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Robotic rovers uniquely benefit planetary exploration - they enable regional exploration with the precision of in-situ

measurements, a combination impossible from an orbiting spacecraft or fixed lander.  Current rover mission planning

activities utilize sophisticated software for activity planning and scheduling, but simplified path planning and execu-

tion approaches tailored for localized operations to individual targets.  Routes are coarsely hand-selected by human

operators and executed by the rover’s local obstacle detection and avoidance software.  Neither route selection nor

navigation deeply considers high level mission goals, large scale terrain, time, resources or operational constraints.   

This strategy is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle.

Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional

access; the effect of route timing on resource availability; the limitations of finite resource capacity and other opera-

tional constraints on vehicle range and timing; and the mutual influence between traverses and upstream and down-

stream stationary activities.  Encapsulating this reasoning in an efficient autonomous planner would allow a rover to

continue operating rationally despite significant deviations from an initial plan. 

This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for

robotic explorers.  Planning operates in a space of position, time and energy.  Unlike previous hierarchical

approaches, it treats these dimensions simultaneously to enable globally-optimal solutions.  The approach calls on a

new incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher

than two dimensions.  Solutions under this method specify routes that avoid terrain obstacles, optimize the collection

and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of

interleaved mission activities.  Furthermore, the approach efficiently re-plans in response to updates in vehicle state

and world models, and is well suited to online operation aboard a robot.

Simulations exhibit that the new methodology succeeds where conventional path planners would fail.  Three plane-

tary-relevant field experiments demonstrate the power of mission-directed path planning in directing actual explora-

tion robots.  Offline mission-directed planning sustained a solar-powered rover in a 24-hour sun-synchronous

traverse. Online planning and re-planning enabled full navigational autonomy of over 1 kilometer, and supported the

execution of science activities distributed over hundreds of meters.
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Robotic rovers have been demonstrated as effective tools for planetary surface exploration on the moon [23] and on

Mars [43].  As a result of early success with the Pathfinder and Mars Exploration Rover missions, NASA has pro-

jected follow-on Mars rover missions with increasing technological and scientific ambition.  In the course of their

development, these programs will lay the foundation for robotic technology that will enable access to a far greater

range of locations on Mars and other bodies in the Solar System.  One of the most exciting research thrusts is the

development of robot navigational autonomy.  Path planning and execution components allow a robot to select and

navigate paths across planetary landscapes without human assistance.  This thesis contends that to serve future mis-

sions, the scope of automated reasoning for navigation must include mission relevant parameters like time, resources,

constraints and mission objectives.  This research achieves significant advances in autonomous navigation that is

cognizant of mission parameters and enables far more difficult surface operations than were previously possible.  

1.1 Planetary Rover Navigational Autonomy
What will be demanded of rover navigational autonomy in future missions? Before creating a vision for future navi-

gational autonomy, it is useful to assess the approaches taken in the most recent rover missions - the Mars Pathfinder

mission and the combined Mars Exploration Rover missions - as well as a state-of-the-art research system.  Over

these three examples, note the clear disparity between the growing sophistication of automated stationary activity

planning, and navigation planning, which continues to be restricted to obstacle avoidance. 

1.1.1 Mars Pathfinder: Sojourner Rover
Sojourner made the first steps toward rover navigational autonomy on another planet [43].  Sojourner relied heavily

on both the Pathfinder lander and a team of Earth-based engineers and scientists to enable travel to places of interest.

The Pathfinder lander produced stereo imagery used to generate three-dimensional models of the landing site terrain.

Human operators used a graphical user interface that combined the terrain model and a kinematic model of Sojourner

to estimate safe routes of travel - routes that minimized the traversal of rock obstacles and avoided regions that pre-
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vented direct line-of-sight between Sojourner and the Pathfinder lander (and hence prevent communications and pose

estimation via stereo vision).  Operators selected waypoints along these safe paths, at intervals of 1-2 meters, as inter-

mediate goals for autonomous navigation.  

Using cameras and laser stripers, Sojourner executed “Go To Waypoint”  commands by periodically assessing the dif-

ficulty of terrain ahead of the rover, and performing scripted avoidance maneuvers to circumnavigate obstacles.  The

rover avoided pursuing unreachable goals by abiding by a timeout clock that prevented travel after a set number of

hours.  Sojourner managed its resources during execution - it measured solar array current as a means of determining

whether sufficient power was available for various activities.  It also periodically checked its communications link

with the lander, and executed a path reversal contingency action if communications were lost.  Sols, or Martian days,

were typically devoted to one type of activity - either traverse, or one of many possible science or engineering activi-

ties.  Using this general approach, Sojourner covered more than 100 meters, all within 12 meters of the Pathfinder

lander (see Figure 1-1), over 83 sols. 

Figure 1-1: The Entire Pathfinder /Sojourner  Mission Path
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Summary of Pathfinder Observations:

• Human operators relied on a global model derived from Pathfinder lander stereo imagery for waypoint selection.

• Terrain traversability and communications line-of-sight geometric constraints were critical in selecting way-
points.

• Traverse activities were largely isolated from other focussed rover activities (e.g. science measurements), allow-
ing waypoint selection and activity sequencing to occur mostly independently.

• Terrain, time, resources and communications remained a consideration in deciding the next course of action dur-
ing traverse execution. 

• Simple terrain sensing and scripted obstacle avoidance behaviors, combined with human operators’  strong a pri-
ori knowledge of the terrain, enabled Sojourner to navigate confidently immediately around the lander.
Sojourner’s reliance on the lander for obstacle avoidance, state estimation and communications prevented it from
travelling well beyond the landing site.  

1.1.2 Mars Exploration Rovers: Spirit and Opportunity
The Mars Exploration Rover (MER) missions have far surpassed Pathfinder in autonomous operations on a planet.

Spirit and Opportunity are independent of their landing vehicles, allowing them to traverse far from their landing

sites.  The MER rovers produce their own stereo imagery, both from hazard cameras (mounted at fixed angles on the

rover) and the Pancam instrument (mounted on a mast pan/tilt mechanism).  As with Sojourner, MER operators use a

graphical user interface to assess the terrain around the rover, and hand-select waypoints that avoid hazardous terrain

on the way to long-distance goals.  Distant goals are selected using imagery collected from orbit.  During the Martian

winter months, when the sun was lowest on the horizon, rover operators were also forced to find paths and loiter

points that maximized the solar array’s exposure to sunlight.  Travel favored sun-facing slopes, and slopes facing

away from the sun were often removed from consideration.

Human operators must designate the navigation mode of the traverse - either “blind”  whereby the rover drives in a

straight path between waypoints without visual sensing, or in “autonomous navigation”  mode that enables autono-

mous closed-loop driving.  In a conservative strategy, blind mode driving is favored for the portion of a traverse near-

est the rover where a priori stereo data is most reliable, and autonomous navigation mode is used to safeguard the

rover from hazards where a priori data is least reliable.

Earth-based MER planning incorporates substantial autonomy.  The MAPGEN system [2] combines a plan editing

system called APGEN and automated reasoning derived from the EUROPA constraint-based planner [28].  Though

plans remain largely hand-edited, EUROPA enables active constraint enforcement during the edit process, completes

partial plans and repairs plans that violate constraints or resources, and provides operators with explanations for why

certain edits are illegal.
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During a traverse in autonomous navigation mode, the MER rovers create three-dimensional maps of the terrain at

periodic intervals, and automatically segment the maps into traversability “goodness”  levels.  The GESTALT algo-

rithm [19] evaluates the drive arcs available in the next move, and picks the best arc in terms of the goodness travers-

ability index.  At the time of publication of this document, Opportunity achieved a maximum autonomous drive

segment of 85 meters on Sol 82 (the 82nd Martian day of operations), and Spirit, a segment of 78 meters on its Sol

133 [26].

Summary of MER Observations:

• Human operators use orbital imagery and local models derived from rover stereo imagery to manually select
waypoints.

• Terrain traversability and sun, solar array and terrain geometry data are used to manually estimate the best path.  

Figure 1-2: Spir it Traverse Route, Sol 1 to Sol 160. MER demonstrates the scientific interest in regional 
exploration.  These distances might be traversed in a fraction of the time spent by Spir it, using greater  levels of 

navigational autonomy.
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• Loosely interleaved traverse and science activities force a greater consideration of activity interaction than for
Pathfinder.  Activity planning is conducted on Earth, but with elements of autonomy.  Traverse segments are
inserted into activity plans using distance measurements between waypoints to estimate the duration and energy
allocations for mobility segments.

• Spirit and Opportunity achieve waypoint goals autonomously, using local terrain evaluation.  However, beyond
consideration of the next drive arc, the rovers do not conduct planning to optimize travel to the next waypoint. 

The MER missions illustrate the current state-of-art in flight rover operations.  As of this writing, Spirit and Opportu-

nity have operated for over three times their baseline lifetime of 90 sols.  In 270 sols, they had covered a total of 3641

m and 1664 m, respectively and continue to operate productively.  Yet mission planning remains a very labor-inten-

sive activity, requiring extended support from large teams of experts. 

1.1.3 Experimental State of the Art: CLEaR
High levels of autonomy have been achieved on orbiting spacecraft, as demonstrated by the Deep Space 1 Remote

Agent Experiment [3].  However, the surface operations environment is far less predictable and, as described above,

has historically required far more human oversight.

Recent Earth-based experiments have demonstrated limited autonomous surface science operations.  As an example,

Estlin et al. have developed a system for planning and execution of position-distributed science measurements [12].

The system comprises CASPER, a constraint-based iterative-repair planner [9], the TDL task-based executive [62],

and a simple global path planner.  The system processes are coordinated under the CLEaR framework, which dele-

gates responsibilities between the planner and executive for plan repair in response to new data.  Rover experiments

on the Rocky 7 and 8 rovers in the JPL Mars Yard demonstrated the system’s ability to devise plans given a set of

high-level measurement goals distributed over several locations in rocky terrain.  The planner decomposed the high-

level goals into low-level activities, and selected the feasible subset of goals that maximized expected science return

and respected resource constraints.  In planning motion between measurement sites, CASPER called on the global

path planner to estimate the distance of travel.  Using models of the rover, CASPER then estimated the duration and

energy requirements for the traverse, and integrated the traverse segment as a token in the activity plan.  

During plan execution, the CLEaR system repaired plans in response to unanticipated data.  The Morphin local navi-

gation system [59] detected new obstacles that invalidated the original plans by requiring longer traverses between

measurements.  Measurement activities occasionally took longer to complete than anticipated.  In such cases, the

CLEaR system coordinated plan repair and removed lower-priority goals that could no longer be accomplished

within the allotted time. 

Summary of CLEaR Observations:



INTRODUCTION

6

• Goal selection was performed by human operators and paths between goals were not pre-planned.  However,
activity planning considered the expected time and energy costs for traverse activities, which was derived from
path planning that avoided all known obstacles.

• Traverse and science activities were closely interleaved, preventing an approach that planned them indepen-
dently.  The time and resource allocations of each activity strongly affected the feasibility of the others.  Despite
this, path planning to estimate the distance between goals was ignorant of mission goals, time, resource limita-
tions and geometric constraints.  

• Rocky 7, Rocky 8 and FIDO achieved the goal positions autonomously like the MER rovers.  Rover navigation
considered only the local terrain and immediate drive arcs.  The eventual paths followed by the rovers had little
or no connection to the paths generated to estimate the distance between goals in the planning phase.

The CLEaR example represents a major advance towards rover autonomy for localized operations.  The test scenarios

enabled automated planning and execution of a number of goals that would have occupied several sols of operations

in Pathfinder or MER.  For focussed site surveys, a system like CLEaR might enable a far greater collection of sci-

ence data, and could significantly reduce the number of operational staff needed to oversee daily activities.  However,

for science operations distributed over greater distances, path planning would have to take a far more prominent role

in planning and execution.  

In the context of missions conducted at greater scales, with more complex terrain, dynamic lighting and resources that

vary spatially and temporally, a plan that purely avoids terrain obstacles might, at best, be inefficient or operationally

infeasible and, at worst, might endanger the rover and the mission.

1.2 Future Rover Scenarios
Future rover missions will demand far more coordination between activity planning and navigation planning.  A

greater ambition for distance, and pressure to reduce operations staff, will require navigational autonomy over greater

distances - a schedule involving daily long-distance traverses cannot afford the labor of the detailed scrutiny seen in

MER.  Long distance traverses will intersect a variety of terrains, whose slope and orientation affect locomotion and

solar power.  Motion with respect to large-scale terrain features may entail driving through sunlight or communica-

tions shadows.  Missions will take greater advantage of available time, operating from dawn to dusk, and even at

night.  Diurnal variations will affect power, thermal and sensing systems.  Resources will continue to be in short sup-

ply.  The navigation route, timing and resource profile will inevitably affect the preconditions for downstream activi-

ties, and vice versa.  Under these projected circumstances, this thesis asserts the need for a new kind of path planning

that considers these factors - mission-directed path planning.

The next subsections introduce two mission scenarios that directly motivate mission-directed path planning.
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1.2.1 Mars Exploration
Mission-directed path planning is initially motivated by the needs of future missions to Mars, like Mobile Science

Laboratory [11], Mars Sample Return, and others.  These missions may send highly-capable rovers to Mars for multi-

year scientific surveys covering tens of kilometers of terrain.  Missions such as these would benefit from reliable,

effective rover autonomy, which would ease the planning workload of human operators in support of the missions for

years at a time, and which could make intelligent decisions about the use of time and resources in unexpected situa-

tions.  

Judging from Mars Pathfinder and the Mars Exploration Rover missions, energy management will continue to be a

prime concern for future missions.  Solar power remains a technologically simple means of generating power on

Mars.  A solar powered rover must consider the energy cost of its path of motion and determine how the time of travel

affects the orientation of its solar array relative to the sun in the sky.  Terrain may cast shadows on the route, particu-

larly at dawn and dusk.  At the end of each sol, a rover must recharge its batteries in preparation for survival or lim-

ited night operations.  A careful evaluation of hibernation sites may allow the rover to find slopes that receive

sunlight earlier the following morning, and tip the solar arrays to improve solar power throughout a sol. 

Nuclear thermoelectric power generation is gaining favor for rover power.  The clear advantage of nuclear power is

that it removes the dependence of rover power and heating on sunlight1.  Future rover missions may be able to oper-

ate at all times of day, virtually doubling the time efficiency of rover missions.  Nuclear generators might also enable

Figure 1-3: Future Mars missions will require rovers to access increasingly difficult ter rain.
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a rover to survive the cold and dark of an extended dust storm.  Furthermore, waste heat from the nuclear source can

be used directly to warm the rover; solar power must be converted to electricity to drive electric heaters.  However,

nuclear power may not completely solve the power management problem.  Thermoelectric generators may not have

sufficient output power to supply continuous locomotion or other high-power activities.  Extended high-power activ-

ities might have to be supplemented with battery or solar power.  A nuclear rover would still have to plan strategically

to take advantage of quiescent periods of the day and night to charge the batteries in anticipation of high-power peri-

ods.  Limited power and required charge cycles may actually prevent certain paths or greatly reduce daily range.  

Thermal control will be another issue influenced by exposure to the sun.  A nuclear powered rover, exposed to the

waste heat from inefficient thermoelectric cycles, might be prone to overheating.  In that case, a rover might adopt a

motion strategy that occasionally seeks shadow to avert thermal buildup.  If staying warm is the dominant thermal

challenge, staying in sunlight could save power that would otherwise go toward heating rover electronics.

1.2.2 Lunar Polar Circumnavigation
The moon's South Pole Aitken Basin is a probable target for future rovers.  Orbital missions over the past several

years indicate a high probability of water ice trapped in permanently shadowed regions of the lunar poles, and hence

present a strong scientific motivation for surface exploration (e.g. [13]).  During summer months at the pole, the sun

rises no higher than 1.5°, and from the point of view of an observer there would appear to skim over the complete

horizon in the course of the moon's 29.5-day lunar month [23].  A combination of axial tilt and orbital eccentricity

cause the Earth to inscribe a tilted elliptical path in the sky that rises to 6.7° above the horizon at its high point and

falls to 6.7° below the horizon roughly two weeks later.  The low sun and Earth elevation angles, combined with the

South Pole’s rough terrain, are cause for widespread and highly varied sun and communications shadowing.  Shadow

patterns change continually with the moon's rotation and progress of the Earth/moon system about the sun.

A rover in this challenging environment could not survive without a path planner whose solutions maximize sun

exposure and communications while satisfying operational constraints.  Planning could discover paths that follow the

course of sunlit regions to enable solar power and avoid extended exposure to the cold of lunar night.  Such paths

could also follow regions with direct line-of-sight to the Earth and relay spacecraft to allow high-rate imagery, teleop-

erated control and continual science data return.  Mission objectives might force the planner to deviate from these

zones of relative safety.  Entering a region of permanent dark to look for signs of water ice would force the rover to

abandon sunlight and to enter low-lying areas where communications might be occluded by surrounding terrain.  A

1. Nuclear generators suffer from several disadvantages - launch approval for nuclear devices is extremely difficult, and 
generators are only made in a few different sizes which may be poorly matched to rover capabilities and demands.
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mission planner would aid in timing this foray to maximize science data collection and rover contact while maintain-

ing an adequate battery state-of-charge and maximizing the chance of survival.

1.3 Mission-Directed Path Planning
As part of a broad effort towards planetary rover autonomy, this research introduces a new ideal for path-based rea-

soning based on the following five desirable attributes:

1.3.1 Over-the-Horizon Foresight
A critical task in achieving rover autonomy is automatic route planning between a landing site and operations sites.

To date, path planning research for planetary rovers has focused on the problem of navigating locally through fields

of rock obstacles en route to a global position goal, over tens of meters.   In upcoming missions, long-distance and

long-duration path planning will enable robots to travel between landing sites and operations sites.  To target specific

locations for scientific study, a robot must be able to traverse at least the size of the landing error ellipse, which could

be tens of kilometers.  To complement local path planning strategies, tailored for travel amongst rocks at or below the

scale of the rover, path planning must utilize regional map data generated from orbit or during descent.  Regional data

will enable a rover to anticipate opportunities and hazards and to incorporate these predictions into path selection.

Figure 1-4: The Lunar  Nor th Pole.  Future exploration missions may investigate permanently shadowed 
craters in search of water  ice deposits.  Such operations would require detailed traverse planning to anticipate 

ter rain hazards, power  availability, thermal transitions and areas of sunlight and shadow for  science. 
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Large scale and duration introduce factors absent in local path planning, including navigation around and through

large-scale terrain, significant changes in line-of-sight geometry, and time-varying lighting stemming from planetary

motion.  Long treks anticipated for future missions will demand that rover planning consider these issues.

1.3.2 Temporal Cognizance
Time is as important to path planning as it is to mission activity planning.  Planetary motion defines the gross sched-

ule for daylight, solar flux and opportunities for communications downlinks to Earth.  A planner that considers the

paths of the sun, Earth and orbiting relay spacecraft, and determines whether they are shadowed or visible at specific

times will be better able to select routes that provide sufficient energy or enable communications at different times of

day.  A path planner must also ensure that paths obey time-dependent operational constraints.  As examples, a science

activity may only be successful under particular time-dependent lighting or thermal conditions; communications

passes often require both geometric visibility and ground antenna availability.  A path planner that operates in a mis-

sion context must use time efficiently and effectively, and tailor its paths to respect the operational constraints on

other activities.

1.3.3 Resource Cognizance
Resource management is essential to rover self-sufficiency.  Resources take many forms, from metric resources like

battery energy and onboard memory, to unit resources like cameras, whose usage state is Boolean.  The favored

approach for rover resource management is through AI planning and scheduling (see [3] [10]).  This approach proves

effective in situations where path or orbit selection and resource management are independent.  In surface vehicle

operations, a tighter coupling of path and resource considerations offers distinct advantages over the traditional

approach. Many resource expenses and gains for rovers are path-dependent and cannot be adequately considered out-

side a path planner. In the case of energy management, these include locomotion energy as a function of terrain and

solar energy as a function of position, orientation and time.  A rover must consider the effects of path choices on

energy balance to determine which paths are feasible or optimal.

1.3.4 Uncertainty Robustness
It is essential that a rover planner be robust to uncertainty.  Knowledge of the area of operations will be limited.  Envi-

ronment and rover models will be purposely coarse to ease the computational burden of considering long-distance

and long duration paths.  Rover behavior will be impossible to predict accurately.  A robot that cannot adapt to unex-

pected events will, at best, be unable to operate for long durations because plans quickly become invalid, and at

worst, may execute inappropriate or dangerous actions that could result in mission failure.  At minimum, a robot

should be able to perform quick re-planning when its state strays outside acceptable bounds of an earlier plan, or in

response to new information about itself, the environment or goals.  However, by anticipating the effects of uncer-
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tainty sources on the cost of future actions, a robot can select plans that avoid hazardous situations with sufficient, but

not overly conservative margins.

1.3.5 Mission Directedness
Robot software should be designed to maximize the chances of achieving mission objectives.  A path planner must

balance a number of competing mission pressures, for example to maximize science data return, to maintain adequate

battery levels, or to remain safe, all of which impact the mission outcome.  A path planner with mission focus must

represent all relevant activities - navigation, science, power generation to name a few - in a consistent framework.

Navigation affects the timing of science activities, and could enable or prevent opportunities for battery charging.

The location, timing and resource requirements for science activities impact navigation and may determine whether

batteries require dedicated charge time.  By reasoning about all significant activities, at the appropriate level of gran-

ularity, a path planner can correctly integrate route selection, timing, and energy management into a cohesive mission

profile.

In considering operations over long distance and duration, it might be inappropriate to select a typical path metric

such as distance or energy to evaluate plans, or alternatively, to select an arbitrary weighting to define the balance

between several desired metrics.  If the value of mission objectives is encoded in terms of reward, then the appropri-

ate balance between these factors is achieved by maximizing the expected reward over the path.  Suddenly, a single

framework promotes the correct strategy in every situation.  If a higher reward specifies the shortest path, the planner

will seek it.  If low batteries threaten rover survival, the planner will develop a course of action to charge to adequate

levels as it proceeds to the goals.  Finally, a rover planner would benefit from an ability to balance reward against

risk.  The expected return from a mission does not take into account the variance of reward.  Avoiding undue risk may

entail taking a route for which expected reward is lower, but for which the chances of failure are lower.  A robot that

can evaluate risk, and balance it against potential rewards could adjust its behavior according to mission preferences.

