal and the
goal action - an action defined in the Action Set that must be executed at the goal position to achieve the goal. Often,
a mission will specify science or exploration activities at specific locations, or resting points for overnight periods.
The previous section described Science Data Collection and Hibernation actions for these times. |n other cases, a
goal will purely be aviapoint en route to some other location. Inthis case, ViaPoint action can be used. Aswith any
action, goal actions can constrain the states over which the actions are legal, viathe Constraint Set. Optionally, goals

can independently specify allowable termination time bounds or minimum resource levels.

World Model
State Space
IPARMS
DPARMS
Rover Model
Arc
Transitions
APARMS
X(s,a)
Action Set B(s,a)
e
Path Cost
Constraint Functions
Set
== h(x)
g(x.y)
Mission
Specification
,j’ w. Start and
o Goals
2\l \ % R, Xq

Figure 4-4: | SE Domain Definition through TEM PEST Models

4.2.6 Incremental Search Engine
The five TEMPEST models collectively define the ISE planning domain - the state space (IPARMS and DPARMYS),

the arc parameters (APARMYS) and arc transition functions, the objective and heuristic functions, the start and goals

and other domain-specific functions (see Figure 4-4). For greater detail on ISE, please refer to Chapter 3.
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The | SE state space derives primarily from the states variables defined by the World Model and Rover Model. At min-
imum, the World Model contributes two position dimensions X and Y, and an absolute time dimension T. The posi-
tion variables X and Y form the ISE IPARMS. The time dimension T is the only required DPARMS parameter.
TEMPEST time units are seconds, but time equivalence class partitions are application-specific and typicaly far

more coarse, for example 10-30 minutes.

The Rover Model contributes metric resource parameters. Resource parameters can either be DPARMS and limited
under local constraints or, in circumstances where the resource value relates directly to path cost, they can be repre-
sented as global constraint parameters within the objective function (see Sections 3.1.3-3.1.5 for more detail). The
resource of choicein thisthesisis rover battery energy; however, TEMPEST could be re-configured to plan for other

resources, like component life, margin on thermal thresholds, or onboard memory.

The TEMPEST Action Set and Constraint Set collectively define arc parameters (APARMS) and arc transition func-
tions B and ®. Actionsin the Action Set define the change in state given an initia or final state. The Constraint Set
determines the conditions under which actions are legal or illegal, enabling the arc transition functions to reject vio-
lating arcs. In general, ISE uses APARMS to store al parameters that influence arc transitions. TEMPEST uses
APARMS exclusively to encode parameters that are expected to change during plan execution, and hence prompt re-

planning. The static parameters are stored in a data structure universally accessible by the state transition functions.

The Mission Specification defines the goal states and actions and the start state for the ISE search. Recall that ISE
plans paths to one or more goal states. Aswill be shown in later sections, TEMPEST assigns multiple, time-distrib-
uted goal states to goals that can be feasibly completed over more than one time equivalence class. During search,
each time-distributed goal stateis treated independently and can be expanded to yield new states. The start state spec-

ification defines the termination conditions for the search - encoded in the I SE function feasible(X) .

The path cost functions h(X) and g(X, Y) depend indirectly on the Mission Specification. The Mission Specification
defines which cost isimportant to the planning problem. In the purest sense of mission-directed planning, as defined
in the Introduction, cost isin terms of the reward earned through achieving mission goals. However, in many circum-
stances other costs based on resource parameters or other variables have direct mission relevance. This thesis does
not address reward-based planning. That said, TEMPEST would not require significant modification to couch all

goals and path costsin terms of reward.

4.3 Algorithm
This section describes how TEMPEST uses ISE to solve for plans. The basic unit of TEMPEST planning is the path

segment (or segment for short) - the interval between a pair of goal positions for which a plan must be solved. For
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each segment, TEMPEST creates a separate instantiation of | SE that is dedicated to solving that sub-problem. Each
| SE instance must be initialized with goal and start information. Once initialized, TEMPEST uses the | SE instances

to generate paths between goals. Sections 4.3.3 and 4.3.3 describe theinitialization and planning algorithms for asin-

glegoal. Sections4.3.4 through 4.3.6 build on this base case to handle multiple goals and goal s with completion time

bounds.

4.3.1 Definitions
Table 4-4 lists anumber of other informal definitions for symbols and functions that appear later in the algorithm list-

ings.,

Table 4-4: Informal Definitions of Symbolsand Functions Used in the TEMPEST Algorithm Description

Item Definition

CREATE_ISE() | A function that yields an instance of I SE planner.

DELETE_ISE(1)| A function that deletes an I SE instance.

Dp The progress distance (see Appendix 2, equations A2-1 - A2-3).

Fp The progress fraction (see Appendix 2, equation A2-4).

G Anindividual mission goal specification. In general, agoal specification is defined by the tuple

Xg Y 'Tg Bty Mg Cg the goal position, the legal time interval for goal completion, the goal

action duration, the goal minimum resource level, and the goal “final” cost. Thetime interval
Ty can be either unspecified (Tg = (o, ©) ) or partially specified (Tg = (—oo,t;) o
i—g = (ti’ 00) )

T A fully-ordered sequence of N goals (G,,..., Gy) where elements are listed in the desired order
of completion, and each goal element G; = x;,y;, T;, 8t;, 1., ¢;

init(l) A function that returns TRUE if the ISE instance | hasjust been initialized, and FALSE other-
wise.

last(I") A function that, for a sequence of goals I, returns the index for the last unplanned goal. If
some number of goals n< N at the end of the sequence still maintain valid plans, last(I") returns
N-n.

next(") A function that, for a sequence of goals I' , returns the index for the next goal to be achieved. If
some number of goals n< N has already been achieved or abandoned, next(I") returnsn+ 1.

p(X,Y) A function that returns the minimum traverse distance between two states X and Y.

R The minimum possible traverse distance to intersect all goal positions (see Appendix 2, equa-

tion A2-1).
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Table 4-4: Informal Definitions of Symbolsand Functions Used in the TEMPEST Algorithm Description

res

Item Definition

S The mission start specification, defined by the tuple x, vy, t, 1 , the position, time and
resource parameter values for the start state.

SET_GOAL(G) | AnISE function that sets the augmented goal state g = x,vy,t,r, ¢ , the goal position, time,
resource level and “final” cost. The state is placed onto the OPEN list with h(g) = c.

T Atimeinterval (t,t;), wheret; isthefirsttimeintheinterval, and t; isthefinal time. Thefunc-
tions open(T) and close(T) yield thetimes t, and t, respectively.

AT, i The resolution of the time state parameter DPARMSS equivalence class.

max

The maximum possible rover speed, used to compute the minimum mission completion time
At » and isafunction of the Rover Model and World Model.

min

The minimum allowable average rover speed. This parameter is used to compute the maximum
allowable mission compl etion time At setting an upper-bound on a plan’s path length and

max’

loiter time. v, , istypically fixed for a given application.

4.3.2 Single-Goal Planning
In TEMPEST single-goal planning problem (Figure 4-5), the basic objectiveis to solve for an optimal plan that trav-

esfromastart Stoagoa G, and executesagoal action beforeterminating. TEMPEST initializes a single segment

planner in afunction INIT_SEGMENT(S, G) . Thealgorithm for INIT_SEGMENT(S, G) appearsin Table 4-5.

Goal

ASG)

Start
S

Figure 4-5: Single-Goal Planning Problem

Before describing single-goal planning, we introduce Figure 4-6, which has six frames depicting TEMPEST single-

goal segment initialization and planning. Each frameisaplot of time (horizontal) versus progress fraction F, (verti-

cal). Theorigin of each plot represents the start state, with atime just before the start time t, , and a distance of zero.
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On the distance axis, the high point represents the Euclidean distance to the goal. The slope of atracein aplot indi-
cates the speed of progress towards the goal. The time axis may span one or more days, as denoted by the light and
shaded regions corresponding to “noon” and “midnight”. The following paragraphs refer to these plot diagrams to
illustrate the TEMPEST algorithm.

Function INIT_SEGMENT(S G) begins at Table 4-5, line L1 by defining the allowable plan start time interval Ts,

whichisexactly AT, induration and centered on the start time. Thisis depicted graphically in Figure 4-6a) by the

short, thick line segment surrounding the start time. Line L2 computes the minimum distance R between the start and
goa. Lines L3 and L4 compute the minimum possible and maximum allowable goal completion times for the seg-
ment. The maximum allowable time accounts for the worst-case traverse duration and the goal action duration, start-
ing from the close of the start time interval. In contrast, the minimum possible time starts at the opening of the start
time interval, but neglects the goal action duration. This allows for the possibility that the goal action is abandoned
during execution. Figure 4-6a) depicts the maximum speed line (more steep) and minimum speed line (less steep)
that define these times - dashed lines that ascend from the limits of the start time interval.

These times are endpoints for two time intervals that are used repeatedly in TEMPEST planning - the reachable time

bounds Treach and the allowable time bounds Taiiow (line L5). The reachable time bound opens at the earliest possi-

ble goal completion time and extends to infinity. It represents physically possible outcomes. The alowable time

bound has an unlimited lower bound, but sets an upper limit on times considered for the search. The goal completion

timeinterval 'T'g is computed as the intersection of the reachable and allowable completion times (lineL6). In Figure

4-6a), the thick, horizontal line segment at the goal distance shows the range of allowable goal completion times.

Note that the goal time interval extends beyond the maximum traverse time to account for the goal action duration.

It isimportant to note that athough a minimum average rover speed is used to limit the range of allowable goal com-
pletion times, TEMPEST does not further limit the average speed of paths. Figure 4-6b) shows the feasible distance/
time space as bounded by two lines - the original line of maximum rover speed, defining the earliest reachable
approach; and a second, new line extending downward from the latest possible goal position arrival time (at the same
speed), defining the latest allowable approach to the goal.

Table 4-5: INIT_SEGMENT(S,G) Algorithm

L1 =

Ts « (ts_ATres/ 2, tg+ ATres/ 2)
L2 R~ p(SG)
L3

tin < open(:I'S) + R/ Vax
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Table 4-5: INIT_SEGMENT(S,G) Algorithm

L4 tmax < OPEN(Tg) + R/v i+ 3t
L5 - -
Treach = (tminv ), Tallow = (-0, tmax)
L6 - - -
Tg « Treach N Tallow
L7 | « CREATE_ISE(), init(l) « TRUE

The final step in initialization is to create the | SE instance for the path search. Once initidization is complete, the
segment is ready for planning. The function PLAN_SINGLE_GOAL (S G), as defined informally in Table 4-6, begins
by defining goals at the goal position but evenly spread over the goal completion time interval, separated by times
equal to the DPARMS time equivalence class resolution AT, . (see lines L10-L13, and Figure 4-6¢, where the dis-
tributed goals are represented as a string of cells spread across the goal completion time interval). The timeinterval
between goals reflects the DPARMS resolution limit in ISE. Recall that during a search, the ISE resolution pruning
mechanism eliminates redundant states according to the objective function and the better (X, Y) function (see Chapter
3.). Ingenerd, two goa states in the same DPARMS class would be found to be redundant at the outset. Therefore,
goals cannot usefully be spaced more closely than the DPARM S equivalence class resolution.

Table4-6: PLAN_SINGLE_GOAL (S,G) Algorithm

L8 if init(l) = TRUE then

L9 i <0

L10 foreachtimet — open(i’g) +IAT, o suchthat t <c|ose('_l'g) do
L 9 XpYgllygCy

L12 I:SET_GOAL(g)

L13 i —i+1

L14 init(l) — FALSE

L15

S XyYg Ts Iy
L16 c*,s*  |:GET_PATH_COST(s)
L1 if c* = NOPATH thenreturn NULL

L18 dsereturn GET_PATH(c*, s*)

Once ISE is supplied with goal states, PLAN_SINGLE_GOAL (S G) makes a single query to ISE using the function
GET_PATH_COST(S) with the start state and start timeinterval (Table 4-6, linesL15-L16). Thisquery calls on either

the BESTPCOST or BESTDPARMS modes to find the optimal path from the start to one of the time-distributed
goas. In Figure 4-6, frames d) through f) depict the search. Initially, the goal states are the only states in the ISE
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OPEN list. They are expanded using al feasible actions (arcs), thereby expanding the search graph. If aplan exists,
the graph eventually intersects the start state. Under the BESTPCOST mode, the first detected feasible path will also
be the optimal. Under BESTDPARMS mode, ISE finds the “best” feasible state that falls below the path cost maxi-
mum. GET_PATH_COST(S) returns the cost of the optimal path c*, along with the initial state s*. If a path was
found, the TEMPEST function GET_PATH(c*, s*) yieldsthe plan. The plan begins at the start state position, at some
time within the start time interval, and arrives at one of the goals in the goal window after completing the goa action
(Figure 4-6f). Note how the DPARMS time class resolution limits the accuracy and precision of the plan - the accu-
racy in terms of the proximity of the plan start time to the actual start time, and the precision in terms of the coarse-

ness of the goal completion times.

4.3.3 Single-Goal Re-Planning
TEMPEST enables two types of re-planning - state update re-planning and model update re-planning. Invariably,

mission execution does not follow plans precisely. Often, unforeseen operational events cause deviations from the
route, schedule or resource guidelines. In response to these deviations, auser calls PLAN_SINGLE_GOAL (S, G) with
the updated state. Since the segment goals are initialized, the function skips the goal setting steps and simply re-que-
ries |SE with the updated initial rover state (L16). | SE extendsits graph to the new state, yielding a new optimal plan.

There is no guarantee that the updated solution is similar to the original. Thisis state update re-planning.

Re-planning must a so occur when changes in the World Model or Rover Model alter arc transitions, either in terms of
state change or arc cost, as encoded through APARMS. Given model updates, TEMPEST reports the APARMS
changes for each affected IPARMS state set to the ISE instance, and then calls PLAN_SINGLE _GOAL(S G). ISE

determines the states affected by the updates in GET_PATH_COST(S) and repairs the nodes in the graph to reflect
the new optimum. ISE, and hence TEMPEST, is efficient because it restricts its computations to the set of nodes
affected by the changes.

Typicaly, new data about the world comes from rover sensors. Under the backwards-chaining search, the rover posi-
tionisat aleaf node of the search graph. Therefore, local changes deriving from rover sensor data affect only the ends
of the graph, and are inexpensive. In contrast, global World Model changes and basic changes to the Rover Model
often affect alarge portion of the search graph, and can lead to far more expensive searches (see Chapter 3. for exper-

imental results).
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Figure 4-6: Single-Goal Planning. a) Goal timeinterval definition; b) Reachable and allowable space; c) Goal
states and start query; d) Progression of search from goal states; €) Completion of search; f) Optimal plan
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4.3.4 Sequential Goal Planning
The TEMPEST sequential goa planning problem involves planning a path from a start state S through a sequence of

goasT = G, ...,Gy (seeFigure4-7). In general, each goal is position-referenced action that must be executed

before moving to the next goal. Each successive pair of goals in the sequence defines a segment. By chaining ISE
searches in series, TEMPEST enables planning through a sequence of goals. TEMPEST creates a separate |SE
instance for each segment. As with ISE search, TEMPEST sequential goal planning happens in backwards chaining
order, from the last segment to first segment.

Sequential goal planning is similar to single goal planning, but differs in some important ways. Principally, the opti-
mal solution for an arbitrary segment is not necessarily part of the optimal solution for the entire goal list. Therefore,
it is incorrect to simply chain locally-optimal segments to form the globally-optimal solution. Instead, TEMPEST
tracks multiple path candidates through all the segments, then solves for the optimal surviving candidate in the first

segment. We describe the process bel ow.

G, Goals G,

Figure 4-7: The Sequential Goal Planning Problem

Aswith single-goal planing, TEMPEST begins by initializing the start and goal time intervals for all segments. This
requires a new function, INIT_SEGMENTS(S I, k) , whose algorithm appears in Table 4-5. Figure 4-8 contains dia-
grams depicting the essential steps of sequential goal segment initialization and planning. Asin Figure 4-6, the hori-
zontal axes represent time. The vertical axes span al the goals, whose vertical separation corresponds to the distance
between them. Each vertical interval between goals represents one of the “segments” of the total path. Aswith sin-
gle-goa planning, the process for segment planning proceeds in backwards-chaining order, from the top right of the

diagram to the bottom | eft.

Rather than initializing a single segment, the new function initializes the range of segments, in reverse order, from
some final segment k, and through an earliest segment defined by next(") . Inthefirst call to the function, next(I")

isequal to 1 and k isgiven avalue of N, the total number of segments. For re-planning, the limits take on different
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values.

Lines L21 through L24 define the minimum and maximum times for the final goal. The minimum distance to the
final goal is now the sum over all minimum segment distances (L22). The minimum possible timeis calculated in the
identical way to single-goal planning. The maximum allowable time now takes into account the sum of goal action
durations. This calculation isdepicted graphically in Figure 4-8a). The line of fastest approach rises steeply from the
opening of the start time interval, while the line of slowest allowable approach ascends more slowly, with pauses for
each goal action. Asbefore, these times define the reachable and allowable time ranges for the goal, whose set inter-

section becomes the final goal time interval.

Table4-7: INIT_SEGMENTS(SI,K) Algorithm

L19 =
Ts « (tg—AT, o/ 2, t,+ AT,/ 2)

L20 for eachgoa i — K, ..., next(I") do

L21 ifi = N then
L22 N-1
R < p(S Gpexy(ry) * z P(G;. G4 1)
j = next(l)
L23

toin < open('_l's) + R/ Vax

L24 N

toax < close(Ts) + R/Vpint > 84

m J

j = next(l")
L25 dse

L26 _
tmin < 0pen(Ti+1) —p(G;, Gj 4 1)/ Vinax

L27 -
tax < €l10se(Ti+1) —p(G;, Gj 4 1)/ Vinax =0t + 1
L28 - -
Treach < (tmi n ), Tallow « (=00, tmax)
L29 - - -
Ti « Treach N Tallow
L30 l; « CREATE_ISE(), init(l;) « TRUE

The earlier segment goal time bounds are computed recursively from later goa time intervals. The first reachable
time is computed by subtracting the minimum traverse time from the opening of the next goal interval (L26). Thelast
allowable timeisfound by subtracting the fastest possible traverse and the duration of the next goa’s action from the
closing of the next goal interval (L27). Aswith the fina goal, an earlier goa time interval is the intersection of the
reachable and allowable time bounds (L29). Figure 4-8b) shows the calculation graphically. From thefinal goal time

interval, the line defining the earliest reachable bounds extends downwards without pause from the opening of the

83



MISSION-DIRECTED PATH PLANNING

final goal time interval, while the boundary defining the latest allowable times descend in stair-step fashion, pausing
for each goal action. The function creates an ISE instance for each segment, and returns upon initializing the first

remaining segment, given by next(I") .

Once the segments are initialized, planning occursin an updated function PLAN_SEQ_GOALS(S I"), defined in Table
4-8, and depicted in the remainder of Figure 4-8. Starting with the last unplanned segment, the function alternates
between defining the ISE goal states and planning the segment. If the last unplanned segment is also the final seg-
ment, the goals are defined asin single-goal planning (L36-L39). Before moving on to earlier segments, the function
proceeds to planning for the current segment. Recall that the locally optimal segment solution is not, in general, part
of the global optimum. To account for this, TEMPEST generates a number of time-distributed plan solutions. Firgt, it
defines a start time interval for the segment, equal to the previous goal timeinterval (for all but the first segment - see
L46), and equal to the overall plan start time interval for the first segment (L48). At regular intervals within the start
timeinterval (the time DPARMS resolution equivalence resolution), PLAN_SEQ GOALS(S ') makesaquery to ISE
with GET_PATH_COST(S) (L49-L52). If the query resultsin a solution, the solution isrecorded. If not, the function

continues with next query. Figure 4-8c) shows the start state queries as discrete intervals over the start of the last seg-

ment. Figure 4-8d) shows how some of these queries result in feasible plan segments, while others do not!. Onceall
the query states are exhausted, the function continues on to the next earliest sesgment. However, if no solutions result

from the queries, then there is no feasible plan for the problem.