In combination, the above five attributes define an ideal for rover navigational autonomy - mission-directed path

planning.  Mission-directed path planning will enable a rover to autonomously achieve mission objectives, enforce

operational constraints, and combat the effects of uncertainty under a single framework, and optimize plans in terms

of probability of mission success.  This thesis has developed an initial capability for mission-directed path planning

embodying elements of each characteristic:

Over-the-Hor izon Foresight: This research develops models and planning approaches that consider large-scale ter-

rain, and execution approaches that integrate naturally with local navigation planners.
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Temporal Cognizance: This research enables planning in an absolute time frame, and develops models and planning

approaches that consider time-varying sunlight and solar power and absolute operational constraints.  

Resource Cognizance: This research presents two approaches to optimizing path selection in terms of renewable

stored energy.  

Uncer tainty Robustness: The research presents a strategy for fast re-planning in response to updates in vehicle state

and localized changes in models of the environment.

Mission Directedness: This research integrates planning for navigation, temporal path planning, path-based resource

management and satisfaction of constraints on mission activities.  

1.4 Thesis Statement
This thesis asserts that mission-directed path planning achieves a significant, practical advance in planetary rover

autonomy, and enables a new, challenging class of planetary surface rover missions.

1.5 Assumptions
Planning will occur  at a spatial resolution at which the size of the vehicle and vehicle steer ing radii are insignif-

icant. 

Planning will consider  scales and vehicle speeds at which dynamics are insignificant.

Planning will not solve the general planning and scheduling problem.

This research will not consider  adversar ial domains.

The research will use only deterministic models for  planning.

Multi-goal planning will not solve or  approximate solutions to the Traveling Salesman Problem.

The research will only consider  optimal or  resolution-optimal planning approaches.

1.6 Dissertation Roadmap
Having introduced the concepts of mission-directed path planning and established the assertions of this research, the

remaining chapters answer the following questions: 
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• What techniques currently exist, and how do they fall short in solving this class of problems? 

• What approach does this research take?

• How does the approach perform in laboratory examples?

• Is the technique useful in real-world problems? 

Chapter 2 is an overview of current planning techniques relevant to path planning considering time, resources and

constraints.  

The work in this thesis relies heavily on incremental search strategies.  Chapter 3 describes a previously-developed

approach to incremental search, upon which this thesis builds.  

Chapter 4 is the heart of the thesis.  It further motivates and develops the ideas of mission-directed path planning, and

introduces the approach that is the foundation of this work. The TEMPEST planner, one of the research contributions,

is a representative mission-directed path planner. The second half of Chapter 4 presents experiments done in simula-

tion that demonstrate the utility of TEMPEST and mission-directed path planning in general on space-relevant prob-

lems.  

The highlights of this research are the demonstrations of TEMPEST in support of solar-powered robots in highly

space-relevant terrestrial field trials.  Chapter 5 illustrates how TEMPEST solved for plans that enabled two 24-hour,

multi-kilometer traverses exhibiting a new large scale motion strategy for polar exploration called Sun-Synchronous

Navigation.  In a second field experiment, described in Chapter 6, TEMPEST generated plans to interleave long-dis-

tance routes with science activities for two solar-powered robots in support of robotic astrobiology.

Chapter 7 discusses the findings of this research, presents its principal contributions, and suggests several avenues of

future research.  
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The goal of this chapter is to prove the need for this work and its novelty relative to past approaches.  The following

sections examine past accomplishments in the fields of path planning and classical planning and scheduling and point

out their shortcomings in the context of mission-level path planning.  

2.1 Deterministic Path Planning
The objective of robot path planning is to determine a trajectory that achieves a goal state while avoiding contact with

obstacles. Path planning typically occurs in the configuration space, whose dimensions each correspond to a degree

of freedom in the robot.  Motion sequences in the real world define trajectories in configuration space. Furthermore,

obstacles in the real world map to regions in configuration space encoding the ranges of state variables over which

motion is not legal.  Path planning algorithms follow three basic approaches - cell decomposition, roadmap methods,

and potential field techniques.  Latombe [38] treats each in significant depth.  A generalization of the problem assigns

weights (non-uniformly) to all regions of the configuration space.  The cost over a trajectory is the integration of the

weights over the path.  Obstacles have infinitely large weights, and free space has weight of zero.  The planning prob-

lem then becomes to find the path that minimizes the cost between two points. 

2.1.1 Cell Decomposition
Defining a regular grid or lattice that decomposes a space into regularly-spaced regions is formally called approxi-

mate cell decomposition.  Grids are favored from a software implementation standpoint since they naturally map to

array data structures and cell adjacency is implicitly encoded.  Because a grid pattern only approximates the bound-

aries of free space, approximate cell decomposition techniques are incomplete.  At the expense of time and memory,

grids can be made arbitrarily fine, but where large regions of a space are homogeneous, grids are particularly memory

inefficient. In many representations, motion in a regular grid is constrained to either the four-connected or eight-con-

nected graph directly linking adjacent cells.  As a result, planning in a grid cannot find the minimum-distance path

between two points unless they lie along the directions of allowable motion. 

2. Related Work
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Multi-resolution grids extend the regular grid approach to improve memory efficiency for spaces that contain large

regions of free space and obstacles.  In two dimensions, a space is initially divided using the coarsest possible square

cells. Those cells that intersect both free space and obstacle space are subdivided into four equal cells each half the

size of the original.  The process continues until remaining cells sharing free and obstacle space are of the minimum

allowable cell size and cannot be divided further.  The decomposition can be represented as a quadtree, where parent

nodes are large cells and child nodes are the smaller cells.  The result is that large regions of free space are repre-

sented efficiently, and borders between free and obstacle space are represented finely.  Szczerba and Chen developed

a further refinement, the framed quadtree [68], which provides highest-resolution cells along the borders of all coarse

cells to enable closer approximations to the shortest-distance path on a multi-resolution grid.

Used first by Chatila [8], exact cell decompositions divide a space into cells whose union is exactly the free space.

The borders of the cells typically correspond to the borders of free space, or mark other properties of the obstacle

shape.  Because the cells match the free space, the technique is complete provided the search over the cell connectiv-

ity graph is complete.  

None of the cell decomposition approaches were conceived with natural terrain path planning in mind.  Though one

could imagine a specialized decomposition for natural terrain, approximate decomposition techniques, especially reg-

ular grids, are attractive for their simplicity.  Perhaps more importantly, existing data for natural terrain is almost uni-

versally stored in raster-patterned maps that form a regular grid.  

2.1.2 Roadmap Approaches
Voronoi diagrams are examples of topological mappings, called retractions, that map the free configuration space to a

one-dimensional subset [48].  The retraction is a “ roadmap”  graph that can be searched for a feasible or optimal path.

Voronoi diagrams have the advantage of maintaining the greatest distance between a robot following the diagram and

obstacles.  Extensions to higher than two dimensions are available but are far more complicated to define.  It is not

clear how the Voronoi approach might be used in weighted spaces or in the context of natural terrain. 

In two-dimensional spaces with polygonal obstacles, the visibility graph approach introduced by Nilsson [46] defines

line segments between all obstacle vertex pairs that are “visible”  to each other (i.e. whose inter-vertex line segments

cross only free space). Adding the start and goal state as extra vertices, path planning becomes searching the resulting

graph for the sequence of edges that connects the start and goal.  The graph is guaranteed to contain the minimum-

distance path between points.  The approach is simple for two-dimensional planning around obstacles with distinct

vertices, but is poorly defined in spaces with rounded obstacles, and may not lead to efficient paths in higher-dimen-

sional spaces.
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One might also envision a specialized roadmap for travel on natural terrain.  

2.1.3 Potential Fields
Potential field algorithms [33] plan by superposing an attractive field centered at a global goal with repulsive fields

surrounding obstacles. A “plan”  simply follows the steepest resulting gradient to the goal. The approach is extremely

simple to encode, but under the greedy, steepest descent strategy, is vulnerable to local minima, and hence is incom-

plete. 

2.2 Randomized Path Planning
Randomized search techniques were developed to address motion planning for robots with many degrees of freedom

(e.g. snake robots), and hence that have high-dimensional configuration spaces.  Randomized algorithms trade a sys-

tematic, optimal approach for exploring a space for a stochastic approach that enables rapid exploration of very large

state spaces. While deterministic, systematic search is complete and sometimes optimal, randomized techniques have

probabilistic bounds on time to reach a solution, and are generally not optimal.  However, for high-dimensional prob-

lems where finding any feasible path is sufficient, randomized approaches are very effective.

2.2.1 Rapidly Exploring Random Trees
LaValle’s rapidly-exploring random trees (RRT’s) are incrementally constructed search trees that attempt to rapidly

and uniformly search the state space [36].  Their benefits include guaranteed convergence to a uniform coverage of

any non-convex space. The basic technique seeds a graph with a node at the start state.  A new point is randomly

selected from a uniform distribution over the search space.  In a greedy fashion, the node in the graph nearest to the

random point is then expanded in the direction of the point to a non-collision state, becoming a new node in the

graph.  The process continues until the graph connects the start state to the goal state. Despite the greedy approach,

the algorithm avoids local minima in high dimensions. Kuffner and LaValle present a follow-on algorithm, RRT-Con-

nect [35], which grows an RRT from both the start and goal and attempts to greedily connect them together. Though

non-optimal and incomplete, the algorithms are probabilistically complete and are efficient in practice for spaces with

high dimensions (e.g. 10 or more).

2.3 Temporal Path Planning
Temporal path planning seeks time-optimal solutions, typically in a dynamic environment.  The bulk of research in

this area has been directed towards robotic manipulation and simple vehicle control, including dynamics and moving

obstacles.

Bobrow et al. [5] approach the time-optimal path problem for a manipulator by dividing the problem into two steps.

First, the path of the manipulator end effector is planned, using kinematic constraints, to avoid obstacles in the envi-
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ronment.  Second, an algorithm solves for the optimal velocity profile, consisting of alternating segments of maxi-

mum acceleration and deceleration (bang-bang control).  The algorithm considers kinematics, full manipulator

dynamics, and joint torque limits that are arbitrary functions of the manipulator state.  The dynamics and constraints

result in a maximum velocity profile over the path. The optimal velocity profile follows the maximum velocity as

closely as possible using the bang-bang approach.  Though the approach provides a convenient way to decompose the

optimal control problem, the assumed initial path may have a strong influence on the resulting maximum allowable

velocity profile, and hence on the optimal solution.  A global consideration of path and velocity might lead to signifi-

cant improvements in performance.  The Shiller and Gwo paper mentioned earlier [58] presents the analog to [5] for

a robotic vehicle on natural terrain.  However, unlike in the manipulation paper, the authors initially solve for the top

several minimum-distance paths, then determine the optimal velocity profiles for each.  This acknowledges that the

initial path selection is not straightforward and that the minimum-distance path is not necessarily the optimal-time

path.

Fraichard [17] introduces the concept of state-time space to solve temporal path plans for a 2 DOF non-holonomic

vehicle.  As in the work by Bobrow et al. [5], a path is selected in free space that avoids all static obstacles.  Defining

a parameter of path length along the path, the author defines a state-time space comprising dimensions in the parame-

ter, its first derivative and time.  Dynamic obstacles can be represented as volumes in this new space.  A second step

discretizes the space and evaluates canonical trajectories in terms of dynamic and collision constraints to derive

approximately time-optimal trajectories.  The obvious shortfall is that the path is pre-selected with no consideration

of vehicle or obstacle dynamics.  However, this thesis draws upon the notions of a state-time space or configuration-

time space.

Fiorini and Shiller [16] define the concept of velocity obstacles to generate paths that avoid obstacles using the veloc-

ity space.  The approach avoids path integration to predict robot position, but rather defines regions of the velocity

space that predict imminent collisions.  By superimposing regions of velocity that are accessible based on dynamic

constraints, the technique is able to generate velocity profiles that avoid the obstacles with physically achievable

maneuvers.  Though not guaranteed to be optimal, this approach cleverly removes some of the complication of repre-

sentations that consider the state-time space.  It performs well for obstacle avoidance, but is not suited to the problem

of planning through dynamically-varying cost regions.

By operating at a level in which rover dynamics can be ignored, the research in this thesis is able to avoid some of the

complexity addressed in the above examples.  However, time-optimality, and certainly time-dependence will remain

important in many applications, and must be balanced against different competing factors, particularly finite

resources or other performance constraints and mission objectives.  All the above approaches take a hierarchical

approach: the path is selected based only on avoiding static obstacles.  The velocity profile is then selected to avoid
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the dynamic ones.  This is seen as a substantial shortcoming.  In the path-based resource management problem, path

and timing must be considered simultaneously.

2.4 Resource Path Planning
In the realm of analyzing rover resource collection and usage, Shillcut [57] combines terrain, rover and ephemeris

models to determine the evolution of solar array sun exposure and locomotion power for various coverage search pat-

terns.  The research rates the coverage patterns based on driving distance each requires as compared to solar energy

collection each enables, as a function of time and rover orientation.  Though the work stops short of planning paths

based on this analysis, it provides motivation for integrated path planning and resource management.

Several other authors have considered planning to minimize the energy expense (work) over a terrain path

[52][54][67].  These are described in more depth in Section 2.7.2.

2.5 Path Planning in Unknown Environments
Nourbakhsh and Genesereth propose an assumptive planning architecture to create limited conditional plans [47].  A

complete conditional plan must consider all possible initial conditions, percepts and actions in a search for an optimal

plan.  As an alternative, the authors suggest a principled way to make simplifying assumptions about possible initial

conditions, the effects of actions and the state of the robot given percepts, and yet to preserve plan correctness and

goal-reachability in the face of wrong assumptions.  In short, each function must return a proper subset of the actual

states or action effects.  Along with functions that make assumptions about initial state, actions and percepts, the

architecture requires a function that can detect irreversible chains of actions (to prevent making an irreversible incor-

rect decision), and another function that detects false goals (to identify cases where actions must continue despite the

sensors’  indication of goal completion).  The authors present an algorithm that interleaves planning and execution so

that at each step, the robot executes the first action, senses its environment and re-plans the remainder.  This reduces

the requirements on the irreversible chain detector to look only one step ahead.  The strategy was used in several suc-

cessful robot control architectures in indoor environments, allowing the robots to act optimally in navigation tasks.

Stentz presents the D* algorithm, which is designed for global path planning in partially-known environments.  It is a

heuristic search algorithm, like A* , that visits the minimum number of states in finding an optimal solution, but gen-

eralizes to enable optimally efficient path repair in response to changing cost information [63][64][65]. Where A*  is

forced to plan from scratch if any state transition cost changes, D*  determines which nodes in the graph are affected

by the changes, and isolates the repairs to those nodes. The effect is a dramatic improvement, as many as two orders

of magnitude, in speed over initial planning for cost map changes local to the robot. The algorithm has been used suc-

cessfully in a number of real-world applications.  An algorithm presented by Koenig and Likhachev [34], D*  Lite,

has more recently achieved even better performance than D*  under a simpler design that more closely mimics A*.
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The re-planning behaviors of D* and D* Lite are ideal for mission-directed path planning. However, neither enables

global constraint satisfaction, nor are they optimized for use in state spaces of dimensionality greater than two.

A large body of research addresses the associated problem of planning under uncertainty, both for path planning and

more generally.  Though a treatment of uncertainty is not the focus of this thesis, notable path planning related works

include those by LaValle and Hutchinson [37], Takeda, Facchinetti and Latombe [69], Wellman, Ford and Larson

[76], Roy et al [55], Ferguson and Stentz [14] and Gonzalez and Stentz [21].

2.6 Path Planning Under Global Constraints
Standard heuristic search algorithms, like A*, assume the path metric can be specified in terms of a scalar-valued

objective function that encodes cost over paths.  However, in many applications, several disparate factors contribute

to cost, promoting many to use a sum of weighted costs formulation.  However, if any of the costs are non-linear, it is

not immediately clear how to select weights in order to prioritize the factors to match the objectives of the search.  A

more natural approach is to specify constraints on these factors, and to plan paths that satisfy the constraints over the

path.  The following research is directed towards this approach.

Logan and Alechina [40] describe an extension of A*  called A*  with bounded costs, or ABC.  ABC allows inequality

constraints (i.e. cost < X), equality constraints (feature = Y), and optimality constraints (cost < optimum + ) on a list

of path costs that are tracked through each path transition.  Using a user-supplied priority on these constraints, and an

admissible heuristic on costs, ABC follows an algorithm very similar to A*  that is both complete and optimal1.  A

path p is preferred to path p’  if it has the same or better values for all of its cost functions.  Distinct from A*, if both

paths terminate in the same state, then p will dominate p’ , and hence will always represent an equal or better solution

than will p’ .  In such cases, the dominated states can be legally removed from consideration while preserving optimal-

ity and completeness.  All undominated paths must be tracked through the search.  In under-constrained problems, the

algorithm will add slack in prioritized constraints.  The advantage of this approach is a clear flexibility in specifying

the requirements for path under a framework that is natural for many applications.  However, it is not clear from the

paper how the computational and storage complexity increases with numbers and types of constraints.  

Stentz also addresses the global path constraint problem, and adds a rapid re-planning feature to address applications

in environments with incomplete or uncertain information [66].  The CD*  algorithm uses a weighting factor to bal-

ance an optimality cost and a feasibility (global constraint) cost.  CD* performs a binary search on the weighting fac-

tor to find the path that is optimal in the weight space under the global constraint.  At each depth in the tree CD* uses

D*  [65] to plan an optimal path that satisfies the feasibility cost to within a weight factor error that decreases by a fac-

1. In fact, in the degenerate case where ABC has a single optimization constraint, its operation is identical to that of A*

ε
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tor of two, on average, with each iteration.  In re-planning, CD* re-uses the graphs created by D* in the initial binary

search to find a new weight, taking advantage of the fast re-planning characteristics of D* . Changing the weight of a

D*  graph is equivalent to re-specifying all the costs in the graph, eliminating the benefits of D* . Often, very few of

the weights change with updates to the costs, and so CD*  is often far more efficient than planning from scratch with

A* .  At the worst case, the weight must be adjusted at the root of the binary tree, forcing CD* to plan the entire prob-

lem from scratch. The author expects that an extension to multiple constraints will add a factor of the binary search

depth D in run-time complexity.  

Finally, under an approach similar to D* itself, Stentz and Tompkins offer an algorithm called Incremental Search

Engine (Chapter 3) that provides optimal planning and re-planning under multiple global constraints in high-dimen-

sional state spaces, yet with greater predictability in performance than CD*.  As with D*, ISE runs in a fashion very

similar to A*  for initial planning, and re-plans efficiently because it determines which portions of the search space are

affected by new information and limits the recomputation to those portions. ISE is space efficient through the use of

dynamic state generation, state dominance and pruning within resolution equivalence classes.  

Modeling constraints is essential for managing resources.  The ABC algorithm is attractive because it appears to

allow a very flexible means of specifying constraints on a path planning problem, and achieving combinations of

optimality, constraints and slack.  However, because it mimics the A*  algorithm, changes to underlying models will

often entail full re-plans over the state space.  In this regard, CD* is an interesting alternative.  However, its current

restriction to 2-D search and single constraints may limit its value for the high dimensionality of this problem.  Of the

three approaches, ISE is the most relevant to this research because it combines optimal and complete search, compat-

ibility with multi-dimensional state spaces and fast re-planning.  As a result, it was adopted for use in this research.

Chapter 3 describes ISE in full detail and demonstrates its performance under varying conditions.

2.7 Applied Path Planning: Natural Terrain
Roboticists have applied path planning to the problem of finding safe and optimal paths through rough terrain, both

for military and space applications.  The majority of research has focused on the local terrain problem, though a few

efforts have developed approaches for global, long-distance planning. Note that the primary research issue in these

examples is to measure and represent natural terrain, and that finding the plan itself invokes a more general path

search algorithm.

2.7.1 Local Path Planning
In the local problem, knowledge of the terrain is typically limited to that derived from rover sensor measurements,

and hence is limited to areas immediately around the rover path.  Rover navigation schemes often interleave sensing,

planning and execution at high frequencies to re-assess local rocks in the context of finding a minimum-cost path to a
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global goal position.  Furthermore, local methods often represent the rover’s volume (as opposed to representing the

rover as a point), kinematic constraints, and occasionally, dynamic constraints. 

Given the recent pull for rover technology applicable

to Mars exploration, research has sought to achieve

the baseline required performance for the NASA

Mars Exploration Rover mission [11]: local naviga-

tional autonomy for up to 100 meters over rough ter-

rain.  

RoverBug, as described by Laubach and Burdick

[39], utilizes local tangent graphs to construct mini-

mum-distance paths about obstacles detected by rover

sensors with limited range and fields-of-view. Using a

dual strategy of “motion-to-goal”  and “boundary fol-

lowing” , the algorithm has successfully demonstrated

path planning and execution aboard the JPL Rocky 7

Mars rover prototype. 

Howard and colleagues present a fuzzy logic terrain classification methodology for mobile robot navigation [24].

Using vision sensing, the approach loosely quantifies several terrain characteristics - terrain roughness, slope, discon-

tinuity, and hardness - using fuzzy variables.  The method composes the resulting vector of fuzzy variables and

applies a set of rules to classify the traversability of the terrain.  The authors claim a greater stability in classifying ter-

rain traversability using noisy sensors than with analytical approaches. 

Morphin, a local path planner presented originally by Simmons et al., and in refined form by Singh et al. [59], uses

data from stereo vision or other 3D sensors to track local terrain traversability.  A terrain classifier uses stereo range

data to derive a “goodness”  measure comprising ground plane orientation and surface roughness, and measurement

certainty, over grid cells approximately the size of the robot (see Figure 2-1).  Morphin merges goodness maps over

time, by taking the weighted average of the goodness values, scaled by the certainty measures.  It de-values older data

by reducing their certainty measures as a function of distance traveled since the measurements.  It projects a predeter-

mined set of discrete drive arcs over this local map and computes the goodness and certainty of each arc. Arcs inter-

secting obstacles or entering entirely unknown regions are vetoed.  The overall value of an arc is computed as the

multiplication of its goodness and certainty.  This local scheme has been successfully demonstrated, in conjunction

with a D*-based global path planner, on a CMU ATRV robot [59], on the CMU Hyperion rover [78], and for tens of

Figure 2-1: An example of ter rain classification and 
arc evaluation from the CMU Mars Autonomy 

software by Singh et al. [59] 
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kilometers on a Honda ATV automated for the DARPA PerceptOR program [32].  A modified version of Morphin,

called GESTALT, provides local navigational autonomy for the NASA Mars Exploration Rovers [19]. 

Both RoverBug and the Morphin-based approaches coarsely categorize terrain for traversability, but generally avoid

the roughest terrain.  Other approaches are working to plan paths over rough terrain, and consider a greater number of

factors including vehicle kinematics and dynamics.  LAAS has developed a method for planning over rough terrain in

terms of rover kinematic constraints, described in Hait and Simeon [22].  Assuming an a priori model of the terrain,

the method estimates how a rover will sit on terrain by “placing”  the rover over the entire discretized terrain map.

Given estimated wheel contact, the software checks for violations in joint limits and under-body clearance.  Those

cells where placement yields no violations are used for planning using terrain roughness and distance metrics.  

Kinematics often impose constraints that must be considered in planning local paths. With automated fork trucks in

mind, Kelly and Nagy developed an approach for generating non-holonomic trajectories reactively [31].  Rather than

solve the general non-holonomic path planning problem, their software operates on polynomial spiral trajectories.

The spiral primitive has the advantage of roughly spanning the space of feasible steering controls while being

described by only two parameters. Optimal control laws on the polynomial coefficient parameters transform to a non-

linear programming problem which can be solved very quickly on the spiral primitives.  Their results display an abil-

ity to generate and evaluate trajectories in under one millisecond.  This approach was successfully adapted for use in

rough terrain navigation for the DARPA PerceptOR program [32].

Researchers at MIT are developing physics-based motion planners for planetary rovers that consider vehicle statics,

kinematics and dynamics and soil mechanical properties [25].  This approach hopes to provide a physics-grounded

means of planning paths in rough terrain such as steep embankments where simple heuristic classifications of terrain

might fail.  Research by Urmson is integrating randomized kinodynamic projections of the rover state to path plan-

ning to enable travel over rough terrain that requires vehicle inertia to succeed [72].

Wellington and Stentz present an adaptive technique for local navigation through vegetated terrain [75].  In the pres-

ence of tall grass, bushes and other vegetation on terrain in front of a vehicle, laser scanning and radar data cannot

easily deduce the height of the weight bearing surface.  Some measurements reflect the full height of the vegetation,

while others may represent mid-level branches and possibly the ground.  The approach demonstrates both off-line and

on-line learning to determine the height of the ground from this ambiguous data.  With an estimated map of the

ground height derived from learned experience, software samples from the range of possible future control actions,

taking into account steering dynamics, to project a set of possible drive arcs.  The software “places”  a kinematic

model of the vehicle onto the terrain model at regular intervals along the arcs to test for violations of roll and pitch
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limits, mechanism limits, and underbody ground contact (similar to [22]).  A simple planner selects the non-violating

arc that produces the lowest cost to a given goal.

All the planners mentioned above are solutions to varying forms of the local path planning problem.  Their sensor-

based models of rover-scale terrain are of limited use in over-the-horizon navigation or in sensing, modeling or iden-

tifying large-scale terrain.  Though some might address obstacles of arbitrary size, perhaps only [25] and [72] consid-

ers large-scale terrain in a more general framework of slopes and their effect on static stability, traction and

locomotion energy, as a function of the rover.  None of the local planners address time-varying parameters, for exam-

ple sunlight, in path selection.  Furthermore, these approaches attempt to reduce energy expense by minimizing path

length and avoiding rough terrain, but ignore the non-monotonicity introduced by energy collection and the global

constraint imposed by limits in storage capacity.  Finally, each of these methods only partially address uncertainty.

For example, the D*-based method interleaves sensing, re-planning and action at a high frequency to restrict execu-

tion of plans to the immediate proximity of the rover, where data is most certain and complete.  The LAAS approach

anticipates uncertainty in rover state by ensuring that configurations over a corridor of positions and orientations

about the path also satisfy kinematic constraints.  However, in avoiding probabilistic or worst-case uncertainty

growth over the path, its plan may not adequately prepare for the range of possible outcomes.

2.7.2 Global Path Planning
Long-distance path planning is characterized by a greater a priori knowledge of terrain over vast distances than for

local planning, albeit at very low resolution.  At large scales with low-resolution terrain data, it becomes impractical

to consider obstacles at the scale of the rover, but becomes more convenient to model travel more abstractly.  Terrain

map grid cells define regions of homogeneous terrain properties, and the robot is reduced to a point object travelling

from cell to cell.

Shiller and Gwo [58] present a vehicle path planning problem in which path and vehicle speed are optimized.  The

approach ignores vehicle size relative to terrain, but does model basic vehicle steering kinematics and dynamics.

Based on the approach of Bobrow et al. [5], the technique splits the time-optimal problem into two by first determin-

ing the top several minimum distance paths, and then optimizing each of their velocity profiles using kinematics,

dynamics and dynamic constraints.  An obvious disadvantage with this sequential approach is that the minimum-dis-

tance path is not necessarily the time-optimal path.  Aside from the approach used to optimize the path, an interesting

feature of the approach is the use of B-spline patches and B-splines to model the terrain and paths, repectively.  These

continuous parametric functions enable a smooth integration of trajectories, but prevent optimization using gradient

descent since the parameters to be optimized are the control points for the spline curves.
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Another approach, by Pai and Reissell, represents terrain at multiple resolutions using wavelets, and plans paths hier-

archically from the coarsest to finest maps [49].  The authors show that when applying wavelet filters in natural ter-

rain, the wavelet coefficients in smooth areas shrink quickly at greater filtering levels (i.e. at higher resolutions),

while in rough terrain, coefficients persist through many iterations.  Therefore, in smoother areas, the lower-resolu-

tion wavelet levels match the original data well, while in rough areas, the coarse levels model the original terrain with

significant error.  Under this observation, the authors use an error measure at coarse terrain levels, a quantity that falls

directly from the wavelet filtering operation, as a metric for terrain smoothness.  Using the smooth terrain metric, the

planning algorithm seeks smoothness-optimal paths at the lowest resolution, and then advances to higher resolutions

in an “anytime”  manner to refine the original path.  The authors also examine various means of computing cumula-

tive path cost, and derive a generalized worst cost function that heuristically prefers safest paths.  Under experiments

using digital elevation models of actual terrain, the algorithm appears to select the best paths through terrain.  The

approach here is novel, and potentially very useful in this work as a means of terrain analysis.  However, it takes a

heuristic rather than model-based approach to cost calculations, so is difficult to use in conjunction with power esti-

mation that is required of an energy-cognizant path planner.

As mentioned in Section 2.1.1, grid-based representations suffer from memory inefficiency and the restriction of

motion to paths between cell centers (or grid vertices).  Another body of work plans paths on terrain approximated by

polygonal regions with homogenous properties.  This representation efficiently maps homogeneous regions and

allows motion to occur in arbitrary directions.  Richbourg et al. [52] introduce a technique for finding optimal paths,

in terms of energy expense, where costs within the regions are isotropic - where the path cost per unit distance does

not vary with path heading. They show that optimal paths consist of straight line segments across regions and direc-

tion changes between regions governed by Snell’s Law from optics literature.  This restriction of paths to Snell’s Law

trajectories, combined with several pruning rules, enables an efficient search of the region-wise continuous space for

optimal paths.  Rowe and Ross [54] extend this work, again for minimum energy expense paths, to travel through

regions of anisotropic costs - where legal directions on sloping terrain are defined by maximum vehicle power limita-

tions, sideslope tipover, and downhill braking.  They prove that optimal paths can only cross these regions in one of

four ways and, as in [52], that direction changes between regions must follow Snell’s Law.  Sun and Reif [67] apply

an efficient discretization to the polygonal region boundaries, using Steiner points, and a more efficient search algo-

rithm, to display good search performance on maps of natural terrain.

In another extension of the work by Richbourg, et al., Rowe and Lewis [53] describe a method for defining paths for

both land and airborne vehicles to either minimize or maximize visibility with respect to fixed observers (e.g. repre-

senting beneficial resources or enemy observers) while minimizing path cost in terms of an energy metric.  The plan-

ner divides the free space into convex visibility regions, defined by visibility to each observer, and assumes each of

these volumes to be homogeneous in terms of both energy and visibility costs.  Assuming linear costs, the authors
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apply the Snell’s Law model to path propagation and minimum-cost path angle transitions between regions.  Though

interesting, the method appears more directed towards flight, and in its quest to abide by Snell’s Law, uses overly

simplistic, linear cost models.  However, to its credit, the method does raise the issue of effective space decomposi-

tion, and addresses the balance between visibility and energy costs.

Several robots have used the D*  algorithm [63],[64],[65] in conjunction with the Morphin local planner (Section

2.7.1) to drive autonomously on rough terrain over long distances.  Local maps derived from stereo camera data are

also used to populate a cost map in D*  based upon estimated terrain traversability.  D*  produces an optimal path to a

global goal position, given all available information.  Unlike Morphin, which assigns infinite cost to unknown

regions, D*  planners have historically been designed to assign zero cost to areas with no existing data.  Typically

these no-data regions are at the field-of-view limits of the cameras, and will ultimately contain data as the rover gets

closer.  As new data is introduced, D*  efficiently re-plans by repairing only those regions affected by the changes.

Hence the optimal global path updates with each stereo image set, typically several times per second. The local obsta-

cle avoidance and global planner each vote with their respective arcs; the higher-value arc is sent as a command to the

rover controller.  A relative weight factor allows operators to tune the behavior of the robot.  Weights emphasizing

obstacle avoidance will steer further from obstacles, but may avoid legal paths through narrow passages.  Conversely,

boosting the weight of the global path planner improves the likelihood of finding paths, but also increases the chances

of collision with obstacles.  The combination of local and global path planning has proven itself in many natural ter-

rain rover experiments [59], [78], [32].

Of recent popular interest is the DARPA Grand Challenge automated racing contest.  In 2004, teams developed vehi-

cles and software systems to drive autonomously 143 miles in under 10 hours on a combination of rough roads and

off-road conditions.  Though no team completed the course, Urmson et al. describe Sandstorm, the system that drove

further and faster than all other competing vehicles [73].  Teams were supplied the race route only 3 hours prior to the

start of the race, in the form of GPS waypoints spaced an average of 89 meters apart, maximum speed limits, and

maximum allowable corridors of travel. Sandstorm path planning was a mixed-initiative system that combined auto-

mated route generation on a regular grid at 1 meter resolution to follow the GPS points while staying within corridor

bounds and minimizing travel on unknown and poor road conditions, subsequent automated route vectorization to

compress and simplify the plan representation, and human inspection, correction and smoothing of paths using vari-

ous graphical interface tools.  Automated planning used coarse road classifications, as well as distance from the cen-

ter of the drive corridor, as a basis for driving cost. It appears that a velocity profile was selected in a separate step

after route planning.  Onboard GPS and a scanned laser enabled Sandstorm to follow the course 7.4 miles at speeds

up to 36 miles per hour.  This system clearly did not freely select its global route, but rather connected pre-selected

waypoints and established a speed profile that would enable completion of the route within the race deadline.
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Despite their applicability to long-distance path planning, none of these approaches considers time-dependent costs.

For example, though the representation of terrain using homogeneous cost regions and Snell’s Law in [52][54][67] is

attractive, it is not clear how to extend the model when cost regions are time-varying.  Furthermore, the cases that

seek minimum-energy paths ignore sources of incoming energy, such as solar energy.   They minimize resource costs,

but none models renewable resources where a balance must be achieved between input, output and storage.  As a

result, none can predict how a finite battery capacity might prevent certain paths, or how resource collection might

extend the set of feasible paths.  However, in terms of operational utility, the efficient re-planning provided by D*-

based planners is clearly advantageous.

2.8 Planning and Scheduling
In an entirely different vein of research, the artificial intelligence community has evolved two related fields - plan-

ning and scheduling - whose overarching goal is to create feasible sequences of activities that start from a set of pre-

existing conditions and achieve a desired set of goal conditions.  Planning decomposes high-level goals into atomic-

level activities that collectively achieve the goals.  There may be many alternate ways to break tasks into subtasks,

and activities may have complex interrelationships that prevent loose ordering.  Scheduling takes a set of activities

and determines an ordering that respects constraints and resource demands to accomplish an overall task.

Automated activity planning and scheduling software has been successfully deployed on spacecraft and prototype

planetary rovers.  The Remote Agent Experiment demonstrated automated planning and scheduling onboard the

Deep Space 1 spacecraft [4], [3].  The planner/scheduler software (PS) accessed a database of long-term mission

objectives and planned concurrent activity schedules over multi-day planning horizons.  The PS derived planning

problems by taking goals relevant to the planning horizon and projecting initial spacecraft conditions to the antici-

pated plan execution time.  Beginning with an incomplete plan, the PS searched over plan space, adding constraints

and subgoals where necessary and reordering activities, to create full partially-ordered plans.  The PS also maintained

onboard state predictions, for example resource levels, under the same model as activities in primitives collectively

termed tokens.

ASPEN was developed to automate planning and scheduling for spacecraft and rovers [10].  The software uses a

most-committed, local, heuristic iterative repair approach to decompose high-level mission goals into concurrent

action sequences that respect operational and resource constraints.  Because the search is not systematic, there is no

guarantee that all combinations of actions will be searched exhaustively, or that disadvantageous sequences will not

be examined more than once.  However, ASPEN achieves planning, scheduling and resource management at far less

computational expense than for more flexible, exhaustive approaches.  The ASPEN system and the derivative

CASPER system each produced coordinated activity schedules, based on science and engineering team requests, for

the JPL Rocky 7 rover (see Figure 2-2). The activity planners repair plans in response to changing goals and other
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unexpected events. Rover activity scheduling considers resources and environment effects (e.g. day/night cycle, sun

angle), but demonstrates only loose coupling to path planning.  ASPEN calls a path planner that is ignorant of abso-

lute time and resources to estimate the duration of small traverses.  ASPEN’s primary focus is on conflict resolution

through event rescheduling or reordering.  Furthermore, ASPEN and CASPER essentially react to evolving initial

state and updated mission goals.  Neither has the ability to plan in anticipation of a range of possible outcomes, and so

cannot build in contingency branches to plans.

2.8.1 Contingency Planning
Contingency planning is addressed by Bresina and Washington under the Contingent Rover Language (CRL) and the

propagation of expected utility distributions [6].  Combining the action condition structure of classical planning and

conditional rewards characteristic of decision-theoretic planning, the authors present a means of efficiently evaluating

contingent branches in an existing plan.  The method specifies probability distributions on execution times for all

events, and defines local rewards conditioned on action success or failure.  Valid action execution is defined under

start, wait-for, maintain and end conditions, which include requirements on initial available resources.  The method

assumes knowledge of resource availability as a function of time.  Given an existing plan with conditional branches,

the algorithm first forward-propagates distributions of possible action start times, given action duration distributions

and conditional requirements on actions, to establish temporal bounds on outcomes.  Then, it backward-propagates

distributions of utility from the branch endpoints, restricting computation to the time distributions.  The resulting util-

Figure 2-2: A screen shot from the ASPEN scheduler.  Rover  activities are 
shown as ticks in the middle rows.  The colored bars represent mission-

relevant parameters, for  example solar  ar ray cur rent, sun elevation, and 
sur face temperature, over the course of one Mars sol
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ity distributions specify the expected value of executing each branch, conditioned on start time.  The advantage under

this approach is that the utility distributions remain valid regardless of the temporal outcome of actions, as long as the

resource bound model also remains valid.  Though this approach pre-supposes a profile of resource availability, it

estimates contingent branch utility factoring in whether actions can be legally executed.  An extension of contingent

planning that reasoned about uncertainty in activity time and resource consumption, using CRL and the Pico planner

(based on EUROPA [28]), was used to successfully demonstrate multi-target single-cycle instrument placement on

the K9 rover [50]. 

2.9 Summary
Mission-directed path planning seeks to solve for paths in a context historically addressed in the AI planning and

scheduling literature.  Path planning is most naturally solved in a state space formulation; the planning and schedul-

ing community has almost universally used spaces of possible plans.  Planning and scheduling software deals very

effectively with temporal and resource constraint problems, but has not addressed problems where spatial dimensions

are so critical, as in path planning.  Specifically, planning and scheduling has been most successful at satisfying

resource constraints, but has not typically sought to optimize resource usage.  Optimization of state parameters is the

domain of the state space.  Meanwhile, the path planning community has addressed temporal planning in a hierarchi-

cal fashion that prevents globally-optimal solutions, and has limited its treatment of the resource management prob-

lem to resources that are consumed monotonically over a path.  

As demonstrated by ASPEN and CASPER, AI planning and scheduling software can call a path planner as a subrou-

tine to handle mobile phases of a larger activity plan.  In scenarios where traverses are relatively short-distance and

duration, this type of hierarchy might suffice.  But in situations where traverse activities consume a large share of the

time and resources in a mission plan, the system cannot tolerate a path planner that is naive to time, resources and

constraints.  Addressing the combined problem of path planning, temporal planning and resource planning is a cen-

tral contribution of this thesis.

This thesis elects to follow the path planning paradigm.  The following is a brief list of problems in mission-directed

path planning that are largely absent in the robot path planning literature but have been addressed in this thesis:

• Efficient, optimal planning and re-planning, under global constraints, in a state space of greater than two dimen-
sions.

• Simultaneous, global consideration of highly-coupled route, time and resource variables.

• Incorporation of time-varying anisotropic costs and constraints.

• Capability to reason about, constrain and optimize non-monotonic (expendable and replenishable) resource vari-
ables.
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• Representation of actions, either coupled with navigation actions or distinct, and both mobile and stationary, that
enable resource management or achieve non-navigational mission goals.

The Incremental Search Engine by Stentz and Tompkins embodies several attributes that are highly desirable or even

essential to solve the mission-directed path planning problem.  ISE offers the optimality guarantees and re-planning

efficiency of D*, which has proven itself in many robot applications.  It is also  more space and time efficient in

addressing higher-dimensional state spaces than other existing algorithms.  This is critical if we expect to consider

time and resources.  Furthermore, ISE enforces global constraints on paths, for example bounds on battery energy.

The next chapter describes ISE in far greater detail as background for presenting a practical solution to mission-

directed path planning.
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This chapter describes one of the foundations for this work - an algorithm developed by Stentz and Tompkins, called

Incremental Search Engine (ISE), that satisfies many of the demands of mission-directed path planning.  ISE provides

several enhancements over previous algorithms that are critical in mission-directed path planning.  ISE is a generali-

zation of the D*  algorithm (see Section 2.5 or [63][65]) that retains the planning and re-planning efficiency of

Focussed D*  [63], but enforces global constraints and operates efficiently in state spaces with greater than two

dimensions.  Mission-directed path planning is the first and most exhaustive application of ISE.

ISE is a backwards-chaining algorithm that starts its search from one or more goal states, and finds an optimal path

that “ends”  at the specified start state.  Like A* and D* , ISE maintains a list of states to “expand”  to propagate the

search to new states.  These states, beginning with the goals, are prioritized for expansion according to an objective

function which accumulates the cost from each state to the goal, and a heuristic function which estimates the cost

from the start state to each of the states.  State expansion generates all possible backward “arcs” , representing actions

in the planning domain, from the final state to several initial states originating the actions.  The new states are placed

on the list, and prioritized according to their own value.  The optimal path emerges upon expanding the start state.

Further machinery within the prioritized state list enables ISE to efficiently repair path solutions when the transition

arcs change during a path execution.

The following sections describe the salient features of the algorithm.  Section 3.1 describes how ISE encodes applica-

tion domains.  Section 3.2 explains several efficiency mechanisms which speed search and minimize state prolifera-

tion. Section 3.3 provides an overview of the search process (Appendix 1 describes the ISE algorithm in detail).

Throughout these sections, it should become clear that ISE is a general incremental search algorithm that can be

applied to a wide range of problems.  A user must define state space variables and application-specific functions of

state to compute state transitions between states, heuristics, and state priorities, and other quantities.  Section 3.4

experimentally demonstrates how ISE performance varies as these parameters change.

3. Incremental Search
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3.1 States, Transitions and Cost
A*, D*  and other incremental graph search algorithms are best suited for two-dimensional grid planning, or in

domains where states are abstract nodes in a graph. In factored spaces of greater than two dimensions, existing algo-

rithms fail to provide a simple means of encoding state spaces. ISE allows a natural representation of state space in

terms of discrete independent and dependent parameters. 

3.1.1 Independent and Dependent State Parameters
ISE allows two types of state variables - independent parameters (IPARMS) and dependent parameters (DPARMS).

IPARMS are the foundation of the ISE state space and search and are essential to defining a problem domain.

Changes in IPARMS are independent of other state parameters. A domain may optionally include DPARMS, param-

eters whose values change as a function of changes in IPARMS or other DPARMS. DPARMS for a state are stored in

a set corresponding to the state’s IPARMS.  An ISE state combines the IPARMS and DPARMS of the domain.

For example, a robot control problem might entail planning a path through a two-dimensional office area, where

obstacles are time-varying. The state space might define two independent spatial parameters X and Y that are posi-

tions in a regular grid, and a dependent temporal dimension T, such that . The ISE state is an 

tuple.  ISE would represent this domain by encoding a regular grid of sets, each corresponding to an x-y cell, that

store values of t.  Each t value would represent a different state .

3.1.2 State Transitions
Arcs are transitions between two ISE states. ISE uses two user-defined arc transition functions, one backwards ( )

and one forwards ( ), to model state transitions in a domain. Given a state space  and action space , the arc tran-

sition functions define deterministic mappings  that obey the Markov assumption, that is, the resulting state

is a function only of the action and the originating state. Given a state and a choice of action, the transition arc func-

tions define the change in IPARMS and the corresponding change in DPARMS. The backward function  takes a

final state and produces the initial state from which the action was executed.  In many cases, the forward function 

takes an initial state and produces the state resulting from the execution of a given action.  In such cases,  and  are

perfect inverses ( ).

The forward transition function  is not always single-valued.  ISE state variables can be constrained to minimum or

maximum values.  For example, a state variable  might represent battery charge which can never rise above the bat-

tery capacity .  Function  could legally take the form , where  and  are the

the charging current during the action and the action duration, repectively.  Now, suppose there is an action A where
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 is negative (signifying a battery discharge in the forward-time direction).  If , then .

Clearly, then, the forward transition function  for action A cannot unambiguously predict  from

.  Instead,  must predict the range of legal states that are possible from an initial state.  Using the

above example,  could take the form  for , and  for

.

Arc parameters, or APARMS, govern the effects of transitions. Each IPARMS combination has APARMS that help

define the transitions into or out of the states with those IPARMS.  Most importantly, APARMS are parameters that

are allowed to change during plan execution.  As discussed in upcoming sections, re-planning enables ISE to effi-

ciently repair a plan whose underlying APARMS have changed.

3.1.3 Local Constraints
Local constraints are a generalization of obstacles in the path planning literature.  The satisfaction or violation of

local constraints depends solely on the specific state and the action executed to or from that state; it does not depend

on state or action history.  Obstacles in traditional path planning are local constraints on locomotion actions.  Local

constraints extend obstacles by limiting arbitrary actions over any range of states in the state space.  Through the

application-specific (user-defined) arc transition functions  and , ISE permits or rejects arcs into states that vio-

late local constraints.  Rejected states cannot become part of any ISE path solution.

In the running example, the office robot would be constrained to avoid people and closed doors, as defined by local

constraints at specific  regions of the state space.  The office environment might further restrict its operation to

certain hours of day, a purely temporal local constraint.