To define the goals for earlier segments, the function copies the initial states and path costs from the following seg-
ment’s path solutions (L41-L43). Again, planning proceeds as a series of queries to an |SE planner, and may result
inalist of plan segment solutions. The process repeats for all segments down to the next remaining segment (Figure
4-8e). The effect is to chain segment solutions together to build long, consistent plans one segment at atime. The
earliest segment has only one valid start time interval, and so involves only one ISE query. The resulting solution is

the global optimum for the sequential goal problem, depicted in Figure 4-8f).

4.3.5 Sequential Goal Re-Planning
TEMPEST aso provides re-planning for multi-goal traverses. This contrasts with single-goal re-planning in that

model changes may affect more than one segment, and hence more than one | SE graph. TEMPEST must notify each
affected | SE instance, but need only initiate re-planning from the latest affected segment. Note the analogy to modifi-
cationsin asingle | SE search - updates near the position of the rover tend to affect fewer segments than updates near

the final goal, and hence are far cheaper to re-plan.

1. Notethat some goal states and start states do not produce feasible solutions. Further note that each start state can only have one goal state
(the optimal path is unique, barring ties), but that the optimal paths from severa start states may al arrive at the same goal state.
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goal statesfor previous segment; €) Completion of planning; f) Optimal plan
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An update procedure precedesre-planning. TEMPEST determines which segments are affected by updates that occur
during plan execution. An update to the start state affects only the first remaining segment. Updates to models may
affect one or more segments. Successfully completing a goa or abandoning a goal removes the corresponding seg-
ment from consideration in future planning. All segments affected by updates and all segments preceding the
affected segments must be re-planned. The reason is that in a backwards search order, the solutions for earlier seg-
ments are based on solutions for later segments. Modificationsto arc costsin alater ssgment in genera alter the solu-
tions for that segment, and hence the goals for the previous segment. So, a change in alater segment invalidates all
earlier goal states. Once TEMPEST determines which segments are affected by updates, it deletes all but the last
affected ISE instances, and calls INIT_SEGMENTS(S T, k) , where k is the index of the second-to-last affected seg-
ment, or last(l")—1. Once the segments are re-initialized, a call to PLAN_SEQ GOALS(S I') initiates re-planning.
Each ISE instance repairs its search graph and yields plans, if feasible, for queries over the newly-defined start time

intervals. Theresulting plan, if any, is the optimum considering the new data.

Table4-8: PLAN_SEQ_GOALS(ST) Algorithm

L3l for each segment i — last('), ..., next(I") do

L32 S* < NULL

L33 if init(l;) = TRUE then

L34 ifi = N then

L35 j <0

L36 foreachtime t « Open('}N) +JAT, o suchthat t < Close('_I'N) do
L37 g« X\ Yn LTy Cy

L38 I:SET_GOAL(9)

L39 jeoj+l

L40 ese

L41 foreach c*,s* OS, *, withs* = X% y* t* r*
L42 g X*,yE 0 cr

L43 I;:SET_GOAL(g)

L44 init(1;) — FALSE

L45 if i >next(I") then

L46 fhfi_l,xhxi,yhyi,rhri

L47 else

L48

TeTs, XX, Y e Yg, [ < Tg
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Table4-8: PLAN_SEQ_GOALS(SI") Algorithm

L49 for each time interval Teub « (Open('_l') +]AT og open('}) +(j + 1)AT, ¢g) suchthat cl Ose(i‘“b) =cl ose('})
L50 S XV, %sub, r

L51 c*,s* «— |;:GET_PATH_COST(s)

L52 if c* #NOPATH then §* 0 c*,s*

L53 if §* = NULL return NULL

L54 return GET_PATH(c*, s*)

4.3.6 Time-Bounded Sequential Goal Planning
Often, legal goal completion is restricted to within fixed temporal bounds. For example, a communications opportu-

nity may only be possible within a specific time range, or a scientific measurement might only be valuable during cer-
tain times of day. One approach to planning in these situations is to add constraints to the Constraint Set that define
legal time ranges, associate those constraints with the goal actions, and perform sequential goal planning as described
in the previous sections. Time constraints on goals can often drastically reduce the reachable state space. Forcing the
| SE search to discover the reachabl e states both upstream and downstream of atime-limited goal is awasteful activity

in light of a priori knowledge.

Instead, the INIT_SEGMENTS(S T, k) function can be modified to quickly propagate the effect of goal time con-
straints to earlier and later goals, thereby eliminating unreachable ranges of the goa time intervals that cannot con-
tribute to feasible plans. This new function, INIT_TB_SEGMENTS(S, I, k) , can substantially improve performancein
finding the same optimal solutions as would be found using the earlier initialization algorithm. It is detailed in Table

4-9. A diagram of the new initialization procedure appearsin Figure 4-9.

Figure 4-9a shows the same problem layout asin Figure 4-8a, but with the addition of goal time boundsfor goal 2 and
N-1, specified by the Mission Specification, that restrict the legal range of goal completion times. These goal bounds
influence the initialization procedure in the following ways: they potentialy further limit the closing time of later
god time intervals; they potentially further limit the closing times of earlier goa time intervals, and they directly

limit the time interval for their associated goal .

Aswith INIT_SEGMENTS(S T, k) , the new initialization projects the reachabl e time range for the final goal using the
maximum possible speed and shortest distance (L58, L59 and L72). It also projects an allowable time range for the
final goal (t,,,.,) using the minimum allowable speed, the same distance, and the durations of goal actions (L 65).
Figure 4-8aillustrates the result of these computations. However, the alowable time range may be further limited by

the latest upstream mission-imposed goal time bounds. Consider that if an upstream goal is forced to finish earlier
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than would be limited by unbounded sequential goal planning aone, it could also limit how late downstream goals
can be completed, under the minimum allowable speed restriction. It is pointless to plan for goal completion times
that can only be reached by slower-than-allowable speeds. Therefore, the algorithm must determine which time lim-
itation is more constraining - the latest allowable time from unbounded sequential goal planning, or the propagated

effect of earlier goal time bounds.

Table4-9: INIT_TB_SEGMENTS(S,I",k) Algorithm

L55

L56

L57

L58

L59

L60

L61

L62

L63

L64

L65

L66

L67
L68

L69
L70

L71

L72

L73

L74

Ts o (tg—AT e/ 2, ts+ AT, o/ 2)

foreachgoa i < K, ..., next(I") do

if i = K then
k-1
RepP(SGrexry)* D, PG Gjua)
j = next(l)

toin < open('_l's) + R/ Vax
if i = N then

t

(0]
maxl <

foreachgoa j « N, ..., next(l") do

if cIose('T’Bj) # oo then

N-1 N
- 1
taxt — close(Tsy) +v_» z P(G Ge1) + Z 3t , bresk
m|nm 2 me e
N
traxe < close(Ts) + R/v i + Z ot
m = next(l")

tmax - min(tmaxl' tmax2)

ese
trax — C10S8(Ti+1) —p(G;, G; 4 1) =Bt 4 4
else
toin < open(Treach) —P(Gi, Gj 4 1)/ Vimax
tmax < Cl ose(Ti +1) — P(Gi, G; 4 1)/ Vimax— Ot 1 1
i—reach — (tmin’ )

-}allow — (—°°, tmax)

T, « Treach N Tallow N T
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Table4-9: INIT_TB_SEGMENTS(S,I",k) Algorithm
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Figure 4-8b shows that the time bound for goal N-1 limits the goal interval for goal N. The projection of the slowest
allowable speed for segment N, summed with the goal N action duration, is earlier than the end of the original allow-
abletimeinterval. Any arrival time later than this new time would require an approach to goal N by a slower-than-
allowable speed.

Returning back to Table 4-9, in computing the final goal allowable time interval, the algorithm searches to find the
last time-bounded goal in the goal sequence (L62 and L63). It projects the latest allowable time from the end of that

goal time bounds to the final goal (t from L64), and keeps the minimum of t ., and t_ .., asthetrue closing

max1?
time (L66 and L73). For earlier start intervals, the time bounds propagate from the next latest goal interval just as
with INIT_SEGMENTS(S I, k) (L70 and L71). The only difference is that the overall goal time interval is the inter-

section of three time ranges - the reachable, allowable and goal-limited time bounds.

Figure 4-8c shows the effect of the intersection. In the specific case of goal N-1, the latest allowable time falls later
than the mission-imposed goal time bounds. The intersection removes a large time interval from the allowable
unbounded sequential goal range from consideration. Inthe case of goal 2, the latest allowable timefalls earlier than
the mission-imposed bounds, causing the minimum allowable speed restriction to take precedence. For goal 1, ho
mission-imposed time bounds exist, and so again, the minimum allowable speed restriction takes precedence.
Importantly, if at any time during the initialization agoal timeinterval is computed to be empty, the mission, as spec-

ified, isinfeasible.

The new initialization procedure is all that is required to enable TEMPEST to plan and re-plan for time-bounded
sequential goals. Once segments are initialized, either prior to planning or in response to execution updates,

PLAN_SEQ GOALS(S ') solvesfor the plan that obeys the temporal bounds on goal completion.

4.4 Plans
TEMPEST plans consist of a fully-ordered sequence of state-action pairs, called waypoints, corresponding to the

states and arcs that follow the optimal path from the start state, through all intermediate goals, to one of the desig-
nated final goal states. A plan mt with N waypoints takes the form:

T={w;, Wy, ..., Wy} 4-1
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where each waypoint takes the following form, and is interpreted as follows:

X; = x-coordinate of map cell
y; = y-coordinate of map cell

w, ={x, ¥i t, eil, ...eiJ, a} where t, = arrival ephemeristime 4.2
€/i = minimum allowable level of jth resource

a; = action starting at t;

Each state is an aggregation of the ISE IPARMS, DPARMS and auxiliary resource variables for the application. The

corresponding action isthe action departing from the state.

Asasequence of waypoints, a plan acts as aguide for path execution whose granularity is defined by the resol ution of
the spatial coordinates and the other state variables. Each action in the plan must be initiated as close as possible to
the position and time of the waypoint. Each resource variable specifies the minimum resource level that must remain
in order to satisfy all the goals in the plan, as described in Chapter 3, Section 3.1.5. A deviation from plan position
greater than the spatial resolution of the map, or in timing greater than the time equival ence class resolution may jus-
tify re-planning. Similarly, if any resource falls below the recommended minimum level as dictated by the plan, suc-

cessful re-planning is necessary to ensure mission completion.

4.5 Plan Evaluation

In evaluating TEMPEST planning behaviors, it is useful to introduce some approaches for analyzing plans. Plan
solutions are often difficult to interpret. Even when a planner produces formally correct and optimal plans, it is not
immediately obvious whether plans display a desired behavior, how much of abehavior to attribute to artifacts of rep-
resentation versus to good planning, or how to compare plans stemming from alternate approaches. This section pre-

sents some simple analysis tools that help with this problem.

4.5.1 Distance
Plan distance is an important path planning measure. For many path planners, minimizing feasible path length is the

single objective. Though minimizing path length is not the only objective for TEMPEST, it is still very important. In
many cases, the shortest path is the least costly in terms of resources, mechanical stress and vehiclerisk. Thisthesis
introduces two factors that describe a plan’s increase in path length above the planar Euclidean distance between

goals.
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Figure 4-10: Representation Factor for Regular Four and Eight-Connected Grids

Representation Factor f,: This factor encodes the ratio of the minimum distance possible under the planner’s state

representation (D, ,, ) to the planar Euclidean map distance (D,,,,) such that:

fr = Drep/Dmap 4-3

Representation factor encodes how much a planner’s underlying spatial representation contributes to an extension of
path length beyond the minimum. Representation factor has a minimum value of 1, and a maximum value that
depends on the system of spatial representation. TEMPEST uses a grid-based representation for terrain. Actions
transition between cells in the grid and their eight nearest neighbors, forming an eight-connected graph. The mini-
mum eight-connected plan distance between two points depends on the ratio of their relative grid distance in the x-
coordinate (4x) and the y-coordinate (4y). When the start and goal lie along a common horizontal (Ax/4y=« ), verti-
cal (4x/Ay=0) or principle diagonal axis of the graph (Ax/4y=1 or Ax/Ay=-1), the minimum eight-connected distance
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is equal to the Euclidean map distance between the points (f;, = 1). Since the eight-connected path cannot assume
arbitrary headings, other ratios of Ax-to-Ay produce indirect paths whose path lengths exceed the Euclidean distance
between the points (f;>1). Figure 4-10 plots f, for both four- and eight-connected motion on regular grids given
the relative positioning of the start and goal. The four-connected graph, corresponding to the “Manhattan distance”,

yields aworst-case error of /2 for two points directly on adiagonal. Atworgt, the eight-connected graph contributes

a8.2% increase in path length.

Avoidance Factor f,: Thisfactor encodes the ratio of the plan distance (D,,,,,) to the minimum distance possible

plan

under the planner’s state representation (D, ) such that:

fA = Dplan/Drep 4-4

Avoidance factor captures the amount of extra distance, inserted by a planner, to avoid obstacles and sub-optimal
regions. Its minimum value is one, and its maximum value is unbounded. It isimportant to note that an avoidance
factor of 1 does not mean that the path it describes has not avoided obstacles or areas of high cost. In general, a path

with the minimum representation distance D,,, isnot unique, and has many degrees of freedom with which to avoid

obstacles or high cost areas. Observe in Figure 4-11 that the solid paths are al of minimum length under an eight-

connected grid representation f, = 1, and yet avoid obstacles. The dashed path, however, covers more distance, and

s0 has an avoidance factor greater than one.

Figure 4-11: Obstacle Avoidance with fp=1 (solid) and f5>1 (dashed)

For plans solved under an abjective function that minimizes path length, avoidance factor will be greater than 1 only
if obstacles prevent all paths yielding the minimum representation distance D, between points. For objective func-

tions that minimize some other quantity, like duration or energy expense, an avoidance factor greater than one may

indicate a deviation in path to avoid a costly region.
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452 Time
In temporal planning, where actions are not necessarily mobile, plan duration is a more appropriate measure of plan

length than distance. For mobile actions, the distance factors in Section 4.5.1 also encode the increase in plan dura-
tion due to increased path length. Beyond this, stationary actions inserted into a plan also cause an increase in plan

duration. If the minimum map traverse time and total duration of goal actions are defined respectively as:

N

min map” Vmax 4-5 ATgoal = Z ot; 4-6
i=1

AT

then the minimum required plan duration is given by:

ATreq = ATminfRfA + ATgoal 4-7

Slower driving speed and additional stationary actions inserted into the plan motivate the following additional factor:

Loiter Factor f, : Thisfactor encodes the ratio of the minimum plan duration, considering traverse time and goal

action durations, to the actual plan duration, such that:

fL = ATpIan/ATreq 4-8

Loiter factor expresses the degree to which a plan specifies less-than-maximum driving speed or stationary actions

beyond the goal actions.

4.6 Simulation Results

4.6.1 Re-Planning
We present a sample planning problem to illustrate TEMPEST behaviors. A contour map in Figure 4-12 shows the

elevation profile for synthesized terrain on a mock Martian surface. Mountains form a central pattern of valleys run-
ning in a North-South (up-down) direction, and a rounded crater lies to the northeast. The rover starts in the morning
at the southeast corner of the map (“ Start”), and must traverse to the northwest corner (“Goal 2"). Scientists designate
aViaPoint goal in the valley, “Goal 17, to promote travel through the valley en route to the final destination. Mission
engineers (or an onboard planner-schedul er) require the robot to reach Goal 2 with 100 W-hr of charge left for subse-

guent operations.
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Unfortunately, the elevation map provided to the rover isincorrect. Its preliminary map indicates a clear exit from the
valley system at its northern extreme, between two peaks. The actual terrain involves a far higher and steeper pass,

beyond the locomotion capability of the rover.

In this example, a simple simulation of the mission demonstrates the value of TEMPEST. At each plan step, the sim-
ulated rover plans a path from its current state, then “executes’ the first step of the plan through path integration. At
each new point, the rover “senses’ the local environment, detecting the actual elevation, slope and lighting of all cells

within two pixels. Based on this new data, TEMPEST re-plans a path and the process continues.

Mars Valley Traverse: Routes (X vs.Y)

T
Boal? — Initial Plan
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1000 -

1600 - N

Distance South (m)
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1 1 1
500 1000 1500 2000 2500 3000
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Contour Tnterval: 10 m Start
L

Figure4-12: Initial Plan Route: TEMPEST plansa path from “ Sart” at the southeast of the map, to Goal 1in
thevalley in the center of the map, and then through the saddle point to Goal 2 in the northwest.

Figure 4-12 shows the initial TEMPEST plan route. With the exception of afew minor path deviations, the route fol-
lows a direct path from the start through each of the goals. Subsequent re-plans during “execution” yield similar
routes. The solid red curve in Figure 4-14 shows the timing for the initial plan. The slope of the curve represents the
rover speed toward Goal 2. One observes that it is only slightly slower than the theoretical fastest, straight-line
approach, as shown by the steep dash-dot line. The red solid line in Figure 4-15 shows the reguired battery energy

profile for the initial plan. The plan alows the robot to begin with an empty battery, and only requires increasing
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charge at the end of the plan to meet the Goal 2 requirement. Thisindicatesthat solar energy provides ample energy

for locomotion.

The simulated rover reaches the Goal 1 Via Point and continues without stopping toward Goal 2. The nearest valley
exit, according to its interna elevation map, lies to the northwest directly in line with its next goal. However, as it
approaches the supposed low pass, the robot detects the steep, intraversible pass. Figure 4-13 shows the first substan-
tial re-plan in the sequence, based on this discovery. With no escape to the northwest, TEMPEST selects the least
expensive alternative - a detour through a narrow valley to the northeast (the blue dashed line). This new route is a

significant departure from the original. The extra distance means that the robot cannot reach Goal 2 before sundown.

Mars Valley Traverse: Routes (X vs.¥)
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Figure4-13: First Significant Re-Plan Route: Therobot discover sa much steeper approach to the saddle point
at theend of the valley after visiting Goal 1, prompting a detour through an opening to the valley to the
northeast.

The original plan did not anticipate the extra burden of nightfall on battery reserves. However, TEMPEST determines
aprolonged Charge action followed by overnight Hibernation will enable it to reach Goal 2 by late morning the fol-
lowing day. Figure 4-14 shows the rate of travel towards Goal 2 for the detour as a dashed blue line. Note that the

robot must first reverse course, and then remains stationary for nearly 18 hours, first in sunlight (charging batteries),
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then overnight (hibernating, in the shaded region). The following morning, the rover continues its course around the

mountain, then moves to Goal 2.

Mars Valley Traverse: Distance Toward Goal
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Figure 4-14: Progress Distance vs. Time: Theinitial plan (shown in red) followsavery direct path (compareto
the straight-line maximum speed curve). There-plan detour (shown in blue) requirestherover to endurea
night in hibernation, as shown by the flat region indicating no forward progress. I1nthe morning of the
following day, the rover resumesits courseto Goal 2.

Figure 4-15 shows the required battery energy profile over the same time span, also with a blue dashed line. Note that
the re-plan still enables the robot to start from an empty battery. However, well in advance of nightfal, the plan
requires a steady increase in battery charge to generate reserves for the night. The battery energy requirement falls

overnight - the morning sun is sufficient to charge the battery to the required Goal 2 level.
Standard path planners like A* or D* do not adequately address the problem presented in this example. While A*

can efficiently find a path to avoid terrain obstacles, and D* is able to re-plan efficiently to avoid unexpectedly diffi-

cult terrain, neither is able to anticipate the need to charge in advance of nightfall. Depending on the actual initial bat-
tery state-of-charge of the rover, following a plan that ignores energy could have disastrous consequences. The

exampl e can be extrapolated to the consideration of other resources, which might also be critical to data quality, time

efficiency or rover survival.
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Mars Valley Traverse: Required Battery Energy (E vs.T)
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Figure 4-15: Battery Energy Reguirement vs. Time: Theinitial plan enablestherover to start from total
battery dischargeto reach tothe goal chargelevel. Thedetour from there-plan requirestherover to perform

stationary charging to nearly full capacity in anticipation of the nighttime hibernation. Notethe similarity
between there-plan profilein the morning after hibernation and the original plan profile.