3.1.4 Global Constraints
In contrast to local constraints, which operate on state parameters, global constraints operate on parameters that inte-

grate over the history of state or actions.  Examples include path distance, duration, and capacity limitations on con-

sumable or replenishable resources.  ISE enforces global constraints in one of two ways.  ISE stores global constraint

parameters through auxiliary variables stored alongside DPARMS state parameters or, if the parameter is to be opti-

mized, in the objective function (see Sections 3.1.6 and 3.1.7).  If stored alongside the DPARMS parameters, the glo-

bal constraint parameters are evaluated inside the  state transition function.  When a violation occurs, the 

function rejects the arc.  Alternatively, if the parameter is stored in the objective function, ISE cannot reject the arc,

but assigns a very high cost to the arc to reduce its chances of entering into any optimal solution.  Under this second

approach, if no cheaper legal path exists, ISE will yield the least expensive illegal path.

i bf i nal bmax i– ∆t≥ bi ni t i al bmax=

Φ bf i nal

bi ni t i al bmax= Φ

Φ bf i nal bi ni ti al i∆t+= bi ni t i al bmax< bf i nal bi ni t i al i∆t bmax,+[ ]∈
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What are the implications of local and global constraint parameters? The addition of global constraint parameters

does not add dimensions to the state space.  However, under the Markov assumption, aside from rejecting arcs, global

constraint parameters cannot legally have any effect on DPARMS or cost for state transitions.  Furthermore, ISE can

only guarantee planning completeness in the variables comprising the state space.  If a parameter is not a member of

the state, ISE cannot explore trajectories that vary the parameter to find feasible path solutions.  Any global constraint

can be transformed into a local constraint by promoting its parameter to a full DPARMS state parameter. The param-

eter can then affect state transitions and costs for legal state transitions, but at the computational and memory expense

of an added dimension in the state space (see Section 3.4.2).

3.1.5 Resource Parameters
Because of its flexible treatment of state, constraints and cost, ISE is particularly well-suited to reasoning about

resources.  A resource is a quantity that is essential to achieving a goal, and yet is in limited supply.  ISE represents

resources as constraint-limited parameters.  ISE can be represent resources as DPARMS state variables, limited by

local constraints, or as global constraint parameters alongside DPARMS or in the objective function.

Resource parameters can be divided into two categories - monotonic and non-monotonic.  Monotonic resource

parameters monotonically increase or decrease over the course of a trajectory.  Examples of monotonic resources

include non-rechargeable battery energy or finite-lifetime components.  More abstractly, if a path is constrained to be

less than a given distance or duration, then remaining distance or duration can also be considered resources.  Planning

problems often involve renewable resources - parameters that can be expended and replenished over different arcs,

and hence are non-monotonic.  Rechargeable energy, thermal load, available computer memory or communications

bandwidth are all examples of non-monotonic resources.  

In ISE, because of the backwards-chaining order of search, the semantics of resource parameters are different than for

typical parameters.  As with all DPARMS and objective function parameters, values for resource parameters must be

initialized for each goal prior to search.  Semantically, it is useful to treat these values as minimum allowable resource

levels at the completion of a path.  For example, a parameter to represent duration remaining to the goal (as a way of

constraining duration over a path) might be set to zero.  In words, at the start of a path if a robot is given an upper

bound on duration to reach the goal, it is legal in the worst case to exhaust the entire duration “ resource” , but no more.

To explain the semantics of resource parameters at other points in a path, it is important to show how they evolve over

a search.  Goal DPARMS states and objective function values are used as a starting point for state expansions during

the search.  The state transition function  generates the change in state for DPARMS parameters as well as the costs

that are reflected in the objective function.  It subtracts quantities that would be added in the forward direction and

vice versa.  Returning to the example, the duration resource declines in the forward direction, and hence accumulates

β
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in backwards expansions.  Figure 3-1 depicts the evolution of a monotonic duration resource over an ISE search.  The

plot’s horizontal axis represents the sequence of states in a path in the direction of search, from the goal (extreme

right) to the start (extreme left).  The vertical axis represents duration, from zero to the maximum allowable duration

.  The solid curve starts at the goal at zero duration remaining.  Moving left from the goal, arcs successively add

duration to the total.  Under this model, it is important to understand that resource parameters do not represent the

instantaneous value of the quantity, but rather the minimum amount allowable to satisfy the goal conditions under the

current optimal arc sequence.  

To constrain a monotonic resource, the ISE user must design  or the objective function to reject arcs, either through

outright rejection or via high path cost, that exceed the minimum or maximum parameter value.  The example dura-

tion constraint rejects arcs that force the duration parameter above  (see the dashed curve in Figure 3-1); any

such arc would force the robot to start with a greater duration allocation to reach the goal with no less than zero upon

reaching the goal.  The arc rejection mechanism is easily defined in either the state transition function  or within the

objective function, as described in Sections 3.1.3, 3.1.4 and 3.1.6.  Feasible paths arrive at the start state with margin

remaining with respect to the maximum allocation (see the solid curve in Figure 3-1). 

Figure 3-1: Plots of Duration, a Monotonic Resource Parameter, Over  an ISE Search.  The solid curve depicts 
a path that satisfies the global duration constraint, the dashed curve shows a duration profile that exceeds the 

maximum duration before reaching the star t.  Steeper  slopes indicate slower  progress to the goal.
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Non-monotonic resources are not as intuitive as their monotonic counterparts.  Non-monotonic resources can go

either up or down over any arc.  Therefore, parameters that have finite ranges typically require upper and lower lim-

its.  Take, for example, a memory resource, where some arcs correspond to net data being stored, and others, net data

being removed.  Positive increments in memory in the forward direction (erase actions) appear as reductions in back-

wards search, providing greater margin with respect to the memory capacity.  However, successive reduction arcs

could drive the memory parameter to zero.  Herein lies the subtlety: zero in the memory scale does not indicate that

ISE should reject the arc.  Instead, zero indicates that the goal could be reached from the current state, even starting

with no available memory.  ISE must prevent the parameter from dropping below the minimum - there is no meaning

to a resource with “ less-than-empty”  conditions. However, the parameter remains legal, and can remain at zero or

increase above zero in later state expansions. 

Figure 3-2 illustrates the memory example.  Similar to Figure 3-1, the horizontal axis represents a sequence of states

from the goal (extreme right) to the start (extreme left).  The vertical axis represents remaining unused memory, and

ranges from zero remaining memory to , the full capacity of the storage device.  All the example curves start at

some allowable memory level (possibly non-zero).  Observe that each curve displays non-monotonic behavior.  The

Figure 3-2: Computer  Memory, a Non-Monotonic Resource Parameter, Over  an ISE Search.  The three curves 
depict different outcomes of the search: a path that requires more than the maximum available memory 

(Rejected path 1), a path that exceeds the memory available at the star t (Rejected path 2), and a path that 
meets both the maximum and initial memory requirements (Legal path).
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curve labeled “Rejected path 1”  behaves very similar to the rejected path in Figure 3-1.  It ultimately exceeds the

maximum capacity of the storage device, meaning that the particular series of arcs taken by the path required there to

be more memory than available to meet the goal conditions.  “Rejected path 2”  is also rejected, but for different rea-

sons.  In that case, the path never requires more than the storage capacity, but requires more than is available at the

start.  Perhaps all the data in memory is critical and cannot be deleted or moved out of memory.  A solution that

required deletion of this data would be illegal.  This is rejected on the basis of feasibility, and is alluded to in Section

3.3.1.  Finally, the “Legal path”  illustrates how a resource curve can be reduced to zero and remain valid.  The portion

of the curve that dips to zero (from right to left) indicates that the arcs move more data out of memory than in.  The

flat part of the curve at zero memory indicates that the capacity for data removal during those arcs is sufficient to

allow a full memory at that point in the path, and still meet the goal conditions downstream.  Furthermore, the starting

memory requirement falls below the amount of memory available at the start.

To represent non-monotonic resource parameters using DPARMS, the ISE user must design transition function  to

reject states that exceed one extremum, and saturate the values that would otherwise exceed the other.  A resource

parameter  represents a minimum allowable level, and has upper bound  and lower bound .  For successive

states  in a backwards search, where  is the change in resource level for a given arc  from a given state  in

the backward direction, the next resource level could be given by:

and would reject .  The implementation of non-monotonic resources in the objective function is not as

simple, and requires a special formulation, described in Section 3.1.7.

3.1.6 Path Cost
As with A*  and D*, ISE combines an objective function and a heuristic function to encode the cost of a candidate

path.  ISE searches in a backwards-chaining order, from one or more goal states to a start state. Backwards arc transi-

tions between a state X and a second state Y result in a positive cost defined by the arc cost function . If Y

does not have a forward arc to X, then  is undefined. The cost to traverse a sequence of states

, such that , is the sum of the arc costs incurred in backwards transitions along the

sequence.
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The estimate of the cost of a path from an initial state R, through a state X, to a goal G is based on two functions,

 and . Given a sequence of states  from a goal G to state X:

function   is the objective function that returns the cost accrued over the sequence of  arcs, and can be viewed

as an estimate of the optimal cost from the goal to the state. 

Since  is a summation over a path, it can represent a monotonically-increasing global constraint parameter.  An

application can simultaneously optimize the parameter and limit its expansion within the same objective function.  In

the case where it violates a constraint, the cost for the arc , and hence  itself, is set to a very large num-

ber that approximates infinity.

Function  is a focussing heuristic that estimates the cost from the state X to the state R. The heuristic function

must be admissible - it must never over-estimate the cost between two states. A good heuristic approximates the

actual cost as closely as possible without ever exceeding it. Both functions must be monotonic -  must monoton-

ically non-decrease with number of steps from the goal, and  must monotonically non-decrease with number

of steps from state R. The sum  is the estimated total cost between a goal G and a state R,

through state X. 

3.1.7 Non-Monotonic Path Cost
In some cases, it is desirable to optimize a path in terms of a non-monotonic resource.  As an extension of standard

cost functions like distance, duration or resource expense, ISE enables a user to encode composite objective functions

that involve more than one parameter.  One use for this mechanism is to regulate the search for an optimal solution in

terms of a non-monotonic resource.  

Non-monotonic parameters cannot be optimized directly using the incremental search approach.  Heuristic search pri-

oritizes its effort on the estimated lowest-cost solutions, based on the objective function.  If the objective function is

the sum of successive positive or negative resource costs, then, in general, the objective function can assume arbi-
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trarily small values.  In cases where negative cost arcs are consistently reachable, the search will never terminate -

pursuing negative-cost arcs will yield continually lower objective function values with continually higher priority.

One solution is to add an additional term to the objective function which causes the sum to be monotonic.  The new

objective function takes the form:

The summation component is the same as in Equation 3-4, but may also include constraint mechanisms like in Equa-

tion 3-1.  In the new term ,  is the number of arcs in the sequence, and  is defined as follows.  If  is the

minimum cost taken over the entire state space  and action space :

then  is defined by:   

In words, if negative costs exist in the set of possible transitions,  is the absolute value of the most negative cost

over the state space.  Therefore, the following always holds true:

 exactly cancels out the largest possible negative cost, and outweighs all others.  At every step, the objective func-

tion increments by the sum .  Hence, the  defined in Equation 3-5 is monotonically non-decreasing.

As with the original objective function, the summation of costs can also be governed by global constraint mecha-

nisms like in Equation 3-1.  Note that the new objective function does not optimize the sum of original costs .

Because  is added at every step in the plan, the term  is a measure of plan length.  Therefore, the path solution

that results from a search under a composite objective function is optimal in combined terms of the cost and number

of plan steps.
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This formulation is useful for optimizing non-monotonic resources in many applications: battery energy, fuel in a

tank, data in memory, or thermal energy in an electronics component.

3.2 Efficiency Mechanisms
ISE employs three mechanisms - dynamic state generation, resolution equivalence pruning and state dominance - to

counteract state proliferation during search.  The following sections describe how each is used to manage the search

memory and enable efficient path planning in greater than two dimensions.

3.2.1 Dynamic State Generation
While many search algorithms store all states in the space explicitly, ISE generates states only as they are encoun-

tered during the search, and deletes them if they become irrelevant. ISE employs the arc transition function on exist-

ing states to generate new states.  ISE defines a state set for each combination of IPARMS values. Each state set

stores states with common IPARMS but potentially differing DPARMS.  A state set stores the DPARMS for each

state possessing its particular IPARMS.  The IPARMS are implicit in each state set.

At the beginning of search, only the goal states are stored in the sets. ISE generates states to search the space, but

manages state proliferation by continually checking for state redundancy and irrelevance.  Unnecessary states are

deleted from the sets, thereby saving memory.

Returning to the earlier example, each pair of IPARMS values  defines an IPARMS set containing

DPARMS values . A transition function might describe nine legal actions - a motion to each of eight neigh-

bors, and a wait action that remains in the current (x,y) location for fixed duration. For each action, it defines

.  APARMS for each IPARMS combination might include parameters to define robot speed as a func-

tion of position, or encode whether an obstacle prevents the action from occurring. 

ISE deletes states as they become irrelevant for planning.  The following two sections describe two mechanisms for

state deletion - resolution pruning and state dominance.

3.2.2 Resolution Equivalence
In search over a discrete space, IPARMS dimensions can be represented at arbitrary resolutions, based only on

requirements of the problem domain. Since changes in each axis can be considered independently, discretizing the

space is a simple matter of independently discretizing each dimension to provide adequate resolution.

DPARMS change as functions of changes in independent or other dependent parameters.  This leads to an important

difference between the independent and dependent parameters. Transitions in IPARMS are integer multiples of the

x X y, Y∈ ∈( )

t T∈( )

∆T f ∆X ∆Y,( )=
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axis interval; dependent state transitions are, in general, real-valued.  DPARMS must also be integer-valued.  Real

valued transitions must be rounded or truncated to the discrete intervals of the dimension. To avoid excessive round-

ing errors over many transitions, the resolution of DPARMS axes must be sufficiently high. However, in selecting an

adequately high resolution, the number of discrete intervals in the dimension multiplies, leading to a vast increase in

state space size and in time to search the space.

ISE enforces user-defined DPARMS equivalence classes to address this issue. In each IPARMS set, equivalence

classes group DPARMS over ranges of values into coarse bins.  The user selects the bin size to reflect an acceptable

range over which DPARMS can be considered equivalent for the particular application. During a search, ISE uses the

DPARMS equivalence classes to prune away states that are “ resolution equivalent”  but inferior in terms of cost. This

dual resolution representation enables ISE to classify and prune away sufficiently similar but inferior states while

avoiding the excessive rounding errors that would emerge in using only the coarse resolution.

Returning to the example, assume the office area is 100 x 100 meters. From the ISE perspective, the resolutions for

the X and Y axes are arbitrary, but might be selected to be 1 meter.  If transitions are only possible to the eight neigh-

boring cells in the grid, the base resolution of T must be selected to approximate changes in time for both transitions

to principal-direction neighbors and to neighbors along diagonals. For example, if the robot in this example moves at

0.1 meters per second, then the time to cross a grid cell in the principal and diagonal directions would be 10.0 and

14.1 seconds, respectively.  A time parameter T with a 10-second resolution would not differentiate between the time

costs in these directions; 10.0 and 14.1 both round to one 10-second time unit.  However, a one-second resolution

might be sufficient for the application. 

Problematically, if the time parameter T spans one hour, the total number of states in the space is 36 million. How-

ever, by dividing the DPARMS into 60 bins of one minute each, the state space drops to  state bins while

maintaining the rounding error for transitions at  seconds per step.  The drawback is that resolution pruning

reduces the accuracy with which path solutions match the initial state of a robot.  Errors can be up to one half the res-

olution equivalence class.  In this example, solutions could be mismatched to the current robot time by as much as 30

seconds.

3.2.3 State Dominance
In some applications, states obey a dominance relationship in which one state can be guaranteed to always produce a

lower cost solution than another state. More formally, let S and Q be any two states in the graph and G be the goal
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state.  Let  be the cost of the optimal path starting at S, passing through Q and ending at G.  Let 

be infinity if no such path exists.  State A dominates B for a given G if:

for at least one S, and

for all remaining states S. If a state is dominated by another, then it can never be a member of an optimal path and can

be removed from consideration. 

ISE enables the user to define the specific conditions for dominance, if any, amongst states with common IPARMS

but possibly different DPARMS.

3.3 Search
ISE searches to find optimal paths from a start state  to one or more goal states .  The search is in backwards-

chaining order, originating at the goal states. To search the space, ISE “expands”  states from a prioritized list called

the OPEN list. Initially, this list contains only the goal states. Given a final state, ISE uses the backwards arc transi-

tion function  to dynamically generate all possible initial states from which the final state is reachable. Through

state expansion from the goals, ISE builds a directed graph whose nodes are states, and whose edges are the transition

arcs. By definition, every node in the graph is a state from which one of the goals is reachable. The heuristic function

focusses expansion on states predicted to reach the start state with minimum cost.  The search terminates when the

search expands states in the state set containing  that meet the criteria for an optimal solution.

In an initial search, ISE results are similar to those from A*  [9]. With changes to transitions, either in arcs or objective

function costs, ISE operates far more efficiently than A*  in re-planning paths. The A* algorithm is forced to re-plan

the entire space from scratch if any transition arcs change. ISE, like D* , can repair the search graph in the area of the

changes, thereby drastically reducing the time for re-plans. Using incremental graph theory, ISE repairs the feasible

set of solutions and the optimal path within it.  

Sets whose arc parameters have changed have their member states placed back into the OPEN list.  The effects of the

changes propagate through the search graph under the same machinery used in initial search. The focussing heuristic

limits repairs to states affecting the start state, making the algorithm much more time efficient than A* .  The algo-
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rithm search direction is optimized for applications in which new arc information appears close to the robot’s current

state, for example from robot sensors. The search is backwards-chaining so that changes near the start state only

affect “ leaf”  states at the very edge of the graph.  If the search were in the forward direction, changes near the robot’s

state might have to propagate through the entire search graph, essentially as costly as a new search from scratch.

Another advantage of a backwards-chaining search is that state variables can be expressed in terms of goal state

requirements.  By initializing a goal state parameter to the minimum or maximum quantity allowed to achieve the

goal, search state expansions propagate these requirements to other states.  The semantics of the state parameter is the

same at any step, including the first step in a plan solution - it reflects the minimum or maximum quantity allowable,

from that state, to achieve the goal condition.  This is a particularly advantageous operational tool.  At any step in the

plan, a robot can monitor and immediately determine, based on its current estimate of the parameter, whether the plan

can feasibly achieve the goal.   In contrast, a plan from a forward search is less insightful.  Since state parameters in a

forward search have their origin at the current robot state, they can only provide an estimate of the expected state of

the robot at each step.  The plan generated with a forward search does not provide a threshold for making operational

decisions during execution.  To generate a goal-referenced plan with a forward search would require multiple search

iterations; it is not clear what iteration strategy would efficiently achieve the desired result.

3.3.1 Modes and Search Termination
ISE operates in one of two search modes, selected by the user.  BESTPCOST mode finds the minimum cost path.

BESTDPARMS mode finds the solution with the “best”  start state DPARMS that falls below a maximum path cost. A

more detailed description of these modes appears in Appendix 1.

In each case, search can terminate when the lowest value on the OPEN list equals or exceeds the path cost from the

start state .  Since the cost of expanded states is monotonically non-decreasing, the OPEN list cannot possibly find

a LOWER state that has a low enough path cost (effect of the objective function ) and that is “close”  enough to

the start state to be able to reduce the path cost from  when it reaches it through subsequent expansion (effect of the

heuristic function ).  Candidate start states must also meet a feasibility condition, typically to guarantee suffi-

cient proximity of the candidate to the actual start state, or satisfaction of necessary start conditions.

3.3.2 Path Extraction
To extract the optimal path from the search graph, ISE uses the forwards arc transition function  to locate succes-

sive states in the sequence.  Beginning with the start state, ISE calls  to dynamically generate candidate parent

states in the plan. ISE compares each generated state to existing states with the same IPARMS set to find a state with

matching DPARMS and path cost. The matching state is the next state in the optimal path, and is used to generate its

candidate parents from the search. The process repeats until a goal state is reached.
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3.4 Experimental Results
ISE can be adapted to a wide range of problems, and can be configured in multiple ways to solve the same problem.

The configuration that one applies affects memory and computational performance, the quantity to be optimized and

the thoroughness of the search.  This section quantifies ISE performance under a variety of problem and configura-

tion parameters, and explores the other effects stemming from the ISE configuration.

3.4.1 Test Domain
At the risk of losing generality, ISE experiments were conducted in a specific planning domain.  The tests all solved

for an optimal path between two positions.  To emphasize ISE novel features, the problem sought optimal paths with

respect to a renewable energy resource rather than the typical path length.  The test domain is a two-dimensional grid

of positions, with arc transitions defined from any grid position to each of its eight immediate neighbors (no station-

ary actions were possible).  Arc transitions result in time and energy costs, randomly pre-generated in advance of

each test for all cells in the map.  Time costs were uniformly sampled over a strictly positive range, while energy

costs were uniformly sampled over a range that enabled positive or negative costs. 

The domain state space comprises four parameters: two position variables  and , a time variable , and the energy

variable .  The two position variables define axes on a regular grid, and are ISE independent parameters (IPARMS).

The time variable represents the time left to reach the goal, and is an ISE dependent parameter (DPARMS).  The

energy variable is the battery energy required to reach the minimum goal energy.  As a renewable resource, energy is

non-monotonic. Depending on the ISE mode used, as will be explained below, energy is represented in ISE in one of

two ways.  In both cases,  is constrained to be within the legal range of battery levels, from zero to some maximum

value 

3.4.2 Comparison of Two Solution Approaches
This study contrasts two approaches for solving this resource management problem, summarized in Table 3-1.

Approach 1 uses the BESTDPARMS mode (Section 3.3.1).  In this approach, the energy variable  is represented as

a second DPARMS parameter, yielding four dimensions for the search.    Under BESTDPARMS, ISE finds the “best”

DPARMS solution (lowest energy requirement to reach the goal, as defined by the function ) whose cost

falls below a given maximum duration. Observe that even though the objective function for Approach 1 is duration,

the BESTDPARMS uses it only to constrain the duration of solutions that have a minimal energy expense.

Approach 2 uses BESTPCOST mode (Section 3.3.1) and the composite objective function mechanism (Section

3.1.7), with energy as the non-monotonic resource parameter.  Under BESTPCOST, ISE finds the minimum cost path

in combined terms of energy and number of plan steps.  The objective function represents the energy variable  as a
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global constraint parameter, and hence without using a DPARMS parameter.  Therefore, the DPARMS  dimension

used in Approach 1 is unnecessary in Approach 2.  This yields a three dimensional search and a vast reduction in

search space.  Removing the energy dimension comes at a price, however, and is discussed later. 

The objective function of Approach 2 formulates the resource cost  of Equation 3-5 to enable a representa-

tion of the energy variable that is independent of the ISE IPARMS-DPARMS  state.   As mentioned earlier,  repre-

sents the energy required to reach the goal.  This quantity can never be less than zero, since there is no meaning to

negative stored energy.  Furthermore, no feasible plan can require more than a full battery to achieve a goal.  Both of

these constraints must be reflected in the energy representation. If  is the change in energy predicted by the arc

transition function  from state , the resulting energy can be constrained to be above zero:

Under Equation 3-11, the greatest change in energy possible in an arc is .  To limit the upper bound on energy, the

resource cost term from Equation 3-5 then becomes:

If the resulting energy does not exceed the capacity of the battery, then the cost is simply the change in energy.  If the

resulting energy does exceed capacity, the path is infeasible and is given an infinite cost.  For feasible trajectories, the

summation of resource costs over a path correctly (Equation 3-5) represents the energy parameter .  The other term

from Equation 3-5, path length cost , is equal to the absolute value of the most negative energy cost over all possi-

ble transitions.  The sum of the resource and path length costs is always non-negative, since the resource cost can

never increment more than .  So, this adaptation of Equation 3-5 continues to guarantee a monotonic increase over

the path, and also enables a full representation of the energy state parameter without the use of another state space

dimension.  Finally, the domain transition model does not depend on the energy variable to derive time or energy
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costs.  Hence, an energy state DPARMS is redundant with the parameter in the objective function, and can be

removed from the DPARMS of Approach 1. 

The two approaches differ in substantial ways.  Most obviously, they operate on state spaces of different dimensional-

ity.  In terms of time and memory, the 3-D Approach 2 was expected to have a notable advantage over the 4-D

Approach 1. 

The approaches also seek optimal energy paths in totally different ways.  As explained in Section 3.1.7, both

approaches must either limit plan length or promote shorter plans to avoid the problems of heuristic search for non-

monotonic costs.  Approach 1 (4-D BESTDPARMS) seeks an optimal energy solution indirectly, since it uses a dura-

tion-based objective function as the mechanism for limiting plan duration.  The objective function tracks the duration

of candidate paths, and prevents paths that exceed a maximum duration.  This prevents the search from lingering at

states that provide negative costs.  Under this limit, ISE uses state equivalence class pruning and state dominance to

remove less desirable states. Within time-energy DPARMS classes, the  function favors states that have

lower required energy.  Within time DPARMS classes (but across energy DPARMS classes), the 

function also favors states with lower required energy.   The optimal solution in Approach 1 is one that falls below the

given maximum path duration, and whose initial state is “best” . 

Table 3-1: Summary of Exper iment Approaches Using ISE Modes

Feature Approach 1 (BESTDPARMS) Approach 2 (BESTPCOST)

State Space IPARMS: 
• x, y (position) cells
DPARMS: 
• t (time to goal arrival)
• e (battery energy)

IPARMS: 
• x, y (position) cells
DPARMS: 
• t (time to goal arrival)

Transition Arcs Arcs from cell to each of eight neighbors

Costs Randomly generated, uniformly distributed time and energy costs
• Time costs: 

• Energy costs: 

Start and Goal Specification Start position, energy
Single goal position, time, energy

Planning Details ISE Mode: BESTDPARMS
Objective function: 

Better: if 

Dominates: if     

and 

ISE Mode: BESTPCOST

Objective function: 

Better: if 

Dominates: never

U 5 20,( )
U 35– 40,( )
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Approach 2 (3-D BESTPCOST) contains energy directly in its objective function.  The plan length cost in the com-

posite objective function provides incentive to avoid lingering at regions of negative cost.  The objective function

applies a path length penalty  at every step in the path.  This contrasts with Approach 1, which does not penalize

extra steps as long as the plan duration is shorter than the given maximum. At any step in the Approach 2 search, the

plan length cost  can potentially cancel out the resource cost .  Consequently, there is no admissible heuristic to

focus the search.   Finally, in Approach 2, with energy removed from the DPARMS, no state dominance relationship

exists.  So, despite the advantage of having fewer dimensions to search, Approach 2 has fewer other mechanisms to

help focus the search and to prune unnecessary states.

Approach 2 has some other disadvantages.  Any arc transition must be a function of state (IPARMS and DPARMS)

and action alone.  Since the energy parameter  is not in the DPARMS, costs in Approach 2 cannot depend on energy.

In this particular domain, there are no costs that depend on energy, but in general this could be limiting.  For example,

it would be impossible to model a battery whose discharge rate is a function of its state of charge in the Approach 2

formulation. 

More importantly, Approach 2 is incomplete (in the planning sense) with respect to energy.  Reasoning about state,

defined by position and time, does not consider energy.  In the event that one branch of a search does not yield feasi-

ble paths, it cannot backtrack to different regions of the energy space, since it is not represented in the IPARMS-

DPARMS state. Paths that are eliminated due to high cost cannot be regenerated.  In Approach 1, states that are dom-

inated (and deleted) can be regenerated if it is discovered that the originally dominant states do not lead to a feasible

solution.  In practice, the incompleteness of Approach 2 does not interfere with finding paths in a wide range of situ-

ations. 

Having introduced the example planning domain and the two candidate ISE approaches, the remaining sections

assess the performance of ISE in response to various parameter changes.  The tests to determine performance scaling

with map size, DPARMS class resolution and branching factor (Sections 3.4.3 - 3.4.5) and to compare planning and

re-planning (Section 3.4.6) all used Approach 2 (3-D BESTPCOST mode).  Sections 3.4.7 and 3.4.8 compare the

Approaches in terms of performance and solution quality.  All tests were run on a Pentium 4, 2.99 GHz processor,

with 1 GB of RAM.  

3.4.3  Scaling With Map Size or Start-Goal Separation
Map size refers to the number of IPARMS levels - the IPARMS dimensions of the 2-D spatial portion of the space.

The experiment varied the size of square maps (  and  axes 50, 100, 150 and 200 cells each), with start and goal

positions at opposite map corners.  Tests measured the time required to solve the planning problem under increasingly

large map sizes and start-goal separation, using Approach 2 described above.  Twenty tests were run for each map
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size, each on a different independently and pseudo-randomly-generated cost map.    Figure 3-3 plots  the ISE initial

planning duration as a function of map size and confirms the intuition that a larger map size results in greater plan-

ning time. For each doubling of map dimension (quadrupling the number of IPARMS sets), the planning time

increases roughly by a factor of 10.  Computation should, in theory, be  in the size of the search space.

However, this study does not examine increasing the IPARMS resolution but rather increasing the span of the

IPARMS.  

On the surface, doubling the span of IPARMS would be appear to quadruple the state space.  However, the DPARMS

time dimension is open ended; the DPARMS time dimension grows to contain all the states expanded in the search.

By expanding the size of the map, the distance between the start and goal increases, as does the duration of plans con-

sidered by a search.  The size of the DPARMS time dimension is coupled to the distance between the start and goal

position.  An increase in the IPARMS dimensions actually increases the DPARMS span proportionally.  The extra

multiplicative effect seen in planning computation in Figure 3-3 may be explained by this coupling.

3.4.4 Scaling With Resolution
An ISE user can vary the resolution for DPARMS equivalence classes. Recall that DPARMS equivalence classes

group states that are considered sufficiently similar  for resolution equivalence pruning (Section 3.2.2) and state dom-

inance (Section 3.2.3) at each step in the search.  They also define the resolution at which goal states can be specified,

and the accuracy with which planning can match start state DPARMS parameters to actual initial conditions.  

Tests in this study varied the resolution of the time variable DPARMS for various map sizes.  As with the map size

study, each combination of map size and resolution was tested 20 times, using 20 independently, randomly-generated

cost maps.  Figure 3-3 shows the performance benefit of decreasing resolution in the DPARMS.  Given base time

units, the study examined DPARMS equivalence class resolutions of 30, 60, 120 and 240 units per bin.  Each curve in

the plot corresponds to one of the resolutions.  Each map size results in a different mean plan duration (the time the

plan requires to travel from the start to the goal).  Therefore, bin size represents a different fraction of the entire time

DPARMS axis depending on the separation between goal and start.  The number of 30 unit bins required to span the

mean duration of plans was 27.7 for the 50-by-50 map, 62.8 for the 100-by-100 map, and 85.3 for the 150-by-150

map.  The search will tend to populate approximately the number of time DPARMS bins required to span the solu-

tion.  As shown in the plot, by halving the resolution at a given map size, the planning time decreases by a factor of

between 2.4 and 2.7.  

O N Nlog( )



MISSION-DIRECTED PATH PLANNING FOR PLANETARY ROVER EXPLORATION

49

 

3.4.5 Scaling with Branching Factor
The number of available transition arcs from each IPARMS state is application-specific.  This number equates to a

branching factor in the search graph that affects both performance and path cost.  For Approach 2 (3-D BESTP-

COST) planning, experiments recorded the time required to solve for a plan under two transition arc models - the

original, eight-neighbor arc set, and a reduced, four-neighbor arc set in which arcs were restricted to horizontal and

vertical motions.  In both cases, the start and goal positions were on opposite corners of a square map.  Twenty exper-

iments were run for each combination of map size, DPARMS time resolution and branching factor.

In a standard state representation, with a fine resolution in the dependent variable, the branching factor determines the

exponential rate of state proliferation.  A larger branching factor would lead to exponentially more states.  Figure 3-4

demonstrates the power of state resolution pruning, with the eight-connected planning shown in solid lines and the

four-connected planning shown in dotted lines.  Somewhat counter-intuitively, Figure 3-4 shows that the eight-con-

nected state space requires nearly the same time as the four-connected case.  For ISE, branching factor does not sub-

Figure 3-3: Approach 2 (3-D BESTPCOST) Per formance for  Initial Planning Time vs. Map Size and Time 
DPARMS Resolution



INCREMENTAL SEARCH

50

stantially affect the time complexity of the search, because at each step, state resolution pruning discards states that

are deemed inferior in each DPARMS state resolution bin.  At each expansion step, the number of states in each

IPARMS set remains roughly constant over the search, regardless of the branching factor.  The number of states to

expand depends more on the number of DPARMS equivalence bins are spanned by the search.  ISE prevents the state

explosion that would have occurred in a standard search, and yet represents dependent state variables at a fine resolu-

tion.  

3.4.6 Re-Planning Performance
ISE re-planning was designed to efficiently repair plans in response to changes in arc costs near the start state.  A set

of tests compared the time required to plan from scratch versus re-planning in response to changes on an existing cost

map.  Cost map updates were restricted to four modifications within 4 x 4 cell windows for various map sizes and

DPARMS resolutions (30, 60, 120 and 240 time units).  In each test, planning was first conducted on a base cost map.

The modifications were made to the costs on the original map, and re-planning repaired the initial ISE graph.  The

time required for the re-plan was compared against the time required to plan from scratch on the modified cost map. 

Figure 3-4: Time for  Four  and Eight Connected State Spaces for  Approach 2 (BESTPCOST).
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Figure 3-5 compares the time to re-plan in comparison to planning from scratch, in response to cost updates near the

start position.  All cases show improvement over planning from scratch, especially at lower resolution.  For larger

map sizes, re-planning enables a factor of better than 100 speedup relative to initial planning.  For smaller maps,

modifications affect a greater portion of the entire map.  The work of re-planning comes closer to replicating the work

of initial planning, explaining the reduced benefits shown in the left side of the figure. Lower resolution in DPARMS

axes reduces the influence of changes in the cost map on other DPARMS equivalence classes, thereby reducing the

work to repair the graph.  

3.4.7 Scaling With Solution Approach
Tests compared the time demands for the BESTDPARMS (4-D) mode and BESTPCOST (3-D) modes.  Experiments

demonstrate that varying the number of state parameter dimensions strongly affects the time demands of the algo-

rithm.  For these experiments, a set of 50 cost maps was generated for each combination of map size (50, 100 and 150

cells per IPARMS dimension) and DPARMS time resolution (60, 120 and 240 time units).  First, the experiments ran

Approach 2 on 50 maps to record the planning performance for 3-D search, as well as the durations of the resulting

plan solutions for each cost map.  The experiments then ran Approach 1 on the same 50 cost maps, using the

Approach 2 solution plan duration as an upper bound on plan cost1.  

Figure 3-5: Ratio of Re-Plan Time to Initial Plan Time for  Approach 2 (3-D BESTPCOST).  Re-planning 
shows one to two orders of magnitude improvement on speed over  initial planning.
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Figure 3-6 compares the time demands of Approach 1 (4-D BESTDPARMS) and Approach 2 (3-D BESTPCOST) for

these experiments.  The dotted lines correspond to Approach 1, and solid lines, to Approach 2.  We immediately

observe that the lower dimensionality of Approach 2 yields a sizeable time performance gain - for a given resolution

and map size, Approach 2 is several times faster than Approach 1.  This conforms to the notion that adding a dimen-

sion exponentially increases the number of states that a search must expand and represent in the search graph.   

3.4.8 Qualitative Comparison of Approaches
Figure 3-7 and Figure 3-8 illustrate the qualitative differences between Approach 1 (BESTDPARMS) and Approach

2 (BESTPCOST) through plots of path, energy and progress distance.    The path plots show the physical route in X-

Y space taken by the plan, starting at the start position in the upper right corner, to the goal in the lower left corner.  In

line with the description of ISE resource variables in Section 3.1.5, each energy plot shows the profile of minimum

required energy in the battery in order to reach the goal, as a function of plan step.  Progress distance is a measure of

the direct progress made to toward the goal.  It is calculated as the Euclidean distance between the start and goal,

1. Admittedly, this may have disadvantaged Approach 1 in terms of minimum energy solution, but provided 
a way to more evenly compare the two approaches.  Section 3.4.8 suggests that Approach 1 is able to find 
shorter duration solutions  than Approach 2 (making this a viable test strategy for performance tests), but 
that the shorter duration solutions are typically far inferior in terms of energy. 

Figure 3-6: Compar ison of Approach 1 and Approach 2 Time Per formance
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minus the Euclidean distance remaining to the goal from the current robot position (for a more detailed definition,

consult Appendix 2).  Under this definition, progress is only made when the radius between the robot and the goal is

reduced.  The progress plots show progress distance as a function of plan step. 

Figure 3-7 compares the BESTPCOST mode (the left column of plots - Figure 3-7a, b, c) to the BESTDPARMS

mode (the right column of plots - Figure 3-7d, e, f).  In this experiment, the upper bound on plan duration for the

BESTDPARMS approach was set to the duration of the BESTPCOST solution (5150 time units), as in the perfor-

mance comparison of Section 3.4.7.   This is the BESTDPARMS Case A.  

Figure 3-7a and d show the paths from both cases.  Interestingly, the BESTDPARMS solution is shorter in duration

than the BESTPCOST solution (4864 units) and yet wanders more by taking more steps (272 steps versus 158).   The

BESTPCOST solution, because it is penalized at every step for plan length and the  function prioritizes

shorter duration, deviates little from the direct diagonal path between the start and goal (8 additional steps above the

minimum 150).  Meanwhile, the BESTDPARMS solution is not penalized for extra steps, as long as the duration falls

below the maximum.  The path loiters aimlessly for some duration at the upper right of the plot and deviates from the

direct diagonal for the remainder, all in order to seek low-cost energy states.  

The progress distance plots in Figure 3-7c and f illustrate the tendency of the BESTDPARMS plan to be more indirect

than the BESTPCOST counterpart.  In Figure 3-7c, note that the progress trajectory heads at a steady slope towards

the goal.  In contrast, the trajectory of the BESTDPARMS solution (Figure 3-7f) oscillates at the beginning (corre-

sponding to the period of loiter near the start) and then makes a slow but more direct approach to the goal for the

remainder of the steps.  

Despite being penalized for plan length, the BESTPCOST plan does a better job at minimizing energy requirements

over the path.  Figure 3-7b and e show the energy profiles for both solutions.  In the plots, the curves rise in anticipa-

tion of a future energy cost.  The curves rest at zero when energy costs are negative (net battery charging), and

descend when costs are positive (net battery discharge).  The BESTPCOST solution results in lower minimum

required battery charge averaged over time (16.3 units versus 25.9 units) and a smaller peak energy requirement (91

versus 99 units).  Presumably, this is because energy is treated directly in the objective function of the BESTPCOST

approach, and indirectly through state dominance and resolution pruning in the BESTDPARMS approach.  

better X Y,( )
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Figure 3-8 continues the study, with two more examples of BESTDPARMS solutions.  In these tests, the BESTD-

PARMS solutions were given more freedom by raising the upper bound on plan duration to 2 times the BESTPCOST

Figure 3-7: Qualitative Compar ison of Planned Routes and Energy Profiles between BESTPCOST Mode (a 
and b) with BESTDPARMS Mode (c and d) with Tmax=TBESTPCOST
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duration (BESTDPARMS Case B, shown in Figure 3-8a, b, c) and 3 times the BESTPCOST duration (BESTD-

PARMS Case C, in Figure 3-8d, e, f).  Observe first that the Case B path in Figure 3-8a loiters over a wider area than

the solution in Case A in Figure 3-7d.  The progress plot for Case B in Figure 3-8c confirms this - it oscillates more

than the solution from Case A.  This behavior results from the greater upper bound in plan duration - the plan is 440

steps long instead of 272.  Interestingly, the extra duration allowed for the Case C path in Figure 3-8d does not appear

to cause path further path growth from the Case B path in Figure 3-8a.  The progress plots indicate differently.  The

progress plot for Case C (Figure 3-8f) shows an even greater period of oscillation over Case B (Figure 3-8c), even

though the path didn’t change from the shorter plan.  The explanation is that the plan traverses the same ground more

than once before moving to the goal.  The planner has evidently determined the optimal loiter pattern.  

The energy plots further substantiate this claim.  Observe that the energy profile for Case B (Figure 3-8b) has a period

of relatively low values (shown with a bracket labeled “1” ) corresponding to the early part of the oscillatory behavior

in the progress plot below it.  This interval is followed by a sequence that completes the oscillatory steps and then

continues to the goal (shown with a bracket labeled “2” ).  Looking closely at the Case C plot, one observes that these

identical profiles also appear there.  Profile 1 repeats four times in the Case C solution, and the last of these is fol-

lowed by Profile 2 which continues to the goal1.  Apparently, ISE determines the optimal path to the goal (by follow-

ing Profile 2), and the optimal loiter pattern (Profile 1), which it repeats as many times as possible prior to moving to

the goal.  The longer the plans are allowed to be, the longer the plans linger near the start state in the optimal loiter

pattern.  This strategy yields improvements in time-averaged energy requirements for longer plans - the Case A, B,

and C averages are 25.9, 22.1 and 18.4 units respectively.  Note that none of the BESTDPARMS solutions can match

the energy performance of the BESTPCOST solution.

In conclusion, it is important to state that these results are particular to the specific parameters used for the tests.

Tests done on other cost maps and under different DPARMS time resolutions resulted in different behaviors.  How-

ever, for this domain, tests do seem to display several patterns.  The BESTPCOST approach yields more direct paths

and better time-averaged energy solutions.  Interestingly, the direct paths do not typically correspond to the mini-

mum-time path.  To meet the time-averaged energy performance of the BESTPCOST solution, a BESTDPARMS

solution seems to require far greater time to repeatedly follow an optimal loiter pattern that drives the average energy

lower. 

1. A portion of Profile 2 also appears at the end of the energy plot for BESTDPARMS Case A, in Figure 3-7b.
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Many questions about ISE behavior remain.  For instance, what is the effect of altering the  or

 functions?  How might they be altered in the BESTDPARMS approach to yield better results?  What

Figure 3-8: Qualitative Compar ison of Planned Route, Energy Profile and Progress Distance between 
BESTDPARMS Mode with Tmax=2TBESTPCOST (a through c) and Tmax=3TBESTPCOST (d through f)
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if time and energy costs are selected differently, for example with larger contiguous regions of low or high cost?  Are

there other objective functions that better achieve desired results?  These questions are reserved for future work.
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This chapter describes the challenges posed by mission-directed path planning and introduces the TEMPEST planner,

a central development of the thesis, that meets many of these challenges.  The chapter defines several algorithms of

increasing sophistication that enable planning in a domain combining spatial, temporal and resource dimensions, and

shows how the advantageous qualities of ISE are leveraged to achieve efficient performance.  Finally, the chapter

demonstrates TEMPEST in a simulated multi-goal mission.  TEMPEST enacts contingency planning to survive over-

night in response to an unanticipated but necessary detour. 

4.1 Problem Definition
The principal goal of path planning is to determine a feasible or optimal route between one position and another.

What qualifies as feasible or optimal varies with the specific application problem.  Mission-directed path planning

seeks to derive routes for rovers exploring planetary surfaces.  In contrast to other planners developed for planetary

surface motion, mission-directed path planning is intended to plan over comparatively larger scales and over longer

durations.  Furthermore, where a majority of planetary-oriented work focuses on obstacle avoidance, the mission-

directed planning domain seeks a much stronger connection with other important factors in mission planning - time,

resources, operational constraints and mission returns.  The following sections examine the central issues in this new

domain.

4.1.1 Terrain Interaction and Obstacle Avoidance
Planetary navigation requires a robot to travel over terrain while avoiding features that impede progress to a goal

position. Terrain features that might pose difficulties for navigation span a continuum of spatial dimension, from

rocks at or below the scale of a vehicle to mountains many orders of magnitude larger.  Much of the prior work has

addressed obstacle detection, classification and avoidance for terrain features near the scale of a vehicle, called local

navigation. In contrast, this work concentrates on the other end of the scale spectrum - global navigation.  

4. Mission-Directed Path Planning
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In the local planning problem, kinematics and dynamics are central in determining whether terrain is trafficable.  In

wheeled vehicle configurations, the wheel diameter often strongly influences the size of obstacles the vehicle can

drive over.  A vehicle’s steering scheme limits the minimum radius of curvature it can follow while driving.  In some

cases, dynamics are also important - a vehicle might use its forward momentum to aid in surmounting a steep slope

and a fast-moving vehicle must consider its speed, center of mass and traction with the ground in evaluating the

safety of candidate steering arcs.  Since local navigation considers the area near the vehicle, it is often practical to rep-

resent the terrain in at a resolution smaller than the vehicle footprint.  At this high resolution, path planning must con-

sider the vehicle size and the radii of turns.