4.7 Discussion
This chapter presents an approach to mission-directed path planning that displays elements of the five attributeslisted
in Chapter 1. It displays over-the-horizon foresight by considering large-scale terrain beyond the view of the robot in

planning. It exhibits temporal and resource cognizance through a consideration of time and energy variables in the

state space, and in the enforcement of resource capacity constraints through I SE global constraint planning. It dem-
onstrates an ability to handle some degree of uncertainty by enabling efficient re-planning in response to state and
model updates. And the approach directs its focus to the mission objectives in terms of achieving goals, accommo-

dating goal action requirements and respecting constraints on activities.

The example in simulation highlights how TEMPEST coordinates route, timing and battery energy to achieve multi-
ple goals. Unlike many approaches to temporal planning, TEMPEST approaches the problem as a whole rather than
by a simpler, but sub-optimal, hierarchical breakdown. Incorporating this strategic planning capability into a rover

could provide a significant boost to rover safety, mission time efficiency and reliability. Specificaly, TEMPEST
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enabled a contingency plan that became necessary once the robot detected that its original route was not feasible.
Where arover employing traditional techniques would have had to suspend its operations to wait for further instruc-
tions from human operators, the simulated robot was able to re-specify its route and schedule to achieve the origi-
nally-stated objectives.

The examplesin this thesis all deal with problems combining space, time and energy. Other factors are important to
planetary surface exploration and might be considered under the TEMPEST approach. Rover health, limited by
rough driving, extended exposure to dust, or thermal cycling, could be treated as aresource. One or more rover aux-
iliary health variables could be added to amodel. The state transition function, as derived from the World Model and
Rover Model, could describe the effect of activities on vehicle health. Greater mechanical damage might be sustained

in areas of rough terrain or on steep slopes. Dust might accumulate on solar arrays as a function of time?, and, if rep-
resented as a DPARMS state variable, could adversely affect the collection of solar energy. The transition function
could model the change in temperature of certain components as a function of activity level, sun exposure and mate-
rial properties. Thermal cycles of sufficient size might accumulate in another counter variable. TEMPEST could
plan paths that prevent vehicle health variables from dropping below minimum tolerable lower bounds. Alterna-
tively, one type of vehicle damage cost could be minimized over a path, while meeting constraints on other variables

and mission goals.

Data from science and exploration activities might also be considered aresource. Data transmitted to Earth might be
aresource to maximize. Completion of goal activities could add data to vehicle memory. Limitations in the size of
memory could limit the data stored aboard the rover. Communications activities could downlink data to Earth, at a
maximum data rate, to achieve greater overall reward. Downlink could only happen when in view of Earth or an

orbiting relay spacecraft.

1. However, amonotonic increase in dust is probably inappropriate for Mars. Both Spirit and Opportunity experienced
severa events that removed a substantial layer of dust from their arrays, presumably from Martian “dust devils.”
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5. Sun-Synchronous Navigation

Sun-synchronous navigation is a promising strategy for rover-based planetary exploration in polar environments. [t
entails synchronizing a robot’s route and timing with the maotion of the sun to provide continual solar energy while
maintaining a benign thermal environment. In 2001, the Sun-Synchronous Navigation project built a solar-powered
rover, Hyperion, and software to achieve semi-autonomous sun-synchronous navigation, and tested the combined
system in planetary-relevant polar terrain on Devon Island in the Canadian Arctic. A significant outcome of that
research effort was the first version of TEMPEST, tailored specifically for sun-synchronous route planning. As a
background to the development and testing of TEMPEST, this chapter begins by describing the sun-synchronous nav-
igation strategy and provides an overview of the field experiment, the rover Hyperion, and its software architecture.
Several following sections then describe the planning approach used, and provide experimental results from the Arc-

tic field experiment.

Figure 5-1: Hyperion Rover: Sun-synchronous navigation enabled solar powered travel over kilometers
without the added complication and mass of a gimbal mechanism.
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5.1 The Polar Navigation Problem

The ideafor sun-synchronous navigation emerged from mission design studies in the context of lunar polar explora
tion. The Moon's axis of rotation is oriented just 1.53° from perpendicular to the ecliptic plane, the plane of the
Earth’s orbit about the Sun [23]. Therefore, directly at either of the lunar poles, the maximum sun elevation angle
ever achieved is 1.53°. In the summer months, as on Earth’s poles, the sun remains above the horizon continually,
albeit only above the lunar “arctic circles’ at 88.47° latitude, within just 46 km from the poles. But with such low-
skimming sun angles, terrain features cause extensive shadows, decreasing the effectiveness of solar-powered opera-

tions. Furthermore, without an atmosphere, the thermal contrast between sunlit and shadowed conditions is drastic.

a) A d stant b) w
) = constan
1 1 n e>0

Polar Sub-Polar

Figure5-2: Lunar Sun Elevation Angle Variationsfor Polar and Sub-Polar Positions. At mid-summer at a pole
(a), the sun remains above the horizon at aroughly constant angle. Below the arctic circle, the sun elevation
oscillates between a maximum €elevation (b) above the horizon and a minimum elevation (c) below the horizon.

One might suspect that moving slightly away from the poles would improve sunlight exposure. Figure 5-2 isadia
gram showing sun elevation angles for polar and sub-polar positions. It depicts the Moon's axis of rotation «w and
observing positions with surface normals n, which coincide with the zenith vectors. Directly at alunar pole in sum-
mer, the sun elevation is roughly constant, inscribing a“halo” inthe lunar sky, just above the horizon, whose center is
at zenith (Figure 5-2a). Moving away from the poles to lower latitudes, the zenith vector oscillates around the pole,
nodding towards and away from the sun. The center of the “halo” inscribed by the sun in the lunar sky tilts a corre-
sponding angle from the zenith, causing the sun elevation to oscillate between a minimum val ue at local midnight and
amaximum value at local noon. At the arctic circle, the sun meets the horizon at its lowest point in the sky, and past
the arctic circle towards the equator, the sun dips below the horizon for some portion of each lunar rotation (Figure 5-
2¢). Meanwhile, with increasing distance from the pole, the peak elevation continues to increase (Figure 5-2b). So,
by moving from the pole, sun angles get better and worse from a solar power standpoint - higher mid-day sun angles
mean terrain will cause fewer shadows, but nightfall becomes inevitable. At first glance, it might seem that the only
feasible surface exploration strategy would employ arover with the means of surviving the extreme thermal range of

lunar day and night. Closer analysis showsthisis not the case.
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5.2 Navigation Strategy

An alternate strategy avoids nightfall by circumnavigating the pole. By travelling in a direction opposite lunar rota-
tion, synchronized with the sun, a vehicle could maintain day conditions as in Figure 5-2b for months at atime. The
selected | atitude of travel must balance at |east three competing pressures: to maintain higher solar elevation anglesto
minimize shadowing for solar energy and to keep the rover warm; to prevent the rover from overheating; and to

reduce the circumpolar distance to enable the traverse at reasonable speeds. Surprisingly, the length of the lunar day

and small diameter the Moon result in a required average speed of 0.37 m/s at a constant latitude of 5° 1 Thehigh
available solar energy, unattenuated by an atmosphere, provides ample power for locomotion and other activities.

The combination of long day, low radius and high solar energy is even better on Mercury [77].

The advantages sun-synchronous navigation are significant. Staying in sunlight means a rover can rely entirely on
solar energy - the technical, economic and political challenges of using radioisotope power sources can be prohibi-
tive. Maintaining a consistent solar geometry also simplifies the vehicle design. Solar arrays can be pointed in afixed
direction on the rover, removing the need for complex and heavy gimbal mechanisms. A vehicle can be designed for
a narrower range of operating temperatures, and thermal radiators can be pointed in a direction opposite the sun to
improve radiation efficiency. Consistent light simplifies navigation using optical cameras. Of course, circumnavigat-
ing a polar region of aplanet or moon presents other enormous challenges - among them, vehicle endurance to enable
hundreds or thousands of kilometers of travel, and reliable rover autonomy software to sustain travel during periods

out of view of Earth (for the Moon), or too distant to enable real-time control from Earth (Mercury).

However, a scaled-down version of sun-synchronous navigation improves solar-powered polar exploration over a
regional, rather than global scale. Poleward of the arctic circles of Earth and Mars, arover could follow path circuits
in an area of scientific interest, and synchronize its travel with the sun. During summer months, falling prey to night-
fal is no longer a danger, but the problems of power management and thermal regulation remain. Without the
requirement to circumnavigate the pole, the vehicle endurance issues diminish substantially. Sun-synchronous navi-
gation over aregion simplifies solar geometry, enabling a simpler rover design, and provides access to areas that can

be circumnavigated with cyclic paths.

A key challenge in enabling access to regions of terrain isto ensure that paths are repeatable. Under solar power with
re-chargeable batteries, a sun-synchronous route must charge the batteries to at least the minimum required level to
execute the next day’s route. Ideally, a rover would follow a circular route, and point its solar array continually
toward the sun (see Figure 5-3). In the diagram, the array pointsradially outward to avoid shadows cast by centrally-
located features. As the Earth rotates, the vehicle orientation rotates a corresponding amount by following the path

1. Of coursethis speed ignores the increase in path length required to avoid the massive terrain obstacles known to be
prevalent near the lunar poles.
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arc. Aslong as the charge rate from solar power equals or exceeds the power consumed through driving and other

operations, the batteries will remain sufficiently charged.
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Figure 5-3: Idealized Sun-Synchronous Navigation

Thisidealized model is flawed in several ways. First, it isundesirable to force the vehicle to remain in motion - sci-
entific measurements often entail extended contact with rocks or soil, or require avery stable platform. Second, vehi-
cle power loads may outweigh available solar power, forcing periodic periods of stationary battery charging, with
corresponding reduction in circuit path length. Third, medium and large-scale terrain will significantly divert arover

from acircular path.

These added complications make planning sun-synchronous routes a difficult task for humans. The objective of an
automated sun-synchronous navigation planner is to take these complications into account, and still produce plans

that can be repeated over much of a summer season.

5.3 Field Experiment

The Sun-Synchronous Navigation project explored a range of issues surrounding the regional variant of the sun-syn-
chronous strategy described above, from robot mechanical and power system design to automated planning and exe-
cution software. Of greatest importance, the project sought to perform tests with a real robot executing sun-

synchronous paths in a planetary-relevant polar environment on Earth.
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Automated path planning was a central research topic of the project. Research into path planning for planetary explo-
ration had to date focused on local navigation. Sun-synchronous navigation was by definition concerned with global
issues as well as issues distinctly outside the realm of obstacle avoidance - terrain features that cast shadows and

interrupt travel, the temporal effects of planetary rotation and maintaining sun synchrony, and energy management.

The field expedition conducted component and system-level tests on Devon Island in July of 2001. It culminated in
two 24-hour, multi-kilometer long experiments designed to prove the concept of sun-synchronous navigation. In
both experiments, the objective was to operate over long distances under solar power, with minimal human interven-
tion, and to return to the start position 24 hours later with equal or higher battery state-of-charge than at the begin-
ning. As the ambition was to prove a navigation strategy, no science or exploration activities were pursued by the

rover.

The results for both experiments are described later in this chapter. Before detailing the approach for planning or the
experimental results, the next sections briefly describe the operational environment on Devon Island, the Hyperion

robot, and the software architecture used in the tests.

5.3.1 Devon Island

Devon Island is extremely well-suited to testing sun-synchrony. Thetest site was at approximately 90° W longitude
and 75° North latitude - above the Arctic Circle and hence appropriate for regiona sun-synchrony. In the summer
months, much of the terrain is uncovered by snow or ice, exposing terrain texture that is essential for local navigation
using stereo vision. Also, it islargely devoid of plant life that would also otherwise complicate automated obstacle
detection algorithms not designed for seeing brush, grass or trees. Though much of the terrain is smooth, there are

significant small and large scal e terrain obstacles to prohibit the ideal, circular sun-synchronous path. The Arctic sun

provides about 850 W/m? of power, sufficient power for locomotion, and yet little enough to provide a challenge for

solar-powered rover designers.

5.3.2 Hyperion Rover
Hyperion was designed and built under the Sun-Synchronous Navigation project. The rover is approximately 2.4

meters long and 2.0 meters wide [78], on the scale of the rover proposed for the Mars Science Laboratory mission

dlated for 2009. In its configuration in the Arctic, its mass was 156 kg, 18 kg lighter than the NASA Mars Explora

tion Roversl. Itis solar-powered, and employs a 3.5 m? solar array of roughly 10% overall efficiency, and lead acid
batteries that provide roughly two hours of locomotion power without recharging. For sensing, Hyperion made use of

a stereo camera pair mounted on the front mast, and made minimal use of a scanning laser designed to provide an

1. Hyperion carried no science instruments, little communications el ectronics, no thermal control and no mechanical
hardware to enable it to stow into a small volume and deploy for operations.
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extralayer of security against obstacle collisions. For this project, stereo camera-based local obstacle detection soft-

ware enabled the rover to drive at a maximum speed of 30 cm/s, or 1080 m/hr.

Hyperion's solar array is fixed in orientation, pointing to the left side at an elevation angle of 22° to optimize solar
incidence over the day. Fixing the solar array orientation greatly simplified the rover mechanical design. Enabling a
large solar panel to rotate but keeping it stiff under driving and wind-induced loads requires a very substantial gimbal
mechanism. Also, the rover design using a gimballed array must keep the panel’s swept volume clear of protruding
components. Interestingly, though, the fixed solar array places a much heavier burden on automated planning -

energy collection becomes highly coupled to driving direction.

5.3.3 Software Architecture
One of the objectives of the rover design was to develop software that would enable a high degree of autonomy.

Given the rapid pace of development for Hyperion, it was recognized early that the system was not likely to be fully
autonomous in the first year. It was also understood that low and high-level testing benefits from an architecture that
permits an operator to select the degree of control autonomy based on the task at hand. Hyperion's software architec-
ture was designed to provide “sliding autonomy”, from manual control of individual motors on one end of a spec-

trum, to fully autonomous operations on the other.

This chapter is mostly concerned with high level autonomy, in relation to TEMPEST and autonomous navigation in
general. Autonomy was somewhat limited in Hyperion’s first field season. Figure 5-4 shows a diagram of the soft-

ware modules relevant to thisfirst year’s operations
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Mission Planner (MP)
(TEMPEST)

Local Navigator }
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A 4

[ Operator Interface
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Figure 5-4: Hyperion Autonomy Software M odules
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TEMPEST was Hyperion's off-board Mission Planner (MP). This early version of TEMPEST was substantially
slower than the current version, and did not yet incorporate ISE re-planning. Because it could not yet respond to state
or model updates during execution, there was no reason to integrate it into the online software. TEMPEST was run
off-line to produce plans that were used for an entire 24-hour experiment. Despite the off-line distinction, TEMPEST

provided an autonomous capability to the human operators.

An Operator Interface (Ol) utilized a graphical user interface and a direct communications link to send commands
and receive telemetry from the robot. Noticeably absent from the software architecture is an executive process to
control and monitor the progress of plans. Human operators assumed this role via the Ol. Plan Drive target way-

points were sent individually and manually to the rover at the times specified in the plan.

Between periodic manual interventions to send plan actions, Hyperion performed local navigation autonomously.
The Local Navigator module used stereo vision to detect obstacles in its path, and called upon the D* algorithm to
find optimal paths to the waypoints designated in the TEMPEST plans[71]. Loca Navigator goals were goal regions
rather than points. TEMPEST, as a globa planner operating on coarse maps, cannot precisely designate goals.
Therefore, it is inappropriate to treat goals as precise when passed to the Local Navigator. Furthermore, point goals
are likely to be placed in the midst of intraversible terrain, preventing the rover from achieving them. Local Naviga
tor goal regions were rectangular regions whose long axis was perpendicular to vector between the rover and the goal
point, 30 meters wide and 10 meters deep. In practice this led to a behavior in goal seeking that maintained better

solar array sun pointing if local obstacles diverted the rover from its original course.

5.3.4 Planning Problem
The main objective of system-level experiments was to demonstrate 24-hour solar-powered operations over aslarge a

circuit as possible, and to complete the circuit with the same or more battery charge than the at the start. Rather than
fully selecting the route and distance for the sun-synchronous circuits, TEMPEST addressed a sub-problem. Visual
ingpection of the terrain on Devon Island revealed that there were many terrain hazards smaller in scale than could be
represented by the elevation map (25 meters spatial resolution), particularly steep-sided riverbeds. Furthermore,
Hyperion'slocal navigation system was not sufficiently capable of autonomously detecting and avoiding these same
unrepresented hazards. Wisdly, the team elected to perform the system-level experiments by pre-surveying a benign
sequence of via points, using a handheld GPS. Adjacent points were separated by varying distances, but typically by

hundreds of meters.

TEMPEST was responsible for selecting the specific route between the sequential via points, separated by roughly
250 meters on average. More interestingly, because the route was partially selected by humans, the planning prob-

lem became principally one of selecting the route timing to optimize battery energy management.
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5.4 Planning Approach

Sun-synchronous planning was performed using TEMPEST, albeit avery early version. Because of the early stage of
development, many planning details were different than described in Chapter 4. Despite the differences, the termi-
nology and notions presented in Chapter 4 are sufficient to describe a majority of the approach. Table 5-1 summa-

rizesthe TEMPEST parameters used for the field experiment.

Planning closely mimicked the sequential goal planning problem described in Chapter 4, with each pre-designated
via point acting as a Via Point goal (see Chapter 4, Section 4.2.4). TEMPEST used a four-dimensional search space
under the ISE BESTDPARMS mode (see Chapter 3) to find the path requiring the least initial energy, subject to an
upper bound on mission duration. The objective function, used to compute path costs relative to the upper bound,
minimized total plan duration. Given the problem of sun-synchrony, TEMPEST constrained plans to be under 24
hours. Under that upper bound, TEMPEST found the plan with the lowest battery energy. Finally, because the under-
lying objective was to achieve lowest energy paths, the ISE dominance mechanism (see section 3.2.3) was used to

remove energy-dominated states from consideration.

However, TEMPEST deviated significantly from the algorithm and methods described Chapter 4. As mentioned ear-
lier, aprincipal objective of planning for sun-synchrony isto determine the optimal start time. This conflicts with the
method in Chapter 4 in which the start time is presumed to be known. To determine the optimal start time, auser des-
ignated a 24-hour time interval representing the allowable range of start times. Segment initialization followed the
genera approach listed in the INIT_SEGMENTS(S I, k) function of Chapter 4, but with an important distinction.
Rather than projecting the latest allowable time to the final goal, then using the fastest possible speed to set the latest
allowable times for earlier segments, TEMPEST imposed the slowest allowable time on all goals in the sequence.
Referring to Figure 4-8, rather than imposing time interval bounds as shown in frame b), this early version of TEM-
PEST imposed the limits shown by the dashed lines in frame &), a much more conservative approach. However, cou-

pled with the 24-hour start time interval, TEMPEST was till very free to pursue awide range of time profiles.