For practical reasons, global navigation de-emphasizes vehicle kinematics and dynamics.  Data of the resolution

required by local navigation are rarely globally available, and representing large regions at small scale is computa-

tionally impractical.  Absence of high resolution data means that typical kinematic and dynamic effects cannot be

adequately modeled.  Global terrain is often represented at a granularity at or above the size of the vehicle. Rocks and

holes at the rover scale might be totally ignored in the global context, and turning arcs might be completely encom-

passed within a single terrain model cell.  Dynamics might affect the traversal of a small slope, but would not signifi-

cantly impact the ascent of a large slope.  Often, global navigation represents the vehicle as a point, and analyzes

global terrain data solely in terms of gross characteristics - elevation, slope, mean obstacle density, etc. 

One immediate impact of ignoring kinematics and dynamics is that the state space parameters need not include joint

angles, velocities or accelerations.  This makes it computationally tractable to consider other state variables like time

and energy in planning.

Navigation in the large scale demands a new set of considerations.  Large scale terrain units include hills, valleys,

mountains, canyons and craters.  In the local navigation problem, it is often convenient to classify rocks as obstacles

that cannot be traversed and hence must be avoided at all cost. At the global scale, while a planner might reasonably

classify steep-sided canyons or mountains as intraversible, it cannot rule out navigation over smoothly varying hills

and valleys.  Rather than classify entire features as obstacles, the global path planner must consider how a vehicle is

affected by gross terrain properties.  For example, to determine whether an area is traversable, a planner might evalu-

ate terrain slope, vehicle heading and vehicle mass properties to determine the likelihood of tipover;  gross terrain

roughness to determine likely vehicle speed and mechanism wear and tear; and slope, heading, roughness and soil

cohesion to estimate locomotion power.  Rather than prevent access to large areas on a map, the mission-directed

approach seeks to provide models of access to as much of the terrain as possible1.

1. A problem that local and global planetary navigation share is that the places most interesting to explore and the 
places most challenging to navigate are often the same. 
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Large scale terrain affects more than just vehicle locomotion.  Large positive terrain features occlude sunlight and

prevent direct line-of-sight visibility to the Earth or orbiting relay spacecraft.  Loitering next to a large hill could sig-

nificantly reduce the duration of a communications pass or inhibit solar battery re-charging, but might keep an over-

heating vehicle sufficiently cool.  Going to high elevation might enable a rover to view lower surrounding terrain, and

might improve visibility to communications assets.  Gross slope of the local terrain influences the angle of antennas

or solar arrays on the rover.  Driving on one side of a ridge might point a solar array towards the sun, affording a vehi-

cle extra hours of driving time.   It is the intent of this work to capture these added effects in the navigation planning

process.

4.1.2 Temporal Planning
The planetary exploration domain is dynamic.  Planetary motion affects sunlight, shadows, solar flux and visibility to

communications assets like orbiting spacecraft or Earth-based ground stations.  Local environmental parameters

change as a vehicle moves from place to place.  A vehicle expends and collects resources at rates that vary as a func-

tions of the activity and the environment.   

To date, path planners intended for planetary surface exploration have ignored time. Local planetary navigation plan-

ners have had two principal objectives - first, to avoid obstacles that might harm the vehicle; and second, to follow a

minimum distance (or minimum time) path to a goal position.  Neither objective forces a consideration of time - rock

obstacles are static, and the minimum-distance path to a goal is determined entirely by the placement of obstacles in

the local environment.  For short-distance traverses, where local terrain parameters remain roughly constant, activity

planning and scheduling software can adequately incorporate time-varying effects into predictions of daylight, shad-

owing and resource profiles.

In contrast, route selection in a mission-directed context must consider time.  Mission success depends on having ade-

quate resources, whose availability varies with time and position (i.e. route). Mission activities must often satisfy

time-varying geometric constraints or time-based operational constraints - traverses in advance of these activities

must not prevent them from being met.  Depending on terrain conditions, two separate paths of equal distance might

require vastly different amounts of time to follow - traversing flat, smooth terrain with few obstacles might take far

less time than traveling on terrain covered with obstacles that must be either avoided or carefully crossed.  In such

cases, one cannot ignore time and adequately address path planning.  

Planetary motion defines the gross schedule for daylight, solar flux and opportunities for communications downlinks

to Earth.  Exposure to the Earth or the sun is governed by whether line-of-sight visibility exists between the surface

position and the source object.  Lighting and communications shadows cast by large terrain features (mentioned in

Section 4.1.1) vary with time.  At a fixed position, shadow and sunlight schedules vary little day to day, and can be
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captured in a simple model that repeats.  Since shadowing is a localized phenomenon, the schedule of lighting and

shadow will not be repeatable for a rover that moves sufficiently far.  Line-of-sight visibility to an orbiting communi-

cations relay is further complicated by the spacecraft’s own motion.  Consequently, the ephemerides for orbiting com-

munications spacecraft may change dramatically opportunity to opportunity, even for a stationary vehicle.  Therefore,

planning for communications visibility must capture position and time dependencies.  Predicting the ephemerides of

the sun, Earth and orbiting relay spacecraft, and to determine whether they are shadowed or visible at specific times is

critical in selecting routes that provide sufficient energy or enable communications at particular points in the path. 

A mission-directed path planner must also ensure that paths obey navigational and other operational constraints.

Many of these are time-dependent.  A mission might dictate geometric constraints on activities, where the geometry

is time-varying.  As an example, consider stereo vision for autonomous navigation.  Stereo vision is strongly affected

by lighting levels.  Glinting sunlight on camera lenses and entry of the solar disk into the camera field of view causes

“phantom obstacles”  to be generated in depth maps, or causes the rover to be blinded.  To prevent glinting and blind-

ing, locomotion actions might be disallowed when the sun is within a specified angle from the camera boresight.

Assuming the cameras point at or below horizontal, driving would be prevented in certain directions in the morning

and evening, but would be unconstrained during midday.  Restricting photographic measurements to times when the

sun is shining on the desired target is a second example of a constraint on time-varying geometry.  Operational con-

straints may also be purely temporal.  A communications downlink to Earth might be geometrically feasible over a

range of times, but operationally feasible only over a shorter time window allocated to the mission.  Low power, low

activity phases like hibernation might only be allowed during nighttime.

A central theme of this work is the modeling and long-distance path planning in the presence of time-dependent

effects, time-varying geometry, and variability of traverse speed as a function of terrain or other effects.

4.1.3 Resource Planning
A central problem of mission planning is ensuring the availability of resources for activities.  A resource is a quantity

that must be expended to achieve goals, but that is in limited supply.  There are different types of resources.  Metric

resources are storable quantities, for example time, energy or fuel, that are expended through activities that require

the resource.  From a planning perspective, metric resources can also be more abstract - the finite lifetime of a motor,

or the temperature margin on a thermally-sensitive instrument.  Metric resources further subdivide into monotonic

resources and non-monotonic resources.  Monotonic resources can only be expended; non-monotonic resources can

also be replenished through collection activities.  Metric resources are described by continuous, real-valued variables.

Unit resources describe components that are fully committed during an activity and become uncommitted at the ter-

mination of the activity.  These are described by Boolean variables describing either commitment or availability, as in

a camera or a motor.  This research addresses metric resources and not unit resources.
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Metric resources are a critical factor in planning paths in the mission context.  Without the required energy, a vehicle

cannot perform its primary activities.  The route a vehicle follows from place to place has a substantial effect on both

the expense and collection of resources.  Contrary to the assumption of many simple path planners, the shortest route

is not necessarily the least costly.  Steep, soft, slippery or rocky terrain requires more power than level, firm and flat

terrain.  For vehicles that collect resources like solar energy from the environment, the choice of path can dramati-

cally influence the available resource levels.  All other parameters being equal, a path in shadow cannot yield the

same energy as a path that is fully exposed to the sun.  

A mission-directed planner must, at minimum, guarantee satisfactory resources for desired mission activities, and

may also provide a plan that is optimal in terms of resources.  It must consider the balance between resource con-

sumption and collection, and, based upon specified activity models and stated requirements, provide the necessary

resources at all phases of the plan.  Another focus of this work is to enable metric resource planning to achieve satis-

factory or optimal energy profiles in the context of planetary mission exploration.

4.1.4 Coupling of Variables
The effects of terrain, time, resources and mission return are highly interwoven.  None can be considered in isolation

from the others.  The diagram in Figure 4-1 illustrates some of the common interrelationships in surface mission

operations.  Terrain affects the speed of travel and causes vehicle wear.  It also causes shadowing of sunlight and

communications.  Sunlight provides solar energy for battery charging, and enables imagery for navigation and sci-

ence, but also causes thermal cycling and resulting wear on the vehicle.  The mission objectives, science and explora-

tion activities, are supported by battery charge and constrained by vehicle wear.  Once data has been collected,

communications with Earth enables its transfer to an operations team.  Therefore, to achieve the ultimate objective of

Figure 4-1: Coupling Between Terrain, Time, Resources and Mission Return
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retrieving data from the robot, mission planning must consider a variety of factors in concert.  The challenge for auto-

mated planning research is to provide a method for solving this problem in a computationally practical way.

4.2 TEMPEST
TEMPEST (TEmporal Mission Planner for the Exploration of Shadowed Terrain) is a path planner designed for mis-

sion-directed reasoning.  It combines five models that define the relevant features of the mission-directed planning

domain, and uses the Incremental Search Engine (ISE) to search for plans that achieve mission objectives while satis-

fying operational constraints (see Figure 4-2).  The following sections describe the TEMPEST models, and explain

how they collectively contribute to the more formally-defined functions required by ISE.  

Mission-directed path planning must consider the interactions between several elements:

• Planetary environment through which a path must be planned

• Robotic vehicle that is operating

Figure 4-2: Pr incipal TEMPEST Components
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• Actions the vehicle can take that are relevant to the problem

• Physical and operational constraints on the available actions

• Mission objectives

TEMPEST composes five models corresponding the above elements.  A World Model captures relevant environmen-

tal phenomena for the planetary surface; a Rover Model describes relevant components of the vehicle operating in the

planetary environment; an Action Set comprises the activities the vehicle can execute to traverse across terrain, main-

tain resources, and achieve mission objectives, and the effect they have on vehicle state; a Constraint Set imposes

restrictions on the available actions, in terms of the state of the World Model and Rover Model; and finally, a Mission

Specification describes the initial state of the vehicle, the immediate goals of the mission, and the specific actions  and

conditions under which the goals can be satisfied.   

The models must be tailored to the planning problem to encompass all of the desired rover-environment-mission

interactions.  However, as stated earlier, it is not computationally practical to represent the domain at high resolution

when plans are intended to span kilometers and tens of hours.  Hence, the models are purposely coarse. They provide

reasonable projections of action outcomes under various environmental conditions, but at a resolution that permits

sufficiently high performance on a rover processor. Each of these models is described in greater detail in Sections

4.2.1 through 4.2.5. 

The models are the foundation for defining the ISE state space, the start and goals, transition arcs between states, and

the constraints on them.  Section 4.2.6 briefly describes how model information is used to define these ISE domain

components.

4.2.1 World Model
A model of the planetary environment is fundamental in producing plans that avoid hazardous terrain, consider sun-

light exposure and follow the most time and energy efficient routes.  The World Model captures the relevant features

of the planet environment in which a vehicle operates.  It is one of two basis models for defining the state space, for

computing arc transition costs and for determining the conditions under which constraints are satisfied or violated.  

To reflect local conditions defined by the underlying models, the World Model is set to a particular state, defined by a

position on a planetary surface, time and surface orientation.  With each update to the state, the World Model calls on

its underlying components to compute the local conditions.  It currently includes, but is not limited to, the following

components:
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Geodetic Reference - All maps in the World Model are referenced to a geodetic reference, a reference biaxial ellip-

soid (ellipsoid of rotation) that approximates the shape of the planetary body, from which transformations between

coordinate frames can be defined [7].  The coordinate frames that apply to all maps are:

• Planet Cartesian: a frame whose origin is at the center of the reference ellipsoid, and whose axes are defined by
the following:

- : in the plane of the equator of the reference ellipsoid, and in the plane of the prime meridian of the system.

- : the axis of symmetry of the ellipsoid, and parallel to the axis of rotation of the planetary body.

-  to make a right-handed frame.
• Geodetic: a system comprising latitude, longitude and altitude.  The geodetic system has two variants, based

loosely on the NASA Planetary Data System convention [27], planetocentric and planetographic.  In the World
Model, they are defined as follows:

Planetocentric
- Latitude: 
- Longitude:
- Altitude:
Planetographic
- Latitude:
- Longitude:
- Altitude:

• Topocentric: a Cartesian frame whose origin is a point on the planetary surface.  Its axes are defined as follows:

- : in the plane tangent to the surface of the reference ellipsoid, in the direction of constant latitude East.

- : the reference ellipsoid surface normal.

-  such that  points North along a meridian.

Elevation Map - A map of the operations area encodes elevations, above the reference ellipsoid, in a two-dimen-

sional grid of positions. Spatial resolutions for this data are typically 10-30 meters per pixel, far larger than the vehi-

cle footprint.  Though the model allows smaller ratios of map pixel to vehicle size, a high ratio preserves the

assumption that vehicle turning radius is insignificant with respect to cell size.  The elevation map also computes vec-

tors between points on the map.  

Slope Map - The World Model derives slope and slope aspect from the elevation map, and encodes each quantity at

the same spatial resolution as in the elevation map.  In addition, the slope map computes the transformations between

the topocentric frame and two other frames:

• Gradient: a frame whose origin coincides with the origin of the topocentric frame, and whose axes are defined
by:

- : in the plane of the local terrain surface, in the direction of steepest ascent (gradient).

- : the terrain surface normal.

-  to make a right-handed frame.
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• Pointing: a frame that describes the orientation of an object on the terrain surface. Its origin coincides with that of
the gradient and topocentric frames, but its axes are defined by:

- : in the plane of the local terrain surface, at an arbitrary angle from the direction of steepest ascent.

- : the terrain surface normal.

-  to make a right-handed frame.

Ephemer is - The ephemeris model predicts the vector of source bodies in the planet Cartesian frame of an observing

body at a particular time. The ephemeris model uses CSPICE, ephemeris generation software that provides relative

position and orientation for all major bodies in the Solar System [1].  In counterpoint to the guiding principle of

coarse modeling, CSPICE is a very accurate tool, accounting for speed-of-light delays and stellar aberration in deter-

mining a body’s apparent location. The ephemeris time standard - barycentric dynamical time - is the basis time refer-

ence in the World Model.

Line-of-Sight Maps - Line-of-sight (LOS) maps encode the elevation angle of a source object above the local ground

plane as defined by the slope map (see Figure 4-3 for an example). They also map shadowed locations, where the

source is below the ground plane or occluded by other terrain features. LOS maps currently represent incident sun-

light for the purpose of modeling solar energy, lighting and shadowing. However, they could also represent line-of-

sight to orbiting spacecraft or visibility to fixed points elsewhere on the terrain surface. A ray tracing algorithm

Figure 4-3: Example LOS map for  sunlight on natural ter rain, in this case a system of canyons exposed to the 
sun from the direction of the top of the image.
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projects from the source position (e.g. a Solar System body) onto the terrain model. Sequences of LOS maps, at regu-

lar time intervals, represent time-varying visibility.

Solar  Flux - The incident energy per unit area is modeled by the peak flux (as experienced under perpendicular inci-

dence) multiplied by the sine of the sun elevation angle to capture foreshortening effects. Atmospheric attenuation

must be captured in the peak flux value - the World Model currently assumes no variation in flux with angle from

zenith.  We currently ignore all other effects.  This model is used principally for the computation of available solar

power, but might also be used to compute the sun’s thermal influence on vehicle components.

4.2.2 Rover Model
The path planner must be able to predict the effects of activities undertaken under different environmental conditions.

The basic unit of the Rover Model is the rover component model.  Components model mission-relevant units or capa-

bilities of the rover, and include parameters relevant to operational constraints on the rover.  Each component in the

Rover Model can be activated or de-activated based on the activity being performed.  Active components can be set to

a continuous range of activity level, defined by a duty cycle.  The Rover Model aggregates components and utilizes

the World Model to predict how activated components affect the rover internal and external state.  

As with the World Model, the Rover Model must be set to a particular state which in turn defines the behavior of rover

components.  In this thesis, since the emphasis of TEMPEST has been on path planning that enables energy manage-

ment, the Rover Model uses only battery energy state.  The Rover Model predicts power load as a summation of the

powers from each activated component, scaled by their duty cycles.  However, one could envision modeling other

resources similarly, for example component wear, component thermal state, or available computer memory.  Science

data might be analogous to energy, and onboard memory the equivalent of a battery - science data collection and com-

munications with Earth would then be the activity equivalents of battery charging and discharging, respectively.  The

following are a few examples of rover components that are possible in the Rover Model:

Locomotor  - A component that models the speed and power of a vehicle as a function of terrain, and determines

whether or not terrain is traversable.  One simplified instantiation of the model is parameterized on vehicle mass,

drivetrain efficiency, and effective coefficient of friction. Other, more sophisticated models might incorporate models

of bulldozing resistance, rolling resistance and slippage.

Battery - A component that models energy storage capacity.  A basic model might simply encode minimum and max-

imum bounds on charge.  More sophisticated models could incorporate charge and discharge rate limits, transmission

losses, and might model individual cells in the battery.
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Solar  Ar ray - The solar array is a pointed component model.  A simple model encodes the array normal vector with

respect to the vehicle frame, the array area, and the solar cell efficiency. More complicated models might incorporate

models of individual cells, the strings of cells, and degradation effects due to dust collection or radiation.

Power  Load Component - A generic component type, the power load component describes a fixed power load (pos-

itive) or power source (negative) in the system.  The component models steady loads for onboard electronics (positive

loads) or the power coming from a radioisotope thermoelectric generator (RTG - a negative load).

Field Of View Component - A generic pointed component type that models the field of view of sensing devices on

the vehicle.  Used in defining geometric constraints, this component might define cameras, sun sensors or communi-

cations antennas, and is not required to specify the component power.

To date, the emphasis of TEMPEST planning has been on path planning that enables energy management. Therefore,

most rover components predict power load as a summation of the powers from each active component, scaled by their

duty cycles.  One might envision modeling other resources similarly.   Components might also model thermal energy

or component wear as a function of World Model conditions. 

4.2.3 Constraint Set
Constraints in TEMPEST encode the set of world and rover state values under which an action is illegal.  They can

represent either physically impossible conditions, or conditions that are undesirable operationally.  The Constraint Set

aggregates a number of individual constraints, each of which can be activated or de-activated for selective application

to different actions.  

To test for constraint satisfaction or violation under certain conditions, the Constraint Set sets the World Model and

Rover Model states to the test condition, then checks each activated constraint for a violation.  The individual con-

straints access the World Model and Rover Model local state parameter values to compute Boolean constraint viola-

tion functions.   Because they depend only on current world and rover state, Constraint Set constraints are local as

opposed to global.  The following examples give a flavor for the kinds of constraints that are possible:

Position - Actions might either be restricted to or restricted from operating within a particular area on a map.  The

position constraint enables a user to specify a set of positions, and whether the positions define a legal or illegal

region.  This constraint is useful for defining hazardous regions not otherwise modeled in the World Model, or per-

haps scientifically interesting regions within which a particular set of measurements is useful.
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Maximum Slope - Slopes present a hazard to rover driving.  Driving on a steep slope can risk vehicle tipover.  Even

if tipover is not an issue, steep slopes may be impossible to climb due to limited traction.  In the simplest model, a

user can select a maximum slope that is legal to operate on.  This model calls exclusively on the World Model.

Direct L ine of Sight - Line-of-sight (LOS) geometry is important for a number of applications, including solar power

collection, communications and remote sensing.  A source is within LOS of the vehicle if a ray from the source to the

vehicle does not intersect the terrain surface.  The LOS constraint allows a user to specify a source object in the World

Model with which LOS geometry must be evaluated during search.  The constraint can be defined either to succeed or

fail if LOS conditions exist.  A user might define a “shadowed”  constraint to define the illegal conditions for solar

charging, or a “sunlit”  constraint to define illegal conditions for a thermal cooling action.  Note that a “shadowed”

constraint does not distinguish between simple terrain occlusion and below-horizon conditions.  Similar constraints

could be generated for other sources (e.g. “out of view of Earth” , “ in view of Mars Odyssey” , or “out of view of allu-

vial fan X”).  

Elevation Angle - The elevation angle constraint limits the geometry of a Solar System object with respect to the

local horizontal plane.  A user must define the source object, the threshold elevation angle and whether the illegal

range is above or below the threshold elevation.  The primary use of the elevation angle constraint is to define the ele-

vation angle threshold for  “daytime”  or “nighttime”  conditions.  

Field of View - Sensor geometry can often be defined in terms of a boresight vector and its field of view (FOV), an

angle about the boresight defining its cone of sensitivity. The user defines an FOV constraint by selecting an FOV

component from the Rover Model and a source object from the World Model (for example the sun), and designates

whether the constraint is violated when the object falls within or outside the FOV.  One might define the range of sun-

boresight angles for which a sun sensor returns accurate vehicle heading estimates, or the spacecraft-boresight angle

range when communication are possible to an orbiting relay satellite.

Time Bounds - A mission might require or disallow actions to fall within a fixed time range.  This constraint permits

actions to be constrained within or outside a time bounds.  

Battery Charge - This constraint specifies the legal range of battery state-of-charge.  To specify this constraint, a

user associates the constraint with a specific battery model defined in the Rover Model.  Hence the range is defined by

the Rover Model.  A particularly power-hungry activity might require a high state of charge.  Alternatively, stopping

to charge a battery using solar energy might only be justified when the state of charge is below a certain threshold.
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Multiple constraints can be applied to a single action to dictate more complicated constraint conditions.  For example,

one could define a “Prevent Sun Blinding”  constraint, to specify the conditions under which a camera is blinded by

the sun.  It might combine the “Direct Line of Sight”  and camera “FOV”  constraints, since the FOV constraint by

itself would ignore whether the sun is actually visible or occluded from view.  A constraint to identify times near sun-

rise and sunset might combine two sun elevation constraints, for example “Sun Above the Horizon”  and “Sun Below

10 Degrees Elevation” .  

4.2.4 Action Set
The Action Set aggregates the actions that are most relevant to the planning problem.  The central theme of path plan-

ning is to plan for motion through an environment - therefore motion actions are required in all domains.  Other

action types are optional.  In domains where resource management is important, the Action Set might include actions

for resource collection (e.g. battery charging) and must represent salient resource consumption activities.  If mission

goal-related actions (e.g. science data collection) consume significant time or resources, or if constraints imposed on

them might affect the route or schedule, then they must also be included.  

Table 4-1 lists the data required to define a TEMPEST action.  The World Model and Rover Model play a substantial

role in the behavior of the action.  Given the target change in state (Line 1), the active rover components (Line 2)

determine the change in other state variables.  For instance, if a Drive action targets a change in X and Y position, the

rover components determine, through speed and power equations, the resulting change in time and battery energy.

Through Line 4, constraints can modify the behavior of the Rover Model by allowing actions in some states and pre-

venting them in others.  Line 3 is a condition that allows TEMPEST to remove vehicle heading from the search space.

In most cases the optimal rover orientation is either a direct function of the target change in state, or more a function

of local state than of global path state history.

An important limitation is that TEMPEST only solves for plans that are sequences of fully-ordered actions. This

research has not actively sought a scalable means of representing parallel actions.   Currently, parallel actions can be

Table 4-1: Data Required to Define a TEMPEST Action

 1. A target change in state.  Mobile actions specify a target change in position.  Stationary actions result in zero 
net change in position, and so specify changes in other state parameters.

 2. A list of active Rover Model components and their duty cycles. The components must enable the target state 
change, and must uniquely determine the resulting change in all other state parameters.

 3. A function  that uniquely determines the vehicle orientation as a function of state.

 4. A list of active Constraint Set members to be actively enforced.

θ f s a,( )=
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approximated by combining the behaviors of each action into a single action model, but representing all possible

action combinations would result in an exponential growth of the action space.

The following examples of TEMPEST actions illustrate how the conditions in Table 4-1are met:

Dr ive - An action to enable vehicle mobility in a plan.  The data required to define a drive action are listed in Table 4-

2. The simplest drive actions enable motion to each of the eight neighbors in an eight-connected grid map.  Each cell

destination defines a separate action. The vehicle orientation is a direct consequence of the position target - the vehi-

cle must face in the driving direction to achieve the target cell1.  Vehicle speed is defined by local terrain parameters

and rover parameters. 

One or more rover components must yield the change in time and resource state variables for the target position

change.  Specifically, the component must specify the vehicle speed and power given the state (e.g. as a function of

local terrain, available solar power and sunlight, vehicle mass, etc.).  Fixing the speed is not a substantial limitation of

the model.  Current planetary rovers are typically designed to drive at a single speed.  Control strategies may com-

mand lower speeds when following sharper turns or when in hazardous terrain.  Though neither turning radii nor local

obstacles are explicitly represented at the low resolution of global planning, their long-term effects can be captured in

an average speed model.  If a single speed does not adequately model the vehicle’s motion, one can define multiple

drive actions that have the same position change but utilize locomotor components with different speeds.

Constraints for drive actions are optional.  However, it may be useful to constrain driving to below a maximum slope,

to avoid hazardous terrain, or to times and headings that keep the sun disk out of the field of view of the navigation

cameras.

1. Note that for omni-directional vehicles, the drive action must define an explicit function for vehicle ori-
entation.

Table 4-2: Dr ive Action Data

Data Type Data

State Change Change in position 

Minimum Active Rover Components Locomotor that specifies vehicle speed .and 

power 

Heading Function  such that vehicle faces the target.

Active Constraints Arbitrary (Maximum Slope, Position, etc.)

∆x ∆y,

v f s a,( )=

p f s a,( )=

θ f ∆x ∆y,( )=
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Solar  Charge - An action to enable stationary solar-powered battery charging. Being a stationary action, the solar

charge action must target a duration or a target energy.  At minimum, the action must call on two rover components -

a solar array to collect energy, and a battery to store incoming energy. The vehicle heading for a solar charge can be

defined to optimize the incoming solar energy over the duration, as a function of terrain slope, absolute time, and the

orientation of the solar array with respect to the rover frame. 

As for drive actions, constraints for solar charge actions are optional, but can be added to limit their use to certain

state conditions (e.g. only when the sun is visible).

Hibernate - An action to enable stationary operations at low power levels.  This action is actually a variation of the

Solar Charge action, but uses different Rover Model components (e.g. low power electronics), has potentially a differ-

ent duration target, and employs a different set of constraints (e.g. Nighttime).  

Science Data Collection - An action to model the activity of science data collection within a single position grid cell.

Since the action remains within a single position cell, Science Data Collection is also a variation on the Solar Charge

action.  It uses Rover Model components to approximate the power of various instruments, overhead electronics

power, and perhaps power for limited locomotion about the site.  The activated constraints for this action type would

have to match the requirements of the particular measurements being employed.  One could envision designing con-

straints to impose lighting conditions, certain geometric conditions, or even thermal conditions at the site.

Via Point - A placeholder action, inserted at a goal position, that has no effect on state, but satisfies the goal of reach-

ing a particular position.  The following section explains why this type of action can be useful.

4.2.5 Mission Specification Set
The Mission Specification encodes the basic objectives for the planning run - the starting conditions for the plan and

a list of goals to be achieved.  

Table 4-3: Solar  Charge Action Data

Data Type Data

State Change Duration  or Energy 

Minimum Active Rover Components Solar Array that specifies solar power 
Battery to store incoming energy.

Heading Function  such that vehicle faces the opti-
mal direction for solar power collection.

Active Constraints Arbitrary (Sun LOS, etc.)

∆t ∆e

p f s a,( )=

θ f t slope az el, ,,( )=
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The rover start specification defines the start position and time in World Model coordinates, and the current resource

levels, defined by the Rover Model, that cannot be exceeded by the starting resource levels of any feasible path.  

The goal specification is a fully-ordered goal sequence, each defining, at minimum, the position of the goal and the

goal action - an action defined in the Action Set that must be executed at the goal position to achieve the goal.  Often,

a mission will specify science or exploration activities at specific locations, or resting points for overnight periods.

The previous section described Science Data Collection and Hibernation actions for these times.  In other cases, a

goal will purely be a via point en route to some other location.  In this case, Via Point action can be used.  As with any

action, goal actions can constrain the states over which the actions are legal, via the Constraint Set.  Optionally, goals

can independently specify allowable termination time bounds or minimum resource levels.

4.2.6 Incremental Search Engine
The five TEMPEST models collectively define the ISE planning domain - the state space (IPARMS and DPARMS),

the arc parameters (APARMS) and arc transition functions, the objective and heuristic functions, the start and goals

and other domain-specific functions (see Figure 4-4).  For greater detail on ISE, please refer to Chapter 3.

Figure 4-4: ISE Domain Definition through TEMPEST Models
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The ISE state space derives primarily from the states variables defined by the World Model and Rover Model. At min-

imum, the World Model contributes two position dimensions X and Y, and an absolute time dimension T.  The posi-

tion variables X and Y form the ISE IPARMS.  The time dimension T is the only required DPARMS parameter.

TEMPEST time units are seconds, but time equivalence class partitions are application-specific and typically far

more coarse, for example 10-30 minutes. 

The Rover Model contributes metric resource parameters.  Resource parameters can either be DPARMS and limited

under local constraints or, in circumstances where the resource value relates directly to path cost, they can be repre-

sented as global constraint parameters within the objective function (see Sections 3.1.3-3.1.5 for more detail).  The

resource of choice in this thesis is rover battery energy; however, TEMPEST could be re-configured to plan for other

resources, like component life, margin on thermal thresholds, or onboard memory. 

The TEMPEST Action Set and Constraint Set collectively define arc parameters (APARMS) and arc transition func-

tions  and .  Actions in the Action Set define the change in state given an initial or final state.  The Constraint Set

determines the conditions under which actions are legal or illegal, enabling the arc transition functions to reject vio-

lating arcs.  In general, ISE uses APARMS to store all parameters that influence arc transitions.  TEMPEST uses

APARMS exclusively to encode parameters that are expected to change during plan execution, and hence prompt re-

planning.  The static parameters are stored in a data structure universally accessible by the state transition functions.

The Mission Specification defines the goal states and actions and the start state for the ISE search.  Recall that ISE

plans paths to one or more goal states.  As will be shown in later sections, TEMPEST assigns multiple, time-distrib-

uted goal states to goals that can be feasibly completed over more than one time equivalence class.  During search,

each time-distributed goal state is treated independently and can be expanded to yield new states. The start state spec-

ification defines the termination conditions for the search - encoded in the ISE function .

The path cost functions  and  depend indirectly on the Mission Specification. The Mission Specification

defines which cost is important to the planning problem.  In the purest sense of mission-directed planning, as defined

in the Introduction, cost is in terms of the reward earned through achieving mission goals.  However, in many circum-

stances other costs based on resource parameters or other variables have direct mission relevance. This thesis does

not address reward-based planning.  That said, TEMPEST would not require significant modification to couch all

goals and path costs in terms of reward.

4.3 Algorithm
This section describes how TEMPEST uses ISE to solve for plans.  The basic unit of TEMPEST planning is the path

segment (or segment for short) - the interval between a pair of goal positions for which a plan must be solved.  For

β Φ

feasible X( )

h X( ) g X Y,( )
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each segment, TEMPEST creates a separate instantiation of ISE that is dedicated to solving that sub-problem.  Each

ISE instance must be initialized with goal and start information.  Once initialized, TEMPEST uses the ISE instances

to generate paths between goals.  Sections 4.3.3 and 4.3.3 describe the initialization and planning algorithms for a sin-

gle goal.  Sections 4.3.4 through 4.3.6 build on this base case to handle multiple goals and goals with completion time

bounds.

4.3.1 Definitions
Table 4-4 lists a number of other informal definitions for symbols and functions that appear later in the algorithm list-

ings.,

Table 4-4: Informal Definitions of Symbols and Functions Used in the TEMPEST Algor ithm Descr iption

I tem Definition

 A function that yields an instance of ISE planner.

A function that deletes an ISE instance.

The progress distance (see Appendix 2, equations A2-1 - A2-3).

The progress fraction (see Appendix 2, equation A2-4).

 An individual mission goal specification.  In general, a goal specification is defined by the tuple 

, the goal position, the legal time interval for goal completion, the goal 

action duration, the goal minimum resource level, and the goal “ final”  cost.  The time interval 

 can be either unspecified ( ) or partially specified (  or 

).

.  A fully-ordered sequence of  goals  where elements are listed in the desired order 

of completion, and each goal element 

A function that returns  if the ISE instance  has just been initialized, and  other-
wise.

 A function that, for a sequence of goals , returns the index for the last unplanned goal.  If 

some number of goals  at the end of the sequence still maintain valid plans,  returns 

.

A function that, for a sequence of goals , returns the index for the next goal to be achieved.  If 

some number of goals  has already been achieved or abandoned,  returns .

A function that returns the minimum traverse distance between two states  and .

 The minimum possible traverse distance to intersect all goal positions (see Appendix 2, equa-
tion A2-1).
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DP

FP

G

xg yg Tg δtg rg cg, , , , ,� �

Tg Tg ∞ ∞,–( )= Tg ∞– tf,( )=

Tg ti ∞,( )=

Γ N G1 … GN,( , )

Gi xi yi Ti δti r,
i

ci, , , ,� �≡

ini t I( ) TRUE I FALSE

last Γ( ) Γ
n N< last Γ( )

N n–

next Γ( ) Γ
n N< next Γ( ) n 1+

ρ X Y,( ) X Y

R



MISSION-DIRECTED PATH PLANNING FOR PLANETARY ROVER EXPLORATION

77

4.3.2 Single-Goal Planning
In TEMPEST single-goal planning problem (Figure 4-5), the basic objective is to solve for an optimal plan that trav-

els from a start  to a goal  , and executes a goal action before terminating.  TEMPEST initializes a single segment

planner in a function .  The algorithm for  appears in Table 4-5. 

Before describing single-goal planning, we introduce Figure 4-6, which has six frames depicting TEMPEST single-

goal segment initialization and planning.  Each frame is a plot of time (horizontal) versus progress fraction  (verti-

cal).  The origin of each plot represents the start state, with a time just before the start time , and a distance of zero.

The mission start specification, defined by the tuple , the position, time and 

resource parameter values for the start state.

An ISE function that sets the augmented goal state , the goal position, time, 

resource level and “ final”  cost.  The state is placed onto the OPEN list with .

A time interval , where  is the first time in the interval, and  is the final time.  The func-

tions  and  yield the times  and  respectively.  

 i The resolution of the time state parameter DPARMS equivalence class.

The maximum possible rover speed, used to compute the minimum mission completion time 
, and is a function of the Rover Model and World Model.

The minimum allowable average rover speed.  This parameter is used to compute the maximum 
allowable mission completion time , setting an upper-bound on a plan’s path length and 

loiter time.   is typically fixed for a given application.  

Figure 4-5: Single-Goal Planning Problem

Table 4-4: Informal Definitions of Symbols and Functions Used in the TEMPEST Algor ithm Descr iption

I tem Definition

S xs ys ts rs, , ,� �

SET_GOAL G( ) g x y t r c, , , ,� �=

h g( ) c=

T ti tf,( ) ti tf

open T( ) close T( ) ti tf

∆Tr es

vmax
∆tmin

vmin
∆tmax

vmin

S G

INIT_SEGMENT S G,( ) INIT_SEGMENT S G,( )

Star t

Goal

S

G

ρρρρ(S,G)

Star t

Goal

S

G

ρρρρ(S,G)

FP

ts



MISSION-DIRECTED PATH PLANNING

78

On the distance axis, the high point represents the Euclidean distance to the goal.  The slope of a trace in a plot indi-

cates the speed of progress towards the goal.  The time axis may span one or more days, as denoted by the light and

shaded regions corresponding to “noon”  and “midnight” .  The following paragraphs refer to these plot diagrams to

illustrate the TEMPEST algorithm.

Function  begins at Table 4-5, line L1 by defining the allowable plan start time interval ,

which is exactly  in duration and centered on the start time.  This is depicted graphically in Figure 4-6a) by the

short, thick line segment surrounding the start time. Line L2 computes the minimum distance  between the start and

goal.  Lines L3 and L4 compute the minimum possible and maximum allowable goal completion times for the seg-

ment.  The maximum allowable time accounts for the worst-case traverse duration and the goal action duration, start-

ing from the close of the start time interval.  In contrast, the minimum possible time starts at the opening of the start

time interval, but neglects the goal action duration.  This allows for the possibility that the goal action is abandoned

during execution.  Figure 4-6a) depicts the maximum speed line (more steep) and minimum speed line (less steep)

that define these times - dashed lines that ascend from the limits of the start time interval. 

These times are endpoints for two time intervals that are used repeatedly in TEMPEST planning - the reachable time

bounds  and the allowable time bounds  (line L5).  The reachable time bound opens at the earliest possi-

ble goal completion time and extends to infinity. It represents physically possible outcomes.  The allowable time

bound has an unlimited lower bound, but sets an upper limit on times considered for the search.  The goal completion

time interval  is computed as the intersection of the reachable and allowable completion times (line L6).   In Figure

4-6a), the thick, horizontal line segment at the goal distance shows the range of allowable goal completion times.

Note that the goal time interval extends beyond the maximum traverse time to account for the goal action duration.

It is important to note that although a minimum average rover speed is used to limit the range of allowable goal com-

pletion times, TEMPEST does not further limit the average speed of paths.  Figure 4-6b) shows the feasible distance/

time space as bounded by two lines - the original line of maximum rover speed, defining the earliest reachable

approach; and a second, new line extending downward from the latest possible goal position arrival time (at the same

speed), defining the latest allowable approach to the goal. 

Table 4-5: INIT_SEGMENT(S,G) Algor ithm

 L1

 L2

 L3

INIT_SEGMENT S G,( ) Ts

∆Tr es

R

Tr each Tal l ow

Tg

Ts ts ∆Tr es 2⁄– ts ∆Tr es 2⁄+,( )←

R ρ S G,( )←

tmi n open Ts( ) R vmax⁄+←
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The final step in initialization is to create the ISE instance for the path search.  Once initialization is complete, the

segment is ready for planning.  The function , as defined informally in Table 4-6, begins

by defining goals at the goal position but evenly spread over the goal completion time interval, separated by times

equal to the DPARMS time equivalence class resolution  (see lines L10-L13, and Figure 4-6c, where the dis-

tributed goals are represented as a string of cells spread across the goal completion time interval).  The time interval

between goals reflects the DPARMS resolution limit in ISE.  Recall that during a search, the ISE resolution pruning

mechanism eliminates redundant states according to the objective function and the  function (see Chapter

3.).  In general, two goal states in the same DPARMS class would be found to be redundant at the outset.  Therefore,

goals cannot usefully be spaced more closely than the DPARMS equivalence class resolution.

Once ISE is supplied with goal states,  makes a single query to ISE using the function

 with the start state and start time interval (Table 4-6, lines L15-L16).  This query calls on either

the BESTPCOST or BESTDPARMS modes to find the optimal path from the start to one of the time-distributed

goals.  In Figure 4-6, frames d) through f) depict the search.  Initially, the goal states are the only states in the ISE

 L4

 L5
, 

 L6

 L7 , 

Table 4-6: PLAN_SINGLE_GOAL(S,G) Algor ithm

 L8 if  then

 L9

 L10
for each time  such that  do

 L11

 L12

 L13

 L14

 L15

 L16

 L17 if  then return 

 L18 else return 

Table 4-5: INIT_SEGMENT(S,G) Algor ithm

tmax open Ts( ) R vmi n⁄ δtg+ +←

Tr each tmin ∞,( )= Tal l ow ∞ tmax,–( )=

Tg Tr each Tal l ow∩←

I CREATE_ISE()← ini t I( ) TRUE←

PLAN_SINGLE_GOAL S G,( )

∆Tr es

better X Y,( )

ini t I( ) TRUE=

i 0←

t open Tg( ) i∆Tr es+← t close Tg( )<

g xg yg t rg cg, ,, ,� �←

I :SET_GOAL g( )

i i 1+←

ini t I( ) FALSE←

s xs ys Ts rs, , ,� �←

c* s*,� � I :GET_PATH_COST s( )←

c* NOPATH= NULL

GET_PATH c* s*,( )

PLAN_SINGLE_GOAL S G,( )

GET_PATH_COST S( )
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OPEN list.  They are expanded using all feasible actions (arcs), thereby expanding the search graph.  If a plan exists,

the graph eventually intersects the start state.  Under the BESTPCOST mode, the first detected feasible path will also

be the optimal. Under BESTDPARMS mode, ISE finds the “best”  feasible state that falls below the path cost maxi-

mum.  returns the cost of the optimal path , along with the initial state .  If a path was

found, the TEMPEST function  yields the plan.  The plan begins at the start state position, at some

time within the start time interval, and arrives at one of the goals in the goal window after completing the goal action

(Figure 4-6f).  Note how the DPARMS time class resolution limits the accuracy and precision of the plan - the accu-

racy in terms of the proximity of the plan start time to the actual start time, and the precision in terms of the coarse-

ness of the goal completion times.

4.3.3 Single-Goal Re-Planning
TEMPEST enables two types of re-planning - state update re-planning and model update re-planning.  Invariably,

mission execution does not follow plans precisely. Often, unforeseen operational events cause deviations from the

route, schedule or resource guidelines. In response to these deviations, a user calls   with

the updated state. Since the segment goals are initialized, the function skips the goal setting steps and simply re-que-

ries ISE with the updated initial rover state (L16). ISE extends its graph to the new state, yielding a new optimal plan.

There is no guarantee that the updated solution is similar to the original. This is state update re-planning.

Re-planning must also occur when changes in the World Model or Rover Model alter arc transitions, either in terms of

state change or arc cost, as encoded through APARMS. Given model updates, TEMPEST reports the APARMS

changes for each affected IPARMS state set to the ISE instance, and then calls . ISE

determines the states affected by the updates in   and repairs the nodes in the graph to reflect

the new optimum. ISE, and hence TEMPEST, is efficient because it restricts its computations to the set of nodes

affected by the changes. 

Typically, new data about the world comes from rover sensors. Under the backwards-chaining search, the rover posi-

tion is at a leaf node of the search graph. Therefore, local changes deriving from rover sensor data affect only the ends

of the graph, and are inexpensive. In contrast, global World Model changes and basic changes to the Rover Model

often affect a large portion of the search graph, and can lead to far more expensive searches (see Chapter 3. for exper-

imental results).  

GET_PATH_COST S( ) c* s*

GET_PATH c* s*,( )

PLAN_SINGLE_GOAL S' G,( )

PLAN_SINGLE_GOAL S G,( )

GET_PATH_COST S'( )
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Figure 4-6: Single-Goal Planning. a) Goal time interval definition; b) Reachable and allowable space; c) Goal 
states and star t query; d) Progression of search from goal states; e) Completion of search; f) Optimal plan
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4.3.4 Sequential Goal Planning
The TEMPEST sequential goal planning problem involves planning a path from a start state  through a sequence of

goals  (see Figure 4-7).  In general, each goal is position-referenced action that must be executed

before moving to the next goal.  Each successive pair of goals in the sequence defines a segment.  By chaining ISE

searches in series, TEMPEST enables planning through a sequence of goals. TEMPEST creates a separate ISE

instance for each segment. As with ISE search, TEMPEST sequential goal planning happens in backwards chaining

order, from the last segment to first segment. 

Sequential goal planning is similar to single goal planning, but differs in some important ways. Principally, the opti-

mal solution for an arbitrary segment is not necessarily part of the optimal solution for the entire goal list. Therefore,

it is incorrect to simply chain locally-optimal segments to form the globally-optimal solution. Instead, TEMPEST

tracks multiple path candidates through all the segments, then solves for the optimal surviving candidate in the first

segment. We describe the process below.

As with single-goal planing, TEMPEST begins by initializing the start and goal time intervals for all segments.   This

requires a new function, , whose algorithm appears in Table 4-5.  Figure 4-8 contains dia-

grams depicting the essential steps of sequential goal segment initialization and planning.  As in Figure 4-6, the hori-

zontal axes represent time.  The vertical axes span all the goals, whose vertical separation corresponds to the distance

between them.   Each vertical interval between goals represents one of the “segments”  of the total path. As with sin-

gle-goal planning, the process for segment planning proceeds in backwards-chaining order, from the top right of the

diagram to the bottom left.

Rather than initializing a single segment, the new function initializes the range of segments, in reverse order, from

some final segment , and through an earliest segment defined by .  In the first call to the function, 

is equal to 1 and  is given a value of , the total number of segments.  For re-planning, the limits take on different

Figure 4-7: The Sequential Goal Planning Problem

S

Γ G1 … GN, ,� �=

Star t

Goals

S

G1

ρρρρ(S,G1) G2

G3

G4

ρρρρ(G1,G2) ρρρρ(G2,G3) ρρρρ(G3,G4)

Star t

Goals

S

G1

ρρρρ(S,G1) G2

G3

G4

ρρρρ(G1,G2) ρρρρ(G2,G3) ρρρρ(G3,G4)

INIT_SEGMENTS S Γ k, ,( )

k next Γ( ) next Γ( )

k N



MISSION-DIRECTED PATH PLANNING FOR PLANETARY ROVER EXPLORATION

83

values.  