Table 5-1: Sun-Synchronous Navigation Planning Parameters

Feature Description

World Model Terrain: elevation, slope
Ephemeris: CSPICE
Solar Flux: constant value during daylight

Rover Model Locomation: simple force model (friction, gravity)
Power: Solar array, re-chargeable battery
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Table 5-1: Sun-Synchronous Navigation Planning Parameters

Feature Description
State Space IPARMS:
* X, Y (position) cells; resolution: 25 m
DPARMS:

» t(absolutetime) sec; CSPICE ephemeristime; resolution: 1 sec/ 20 min
» e(battery energy) Joules; resolution: 1 J/ 20,000 J

Action Set Mobile:
» DriveActions: one action for each of eight adjacent map cell neighbors
Stationary:
* ChargeAction: 6: solar optimal; At: 20 minutes

Constraint Set Max. slope, max. battery charge

Mission Specification Set 24-hour start time interval

Start position, energy
Sequential ViaPoint goals (no goal actions)
Final goal energy

Planning Details ISE Mode: BESTDPARMS

Objective function: At

Better: if class(t;) = class(t,) and e; <e,
Dominates: if class(t,) = class(t,) and e, <e,
Re-Planning: none

Special:

»  Path selection heuristics

» Latest allowable time limit imposed on every goal

In planning, rather than using a single query for the first plan segment, TEMPEST performed start queries over the
entire start interval as it would for an intermediate segment. Rather than use the objective function to distinguish
between plan solution over the start window, TEMPEST used a series of heuristics to find the best path. We define
the set of candidate plans derived from repeated start queries over the 24-hour start time interval to be:

I-Icand = {nlv ""T[n} 51

where each plan is defined by waypoints at listed in Chapter 4, Equations 4-1 and 4-2. TEMPEST applied three heu-
ristics to select the optimal plan from the list of candidates:

Get Minimum Initial Energy Plans: Given the definition of energy e at each waypoint, alow initial energy corre-

sponds to the least initial battery charge required to achieve the goal state:

M+, = argmin,(ey) 5.2
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Get Minimum Peak Enerqgy Plans: The peak energy in a plan represents the greatest demand on the battery over the

traverse. Finding the minimum peak energy minimizes the peak demand on battery reserves:
Mn* . = argmin(max(e,)) 5-3

pe

Get Earliest Start Time Plan: Given alist of available start times, in many cases it is operationally sound to select

the first opportunity path, leaving fallback optionsin the event of failure:

M*g, = argmin,(ty) 5-4

Note that not all start times may be feasible, and that there may be one or more ranges of feasible start times. These
are determined automatically by TEMPEST. The heuristics were applied sequentially as a composite selection crite-

rion to produce the optimal solution:

I-I*opt = I_I*st(l_l*pe(rl*ie(rlcand))) 55

In words, the composite criterion first selects on the basis of minimum initial energy requirement. From those paths,
it selects on minimum peak requirement on energy over the path. From those plans remaining, it selects the one that

departs the earliest.

5.5 Experiment 1 Results

Table 5-2 summarizes the results of Experiment 1 mission planning and execution. Experiment 1 wasthe first system
level sun-synchronous navigation trial of the project. The execution of the planned route was highly successful, prov-
ing the feasibility of the strategy. The following subsections analyze the TEMPEST plan generated for the experi-

ment, and provide the results from its successful execution.

5.5.1 Planning
Though the rover was capable of driving at 1080 m/hour, the first experiment was designed with a conservative target

distance. The planned total distance was 5.6 km, to be covered in just under 24 hours, for an average speed of 236 m/

hour, or 22% of the maximum.
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Table 5-2: Summary of Experiment 1 Plan and Execution

Quantity Planned Executed
# of Goals 19 (last goal was also the start position)
Goal Spacing mean/min/max (m) 269/125/ 481
# of Actions 196 (183 Drive/13 Charge)
Representation Factor (fg) 1.0444 -
Avoidance Factor (f,) 1.0479 -
Loiter Factor (f, ) 1.2212 -
Distance (m) 5600 5980
Duration (hh:mm) 23:45 24:.01
% within 10 deg of optimal pointing 325 315

The field team pre-designated 19 Via Point goals to guide Hyperion away from hazardous mid-scale terrain hazards.
The separation between goals was on average 269 meters. Figure 5-5 shows the Via Point goals and the selected
route superimposed on a contour map of the terrain. The route progresses clockwise through the Via Points, starting

just above the bottom right extremity of the circuit.

The Via Point goals were selected to guide the robot away from hazards that might be difficult for the robot to detect.
The positioning of the Via Points indicates how hazardous terrain prevented an ideal circular path. Streambeds ran
along the outside of both diagonal legs of the route, and arocky promontory rose just West of the northwest end of the
route. The pre-designated Via Points steered clear of these terrain hazards, but forced an elongated shape for the path
circuit - a major deviation from the idea circle. Long, straight paths prevent a fixed-orientation solar array from
tracking the sun. The challenge for TEMPEST was to select the route and timing to maintain battery energy despite

inevitable solar array mispointing.

The rover start and final goal position islocated at the point labeled Return To Start at the southeast (bottom right) of
the plot. The plan follows the circuit in a clockwise direction to match the motion of the sun in the sky, for a total

planned distance of 5.6 km.
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Figure5-5: Experiment 1 Route and Elevation Map

Figure 5-6 plots Experiment 1 results versus Universal Coordinated Time (UTC). Given the longitude of the test site,
the local time is computed by subtracting 6 hours from the UTC time. Figure 5-64) is a plot of progress distance,
mimicking the sequential planning diagramsin Figure 4-8. The dashed line to the left of the figureis the line of fast-

est approach, whose slope is Vv, = Dy,/ ATy (see Section 4.5 for definitions). It emerges from the opening of

min
the start time interval, and denotes the earliest reachable portion of the state space. Meanwhile, the dashed line to the

right of the figure isthe line of minimum allowable rover speed. Sincethe goalsfor these experiments were Via Point

actions without duration, the slope of this line represents the lower bound on minimum speed v, , = V. / (FrfafL) -

For both sun-synchronous experi ments, the worst-case time increase factor (frfafl) Was set to 1.265.
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The labeled points indicate the planned arrival time at each goal Via Point, and their cumulative radial distance p

from the start position, through all earlier goals. The solid trace through the goals is the progress distance of the plan
versustime. Oneimmediately seesthat the average speed of the plan, as denoted by the average slope, is slower than
both the fastest possible approach line and the slowest allowable approach line. By multiplying the duration factors
listed in Table 5-2, one computes the overall duration factor to be 1.337, larger than the factor imposed on the slowest
allowable approach line. One also observes that the major component of this increaseis the loiter factor. The Exper-
iment 1 plan included 13 Charge actions. At 20 minutes each, stationary activities account for over 4 hours of the

plan.

Figure 5-6b) displays the Experiment 1 minimum required battery energy predicted by TEMPEST, on the same time
scale. The target end-of-traverse battery charge was set at 194 W-hr (700 kJ). Observe that, with exception to the
final ascent to the goal battery state-of-charge, the plan maintains the required battery energy well below the maxi-
mum battery capacity of 250 W-hr, shown by the upper limit of the error bars. The peaks in the energy curve corre-
spond to conditions following Charge actions, and anticipate the times of greater energy demand in the plan. The
final ascent of the curve at the end of the plan meets the demand placed at the final Via Point goa - to achieve an
energy of 194 W-hr. The prominence of thefinal goal energy requirement relative to the rest of the plan indicates that
it was set too conservatively to enable the route to be repeated on successive days. In theory, the final goal energy

could have been set to the required energy at the start of the plan.

What explains the peaks and troughs of energy demand earlier in the plan? To answer this question, we examine the
time-varying lighting and the solar array sun angles imposed by the plan. The five frames of Figure 5-7 depict snap-
shots of the planned route, the projected lighting on the terrain, and the sun and solar array orientations at various
times for Experiment 1. The varying shading of the background reflects the changing average sun angle of incidence
on the terrain, from just before local noon in Figure 5-7a to roughly one hour before local midnight in Figure 5-7d.
Predicted shadows appear as black regionsin Figure 5-7d. Vectors representing the sun direction and solar array nor-
mal emanate from the rover position in each frame. Note that the solar array normal points 90 degrees to the left of

the driving direction, asit does for Hyperion (see Figure 5-1).
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Figure5-6: Experiment 1 Results: a) Progress Distance; b) Required Minimum Battery Energy
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Figure5-7: The Experiment 1 plan showshow
TEMPEST achieved an optimal energy path
under terrain and solar array constraints

Figure 5-7a shows an early snapshot of the path. Note how the
sun direction is aft of the solar array normal. Meanwhile, in
Figure 5-7c, the sun direction is forward of the solar array nor-
mal. These snapshots reflect TEMPEST's ability to schedule
the path to achieve the best average sun angle, considering the
entire path rather than favoring any path segment. The length
of the northwest leg in these frames, coupled with a limitation
in rover top speed, prevented the plan from achieving an ideal
sun angle at every step. In an optimal compromise, TEMPEST
selects timing that achieves the best average sun angle. It
biases the sun aft at the beginning of the leg (Figure 5-7a), in
anticipation that the sun will overtake the rover near the center
of the leg (Figure 5-7b), and biases the sun ahead of the rover
by roughly the sam angle at the end (Figure 5-7c). A similar
behavior occurs in Figure 5-7d and Figure 5-7e on the return,

southeast leg of the traverse.

Referring back to Figure 5-6, observe that the least energy-
demand occurs between Via Points 5 and 10, or over the time
range from 19:36 to 23:09 UTC. This matches the time period
where the sun was closest to normal to the solar array. Further-
more, observe the demanding range of the plan between Via
Points 12 and 14, from 1:40 to 5:14 UTC. Thistime range cor-
responds to northernmost extent of the route, and some of the
largest aft sun angles, biased to average out the return leg of the
cycle. Furthermore, the timeis approaching local midnight, the

time of least incoming solar energy of the day.

A measure of TEMPEST’s ability to maintain sun exposure on
Hyperion's solar array is shown in the histogram in Figure 5-
8a. The histogram depicts the relative azimuth angle, in the
plane of local horizontal, from the sun to the solar array normal
resulting from the plan for Experiment 1. Zero degreesrelative
azimuth indicates optimal pointing, while negative and positive

values indicate sun-aft and sun-forward conditions, respec-
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tively. The histogram indicates that over 32% of the route was spent within 10 degrees of optimal solar array point-
ing. We attribute the bias in sun angles toward the aft of the rover to the Get Earliest Start Time Path heuristic (see
Section 5.4). Following the application of energy-based heuristics, TEMPEST selects the earliest path opportunity.
For clockwise paths in the northern hemisphere, earlier opportunitieswill bias sun angles aft, as the Earth has not pro-

gressed asfar in its daily rotation.

The second histogram, in Figure 5-8b, depicts the same quantities for the executed Experiment 1. Qualitatively, one
can immediately see the similarities between the profiles, indicating integrity of the execution to the mission plan.
Given how closely the plan was followed during execution, differencesin these profiles are likely due to off-pointing

that occurred during actions taken by the Local Navigator to avoid obstacles[71].

a. Planned Array Sun Angle b. Executed Array Sun Angle
25 T T T T T 25 T T T T T

% of Planned Path Within Range

0 0
180 -120 -60 0 60 120 180 180 -120 -60 0 60 120 180
Degrees Aft Degrees Fwd Degrees Aft Degrees Fwd

Figure5-8: Experiment 1 Planned and Executed Solar Array Sun Angles
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5.5.2 Execution

The Experiment 1 mission execution proceeded smoothly over entire the 24 hour test. Because the nominal rover
speed given to TEMPEST for planning was so conservative (8 cm/s as compared to 30 cm/s), Hyperion typically
completed each Drive action well in advance anticipated by the plan. However, to keep on schedule, human control-
lers refrained from sending the next Drive action target until the start time specified in the plan. Therefore, the
motion of the rover was uniform, but rather alternated between its top speed of 30 cm/s and rest at each of the Drive
action goals. Figure 5-9 shows the Experiment 1 executed progress distance as a function of time, compared to the

plan. With exception for afew delays, the executed rate of progress matched the plan very closely.
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Figure5-9: Experiment 1 Executed Progress Distance: Execution followed the plan very closely

Perhaps the best measure of successisin how successfully the plan enabled battery charge management. Due to high
noise levels in current measurements recorded on Hyperion during the experiments, the battery charge could not be
estimated. However, battery voltage provides an indirect measure of whether the battery is charged or is approaching

discharge. Battery voltage should remain roughly constant over a wide range of charge states, but will begin to drop
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as the battery becomes low on charge. The battery voltages plotted in Figure 5-10 show that the plan maintained the

battery potential near the nominal 24 Volts for the entire 24-hour mission.
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Figure 5-10: Experiment 1 Battery Voltage: Data indicatesthat the batteries did not show signs of extreme
discharge.

Though Experiment 1 proved the feasibility of the sun-synchronous navigation strategy, it did not prove whether the
strategy provided any substantial benefit above more standard navigation approaches. Unintentionally, Experiment 2
provided strong evidence that sun-synchronous navigation, and TEMPEST, were essential in sustaining the rover

over an extended traverse.

5.6 Experiment 2 Results

Table 5-3 summarizes the results for Experiment 2, whose planned route is superimposed on a terrain contour map in
Figure 5-11. In contrast to Experiment 1, the execution of Experiment 2 was fraught with operational difficulties
which caused the rover to fall far behind the schedule specified by the plan. The sharp decline in rover performance

that occurred as aresult of the deviation from the plan schedule clearly showed the sustaining effect of sun-synchro-
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nous navigation, and of TEMPEST planning. The next subsection analyzes the Experiment 2 plan in detail. Thedis-

cussion of the Experiment 2 execution follows in a second subsection.

5.6.1 Planning
A magjority of the southeast portion of the circuit for Experiment 2 followed the route of Experiment 1. However,

new Via Point goals directed the route significantly farther west and north, circumnavigating a rocky outcrop infor-
mally named “Marine Peak” (see the topographic feature to the East of Via Points 9, 10 and 11 in Figure 5-11). The
Via Points were placed at an average distance of 249 meters. Thisroute, at 8.4 km, was substantially more ambitious
given the success of thefirst experiment. To enable a plan thislong, the average drive speed used in planning Exper-

iment 2 was 11 cm/s, or 400 m/hr, only 37% of the maximum speed, but 39% faster than for Experiment 1.

Table 5-3: Summary of Experiment 2 Plan and Execution

Quantity Planned Executed
# of Goals 30 (last goal was also the start position)
Goal Spacing mean/min/max (m) 249/ 71/559
# of Actions 301 (289 Drive/12 Charge)
Representation Factor (fg) 1.0526 -
Avoidance Factor (f,) 1.0730 -
Loiter Factor (f, ) 1.1884 -
Distance (m) 8437 9059
Duration (hh:mm) 25:05 2409

Figure 5-12 plots Experiment 2 results versus Universal Coordinated Time (UTC). Recall that the local time is com-
puted by subtracting 6 hours from the UTC time. Figure 5-12a) is a plot of progress distance. Asin Figure 5-6a, it
shows the dashed lines representing the earliest possible approach and latest allowable approach. The lines originate

at the open and close of the 24-hour start time interval, respectively. Also asin Experiment 1, the worst-case time

increase factor (frfaf ) Was set to 1.265. The actual duration increase factor, computed as the multiplication of f,
fa, and f aslisted in Table 5-3, was 1.342, very similar to the factor from Experiment 1. However, the avoidance

factor from Experiment 2 was noticeably higher, and the loiter factor, noticeably less. Though the specific reason for
greater avoidance is not obvious, the reduction in loiter factor is the result of a lower number of Charge actions in
Experiment 2. Four of twelve Charge actions were designated between Via Points 9 and 13, and account for the

reduction in slope in the curve before the plan halfway point.
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Figure 5-11: Experiment 2 Route and Elevation Map: Theroute startsand ends at the point marked ‘Return
To Start’, and traver sed a nominal distance of 8.4 km, including a circumnavigation around theterrain feature
known informally as Marine Peak at the West end of theroute.

Figure 5-12b) displays the corresponding Experiment 2 minimum required battery energy profile. The Mission Spec-
ification end-of-traverse battery charge was reduced to 139 W-hr (500 kJ). As before, the plan maintains the mini-
mum energy well below the capacity of the battery, with the exception to the rise to the final goal target. Again, the
target energy could have been set far lower (to empty in this case) and still would have allowed sufficient energy in

the battery to repeat the route on following days.
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Figure 5-12: Experiment 2 Resultsvs. Time: @) Progress Distance; b) Minimum Required Battery Energy
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Curiously, the greatest demand on battery energy, according to the Experiment 2 plan, occurs on the northwest leg of
the plan (between Via Points 7 and 8, or 23:58 to 01:39 UTC) in the position where the energy profile was least
demanding for Experiment 1. The least demand on battery energy appears to come between Via Points 15 and 18
(06:27 and 09:25 UTC), also curiously at the place in the route for Experiment 1 that demanded the greatest energy.

5.6.2 Execution

The execution of Experiment 2 was repeatedly interrupted near the beginning by communications loss between the
operations tent sheltering the human controllers and Hyperion. Since each Drive action target was sent manually
over wireless ethernet, communications outages forced the rover to stop moving. Figure 5-13 shows the executed
progress distance for Experiment 2. Note that the execution started roughly an hour late. Despite the conservatismin
the rover speed assumed in the TEMPEST model (11 cm/sfor planning as compared to 30 cm/s maximum speed), the
delays eventually caused the robot to fall way behind schedule.
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Figure 5-13: Experiment 2 Executed Progress Distance: the most substantial delay put Hyperion behind the
plan by several hours, causing significant battery discharge
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Astime passed, the sun became more and more biased towards the front of the vehicle. During periods of good com-
munications, Hyperion's stereo cameras became blinded by sunlight, disabling autonomous local navigation. In an
effort to keep up with the plan at any cost, human operators decided to teleoperate the vehicle using panoramic imag-
ery produced by Hyperion. Unfortunately, the panoramic imagery was a so negatively affected by the sunlight, wors-
ening the already low-resolution images. Finally, teleoperated driving caused the robot to drive into arock that it was
unable to cross. During the struggle to surmount the obstacle, Hyperion’s front axle rotated beyond an angle limit
imposed by software. The recovery from this final fault entailed physically moving Hyperion away from the rock

and re-starting rover software. At 13 hours into the mission, Hyperion was over 3 hours behind schedule.
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Figure 5-14: Experiment 2 Battery Voltages: evidence strongly suggests that falling behind the TEM PEST
schedule, which resulted in poor sun angles, caused the substantial battery dischar ge during the mission.

These successive delays strongly negatively impacted rover power. Each delay caused the sun to be biased to the
rover’s front, or even towards the vehicle's right side (opposite the active side of the solar array). Though operating
energy costs (i.e. driving, electronics, etc.) were fairly uniform over the route, the poor sun angles drastically reduced
incoming energy to offset those costs. The battery state-of-charge could not be estimated due to high current mea-

surement noise. However, the battery voltages plotted in Figure 5-14 provide a clear measure of Hyperion’s declin-

123



SUN-SYNCHRONOUS NAVIGATION

ing battery charge. Unlike in Experiment 1, Experiment 2 voltages dip to below the designed bus voltage of 24 Volts,
indicating a substantial battery discharge. Thisdip correspondsin time to the period of greatest delay.

Interestingly, once Hyperion was rescued through a manual intervention, human operators teleoperated the rover at
full speed to catch up with the original plan. Human operators were repeatedly forced to command Charge actionsto
maintain minimum battery charge. Observe in Figure 5-13 how the progress distance trace re-acquires the plan line
following the most substantial delay. Meanwhile, the battery voltage in Figure 5-14 climbs back to pre-delay levels

in the latter part of the mission.

This is strong evidence that TEMPEST plans enable battery charge management, and that deviation from the plan
resulted in severe battery discharge and other sub-optimal effects like camera sun blinding. It also suggests an insta-
bility in the control of sun-synchronous routes. Asthe rover gets further behind, the collection of solar energy is pro-
gressively more difficult to achieve, and the required speed to catch up to the plan schedule, and hence required
locomotion power, increases. If the robot is required to get back on schedule before completing a full circuit, sched-
ule delays of acertain duration will be unrecoverable. At some point, the power required for driving and survival out-
weighs the incoming solar power, and leads to a continual discharge of batteries. The batteries must sustain the
recovery for its duration, or be fully discharged. Alternatively, if the rover is not required to catch up to the plan
schedule before the completion of the circuit, the recovery speed could be adjusted to enable the system to sustain
itself. Lastly, if shadowing is not expected to interfere with lighting, the vehicle could potentially stop and rotate in

placeto follow the sun in a survival holding pattern, and reacquire the sun-synchronous circuit on the following day.

5.7 Discussion

The sun-synchronous field experiments plainly illustrated the utility of mission-directed path planning. Sun-synchro-
nous planning would have been difficult for humans to do by hand. Large-scale terrain obstacles prevented an ideal-
ized, circular sun-synchronous navigation path. Determining the timing to achieve the optimal sun angle balance on
the irregular path would have entailed extensive trial-and-error, or a hierarchical approach that first selects the route
between Via Point goals and then searches over different schedules on the route solution.  Mission-directed path

planning provided a number of notable benefits for rover operations:

Sophisticated Reasoning: TEMPEST reasoned about how best to time the route, despite the elongated shape of the

traverse. It minimized the overall effect of inevitable solar array mispointing by balancing the lead and lag of the sun
with respect to the solar array at various pointsin the traverse. The plan for Experiment 1 proved highly effective in
maintaining battery energy during the entire traverse. Executing the plan closely maintained the batteries well above
the minimum bus voltage for the entire 24 hours. More interestingly, Experiment 2 illustrated the danger of substan-
tial deviation from the TEMPEST-derived plans. Operational delays allowed the sun to be biased well to the front of
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therover, and caused the batteries to discharge bel ow the nominal bus voltage. Re-acquiring the plan later in the mis-

sion allowed the batteries to re-charge to initial voltages.

Use of Intermediate Via Points: Intermediate Via Point goals enabled human operators to steer the route away from
terrain hazards that were not represented on the low-resolution elevation model. Furthermore, the designation of
intermediate goals is analogous to hierarchical approaches - prior path selection to enable time-optimal tragjectory
planning asin [5][17][58]. However, by selecting points rather than paths, TEMPEST was far more free to consider

the coupling between route, timing and resources in selecting a plan.

Natural Integration with L ocal Navigation: The cooperation and mutual abstraction between TEMPEST and the

Local Navigator was natural. The Local Navigator module reliably avoided rocks while moving toward TEMPEST-
defined waypoints. It had no knowledge of the global path, resource usage, or timing requirements. Meanwhile,
TEMPEST solved for the mission-directed plan to avoid large-scale obstacles and to manage resources, but had no

knowledge of local obstacles below the resolution of the terrain map.

The experiments also highlighted a number of future challenges for TEM PEST.

Brittlenessto Unanticipated Conditions: The software provided no capability for planning under uncertainty, con-

tingency planning, or automated re-planning, and was therefore brittle to unanticipated problems. In Experiment 2, a
planner capable of reasoning under uncertainty might have anticipated the possibility of schedule delays and biased
the plan ahead in timeto avoid crippling sun angles. Re-planning might have compensated for the delays by inserting
Charge actions to replenish the battery, taking more direct routes between Via Point goals, or electing to eliminate Via

Points as necessary to save time to get back on schedule.

Lack of Richnessin Mission Specification: At the time of the experiments, TEMPEST was limited in how mis-

sions could be specified to it. For example, it only allowed goals to be specified in terms of position, and in the case
of thefinal goal, minimum battery energy. Plans must often meet constraints on battery energy for other goals, or fall
within allowable time ranges. Specific activities might also be assigned to goal positions, and might be governed by
geometric or other constraints (e.g. goal must be achieved at least one hour before dark). TEMPEST only modeled a
few operational constraints for actions, (e.g. maximum slope, minimum sun elevation angle). Other restrictions on
line-of-sight to communications relays and enforcing sun-in-camera stayout zones would have been a major benefit

for Hyperion.
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Poor Computational Performance: This preliminary form of TEMPEST required significant computational and

memory resources.  Planning in a four-dimensional state space (X, Y, time, energy), Experiment 1 took 5 hours 48
minutes to plan on a laptop with a 400 MHz Pentium |1 with 128 MB of RAM.

Exclusively Offline Operation: TEMPEST was run exclusively offboard Hyperion and in an offline mode for the
field experiments. Slow planning and lack of re-planning capability removed the incentive to configure TEMPEST

for online operation.

These lessons motivated substantial improvementsin domain richness, re-planning, performance and in online opera-
tions. Follow-on field experiments on Hyperion and a new rover, Zoe, demonstrate how mission-directed path plan-

ning enable far greater navigational autonomy and improve mission planning for rover exploration.

The sun-synchronous navigation planning problem is not yet solved. It would be interesting in future work to
develop planning that could specify a sun-synchronous circuit given only high-level goals like target areas for explo-
ration and total traverse distance. It would also be intriguing to quantify the sensitivity of path cost on schedule
delays, as a way of bounding the delays from which recovery is possible. Finally, this thesis did not examine the
behavior of plans in more desperate situations. For example, would TEMPEST display a “tacking” strategy, asin

sailing, to travel in the direction of the sun?
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6. Robotic Astrobiology

Astrobiology is the branch of biology concerned with the emergence and survival of lifein the universe, the effects of
outer space on living organisms, and the search for extraterrestrial life. Since Earth isthe only known place to harbor
life, a primary activity of astrobiologists is to characterize the extreme habitats on Earth, and to identify the mecha-
nisms used by organisms to survive under conditions that mimic the extremes of other bodiesin the Solar System. A
second focus is to develop enabling technologies for remote life detection so that future missions to the Solar System
will be equipped to find extraterrestrial lifeif it exists. The Lifein the Atacama (LITA) project seeks to develop tech-
nology to enable robotic astrobiology for NASA, and at the same time to conduct useful Earth science in the Atacama
Desert of northern Chile [79].

Inavein of the LITA research program, the TEMPEST planner was further developed to support autonomous, wide-
area scientific investigations. In the Sun-Synchronous Navigation project, TEMPEST demonstrated its capacity to
select routes, coordinate route scheduling, and to manage battery energy, abeit in an off-line mode. The LITA project
motivates amuch higher standard for online operations, richer representations for the planning problem, and planning

in support of science goals.

6.1 Lifein the Atacama

The Atacama is one of the driest places on Earth, and has long been known to support very little life. The LITA
project conducted two field experiments, in 2003 and 2004, involving rover field testing and biological investigation,
and will culminate in 2005 in a multi-week integrated field demonstration. In that final trial, ateam of scientistsin
the United States will direct arobotic search for lifein Chile. To stress robot autonomy, scientists and engineers will
have limited communications bandwidth, and will only be allowed to transmit commands and receive telemetry once
per day. Their mission will be to characterize the presence and distribution of microscopic life over tens of kilome-

ters of travel in an effort to better understand the limitations of life in the Atacama ecosystem.
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6.2 Navigational Autonomy for Science

In sharp contrast with the Sun-Synchronous Navigation project, whose principal aim was navigation, the goal of the
LITA project is to develop a rover and software that enable remote, autonomous scientific investigation. However,
LITA's scientific approach continues to stress long-distance navigational autonomy. It has baselined a strategy to
characterize regional habitats by conducting widely separated detailed surveys and faster periodic surveys along
traverses between detailed survey sites. Scientists will analyze data sets from previous days and, by correlating their
findings with orbital data of the region, will select new targets to test hypotheses on patterns of life. Most days will
be spent traversing a minimum of hundreds of meters and often several kilometers in pursuit of new goals. Naviga-

tional autonomy must reliably transport the rover to target sites for this investigation to be meaningful.

The sun geometry for the Atacama desert favors a solar array that is horizontally mounted on arover. This configura
tion eliminates the coupling between driving direction and incoming solar energy, which makes the planning problem

at once easier and yet less interesting.

The strategy also depends on interl eaving science observations with traversesin asingle day. These phases cannot be
adequately planned independently - resource availability changes throughout the day, as does sun geometry that
might have a bearing on navigation. Navigation plans must incorporate the position, time and resource requirements

of science activities to ensure that objectives are globally feasible.

Finally, the LITA field demonstration will not tolerate planning once per day. As was shown in the Arctic, simple
delays can cause a plan to become infeasible. Rather than forcing the robot to abandon a day’s activities in the event
of a schedule delay or other unforeseen event, re-planning to adjust to updates in state might allow the rover to

accomplish most or all of its goals.

6.3 Atacama Desert

The Atacama Desert contrasts dramatically from the Canadian Arctic of earlier TEMPEST field experiments. At 21°
S latitude, continual sun was replaced by a day/night cycle closer to common experience. Solar radiation was more
intense in the Atacama, however, and provided aflux of roughly 1000 W/m? duri ng the field experimentsin 2003 and

2004. The Atacama s far more dry - streams were completely absent, and compared to the Arctic, cloud cover was

rare’, leading to more reliable solar power for rovers. A common element between the Arctic and the Atacama was
therarity of large-scale plant life. The Atacamais arocky, salty environment that supports life in small pockets. The

result is alandscape whose appearance mimics the surface of Mars, a boon for local navigation designed for extrater-

1. However, surprisingly, humidity levels at the near-coastal sites rose dramatically at night, due to heavy fog banks
originating from the Pacific, which sometimes extended well into the daylight hours.
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restrial use. The Atacama presents a greater challenge to navigation that the Arctic - the terrain is more varied, and
rough terrain is more common. Mid-scale terrain features, too small to be represented in maps deriving from orbital

data, yet too large to be perceived by traditional local sensing, are very common.

The next two sections provide results from TEMPEST tests from the 2003 and 2004 field seasons respectively. The
objectives for each season were different, and developments between the campaigns resulted in an entirely new robot
and vastly updated software for the later season. Therefore, each section introduces the objectives, rover and soft-

ware used in tests prior to presenting results.

6.4 Field Experiment 2003

6.4.1 Objectives
The principal objective with respect to robot autonomy was to enable fully autonomous driving of at least 1 kilome-

ter, in preparation for integrated science experiments in coming years. Where in the Arctic, short manual interven-
tions to send plan actions to the rover were commonplace, the new system had to operate completely without human
involvement. Integrating TEMPEST with an executive and a plan monitor was essential to this performance jump,
but resulted in a far more complex system. Specific to planning, the objective was to characterize TEMPEST and

overall system behavior in terms of plan quality, the reasons behind re-planning, and plan stability.

Figure 6-1: Hyperion in itsLITA Configuration
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6.4.2 Hyperion Rover
As described in Chapter 5, Hyperion is a solar powered robot originally designed for sun-synchronous navigation in

polar latitudes [78]. Operationsin a mid-latitude environment prompted are-design of Hyperion's solar array mount-
ing - the new configuration oriented the array horizontally to best collect energy from the overhead sun. This
removed the coupling between driving direction and incoming solar power, making the energy management problem
far more benign than in the Arctic. That stated, Hyperion’s batteries still provided only two hourswhile driving with-
out the sun'sinput, so it remained critically dependent on its environment. Unfortunately, Hyperion was not capable
of estimating its battery state-of-charge, preventing closed-loop control under TEMPEST. At 160 kg, Hyperion's
mass remained roughly the same as in the Arctic. Since it employed very similar navigation software, Hyperion's top

driving speed remained at 30 cm/second, or 1080 m/hour.

6.4.3 Software Architecture
The Hyperion autonomy software comprised a Health Monitor (HM) in charge of responding to abnormal state con-
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Figure 6-2: LITA 2003 Autonomy Software Ar chitecture

ditions while operating; a Local Navigator that used stereo camera data to locate and avoid hazardous local terrain
while seeking a goal; and TEMPEST which took the sole responsibility of mission planning. A rudimentary mission
executive (ME) coordinated mission-related data passing between these modules, and received and distributed Mis-
sion Specifications from the Operator Interface (Ol). Figure 6-2 illustrates the basic set of inter-module communica

tions relating to mission-level path planning and execution. Designed as a placeholder for future, more sophisticated
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executive modules, the ME adopted a simple, hierarchical state machine architecture. It enacted a collection of moni-
tors to keep track of system state while planning or executing plans: the Plan Request Monitor, Plan Execution Mon-

itor, Drive Monitor, and Charge Monitor.

6.4.4 Sequence of Operations
The mission focus in LITA 2003 was havigation to a single distant goal. Mission Specifications, consisting of the

goal position and required arrival battery energy level were sent viathe Ol. Upon receiving a Mission Specification,
the M E determined the current robot position and time state, and requested a plan beginning at that state and terminat-
ing at the specified goa state. TEMPEST found and returned an optimal plan to the ME. For each action in the plan,

the ME triggered one of two Action Monitors.

The Drive Monitor computed parameters for a 10 meter by 30 meter goal region surrounding the next position way-
point (see Figure 6-3), and sent them to the Local Navigator for execution. Using the goal region as its global goal,
the Local Navigator pursued this region while avoiding obstacles it detected. Once Hyperion was within the region,
the Local Navigator signaled its arrival, terminating the Action Monitor. The Charge Monitor stopped the rover and
waited for the assigned Charge duration before terminating.

Abandoned
© 7 plans

Figure 6-3: Plans and executed paths. TEMPEST plans assigned the location of periodic goal regions. Goal
regions gavethe Local Navigator flexibility in selecting the specific path between waypoints.

During plan execution, at the scheduled arrival time for each plan waypoint, the HM performed a one-time check to
confirm the robot was on time. If the rover was more than a fixed distance from the waypoint at the scheduled arrival

time, the HM notified the ME that the waypoint was “missed”. Receiving this notification, the ME terminated the
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execution of the current plan, and commanded TEMPEST to re-plan from the current rover state to the goal in the

original Mission Specification.

6.4.5 Planning Approach
Table 6-1 summarizes the planning parameters used in the LITA 2003 experiments. Notably, TEMPEST was re-con-

figured from Arctic field experiments to take advantage of the composite objective function approach (see Section
3.1.6 and Approach 2 in Section3.4.2). By representing the battery energy state variable within the objective func-
tion, the energy dimension used in Arctic experiments could be removed from the ISE DPARMS. At each state tran-
sition in the | SE search, a path would incur the corresponding positive or negative energy cost, plus the path length
cost increment, defined as the absolute value of the greatest charge (negative cost) possible over the entire search
space. The result was a dramatic improvement in planning speed that enabled TEMPEST to perform initial planning
repeatedly throughout a day’s experiments, if necessary. Recall, however, that in removing energy from the state
space, |SE was no longer complete - solutions deleted from consideration early in the search on the basis of cost
could not be resurrected if ISE failed to find a feasible solution downstream. In practice, this did not prevent TEM-

PEST from finding solutions.

Perhaps more important than the dimensionality reduction was incorporating | SE state update re-planning into TEM-
PEST. Inthe Arctic, TEMPEST generated a single plan for a 24-hour traverse. |f operational delays prevented stay-
ing on schedule, as occurred in Experiment 2, the robot relied on human teleoperation to recover. A prime ambition
for the LITA project was to obviate the need for periodic teleoperation. Re-planning in response to evolving rover
state created a “safety net” in case of schedule deviations, a likely occurrence during robot experiments.  Another

objective from prior work was to demonstrate a richer representation of rover, actions and constraints.

Table6-1: LITA 2003 Planning Parameters

Feature Description

World Model Terrain: elevation, slope
Ephemeris: CSPICE
Solar Flux: constant value during daylight

Rover Model Locomation: simple force model (friction, gravity)
Power: Solar array, re-chargeable battery
Camera?

State Space IPARMS:

* X, Y (position) cells; resolution: 30 m

DPARMS:

» t(absolutetime) sec; CSPICE ephemeristime; resolution: 1 sec/30 min
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Table 6-1: LITA 2003 Planning Parameters

Feature Description
Action Set Mobile;
» Drive Actions: one action for each of eight adjacent map cell neighbors
Stationary:

» ChargeActions: 6: solar optimal; At: 30 minutes
» Hibernation Actions: low power; 6 : solar optimal; At: 60 minutes

Constraint Set Max. Slope, Daytime, Nighttime, Direct Sun Line-Of-Sight

Mission Specification Set +15 minute start time interval

Start position, energy

Single via point goas (no goal actions)
Final goal energy

Planning Details |SE Mode: BESTPCOST

n
Objective function: composite path length and energy h = nE ., + %" Ag;
i=1
Better: if t, <t,
Dominates: never
Re-Planning: state update

6.5 Results 2003

Over April 17 through 20 and April 24 through 26, TEMPEST generated 27 plans and 83 re-plans. These experiments
indicate qualitatively and quantitatively that TEMPEST planning sought longer than minimum length routes to avoid
costly regions of the state space. Other analysis indicates that TEMPEST produced plans that were mildly unstable
with respect to specific route, but exhibited clear arrival time stability. Most notably, TEMPEST enabled one traverse

of over 1 kilometer, and many traverses of several hundred meters.

6.5.1 Path Length
TEMPEST’s grid representation of position state interferes with the ability to produce shortest-distance paths, as

described in Section 4.5. Recall that for a given ratio of Ax to 4y, the minimum increase in path length above the

Euclidean distance is given by the representation factor f. Figure 6-4 examines the ratio of plan distance to Euclid-

ean map distance for plans generated on April 20 through April 26 of the 2003 experiment to determine whether the
grid representation was dominant in extending path length beyond the minimum. The horizontal axis spans the range
of the absolute value of Ax/Ay, representing an East-West heading on the left, a Northeast-Southwest or Northwest-
Southeast (diagonal) heading at the center, and a North-South heading on the right. The vertical axis spans the range

of the plan distance Dy, divided by the Euclidean or map distance D,,,,, . From Section 4.5, recall that thisratio is

plan

equal to the multiplication of the representation factor f; and the avoidance factor f, . The curve at the bottom of the
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plot shows the representation factor for the range of ratios of Ax and 4y. Therefore, the ratio of the point value to the

curve value beneath it is the avoidance factor f, .
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Figure 6-4: Avoidance Factor and Representation Factor for LITA 2003: The points suggest that avoidance
was often dominant in determining path length.

Observethat all the plansfall barely to the right of center, confirming that routestraveled principally in a North-South
direction, but with a slant from Northwest to Southeast. More interestingly, though several points fall very close to
the minimum curve, most paths are much longer. This indicates a large avoidance factor and suggests that the eight-
connected representation was not the principal contributor to path length extension for most of the plans. For the
paths not near the minimum eight-connected curve, obstacle avoidance, energy cost minimization and constraint sat-

isfaction contributed to path length extension, often significantly.

6.5.2 Large-Scale Terrain Avoidance
TEMPEST demonstrated large-scale hazard avoidance on several occasions. The planning for April 25 suggests sub-

tlety. Figure 6-5a shows the sequence of plans and executed paths for the day. At first glance, the initial northeast
heading taken by the plans is mysterious. Why did the planner force this detour rather than a more direct route to the

goa? The answer appearsto lie in slope avoidance. By plotting the same path over a contour map of the magnitude-
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of-gradient (slope) field (see Figure 6-6b), we observe that the path avoids steeper slopes to its left, and then turns
toward the goal at abreak in this higher slope region.
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Figure 6-5: Plan and re-plan routes from April 25 on an elevation contour map, and a close-up with contours
of constant slope. Theinitial plans seem to have located a break in steeper slopes.

The most interesting, yet greatest failure in terrain avoid-

ance occurred on April 18 (see Figure 6-6). In a plan to

travel to the southern end of the area of operations, TEM- Rover nearly
PEST dictated a traverse near the rim of the large fault rolled down

steep slope hete -
running in a primarily North-South direction to the West \ J

of base camp. According to observers near the robot on

this day, waypoint goals dictated travel down precariously

steep slopes on the West side of the fault ridge. This ‘\6@ ‘L
. X ‘
motion prompted the team to abort autonomous travel at \?@, |
N
this point. Errors in map registration with respect to the ‘f%

terrain were likely responsible for causing the problem. ) )
Figure 6-6: TEMPEST placed Hyperion very closeto

a hazardous slope on April 18. Map registration

6.5.3 Energy Efficiency errorsor position uncertainty may have been to

In contrast to previous planning experiments in the Arctic [70], evaluating the plans from the Atacama field experi-

ment proves to be difficult. For Atacama experiments, Hyperion's solar array was horizontal. This removed the strong
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coupling between the direction of travel and solar power in Hyperion's Arctic configuration, allowing the rover much
more freedom of motion and schedule with little or no penalty. Furthermore, the solar flux in the Atacama was suffi-
ciently high in April, during daylight, to sustain the highest-power operations indefinitely. Shadows only occurred
very near sunset, so only intersected paths when operations were coming to aclose. The planning model s verify this -
TEMPEST executed plans never included Charge or Hibernation actions. Finally, due to an undiscovered software
bug, the telemetry logs did not log TEMPEST plan messages. Alternate records of plans, used to reconstruct plans
from April 20 and later, did not include the battery energy variable of the plans. Unfortunately, this lack of data pre-

vented determining when and where planning predicted energy-rich and energy-poor conditions.

6.5.4 Plan Monitoring and Re-Planning
A primary goal of the field experiment was to test re-planning in the context of rover operations and plan stability. As

mentioned earlier, TEMPEST called upon state update re-planning. The Health Monitor provided simple plan execu-

tion monitoring, and was the sole trigger of re-planning.

April 25, 2003 Average Goal Approach Speed by Waypoint and Plan,Plans2-9
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Figure 6-7: Rover Average Speed vs. Re-Plan Frequency. Operational delays often caused the HM to trigger
re-planning. The solid linesin a) show average rover speed over a Drive action. The dashed linesarethe
average rover speed over the particular plan or re-plan execution. Speeds below the TEM PEST rover model
speed (plans 2, 5, 7) caused re-plan events, shown in b). Blank regionsin plot b) are human-designated
suspensions of operation to enact manual fault recovery.

As position state estimation was quite accurate, the major cause of re-plan requests was deviation of average rover

speed from the rover model, shown in Figure 6-7 for plans executed on April 25. The figure illustrates the connection
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between rover speed and HM re-planning requeﬂsl. Figure 6-7a plots speed as a function of time. The TEMPEST
rover model speed is the constant, thin dashed line. The series of humbered brackets indicates the time spans for the
execution of successive plans and re-plans. The solid traces for each plan show the average rover speed over the exe-
cution of each Drive action. Note that on several occasions, Hyperion stopped for long periods of time (end of plans
4,5, 6, 8). Thesewere not due to Charge actions, but reflect periods where the rover encountered irrecoverable faults
and could not continue executing the plan. The dash-dot traces for each plan show the average rover speed over the
entire plan or re-plan execution. Note that for plans 3 and 9, the average rover speed over a plan exceeds the speed
assumed by the TEMPEST model, and in plans 2, 5, 6, 7 and 8, coinciding with faults that stopped the rover, the
speed is much lower than predicted by the model.

Meanwhile, Figure 6-7b shows the timing of important plan execution events, denoted by vertical lines. The long
solid lines correspond to TEMPEST initial planning runs, and the long dashed lines are re-plan events. The shorter,
thinner lines correspond to when the Mission Executive sent waypointsto the Local Navigator. TEMPEST was man-
ually terminated several times during the day after long operational delays (after plans 3, 4, 6 and 8). However, it is
clear from plans 2, 5 and 7 that re-plans correlate well with periods of slow average driving speeds. The figure also
underlines alogic error in the Health Monitor that overlooked faster-than-expected rover speed for re-planning. In no

case does faster-than-predicted rover speed trigger are-plan (see plans 3 and 9).

6.5.5 Plan Stability
Plan stability is determined by the degree to which plans vary in response to evolving initial rover state during amis-

sion execution. Stable planning yields few changesin route or schedule with minor deviations from the current plan,
and yields predictable changes for greater deviations. Unstable planning results in erratic behavior. A planner that
exhibits stability enables mission operators to better predict the range of possible plan solutions without a exhaustive
check. Whether planning is stable would also influence whether and how a planner might be integrated with other
planners as a component within a greater autonomy software architecture. For example, if re-planstypically entail a
total re-specification of the mission timeline, it might not be computationally practical to plan beyond the first action.

Stable planning might permit alonger projection.

1. Thegapsin dataindicate time spans where autonomy was disabled by human operators to enact manual recovery
actions from software or operational faults.
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The degree to which routes are stable affects the degree to which the execution of the plan can be predicted. Inasce-
nario where TEMPEST is used as an offboard planning tool, route stability would enable an engineering team to pre-
validate TEMPEST plans without examining a wide range of contingency cases. Figure 6-8a) through f) illustrates
plan route stability for the field experiment. Each frame depicts the route stability for a re-planning sequence in pur-
suit of asingle goal, beginning with an initial plan and continuing with a number of re-plans. In each case, the hori-
zontal axis shows the fraction of the re-plan waypoints that are identical to the initial plan (F;). The vertical axis

shows the fraction of the re-plan waypoints that are identical to those from the previous plan (F,). The markers on the

traces correspond to results from specific re-plans. The traces begin at the enlarged markers, the first re-plan, and pro-

ceed in chronological order. It followsthat all traces begin on theline F; = F,,, since for thefirst re-plan, the previous

planisaso theinitial plan.
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Figure 6-9: Arrival Time Stability: Changesin arrival timein re-plans correlate well with deviationsfrom the
previous plan during execution.

Observe that for all but one trace, the endpoint falls generally left and above the starting point. One can infer that for
these cases, re-plans areinitially unstable but grow gradually more stable as plan execution progresses. This seemsto

make intuitive sense. With the greater freedom that comes with a large distance between start and goal, ISE finds a
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number of plans of similar cost but with differing routes. Subtle changes in initial conditions may cause substantial

route variations. However, as the distance to the goal shrinks, the freedom is reduced, leading to greater stability.

The exception is the plan sequence from April 25 (Figure 6-8d), whose first re-plan shares fewer than 10% of the ini-
tial route's waypoints. Successive re-plans deviate even more from the initial plan at first, but then return to match
about 40% of the remaining plan. Figure 6-3a may help clarify what is happening in this case. The plans seem to
alternate between two general routes over the last 1/2 of the traverse. Plan 2 (the initial plan shown) takes the right
fork, Plan 3 (the first re-plan) the left. In the first half of the route, Plan 2 and Plan 3 are almost entirely distinct, but
run very closeto each other. In later planning instances, the plans settle on a variation of the right fork, increasing the

fraction of the plan that isidentical to Plan 2.

A planner exhibits arrival time stability when re-plans, in response to time deviations from an original plan, result in
similar deviationsin goal arrival time. Experiments indicate that TEMPEST planning are stable with respect to time.
Figure 6-9 plots arrival time slip (vertical axis) against plan schedule dlip (horizontal axis) for re-plans generated on
April 20 through April 26. Each marker corresponds to a different re-plan instance. The dashed line falls where
schedule slip exactly matches goal arrival delays. Re-plansfalling above the dashed line are less direct then their pre-
decessors, while re-plans below the line are more direct. Aside from afew outliers, the data seems to suggest a strong

correlation between operational delays and schedule slips.

6.6 Field Experiment 2004

6.6.1 Objectives
In anticipation of full science operations for the 2005 field experiment, the principal autonomy goal for 2004 was to

integrate science activities into operations. For TEMPEST this meant representing human-designated science goal
actions within Mission Specifications, reasoning about the time and resource consumption of these activities in the

scope of the global traverse plan, and enforcing temporal and energy constraints imposed on the completion of goals.

6.6.2 Zoe Rover
A new rover, Zoe, was developed to better integrate science instruments and to incorporate the lessons learned with

Hyperion (see Figure 6-10). Its masswas 180 kg and its dimensions were 2.7 m long by 1.7 m wide, on par with the
mass and size of Hyperion. It was far more capable of ascending steep slopes and crossing over rough terrain, and is
designed mechanically to drive at a higher average speed. Enhanced computing onboard Hyperion enabled the Local
Navigator to reliably avoid obstacles up to 1.0 m/s (3.6 km/hr), though system-level tests documented in this thesis
wererun at 0.5 m/s (1.8 km/hr).
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Zoe's power configuration was more capable of collecting and storing solar energy than Hyperion. Zoe utilized a

smaller solar array than Hyperion's (2.4 m2) for supplying current to loads on the system and to charge batteries. The
array’s solar cells were triple junction cells, which provided a nominal efficiency of 24%, a substantial improvement
over Hyperion's. The net effect between the size reduction and the efficiency enhancement was anticipated to be a
64% increase in solar power. Zoe's principal batteries for system-level tests were lithium-ion cells, designed for a
maximum capacity of roughly 1340 W-hr of charge. The impact of these power upgrades was that in driving, Zoe
was even more power-rich than Hyperion. However, with the addition of power-hungry science instruments enabled
during science activities, it was not obvious whether the previous system would have been sufficient to sustain the

rover in daily operations.

Increased navigational autonomy was a secondary goal of LITA 2004. To achieve agreater level of space relevance,
rover state estimation no longer relied on GPS, but instead on a combination of wheel odometry, rate gyros, a sun
tracker to enabl e absolute measurements of vehicle attitude, and a novel non-linear smoothing algorithm to update the
position estimate history as new sun measurements are taken. This approach holds promise for the future, but was not
functioning nominally during 2004 system-level tests. The impact to TEMPEST planning was that position state

errors could no longer be maintained to below the resolution of the position state representation.

e P

P \'.f_'-.-;._‘-!._ -

Figure 6-10: Zoe Rover
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In contrast to Hyperion, Zoe had a substantial suite of science instruments, and could collect several types of mea
surements autonomously by the end of the 2004 field experiment. A stereo panoramic imager (SPl) comprised three
cameras mounted on a pan/tilt head on the Zoe mast, enabling mono- and stereo panoramic image data sets. A fore-
optic for Zoe's visua/near-infrared spectrometer (VNIR) was aso mounted on the pan/tilt head, providing spectral
data for regions of the panorama. Beneath the rover, a Fluorescence Imager (FI) could automatically deploy to acti-
vate and image the fluorescence of geologic or biotic materials. Optical cameras whose field of views covered the

workspace of the FI provided context for fluorescence measurements.

6.6.3 Software Architecture
Hyperion's autonomy architecture was re-designed to better enable integrated science and navigation planning and

execution and fault recovery. Zoe incorporated several new modules - a Rover Executive (RE), a replacement for
Hyperion's Mission Executive, to coordinate the planning and execution of mission plans; a Goal Manager (GM) for
pre-processing of goal specifications sent to TEMPEST and goal elaboration following TEMPEST planning; and an

Instrument Manager (IM), an executive process to coordinate the execution of measurement activities.
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Figure 6-11: LITA 2004 Autonomy Software Architecture

The Rover Executive (RE) was developed under the IDEA architecture [45][15], and coordinated mission planning
and execution. Unlike the previous Mission Executive, the RE aggregated logical models of each anticipated event
and possible state transitions. 1t called upon the EUROPA planner [28][29] to perform both deliberative and reactive-
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scale temporal constraint checking on plans generated by the GM and TEMPEST, maintained a set of timelines to
enforce tempora constraints on all planned activities, and enacted simple plan execution monitoring and recovery

actions for common vehicle faults.

The RE coordinated the execution of plans encoded on the timelines. Drive actions were passed on to the Local Nav-
igator as 18 m wide by 6 m deep goal regions similar to previous field experiments. Charge actions were executed
directly by the RE by waiting the required duration. Science activities were passed to the IM, which managed the
deployment of instruments and the execution of measurement sequences. For al activities, the RE monitored the
execution timing of activities relative to the plan timelines. If either the execution completed prior to the earliest
allowable time, or did not complete by the latest allowable time, the RE requested a re-plan from the GM and TEM-

PEST. The RE was not given the flexibility to anticipate the failure of an action to take early recovery steps.

The Goal Manager (GM) was designed as a pre- and post-processor for TEMPEST planning. Asin 2003, goals for
Zoe were specified exclusively by human operators. Under sequential goal planning described in Section 4.3.4,
TEMPEST expected a fully-ordered sequence of goals. First, the GM elaborated goal activities, based upon goal
activity parameters (e.g. size of panorama, number of pan-tilt steps), to predict appropriate time and energy alloca-

tions, and to convert coarse representations into more detailed specifications needed for execution.

Furthermore, the science and engineering team could not be expected to predict how many of the goalsin the Mission
Soecification could feasibly be achieved within daylight hours, or which goal to remove if achieving the entire set
was infeasible. Given a goal sequence, rewards assigned to each goal, and the latest time by which the mission must
be completed, the GM used TEMPEST domain models and approximate energy constraints to estimate and select the
highest-reward subset of goals achievable within the alotted time. The resulting subsequence of goals was sent to
TEMPEST for planning. The GM returned elaborated plans to the RE for execution. Originaly, the GM was
intended to reduce the goal set in the event TEMPEST could not find afeasible plan. Time constraintsin the software

development schedule prevented this feature from being incorporated into the system.

6.6.4 Planning Approach
Table 6-2 summarizes the planning parameters used in the LITA 2004 experiments. To accommodate science activi-

ties, TEMPEST reinstated sequential goa planning, but unlike in the Arctic or in LITA 2003, with goa actions.
TEMPEST was never intended to solve the general planning and scheduling problem typically solved by classical Al
approaches (see Section 1.5). Because TEMPEST's principal role isto solve for traverse plans that satisfy temporal
and resource constraints, the critical parameters for agoal action are its position, duration and resource (energy) con-
sumption. For every science activity requested in a Mission Specification, the GM provided TEMPEST with duration

and energy consumption upper bounds. For each of these activities, TEMPEST created a new science action using a
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Generic Science action template, and added it to the Action Set. Other details, for example the hardware units desig-
nated for the activity or warmup and calibration procedures, were irrelevant to TEMPEST and left out of plan
requests.

In preparing for possible 24-hour autonomy experiments in 2005 and beyond, one objective was to enable TEMPEST
planning that would guarantee sufficient battery charge at the end of each to survive at low power overnight. Without
knowing the completion time of a day’s mission, it is difficult to assign goal battery energies that would enable over-
night survival. To accommodate this, TEMPEST was augmented to enable time-bounded sequential goal planning,
asdescribedin Section 4.3.6.  All Mission Specificationsincluded an additional goal (with anull action) whose posi-
tion was co-located with the final requested goal - an “End of Day” goal. To this goal, human operators assigned a
legal time bounds corresponding to sundown and the battery energy required for night survival from that time. The
time-bounded goal planning mechanism restricted plansto terminate at the position, within the time bounds and at the
energy for the End of Day goal. The completion times and battery energies for requested goals remained free. With
no specialized delay action in the Action Set, Charge actions would allow TEMPEST to insert delaysinto plans. To
enable longer delays without added penalty, the LITA 2004 Action Set included additional, longer Charge actions.

The End of Day planning strategy, as stated above, did not result in the desired behavior. Ideally, plans would time-
efficiently achieve all goals through Drive and Generic Science actions, and then loiter at the final goal position using
Charge actions until satisfying the End of Day time bounds and energy. However, because TEMPEST planned in
backward-chaining order, Drive actions were favored over most of the search, and Charge actions were only included
in optimal plans to meet the conditions of the start time interval of the Mission Specification. This resulted in plans
that began with Charge actions to accomplish the delay, followed by fast-as-possible Drive and Generic Science
action sequences to achieve all the goals. Operationally, this embodied arisky strategy that required flawless execu-

tion of the traverse and science activities to meet the overall objective.

To remedy this situation, the objective function used in LITA 2003 was augmented with a third term that imposed
“reward pressure.” Human operators selected areward pressure constant, expressed in units of power per unit reward
(Watt-hours/reward), to be used over al planning segments. At each step in the search, the additional reward pressure
cost was defined as the pressure power multiplied by the duration of the action multiplied by the reward remaining in
future goals. The effect was to lightly penalize adding loiter actions towards the end of plans (the beginning of the

search), but heavily penalize adding loiter actions towards the beginning of plans.
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Table 6-2: LITA 2004 Planning Parameters

Feature Description

World Model Terrain: elevation, slope
Ephemeris: CSPICE
Solar Flux: constant value during daylight

Rover Model L ocomation: simple force model (friction, gravity)
Power: Solar array, re-chargeable battery
Navigation Cameras: Field-of-view for sun blinding constraint

State Space IPARMS:

* X, Y (position) cells; resolution: 30 m

DPARMS:

* t(absolutetime) sec; CSPICE ephemeristime; resolution: 1 sec/30 min
* g (goa completed Boolean)

Action Set Mobile:

» Drive Actions: one action for each of eight adjacent map cell neighbors
Stationary:

* ChargeAction: 6: unspecified; At: 30, 60, 120, 240, 300 minutes

»  Generic Science: 6: unspecified; At, Ae: assigned by GM

Constraint Set Max. Slope, Daytime, Nighttime, Direct Sun Line-Of-Sight, Sun In Camera

Mission Specification Set +15 minute start time interval

Start position, energy

Sequential via point goals with goal actions
Final goal energy and time bounds

Planning Details ISE Mode: BESTPCOST
Objective function: composite path length, energy and reward pressure
n GN
h = nE,, + z Ag + P, At z T
i=1 i=G
Better: if t, <t,
Dominates: never
Re-Planning: state update

next

6.7 Results 2004

An experiment toward the end of the 2004 field season illustrated mission-directed path planning in support of inte-
grated science measurement and navigation. The Mission Specification required Zoe to perform Panorama actions
(collect afull panoramaimage sequence) and Workspace Acquire actions (collect workspace cameraimages) at each

of four goal locations, entailing atraverse of 2.74 km in map distance that terminated in anarrow valley. Figure 6-12
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shows the terrain map and the initially-planned route for the traverse, which starts at the right of the map and

progresses uphill into a canyon between two peaks. Table 6-3 summarizes the planning results.

6.7.1 Planning
In examining the distance and time factors in Table 6-3, one observes that increases in plan distance above the mini-

mum were isolated to the eight-connected grid representation. The route diagram in Figure 6-12 confirms this graph-
ically - the route follows horizontal, diagonals and vertical moves on the map grid rather than taking a direct path
between goal positions. However, this is not to say that representation was at fault for increasing the distance. It
seems apparent that TEMPEST used the degrees of freedom in the eight-connected path to avoid hazardous terrain
(asillustrated in Figure 4-11). The final segment follows a path that avoids high slope areas by strategically alternat-
ing between diagonal and horizontal Drive actions. In many cases, the straight-line path between goals would have

been inappropriate.

Table 6-3: Summary of October 18 Plan and Execution

Quantity Planned
# of Goals 8 (4 positions)
Goal Spacing mean/min/max (m) 284/0/942
# of Actions 84 (76 Drive/0 Charge/4 Panoramal4 Workspace Acquire)
Representation Factor (fg) 1.0728
Avoidance Factor (f,) 1.0000
Loiter Factor (f, ) 1.0000
Distance (m) 2740
Duration (hh:mm) 01:08 (initial plan)

Figure 6-13 depicts the plan progress distance and minimum energy profile for the initial plan. The stair-stepping
behavior of time-bounded sequential goal planning is plain in the distance plot. The plan allocates time for each goal
to accommodate the Panorama and Workspace Acquire actions. The left dashed line in the distance plot is again the
line of fastest possible approach under a speed of 1 m/s. The right dashed line is the line of sowest allowable
approach to the goal, which for these runs was a factor 20 slower than the maximum speed. The intention isto pro-
vide ample time to allow for selecting circuitous routes or to insert Solar Charge actions. This scenario required nei-
ther, as reflected in the avoidance factor and loiter factor. The distance plot shows steady progress between each goal
at a dightly lower slope than the line of fastest approach, reflecting the extra distance due to eight-connected travel.
Unfortunately, this plan does not demonstrate the End Of Day goal mechanism - the End Of Day time bounds were
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set to open at the time of the start time of the plan, and close just before sundown.

Looking at the energy plot, the plan satisfies the initial condition of 200 W-hr and reaches the final goa energy
requirement of 50 W-hr. TEMPEST models predicted no trouble in achieving the plan from a power perspective.
The plan predicts that the rover could start with an empty battery and could remain fully discharged along the first
two segments and still reach the goal target energy. It does predict a small, non-zero requirement at the start of the

fourth segment. The plan terminates by rising to the target final goal energy.
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6.7.2 Execution
Globa map registration was an unanticipated difficulty with the October 18 experiment. Prior to the experiment, the

field team collected many GPS-derived ground control points that would allow cartographers at the US Geological
Survey to associate absolutely-referenced positions with specific locations in unregistered elevation data collected

from space’. Using those control points, the USGS provided the team with the map of the terrain that was intended to
be referenced absolutely to Earth coordinates. A globally-referenced map would have alowed the team to initiaize
the rover state estimator with a correct map position using GPS. However, in initia tests, the team discovered that
GPS measurements converted to map coordinates indicated substantial map registration errors (hundreds of metersin
translation, and unknown errorsin rotation). Matching GPS measurements of landmarks to salient elevation features
in the map, the team attempted to better register the map to the Earth with trandation. Closer examination of the

translated map seems to indicate the attempted corrections were also in error.

Through the first three segments of the mission, Zoe exhibited reasonable navigational behavior. However, during
the final segment, in attempting to enter the canyon area, Zoe attempted to follow a path that was farther south of the
canyon opening than was suggested in the plan. Its course took it to the base of the large hill depicted in Figure 6-12,
where it struggled to find traversable terrain on steep slopes through a network of water drainages. The preliminary
judgment is that map registration errors prevented Zoe from entering the canyon at the correct point.Unfortunately,
with mis-registered maps, the GPS “ground truth” from Zoe is of ambiguous value. It provides Zoe's absolute posi-

tion on Earth, but does not yield Zoe's true path through the terrain model.

6.8 Discussion

These experiments highlight a number of important distinctions from experiments conducted in the Arctic. First, the
mid-latitude environment presents a different set of challenges to mission-directed path planning. In polar summer,
the sun never sets, but its low elevation angle does not favor arover with ahorizontal solar array. At mid-latitude, the
sun rises and sets, but enables arover to travel confidently during the day, under solar power, with asolar panel that is
horizontally mounted and unarticulated. Daytime energy management in a polar environment demands a mechanical
or navigational strategy, whereas daytime energy management at mid-latitude is not as much a significant challenge.
From the perspective of demonstrating persistent operations on a planet, the two experiments were quite different.
Arctic experiments demonstrated operations over 24 hours, Atacama experiments started well after dawn, occasion-
ally extended until dusk, but never continued at night. Consequently, the LITA experimental planning and execution
results presented here do not present the energy management challenges that might have arisen in enabling 24-hour

operations.

1. Elevation data derived from imagery from the ASTER instrument aboard the Terra spacecraft.
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TEMPEST's performance in LITA experiments demonstrated several new strengths above what was shown in the

Arctic:

Terrain Avoidance: TEMPEST planned paths that avoided high terrain slopes. In a planetary setting, with a priori
data, arobot using TEMPEST could anticipate large-scale terrain from “over the horizon” and take measuresto avoid
dope hazards from a distance. Current path planners for planetary exploration cannot consider terrain beyond their

sensor horizon.

Integrated Science, Energy Management and Navigation: Inthe LITA 2004 experiment, TEMPEST coordinated

mission and navigation activities effectively. It integrated naturally with other software modules - the Goal Manager,
and the Rover Executive - to create plans that achieved the navigation goals of the mission and accommodated the

requirements of science activities.

Effective Online Re-Planning: TEMPEST re-planning enabled far greater navigational autonomy than is possible

by planning once in advance. A rover that can adapt its plans to unanticipated changes will be able to continue oper-
ating effectively without human intervention. In response to requests from plan monitoring modules, TEMPEST re-
planned in fractions of the time required for initial planning. Re-planning periods rarely caused the roversto halt for

more than afraction of a second.

The LITA experiments also uncovered challenges for future mission-directed path planning research:

Mission Re-Scoping: TEMPEST could not alter the scope of a mission in response to evolving state and environ-

mental conditions. If operational delays are too significant, TEMPEST may not be able to find a feasible plan that
meets time constraints. Conversely, if operations go more quickly than anticipated, TEMPEST cannot add more
goals to the mission plan to take advantage of the situation. Deviations from expected behavior in position state and

energy state can cause similar problems.

No Planning for Uncertainty: The Atacama again stressed the need to consider uncertainty in planning. Experi-
ments in 2003 suggest map registration was responsible for a near disaster with Hyperion (see Section 6.5.2). Map
registration in 2004 caused Zoe to struggle with navigation into a canyon. Also, time uncertainty was a problem.
TEMPEST models only consider the nominal rover behavior. TEMPEST cannot anticipate the effects of operational

delays, as often happen in the course of experiments, and more importantly, in planetary operations.
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7. Conclusion

This thesis concludes that mission-directed path planning achieves a significant, practical advance in planetary rover

autonomy, and enables a new, challenging class of planetary surface rover missions.

The research is significant because it extends path planning beyond local obstacle avoidance to time, resources and
mission objectives and constraints - issues recognized by the space mission planning community to be of critical
importance. Judging from MER, future missions will also seek to investigate regionally distributed targets, and may
baseline years of operation. The greater ambition for autonomous regional exploration will require a commensurate
sophistication in navigation and activity planning. Mission-directed path planning could automate path selection for
regiona exploration. With less manual planning to be done, missions would require far fewer operations staff and be
correspondingly far cheaper. Greater robot autonomy would also reduce the frequency of decisions that require
human intervention, resulting in less wasted time and greater return for each operational day. This research supports

the ambition for cheaper, more efficient surface exploration.

This research demonstrates a practical solution to mission-directed path planning. TEMPEST derives plans that
exhibit sensible navigation behaviors under complex interactions between terrain, time, resources and constraints.
The approach combines models of the world, rover, relevant actions and constraints imposed on them, and mission
objectives. Incremental search enables efficient search for optimal paths over three or more dimensions, and under
global constraints. It offers efficient re-planning mechanisms to repair plans in response to unexpected state excur-
sions and measurements of the local environment. Operating on the Hyperion and Zoe robots, TEMPEST operated
efficiently and effectively in conjunction with automated local navigators, science planners and executives. In plan-
ning traverses of several hundred meters several hoursin duration, TEMPEST spent on the order of ten minutes. Fre-

quent re-plans thereafter caused only minor, and often imperceptible delays in progress.
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CONCLUSION

Mission-level path planning enables a new class of planetary surface missions. Experiments demonstrate its utility in
anumber of specific scenarios. missions with overnight hibernation contingencies; polar exploration under sun-syn-
chronous navigation; and missions that conduct widely distributed sampling to characterize regional variations.
More generally, this new approach best addresses missions that operate in highly-variable, complex lighting and
power, and missions that regularly interleave focussed stationary activities and extensive traverses. Chapter 1 intro-
duces two planetary mission scenarios for which mission-directed path planning would certainly be an enabling tech-

nology.

Time, resources and mission objectives must factor into route selection to support the global needs of the mission.
Without reasoning about these factors, planners must make conservative assumptions about legal operating ranges to
guarantee a vehicle's safety. Imposing broad limits on operations can severely restrict the productivity of a robot.
Occasionaly, the conservatism required to guarantee rover safety disallows all operations. Deeper reasoning,
through mission-directed path planning, allows a rover to take advantage of time and resource opportunities if they

exist, and enables a measured level of protection against hazardous conditions when they arise.

7.1 Contributions

Thisresearch developsthe most comprehensive global planner for planetary roversto date.

Prior planetary mission planning has sought to optimize paths to avoid obstacles over traverses on the order of 100
meters. This new work achieves multi-kilometer planning, temporal and resource planning and interleaving of

traverse and mission activities.

Thisresearch createsthefirst planner to optimize path selection for a non-monotonic resource.

The planning developed here incorporates resource collection as well as consumption to solve problems that are
infeasible without recharge or refueling. Other path planners rely on monotonic resource models that cannot repre-
sent recharging. Non-monotonic resources, like battery energy, fuel or onboard memory, are commonplace in space,

military, transportation and many other applications.

The research solves path planning in spatial, temporal and resource bounds using a non-hierarchical, resolu-

tion-optimal method.

The non-hierarchical approach developed in this research enables coupling between the spatial, temporal and

resource state variables and solves for globally-optimal plans. Other path planners are sub-optimal or incomplete
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because they commit to a spatial path in one operation and then select a velocity or power profile to avoid time-vary-

ing obstacles and meet other constraints.
Thethesisextends planetary rover path planning into therealm of more general mission planning.

The plans generated in the approach developed here consider the time and energy expense of mission goals and obey
mission constraints. As demonstrated in field experiments in this research, a mission-directed path planner can act as
asimple mission planner for arobot. If acting in support of a general mission planner, the planning developed in this
research enables much tighter coupling between activities and traverses in a plan. Planetary rover mission planning
has historically been the purview of classical artificial intelligence planning and scheduling approaches. They typi-
cally insert traverse plans into the mission plan that derive from a path planner that is incapable of reasoning about

mission objectives.

Theresear ch successfully demonstrates mission-directed planning for solar powered robotsin three planetary-

relevant field experiments.

TEMPEST planning guided and sustained the solar powered Hyperion rover on a 6 km, 24-hour long polar sun-syn-
chronous traverse. TEMPEST planning and re-planning enabled Hyperion to achieve several long-distance autono-
mous traverses in the Atacama Desert, including one over 1 km. TEMPEST created and maintained plans that
allowed the Zoe rover to interleave a traverse of several hundred meters with several targeted panoramic and under-

belly cameraimage sequences.

7.2 Perspectives

This thesis illustrates the power and limitations of incremental search as applied to time and resource-oriented path
planning. In the positive, incremental search approaches offer the advantage of enabling guarantees of completeness
and optimality. Conventionally, incremental search algorithms have been used to plan paths in two-dimensional
spaces. Through the mission-directed path planning problem, this work illustrates the utility of incremental search
for problems of greater than two dimensions. In enabling efficient representation of additional dimensions, the dis-
tinction between independent and dependent variablesis a profitable segmentation of the state space. In effect, it col-
lapses the representation of a very large space into the dimensionality of the independent variables, until the search
dictates that other dimensions are important. Further, dependent variables can be treated at two resolutions, enabling
efficiency mechanisms like resolution-based state pruning and state dominance. The resource optimization problem
also demonstrates how resources can be correctly tracked and constrained outside the state space, and even optimized
without adding the significant burden of an extra search dimension. Specifically, if state transitions and transition

costs can be assumed to be independent of the resource variable, then that resource dimension can be represented
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within a composite objective function or as an auxiliary variable, at the cost of removing the guarantee of complete-
ness. Reduction of search dimensionsis the fastest means of reducing search time and space complexity, and in prac-
tice, the reduced-dimensionality planner readily produces solutions. Under these efficiency mechanisms, incremental
search enables efficient planning and re-planning for complex domains, and yields provably resolution-optimal solu-

tions.

Efficient re-planning is a major advantage of the incremental search approach. Re-planning enables a vehicle to com-
pensate for unanticipated excursions away from an initial plan trgjectory, and alows it to repair plansin light of new
information. 1n most real-world mobile robot applications, particularly for planetary surface exploration, models of
the world and the robot will be incomplete. A planning method that rapidly adjusts to on-the-fly measurements is

essential for efficient robot operation.

Thisthesis also illustrates the limitations of an incremental search approach. Despite the array of available efficiency
mechanisms, time and space complexity grows exponentially as dimensions are added to the state space. Specific to
the mission-directed planning problem, time and energy are two of many interesting and important dimensions to the
problem. One could easily envision problems where vehicle heading, multiple resources, and belief of state are
equally important. In view of these larger, more general problems, it is not clear that incremental search isthe correct

approach.

Hierarchical navigation was proven highly effectivein all threefield experiment involving TEMPEST. The combina-
tion of alocal navigator that senses the immediate environment and steers clear of rover-scale hazards with amission-

level path planner that reasons about the large-scale, time and resources is natural and powerful.

On the negative side, despite the array of available efficiency mechanisms available to incremental search, time and
space complexity grow exponentially as dimensions are added to the state space. Specific to the mission-directed
planning problem, time and energy are only two of many interesting and important dimensions that might be consid-
ered. One could envision problems where vehicle heading, multiple resources, and belief state are as important as
time and energy. In view of so many additional variables, it is clear that incremental search cannot adequately

address such problems.

TEMPEST proved vulnerable to a number of sources of uncertainty during the field experiments - principally time
cost uncertainty, as demonstrated in the Arctic, and position state uncertainty as shown in both expeditions to the Ata-

cama
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7.3 Future Work
Futurework might fully characterize the benefit of mission-directed path planning, in comparison to standard

spatial path planners, under varying terrain, lighting conditions and rover power configurations.

Mission simulations, controlled by a mission-directed planner and parameterized on terrain, lighting and rover ener-
getics, could yield planning performance metrics in mission-relevant terms, for example time efficiency, energy effi-
ciency, likelihood of success. Determining trends with respect to parameters would aid in establishing planning

utility bounds for future missions.

Futurework might investigate the use of rapid re-planning as a means of evaluating contingency branchesin a

meta-planning mode.

Fast re-planning could be leveraged to plan for hypothetical situations as easily as for actual ones. Research should
evaluate the planning benefit in re-planning for hypothetical contingencies, and characterize the performance of re-

planning under model updates not necessarily in the immediate vicinity of the rover.

Future work might characterize randomized and anytime algorithms that sacrifice optimality but enable effi-
cient search over higher dimensional spaces, and evaluate them in the context of mission-directed path plan-

ning.

Research might determine whether randomized approaches can be designed to reliably generate reasonable, safe and
mission effective solutions under probabilistic completeness and without the guarantee of optimality. Anytime algo-
rithms could provide sub-optimal path solutions for high-dimensional spaces with known bounds on cost with respect
to optimal. Adapting these search algorithms to mission-directed path planning might enable efficient planning over

many additional variables, for example onboard memory, thermal state, or uncertainty parameters.

Research might develop an integrated approach for multi-scale navigation.

Unifying navigation at all scales might employ a common planning algorithm and encode a continuum of increasing
representational granularity and decreasing re-planning frequency with distance from the robot. Unified navigation
would extend the use of robot sensors to identify and characterize mid- and large-scale terrain features, foster a con-
sideration of varying geometry, time, and resources at the local scale, and greatly streamline future rover software

architectures.
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Futurework might enable efficient approachesto planning under uncertainty, with a consideration of risk sen-

sitivity, in a mission-directed context.

Research must identify the sources of uncertainty most apt to disable mission-directed path planning, and evaluate
current and develop new approaches to planning and sensing to diminish their effects. Furthermore, assessing plans
in terms of risk, for instance by the variance in reward or cost, would enable a vehicle to select plans based on the
evolving risk tolerance of the mission. Statistical methods are promising - they provide a natural, rigorous means of
integrating sensing, planning and control, and have been successfully employed in an increasingly wide range of
domains. Addressing uncertainty would enable more reliable planning for long-distance traverses that are particu-

larly subject to errorsin control, state and model accuracy.
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Appendix 1. | SE Algorithm

This appendix describes the Incremental Search Engine (1SE) algorithm in greater detail than presented in Chapter 3.
| SE search centers around a priority queue called the OPEN list. The first section describes how the OPEN list oper-
ates. The following section presents the | SE algorithm at the highest level, in terms of the | SE search modes: BEST-
PCOST and BESTDPARMS. Each of these modes calls upon state expansion, whose details appear in the third
section. An important feature of ISE isits ability to enforce and manage the dominance of some states over others.

The final section in the appendix describes the piece of the algorithm associated with that management task.

Al.1 OPEN List

As with D*, ISE maintains a data structure, called the OPEN list, containing states prioritized for expansion. The
OPEN list computes the path cost from states to the goals, and propagates information about changes to arc costs
incurred during plan execution. The OPEN list propagates information by repeatedly expanding the highest priority
state on the list. When a state is expanded, it is removed from the OPEN list, and all its child states are added to the
OPEN list. Statesthat are modified through cost increases or decreases are also placed on the OPEN list. All states
have an associated tag function t(X) that defines their OPEN list status. Tags hold one of three values: t(X) = NEW
if the X has never been on the open list, t(X) = OPEN if X iscurrently on the OPEN list, and t(X) = CLOSED if
X was removed from the OPEN list.

For each state on the OPEN list, a key function k(X) is defined to be equal to the minimum of h(X) before a cost
modification and over al values h(X) assumed after X was placed on the OPEN list. The key function classifies
states on the OPEN list into two types: RAISE states (k(X) < h(X) )Jand LOWER states (k(X) = h(X) ). RAISE states
propagate information about path cost increases, and LOWER states propagate information about path cost reduc-

tions.
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States are placed on the OPEN list using their key value, which for LOWER states is the cost h(X) , and for RAISE
statesisthe cost h(X) prior to the cost increase. States are expanded in order of increasing f* (X, R) = k(X) +g(X,R),
the optimal estimated path cost prior to a possible cost increase (note that for LOWER states, f*(X, R) = (X, R)).
The intuition is as follows. RAISE states are not optimal, since *(X, R) <f(X,R) . Expansion alows them to re-
route the path through lower-cost states. The value f*(X, R) of a RAISE state is a lower bound on the cost of
LOWER states it can re-route to (it cannot activate a state that is less costly than the current optimum). Therefore, if
all LOWER states' costs f(X, R) exceed the f*(X, R) value of the RAISE state, it is better to expand the RAISE state

first to possibly find lower-cost LOWER states. Note that if two OPEN states share the same * (X, R) value, they are
prioritized by their key values. Thisavoids creating cyclesin state backpointers.

Al.2 Definitions

This section presents algorithmic details of ISE. The following two sections informally define several functions used

in the ISE algorithm description, presented in section A1.3.

Table 1-1 lists the | SE application-specific functions that must be defined by the | SE user.

Table A1-1: Application-Specific | SE Functions

better (X, Y) Encodes preferences of some DPARMS values over others. Given two states
X andY with equal IPARMS and path cogt, thisfunction returns TRUE if X is
preferred over Y, FALSE otherwise.

bneighbor (X) Returns the backwards neighbors of a state, using the backwards arc transition
function B(X) . Given astate X, thefunction returnsalist of statesfrom which
X isreachable.

dominates(X, Y) Defines the conditions on DPARM S under which one state dominates another,

according to the definition in section 3.2.3. Given two states with equal
IPARMS, the function returns TRUE if X dominates Y, FALSE otherwise.

domstates(X) Returns alist of states that might either dominate or be dominated by X,
according to the definition provided in section 3.2.3.

feasible(X) Defines the conditions on IPARMS and DPARMS under which states are fea-
sible plan start states. Given a state X, this function returns TRUE if X isa
feasible start state, FALSE otherwise.

fneighbor (X) Returns the forwards neighbors of a state, using the forwards arc transition
function ®(X) . Given astate X, the function returns of list of states reachable
from X.

resequal (X, Y) Determines when two states share the same resol ution equivalence class.

Given two states X and Y with equal IPARMS, this function returns TRUE if
X andY areresolution-equivalent, FALSE otherwise.
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Table 1-2 describes several | SE domain-independent functions.

Table A1-2: Application-Generic | SE Functions

b(X) A search back-pointer. Given astate X, it returns the next state Y on the opti-
mal path to one of the goals.
del (X) Returns TRUE if astate X is marked for deletion, and FALSE otherwise.

DELETE_STATE(X)

Deletes a state and associated memory from ISE.

dom(X)

Returns TRUE if astate X is marked as dominated, and FALSE otherwise.

GET_FMIN()

Returnsthe vector f ;.. ki, » the path cost and key value corresponding to

the highest-priority state X from the OPEN list, such that
L+ R) and ki, = K(X) .

fmi n = kmi

GET_MIN_STATE()

Returns the highest-priority state from the OPEN list, where priority is given
to the state X with the lowest value of f(X, R) . It removes the state from the
OPEN list and sets t(X) — CLOSED and proc(X) « TRUE.

GREATEREQ( f;,k; , fpky )

Comparestwo vectorsv, = f;,k; andv, = f, k, andreturns TRUE if
f,>f, or (f, = f, and k; =2k, ), and FALSE otherwise.

INSERT_STATE(X, h(X))

Inserts a state directly into the OPEN list, with a path cost of h(X).

LESS( fy Ky » Ky )

Comparestwo vectorsv, = f,k; andv, = f, k, , and returns TRUE if
f,<f, or (f; = f, and k; <k, ), and FALSE otherwise.

modified(X) Returns TRUE if a state is downstream (with respect to the search) of a set
whose APARMSS have been modified, and FALSE otherwise.

proc(X) Returns TRUE if a state has been processed off the OPEN list (via
GET_MIN_STATE()) at least once, and FALSE otherwise.

set(X) Returns the state set containing X. Given astate X, it returns the set of states

sharing the same IPARMS as those of X.

t(X)

Suppliesthe OPEN list tag for astate. Given astate X, it returns NEW for
states that have never entered the OPEN list, OPEN if astateis currently on

the OPEN list, and CLOSED if the state has been processed and is currently
not in the OPEN list.

Al1l.3 BESTPCOST and BESTDPARMS Modes

At the highest level, ISE operates in either of two modes, BESTPCOST and BESTDPARMS. The BESTPCOST
mode finds the minimum cost path. The BESTDPARMS mode finds the “best” path below a user-designated upper
bound in path cost, where better paths are defined using the application-specific better(X, Y) function in Table 1-1.

Both modes share the underlying search agorithm, composed principally of two functions -
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EXPAND_NEXT_STATE and INSERT_STATE_CHECK. The two modes and these functions are described in
detail in the following paragraphs.

The BESTCOST mode finds the minimum cost path. The BESTCOST algorithm appears in Table 1-3. Within an
upper bound on iterations, | SE continues to expand states (L4), checking at each expansion whether the start set con-
taining the robot start state R has been affected (L5). In lines L6-L7, ISE scans the updated set(R) for states that
meet the termination criteria. A state must be feasible, must have been processed off the OPEN list (not awaiting cost
updates), and its cost must be lower than the least cost estimate on the OPEN list (unless the OPEN list is empty) and
than the current optimal solution. The optimal plan begins from the lowest cost state of states that first meet these cri-
teria. Given ISE prioritizes lowest-cost states for expansion, the first feasible state to be expanded also tends to be the
start state of the optimal solution. | SE returns the optimal state, its path cost and whether or not the maximum number

of iterations was exceeded.

Table A1-3: BESTPCOST Mode Algorithm

L1 R — statstate, Sypima « NULL, i « 0

L2 while i < TIMEOUT

L3 hoptimal - ®

L4 fonire Kmin » Updated — EXPAND_NEXT_STATE()

L5 if updated = TRUE ori = O then

L6 for each state x 0 set(R) do

L7 if feasible(x) and t(x) = CLOSED and (h(x) < f, or f, = —1) and h(X) <hg g then
L8 Soptimal = X+ Noptimal = N(X)

L9 if frin = =1 0 (Noptimal < fmin @d feasible(Syyimar) ) thenreturn Sy oty Noyimar, TRUE
L10 iei+l

L1 return S, h FALSE

optimal’ "'optimal’

The BESTDPARMS mode finds the solution with the “best” start state DPARMS that falls below a maximum path
cost. In thismode, listed in Table 1-4, the objective function serves only to measure path costs against the maximum.
Inlines L13-L 16, ISE continues to expand states until the OPEN list is exhausted or the minimum path cost on the
OPEN list exceeds the cost upper bound. This ensures that all possible solutions at or below the upper bound cost are
processed. |SE evaluates all states deposited into set(R) as aresult of the search. Asin the BESTPCOST mode, the
best state must be a feasible start state, must be CLOSED, and must cost less than any state remaining on the OPEN
list. In contrast to BESTPCOST, the state need not be the least costly, but must fall beneath the cost upper bound. The
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search may generate many states satisfying these criteria. The better function prioritizes the qualifying states. The
search ends when no states remain within set(R) below the cost upper bound. The optimal start state is the “best”

from among the qualifying states.

Table Al-4: BESTDPARMS Mode Algorithm

L12 R « start state, i — O

L13 while i <TIMEOUT

L14 fonire Kmin » Updated — EXPAND_NEXT_STATE()
L15 if foin = —1 or fi, > MAXCOST bresk
L16 e+l

L17 Npest « @, checked — FALSE

L18 for each state x [ set(R) :do
L19 if feasible(x) and t(x) = CLOSED and (h(X) <f;,, or fpj, = —1) and h(x) < MAXCOST and

(checked = FALSE or better(x, S,.) ) then

m

L20 Spest « X+ Npest < N(X), checked — TRUE

L21 if i < TIMEOUT then return TRUE

L22 return FALSE

Al.4 State Expansion
Both ISE modes depend fundamentally on the function EXPAND_NEXT_STATE, listed in detail in Table 1-5. This
function processes states off the OPEN list and communicates their effects, in terms of cost updates and dominance,

on neighboring states.

The function begins by removing the lowest cost state X from the OPEN ligt. It returns an invalid cost vector if the
OPEN list is empty. If the state is downstream of a modification to APARMS, lines L26-L30 designate the back-
wards (downstream) neighbors of X, whose paths contain X, for deletion and recycles them onto the OPEN list for
future processing. This alows ISE to delete the old graph structure, created under the old APARMS, in preparation

for creating graph nodes under the modified arc costs.

If h(X) >k(X), then X isa RAISE state, and may not be optimal. In lines L31-L34, ISE checksall the forward neigh-
bors of X to determine whether they might provide an aternate, cheaper path to the goal, with correspondingly lower
h(X) . If so, the state's deletion status is unmarked, the path is re-directed, the state cost is re-computed to be the cost
to the goal through Y, and the state is marked as areduced RAISE state (L 34).
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RAISE states do not necessarily hold the same dominance relationships. If the state is a RAISE state at L34, then
L 35 re-checks the state’s dominance relationship in the OPEN list, without re-inserting it. Then, for statesthat remain
RAISE states, | SE re-creates the forward neighbor states that were previously dominated, and re-inserts them directly
to the OPEN list for re-processing (L36-L39). Finaly, if a RAISE state itself becomes dominated, |SE marks it for
later deletion on line L40.

Following the previous reduction operations, the state could be either a RAISE or LOWER state. If h(X) = k(X),
then X is a LOWER state and by definition optimal. Lines L42-L49 search amongst the backwards neighbors of
LOWER state X and propagate cost changes to them. Three conditions prompt ISE to re-insert these states to the
OPEN list (L43). Firgt, if the neighbor is a NEW state, it must be supplied with aninitial cost. Second, if apathis
directed from the neighbor to the state X, but the neighbor’s cost is mismatched, then its cost must be re-matched to
reflect the optimal cost through X. Third, if the path from the neighbor does not go through X, and the neighbor’s
cost is higher than if it were directed through X, its cost must be decreased to reflect are-direction through X. In al
three cases, if X is marked for deletion, so are the neighbors (L45). If not, the neighbor backpointers are directed
through X (L47). Furthermore, in all cases the neighbor isre-evaluated for dominance and placed onto the OPEN list
with its new, optimal cost (L48).

Table A1-5: EXPAND_NEXT_STATE Algorithm

L23 X « GET_MIN_STATE() , R  start state, updated — FALSE, reduced — FALSE
L24 if X = NULL thenreturn —1,—-1
L25 if X = R then updated — TRUE

L26 if modified(X) = TRUE

L2z for each state Y [ bneighbor (X) do

L28 if b(Y) = X then

L29 del(Y) « TRUE, h(Y) « o, INSERT_STATE(Y, h(Y))
L30 if set(Y) = set(R) then updated — TRUE

L3l if h(X) >k(X) then

L32 for each state Y [ fnei ghbor (X) do
L33 if LESS( (Y, R), h(Y), k(X)+g(X R), k(X) ) and h(X) > h(Y) + c(Y, X) then
L34 del(X) « FALSE, b(X) < Y, h(X) < h(Y) +c(Y, X), reduced — TRUE

L35 if reduced = TRUE then DOM_INSERT_STATE(X, h(X), FALSE)
L36 if h(X)>k(X) then
L37 for each state Y O domfneighbor (X) do

L38 if t(Y) = CLOSED then INSERT_STATE(Y, h(Y))
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Table A1-5: EXPAND_NEXT_STATE Algorithm

L39 if set(Y) = set(R) then updated — TRUE
L40 if dom(X) = TRUE then del(X) — TRUE, h(X) « o

L4l if h(X) = k(X) then

L42 for each state Y [ bneighbor (X) do

L43 if t(Y) = NEW or (b(Y) = X and h(Y) #h(X) + c(X, Y) ) or (b(Y) # X and h(Y) >h(X) + c(X, Y)) then

L44 if del(X) = TRUE then

L45 del(Y) « TRUE, b(Y) « NULL

L46 ese

L47 del(Y) « FALSE, b(Y) < X

L48 DOM_INSERT_STATE(Y, h(X) + c(X, Y), TRUE)

L49 if set(Y) = set(R) then updated — TRUE

L50 dse

L51 for each state Y O fneighbor (X) do

L52 if b(Y) # X and h(X) > h(Y) + c(Y, X) and t(Y) = CLOSED and
GREATEREQ( f(Y, R), h(Y) , k(X)+h(X),k(X) ) then

L53 INSERT_STATE(Y, h(Y))

L54 if set(Y) = set(R) then updated — TRUE

LS5 for each state Y O bneighbor (X) do

LS6 if t(Y) = NEW or (b(Y) = X and h(Y) # h(X) + ¢(X, Y) ) then

L57 if del(X) = TRUE then

L58 del(Y) — TRUE, b(Y) — NULL

L59 dse

L60 del(Y) — FALSE, b(Y) < X

L6l DOM_INSERT_STATE(Y, h(X) + ¢(X, Y), TRUE)

L62 if set(Y) = set(R) then updated — TRUE

L63 dseif b(Y) # X and h(Y) >h(X) + c(X, Y) then

L64 INSERT_STATE(X, h(X))

L65 return GET_FMIN(), updated

If the state is not a LOWER state, then it remains a RAISE state that may affect both is forwards and backwards
neighbors. |SE searches the forward neighborsfirst (L51). If aforward neighbor does not direct a path through X and
the path from X through the neighbor reduces the cost from X, and the neighbor is not awaiting processing (L52),
then | SE re-inserts the neighbor into the OPEN list with itsold cost (L53). For backwards neighbors (L 55), three con-
ditions prompt changes (L56 and L63). As with the backwards neighbors of LOWER states, if the backwards neigh-
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bor of the RAISE state is NEW, or if it directs a path through X but its cost does not match, its cost is updated and it
is placed on the OPEN list after having its dominance relationships re-evaluated. Finaly, if the path from the neigh-
bor does not pass through X, and the neighbor’s cost can be lowered by going through X (L63), then the state X itself
is re-entered onto the OPEN list, since X is not necessarily optimal. Thisaction is reguired to avoid creating a closed

loop in the backpointers.

Function EXPAND_NEXT_STATE returns the vector the estimated path cost key value of the highest-priority state
on the OPEN ligt, as well as a Boolean value signifying whether or not a state contained in set(R) was modified

before being placed back on the OPEN list.

Al.5 State Dominance Management

The management of dominance and “better” relationships among states is a key component of the ISE agorithm.
Dominated states cannot legally be a part of any ISE solution. Similarly, during a BESTDPARMS search, states
given lower priority according to the better(X, Y) function cannot be a part of asolution. The difficulty is that during
re-planning, dominating and “ better” states may become too costly to be optimal, in which case the states they domi-
nated become candidates for re-consideration. In the origina implementation of | SE, states dominated by other states
were maintained in their IPARMS sets in anticipation of that case. In practice, this led to excessive memory con-
sumption for storage, since a majority of dominated states remained dominated during re-planning. The solution was
to implement a function that manages these relationships, and deletes the states that are dominated. Just asin initial

search, states can be re-generated in the event that their dominators grow too expensive.

Function DOM_INSERT_STATE(X, h(X), flag) inserts a state X into the OPEN list after checking and asserting state
dominance rel ationshi ps between the state and other statesin the OPEN list. A state X is not put on the OPEN list if it
is dominated by other existing states, and states dominated by X are deleted from thelist. If flag is set to TRUE, the
state may be put on the OPEN list; if flag is set to FALSE, its dominance relationships are checked, but it is not
inserted into the OPEN list.

At the outset, the new state is considered not to be dominated (L66). The function searches over al old states that
might either dominate or be dominated by X (L67). If the new state X is resolution equivalent to another state, then
the function determines which state the lesser state and can be deleted from memory. Lines L69-L74 check whether
state X is either cheaper than the old state, or if equivalent in cost, whether the new state’s DPARMS values are pre-
ferred over the other’s. If proven inferior, the old state is deleted outright if it has never been processed, and marked
as dominated and placed back on to the OPEN list if not. If the old state is not proven inferior, then the state X itself
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is deleted or marked dominated and placed on the OPEN list in the same manner (L75-L81). If X is deleted the func-

tion returns.

If new state X is not resolution equivalent to the old state, the function checks to see whether a dominance relation-
ship exists between the two. If X dominates over the old state, and the new state has the same or lesser cogt, then the
old state is deleted or marked dominated and placed on the OPEN list (L83-L89). If the old state dominates over the
new state, then the new state is processed accordingly and the function returns (L90-L97). If the new state has not
been deleted or dominated, and the insertion flag is set, then the new state is inserted into the OPEN list.

Table A1-6: DOM_INSERT_STATE Algorithm

L66 dom(X) — FALSE, sflag — FALSE

L67 for each state Y 0 domstates(X) do

L68 if resequal (X, Y) then

L69 if h(X) <h(Y) or (h(X) = h(Y) and better (X, Y)) then

L70 if proc(Y) = FALSE then

L7 DELETE STATE(Y), sflag —« TRUE

L72 dse

L73 dom(Y) — TRUE

L74 if t(Y) = CLOSED then INSERT_STATE(Y, h(Y))
L75 dse

L76 if proc(X) = FALSE then

L7r DELETE_STATE(X)

L78 dse

L7 dom(X) — TRUE

L80 if t(X) = CLOSED and flag = TRUE then INSERT_STATE(X, h(X))
L81 return

L82 dse

L83 if dominates(X, Y) then

L84 if h(X) < h(Y) then

L85 if proc(Y) = FALSE then

L86 DELETE_STATE(Y), sflag « TRUE

L87 dse

L88 dom(Y) — TRUE

L89 if t(Y) = CLOSED then INSERT_STATE(Y, h(Y))
L90 dseif dominates(Y, X) then
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Table A1-6: DOM_INSERT_STATE Algorithm

Lo1 if h(Y) < h(X) then

Lo2 if proc(X) = FALSE then

Lo3 DELETE_STATE(X)

L94 dse

L95 dom(X) — TRUE

L96 if t(X) = CLOSED and flag = TRUE then INSERT_STATE(X, h(X))
L97 return

Lo8 if flag = TRUE then INSERT_STATE(X, h(X))
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Appendix 2. Progress Distance

In tempora path planning, it is difficult to express spatio-tempora relationships in two-dimensional plots. Plots of
position ignore temporal aspects. Plots of the individual spatial dimensions against time can be confusing. Progress
distance captures important aspects of the spatial dimensionsin asingle parameter, and plots of progress distance ver-

sus time are useful tools for analyzing spatio-temporal plans.

To define the term, assume a plan intersects a fully-ordered sequence ' of N goals, that the Euclidean distance

between the start position S and the first goal G, isgiven by p(S G,), and the distance between two adjacent goals

G; and G, ; isgivenby p(G;, G, ). Thetotal minimum plan distance is then given by:

N-1
R=p(SG)+ > p(GGi1) A2-1
i=1

During the course of execution, goals may be achieved by a robot and removed from the list of remaining goals. If
the new start state is X and the first remaining unachieved goal is given by next(I") , then the minimum remaining

distanceis given by:

N-1
Drem = p(X, neXt(r)) + Z p(GP Gi +1) A2-2

i = next(l")

The progress distance is the total minimum initial plan distance minus the minimum distance remaining:

DP = R_Drem A2-3
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A distance-normalized version of the progress distance, the progress fraction, is given by:

Fp = Dp/R A2-4

The progress fraction varies from 0 to 1 over the course of a plan execution.
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Figure A2-1: Plots of Progress Distance for a Hypothetical Plan

The progress distance is a measure of the progress of the robot along the minimum-distance trajectory through the
remaining goals. According to this measure, progress can only be made by reducing the minimum distance remain-
ing. Moving away from the next goal results in negative progress, and moving in acircle about the goal resultsin no
progress. Figure A2-1 illustrates progress distance for a hypothetical spatio-temporal plan. The left side of the figure
shows a sequence of four snapshots from a plan execution. The right side shows corresponding plots of progress dis-

tance versustime. Figure A2-lashowstheinitia start position S, and aseguence of two goals G, and G,. Thetotal

minimum distance for the plan is shown by the dotted lines. The plot in Figure A2-1e showsthe position of S; at the
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axisorigin, and the distances to the goals on the vertical axis. In this plot, progress speed isindicated by the slope of
a progress distance trajectory. The maximum robot speed is given by the dashed line - no trajectory can advance
towards the goals more quickly than thisline. In Figure A2-1b, the robot has made progress towards the goal at posi-

tion S;. Notethetrgectory from S, to S; inthe plot of progress distance in Figure A2-1e. Since the path does not

advance directly towards the first goal, the progresstrajectory slopeis shallow. In Figure A2-1c, the path movesfrom

position S; to S,. In the corresponding progress distance plot in Figure A2-1f, the curve shows no net progress in
thismove. Thereasonisthat positions S; and S, are equally distant from the next goal. The final path frame shows
the robot at a position S;, having completed the first goal. The progress curve in Figure A2-1f shows how the turns

of the path affect progress over time. Though not shown in the figure, if arobot stops, it produces a constant interval

in the progress distance plot.

Progress distance is useful because it is a measure of the directed progress to cover the distance between goals. It
reflects the indirection a path might take to avoid obstacles, and also any stationary periods that would otherwise be
invisible in a purely spatial plot. Note that progress distance cannot distinguish between stationary activities and
mobile activities that stay a fixed distance from the next goal. However, taken together, the path plot and progress
distance plot contain sufficient information to determine the spatio-temporal state of the robot. Progress distance

plots are used extensively throughout this thesis to illustrate spatio-temporal plan behavior.
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Glossary of Terms

Atomic Resource

Complete/Completeness

Ephemeris

Local Constraint

Local Path Planning

Global Constraint
Global Path Planning

Metric Resource

M onotonic Resource

Non-M onotonic Resource

Obstacle

Plan Stability

Progress Distance

Resolution Optimal

A resource whose availability can be expressed by a Boolean variable, such
that the resource is either available or unavailable. Examplesinclude space-
craft or rover components like cameras, science instruments or motors.

A search algorithm that is guaranteed to find a solution if a solution existsis
complete.

A sequence of values describing the time-varying position of acelestial object
in the frame of an observer.

A constraint whose violation depends only on the current state. The same as
an obstacle.

Path planning that utilizes only rover-local data, and because of the fine spa-
tial planning resolution, often considers the finite size of the rover, finite turn-
ing radii, and may consider vehicle dynamics.

A constraint whose violation depends on the entire state history.

Path planning that utilizes a combination of locally-derived and globally-
defined dataand, due to planning over long distances at coarse resolution, that
generally neglects the finite size of the rover, finite turning radii and vehicle
dynamics.

A resource whose availability can be expressed as a floating point number
between 0 and 1, where 1 isavailable, 0 is unavailable, and numbers between
0 and 1 express partial availability. Examplesinclude energy, solid state
memory, and communications bandwidth.

A resource whose level either increases or decreases monotonically, for exam-
ple charge in a non-rechargeabl e battery.

A resource whose level varies non-monotonically, for example the battery
charge in a solar-powered vehicle.

A state or set of states though which paths cannot pass. Same asalocal con-
straint.

Determined by the degree to which plans vary in successive re-plans during a
mission execution. Stable plans vary predictably in response to evolving ini-
tial state, while unstable plansvary erratically and may oscillatein response to
small variationsin cost maps or initial state.

See Appendix 2.

Optimal to the resolution imposed by the planning representation.
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Sun-Synchronous Navigation A strategy for planetary polar navigation that synchronizes travel on a path
loop with the sun to enable plentiful solar energy, foster benign thermal condi-
tions and permits repeated loops on successive days.
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