Lines L21 through L24 define the minimum and maximum times for the final goal.  The minimum distance to the

final goal is now the sum over all minimum segment distances (L22).  The minimum possible time is calculated in the

identical way to single-goal planning.  The maximum allowable time now takes into account the sum of goal action

durations.  This calculation is depicted graphically in Figure 4-8a).  The line of fastest approach rises steeply from the

opening of the start time interval, while the line of slowest allowable approach ascends more slowly, with pauses for

each goal action.  As before, these times define the reachable and allowable time ranges for the goal, whose set inter-

section becomes the final goal time interval. 

The earlier segment goal time bounds are computed recursively from later goal time intervals.  The first reachable

time is computed by subtracting the minimum traverse time from the opening of the next goal interval (L26).  The last

allowable time is found by subtracting the fastest possible traverse and the duration of the next goal’s action from the

closing of the next goal interval (L27).  As with the final goal, an earlier goal time interval is the intersection of the

reachable and allowable time bounds (L29).  Figure 4-8b) shows the calculation graphically.  From the final goal time

interval, the line defining the earliest reachable bounds extends downwards without pause from the opening of the

Table 4-7: INIT_SEGMENTS(S,Γ,k) Algor ithm

 L19

 L20 for each goal  do

 L21 if  then 

 L22

 L23

 L24

 L25 else

 L26

 L27

 L28
, 

 L29

 L30 , 

Ts ts ∆Tr es 2⁄– ts ∆Tr es 2⁄+,( )←

i k … next Γ( ), ,←

i N=

R ρ S Gnext Γ( ),( ) ρ Gj Gj 1+,( )
j next Γ( )=

N 1–

�+←

tmi n open Ts( ) R+ vmax⁄←

tmax close Ts( ) R+ vmi n⁄ δ
j next Γ( )=

N

� tj+←

tmi n open Ti 1+( ) ρ Gi Gi 1+,( ) vmax⁄–←

tmax close Ti 1+( ) ρ Gi Gi 1+,( ) vmax⁄– δti 1+–←

Tr each tmi n ∞,( )← Tal l ow ∞ tmax,–( )←

Ti Tr each Tal l ow∩←

I i CREATE_ISE()← ini t I i( ) TRUE←
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final goal time interval, while the boundary defining the latest allowable times descend in stair-step fashion, pausing

for each goal action.  The function creates an ISE instance for each segment, and returns upon initializing the first

remaining segment, given by .  

Once the segments are initialized, planning occurs in an updated function , defined in Table

4-8, and depicted in the remainder of Figure 4-8. Starting with the last unplanned segment, the function alternates

between defining the ISE goal states and planning the segment.  If the last unplanned segment is also the final seg-

ment, the goals are defined as in single-goal planning (L36-L39).  Before moving on to earlier segments, the function

proceeds to planning for the current segment.  Recall that the locally optimal segment solution is not, in general, part

of the global optimum. To account for this, TEMPEST generates a number of time-distributed plan solutions.  First, it

defines a start time interval for the segment, equal to the previous goal time interval (for all but the first segment - see

L46), and equal to the overall plan start time interval for the first segment (L48).  At regular intervals within the start

time interval (the time DPARMS resolution equivalence resolution),  makes a query to ISE

with  (L49-L52).  If the query results in a solution, the solution is recorded.  If not, the function

continues with next query.  Figure 4-8c) shows the start state queries as discrete intervals over the start of the last seg-

ment.  Figure 4-8d) shows how some of these queries result in feasible plan segments, while others do not1.  Once all

the query states are exhausted, the function continues on to the next earliest segment.  However, if no solutions result

from the queries, then there is no feasible plan for the problem. 

To define the goals for earlier segments, the function copies the initial states and path costs from the following seg-

ment’s path solutions (L41-L43).    Again, planning proceeds as a series of queries to an ISE planner, and may result

in a list of plan segment solutions.  The process repeats for all segments down to the next remaining segment (Figure

4-8e).  The effect is to chain segment solutions together to build long, consistent plans one segment at a time.  The

earliest segment has only one valid start time interval, and so involves only one ISE query.  The resulting solution is

the global optimum for the sequential goal problem, depicted in Figure 4-8f).  

4.3.5 Sequential Goal Re-Planning
TEMPEST also provides re-planning for multi-goal traverses. This contrasts with single-goal re-planning in that

model changes may affect more than one segment, and hence more than one ISE graph. TEMPEST must notify each

affected ISE instance, but need only initiate re-planning from the latest affected segment. Note the analogy to modifi-

cations in a single ISE search - updates near the position of the rover tend to affect fewer segments than updates near

the final goal, and hence are far cheaper to re-plan. 

1. Note that some goal states and start states do not produce feasible solutions. Further note that each start state can only have one goal state 
(the optimal path is unique, barring ties), but that the optimal paths from several start states may all arrive at the same goal state.

next Γ( )

PLAN_SEQ_GOALS S Γ,( )

PLAN_SEQ_GOALS S Γ,( )

GET_PATH_COST S( )
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Figure 4-8: Sequential Goal Planning. a) Final goal time interval definition; b) Previous segment goal time 
interval definitions; c) Segment goal states and star t quer ies; d) Planning in last segment and generation of 

goal states for  previous segment; e) Completion of planning; f) Optimal plan
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An update procedure precedes re-planning.  TEMPEST determines which segments are affected by updates that occur

during plan execution.  An update to the start state affects only the first remaining segment.  Updates to models may

affect one or more segments.  Successfully completing a goal or abandoning a goal removes the corresponding seg-

ment from consideration in future planning.  All segments affected by updates and all segments preceding  the

affected segments must be re-planned.  The reason is that in a backwards search order, the solutions for earlier seg-

ments are based on solutions for later segments.  Modifications to arc costs in a later segment in general alter the solu-

tions for that segment, and hence the goals for the previous segment.  So, a change in a later segment invalidates all

earlier goal states.  Once TEMPEST determines which segments are affected by updates, it deletes all but the last

affected ISE instances, and calls , where  is the index of the second-to-last affected seg-

ment, or .  Once the segments are re-initialized, a call to  initiates re-planning.

Each ISE instance repairs its search graph and yields plans, if feasible, for queries over the newly-defined start time

intervals.  The resulting plan, if any, is the optimum considering the new data.

Table 4-8: PLAN_SEQ_GOALS(S,Γ) Algor ithm

 L31 for each segment  do

 L32

 L33 if  then

 L34 if  then

 L35

 L36
for each time  such that  do

 L37

 L38

 L39

 L40 else

 L41 for each , with 

 L42

 L43

 L44

 L45 if  then

 L46
, , , 

 L47 else

 L48
, , , 

INIT_SEGMENTS S Γ k, ,( ) k

last Γ( ) 1– PLAN_SEQ_GOALS S Γ,( )

i l ast Γ( ) … next Γ( ), ,←

Si* NULL←

ini t I i( ) TRUE=

i N=

j 0←

t open TN( ) j∆Tr es+← t close TN( )<

g xN yN t rN cN, ,, ,� �←

IN:SET_GOAL g( )

j j 1+←

c* s*,� � Si 1+ *∈ s* x* y* t* r *, , ,� �=

g x* y* t* r * c*, , , ,� �←

I i :SET_GOAL g( )

ini t I i( ) FALSE←

i next Γ( )>

T Ti 1–← x xi← y yi← r r i←

T Ts← x xs← y ys← r rs←
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4.3.6 Time-Bounded Sequential Goal Planning
Often, legal goal completion is restricted to within fixed temporal bounds. For example, a communications opportu-

nity may only be possible within a specific time range, or a scientific measurement might only be valuable during cer-

tain times of day.  One approach to planning in these situations is to add constraints to the Constraint Set that define

legal time ranges, associate those constraints with the goal actions, and perform sequential goal planning as described

in the previous sections.  Time constraints on goals can often drastically reduce the reachable state space.  Forcing the

ISE search to discover the reachable states both upstream and downstream of a time-limited goal is a wasteful activity

in light of a priori knowledge.  

Instead, the  function can be modified to quickly propagate the effect of goal time con-

straints to earlier and later goals, thereby eliminating unreachable ranges of the goal time intervals that cannot con-

tribute to feasible plans.  This new function, , can substantially improve performance in

finding the same optimal solutions as would be found using the earlier initialization algorithm.  It is detailed in Table

4-9.  A diagram of the new initialization procedure appears in Figure 4-9.

Figure 4-9a shows the same problem layout as in Figure 4-8a, but with the addition of goal time bounds for goal 2 and

N-1, specified by the Mission Specification, that restrict the legal range of goal completion times.  These goal bounds

influence the initialization procedure in the following ways:  they potentially further limit the closing time of later

goal time intervals; they potentially further limit the closing times of earlier goal time intervals; and they directly

limit the time interval for their associated goal.  

As with , the new initialization projects the reachable time range for the final goal using the

maximum possible speed and shortest distance (L58, L59 and L72).  It also projects an allowable time range for the

final goal ( ) using the minimum allowable speed, the same distance, and the durations of goal actions (L65).

Figure 4-8a illustrates the result of these computations.  However, the allowable time range may be further limited by

the latest upstream mission-imposed goal time bounds.  Consider that if an upstream goal is forced to finish earlier

 L49
for each time interval  such that 

 L50

 L51

 L52 if  then 

 L53 if  return 

 L54 return 

Table 4-8: PLAN_SEQ_GOALS(S,Γ) Algor ithm

Tsub open T( ) j∆Tr es open T( ) j 1+( )∆Tr es+,+( )← close Tsub( ) close T( )≤

s x y Tsub r, , ,� �←

c* s*,� � I i :GET_PATH_COST s( )←

c* NOPATH≠ Si* c* s*,� �⇐

Si* NULL= NULL

GET_PATH c* s*,( )

INIT_SEGMENTS S Γ k, ,( )

INIT_TB_SEGMENTS S Γ k, ,( )

INIT_SEGMENTS S Γ k, ,( )

tmax2
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than would be limited by unbounded sequential goal planning alone, it could also limit how late downstream goals

can be completed, under the minimum allowable speed restriction.  It is pointless to plan for goal completion times

that can only be reached by slower-than-allowable speeds.  Therefore, the algorithm must determine which time lim-

itation is more constraining - the latest allowable time from unbounded sequential goal planning, or the propagated

effect of earlier goal time bounds.

Table 4-9: INIT_TB_SEGMENTS(S,Γ,k) Algor ithm

 L55

 L56 for each goal  do

 L57 if  then

 L58

 L59

 L60 if  then 

 L61

 L62 for each goal  do

 L63
if  then

 L64

, break

 L65

 L66

 L67 else

 L68

 L69 else

 L70

 L71

 L72

 L73

 L74

Ts ts ∆Tr es 2⁄– ts ∆Tr es 2⁄+,( )←

i k … next Γ( ), ,←

i k=

R ρ S Gnext Γ( ),( ) ρ Gj Gj 1+,( )
j next Γ( )=

k 1–

�+←

tmi n open Ts( ) R+ vmax⁄←

i N=

tmax1 ∞←

j N … next Γ( ), ,←

close TBj( ) ∞≠

tmax1 close TBJ( ) 1
vmi n
---------- ρ Gm Gm 1+,( ) δ

m j 1+=

N

� tm+

m j=

N 1–

�+←

tmax2 close Ts( ) R+ vmi n⁄ δ

m next Γ( )=

N

� tm+←

tmax min tmax1 tmax2,( )←

tmax close Ti 1+( ) ρ Gi Gi 1+,( )– δti 1+–←

tmi n open Tr each( ) ρ Gi Gi 1+,( ) vmax⁄–←

tmax close Ti 1+( ) ρ Gi Gi 1+,( ) vmax⁄– δti 1+–←

Tr each tmi n ∞,( )←

Tal l ow ∞ tmax,–( )←

Ti Tr each Tal l ow TBi∩ ∩←
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 L75
if  then return 

 L76 else , 

 L77 return 

Figure 4-9: Initialization for  Time-Bounded Sequential Goal Planning: a) Or iginally-specified reachable and 
allowable time limits; b) Ear lier  goal-imposed allowable time limit; c) Goal time interval definitions; d) Final 

segment goal states and query star t states

Table 4-9: INIT_TB_SEGMENTS(S,Γ,k) Algor ithm
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Figure 4-8b shows that the time bound for goal N-1 limits the goal interval for goal N.  The projection of the slowest

allowable speed for segment N, summed with the goal N action duration, is earlier than the end of the original allow-

able time interval.  Any arrival time later than this new time would require an approach to goal N by a slower-than-

allowable speed.  

Returning back to Table 4-9, in computing the final goal allowable time interval, the algorithm searches to find the

last time-bounded goal in the goal sequence (L62 and L63).  It projects the latest allowable time from the end of that

goal time bounds to the final goal ( , from L64), and keeps the minimum of  and  as the true closing

time (L66 and L73).  For earlier start intervals, the time bounds propagate from the next latest goal interval just as

with  (L70 and L71).  The only difference is that the overall goal time interval is the inter-

section of three time ranges - the reachable, allowable and goal-limited time bounds.

Figure 4-8c shows the effect of the intersection.  In the specific case of goal N-1, the latest allowable time falls later

than the mission-imposed goal time bounds. The intersection removes a large time interval from the allowable

unbounded sequential goal range from consideration.   In the case of goal 2, the latest allowable time falls earlier than

the mission-imposed bounds, causing the minimum allowable speed restriction to take precedence.  For goal 1, no

mission-imposed time bounds exist, and so again, the minimum allowable speed restriction takes precedence.

Importantly, if at any time during the initialization a goal time interval is computed to be empty, the mission, as spec-

ified, is infeasible.

The new initialization procedure is all that is required to enable TEMPEST to plan and re-plan for time-bounded

sequential goals.  Once segments are initialized, either prior to planning or in response to execution updates,

 solves for the plan that obeys the temporal bounds on goal completion.

4.4 Plans
TEMPEST plans consist of a fully-ordered sequence of state-action pairs, called waypoints, corresponding to the

states and arcs that follow the optimal path from the start state, through all intermediate goals, to one of the desig-

nated final goal states.  A plan  with N waypoints takes the form: 

4-1

tmax1 tmax1 tmax2

INIT_SEGMENTS S Γ k, ,( )

PLAN_SEQ_GOALS S Γ,( )

π

π w1 w2 ..., wN, ,{ }≡
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where each waypoint takes the following form, and is interpreted as follows:

Each state is an aggregation of the ISE IPARMS, DPARMS and auxiliary resource variables for the application.  The

corresponding action is the action departing from the state.  

As a sequence of waypoints, a plan acts as a guide for path execution whose granularity is defined by the resolution of

the spatial coordinates and the other state variables.  Each action in the plan must be initiated as close as possible to

the position and time of the waypoint.  Each resource variable specifies the minimum resource level that must remain

in order to satisfy all the goals in the plan, as described in Chapter 3, Section 3.1.5.  A deviation from plan position

greater than the spatial resolution of the map, or in timing greater than the time equivalence class resolution may jus-

tify re-planning.  Similarly, if any resource falls below the recommended minimum level as dictated by the plan, suc-

cessful re-planning is necessary to ensure mission completion.

4.5 Plan Evaluation
In evaluating TEMPEST planning behaviors, it is useful to introduce some approaches for analyzing plans.  Plan

solutions are often difficult to interpret.  Even when a planner produces formally correct and optimal plans, it is not

immediately obvious whether plans display a desired behavior, how much of a behavior to attribute to artifacts of rep-

resentation versus to good planning, or how to compare plans stemming from alternate approaches.  This section pre-

sents some simple analysis tools that help with this problem.

4.5.1 Distance
Plan distance is an important path planning measure. For many path planners, minimizing feasible path length is the

single objective.  Though minimizing path length is not the only objective for TEMPEST, it is still very important.  In

many cases, the shortest path is the least costly in terms of resources, mechanical stress and vehicle risk.  This thesis

introduces two factors that describe a plan’s increase in path length above the planar Euclidean distance between

goals.

4-2
wi xi yi ti ei

1
...ei

J
a, i, , , ,{ }      where≡

xi x-coordinate of map cell 

yi y-coordinate of map cell 

ti  arrival ephemeris time 

e
j
i minimum allowable level of jth resource

ai action starting at ti≡

≡

≡

≡

≡



MISSION-DIRECTED PATH PLANNING

92

 

Representation Factor  : This factor encodes the ratio of the minimum distance possible under the planner’s state

representation ( ) to the planar Euclidean map distance ( ) such that:

Representation factor encodes how much a planner’s underlying spatial representation contributes to an extension of

path length beyond the minimum.  Representation factor has a minimum value of 1, and a maximum value that

depends on the system of spatial representation.  TEMPEST uses a grid-based representation for terrain.  Actions

transition between cells in the grid and their eight nearest neighbors, forming an eight-connected graph.  The mini-

mum eight-connected plan distance between two points depends on the ratio of their relative grid distance in the x-

coordinate (∆x) and the y-coordinate (∆y). When the start and goal lie along a common horizontal (∆x/∆y= ), verti-

cal (∆x/∆y=0) or principle diagonal axis of the graph (∆x/∆y=1 or ∆x/∆y=-1), the minimum eight-connected distance

Figure 4-10: Representation Factor  for  Regular  Four  and Eight-Connected Gr ids

4-3

fR

Dr ep Dmap

fR Dr ep Dmap⁄=

∞
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is equal to the Euclidean map distance between the points ( ).  Since the eight-connected path cannot assume

arbitrary headings, other ratios of ∆x-to-∆y produce indirect paths whose path lengths exceed the Euclidean distance

between the points ( ).  Figure 4-10 plots  for both four- and eight-connected motion on regular grids given

the relative positioning of the start and goal.  The four-connected graph, corresponding to the “Manhattan distance” ,

yields a worst-case error of  for two points directly on a diagonal.  At worst, the eight-connected graph contributes

a 8.2% increase in path length.

Avoidance Factor  :  This factor encodes the ratio of the plan distance ( ) to the minimum distance possible

under the planner’s state representation ( ) such that:

Avoidance factor captures the amount of extra distance, inserted by a planner, to avoid obstacles and sub-optimal

regions.  Its minimum value is one, and its maximum value is unbounded.  It is important to note that an avoidance

factor of 1 does not mean that the path it describes has not avoided obstacles or areas of high cost.  In general, a path

with the minimum representation distance  is not unique, and has many degrees of freedom with which to avoid

obstacles or high cost areas.  Observe in Figure 4-11 that the solid paths are all of minimum length under an eight-

connected grid representation , and yet avoid obstacles.  The dashed path, however, covers more distance, and

so has an avoidance factor greater than one.

For plans solved under an objective function that minimizes path length, avoidance factor will be greater than 1 only

if obstacles prevent all paths yielding the minimum representation distance  between points.  For objective func-

tions that minimize some other quantity, like duration or energy expense, an avoidance factor greater than one may

indicate a deviation in path to avoid a costly region.  

4-4

Figure 4-11: Obstacle Avoidance with fA=1 (solid) and fA>1 (dashed)
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4.5.2 Time
In temporal planning, where actions are not necessarily mobile, plan duration is a more appropriate measure of plan

length than distance.  For mobile actions, the distance factors in Section 4.5.1 also encode the increase in plan dura-

tion due to increased path length. Beyond this, stationary actions inserted into a plan also cause an increase in plan

duration.  If the minimum map traverse time and total duration of goal actions are defined respectively as: 

then the minimum required plan duration is given by:

Slower driving speed and additional stationary actions inserted into the plan motivate the following additional factor:

Loiter  Factor  :  This factor encodes the ratio of the minimum plan duration, considering traverse time and goal

action durations, to the actual plan duration, such that:

 Loiter factor expresses the degree to which a plan specifies less-than-maximum driving speed or stationary actions

beyond the goal actions.  

4.6 Simulation Results

4.6.1 Re-Planning
We present a sample planning problem to illustrate TEMPEST behaviors. A contour map in Figure 4-12 shows the

elevation profile for synthesized terrain on a mock Martian surface. Mountains form a central pattern of valleys run-

ning in a North-South (up-down) direction, and a rounded crater lies to the northeast. The rover starts in the morning

at the southeast corner of the map (“Start” ), and must traverse to the northwest corner (“Goal 2” ). Scientists designate

a Via Point goal in the valley, “Goal 1” , to promote travel through the valley en route to the final destination. Mission

engineers (or an onboard planner-scheduler) require the robot to reach Goal 2 with 100 W-hr of charge left for subse-

quent operations. 
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Unfortunately, the elevation map provided to the rover is incorrect. Its preliminary map indicates a clear exit from the

valley system at its northern extreme, between two peaks. The actual terrain involves a far higher and steeper pass,

beyond the locomotion capability of the rover.

In this example, a simple simulation of the mission demonstrates the value of TEMPEST. At each plan step, the sim-

ulated rover plans a path from its current state, then “executes”  the first step of the plan through path integration. At

each new point, the rover “senses”  the local environment, detecting the actual elevation, slope and lighting of all cells

within two pixels. Based on this new data, TEMPEST re-plans a path and the process continues.

Figure 4-12 shows the initial TEMPEST plan route. With the exception of a few minor path deviations, the route fol-

lows a direct path from the start through each of the goals. Subsequent re-plans during “execution”  yield similar

routes. The solid red curve in Figure 4-14 shows the timing for the initial plan. The slope of the curve represents the

rover speed toward Goal 2. One observes that it is only slightly slower than the theoretical fastest, straight-line

approach, as shown by the steep dash-dot line. The red solid line in Figure 4-15 shows the required battery energy

profile for the initial plan. The plan allows the robot to begin with an empty battery, and only requires increasing

Figure 4-12: Initial Plan Route: TEMPEST plans a path from “ Star t”  at the southeast of the map, to Goal 1 in 
the valley in the center  of the map, and then through the saddle point to Goal 2 in the nor thwest.
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charge at the end of the plan to meet the Goal 2 requirement. This indicates that  solar energy provides ample energy

for locomotion.

The simulated rover reaches the Goal 1 Via Point and continues without stopping toward Goal 2. The nearest valley

exit, according to its internal elevation map, lies to the northwest directly in line with its next goal. However, as it

approaches the supposed low pass, the robot detects the steep, intraversible pass. Figure 4-13 shows the first substan-

tial re-plan in the sequence, based on this discovery. With no escape to the northwest, TEMPEST selects the least

expensive alternative - a detour through a narrow valley to the northeast (the blue dashed line). This new route is a

significant departure from the original. The extra distance means that the robot cannot reach Goal 2 before sundown.

The original plan did not anticipate the extra burden of nightfall on battery reserves. However, TEMPEST determines

a prolonged Charge action followed by overnight Hibernation will enable it to reach Goal 2 by late morning the fol-

lowing day. Figure 4-14 shows the rate of travel towards Goal 2 for the detour as a dashed blue line. Note that the

robot must first reverse course, and then remains stationary for nearly 18 hours, first in sunlight (charging batteries),

Figure 4-13: First Significant Re-Plan Route: The robot discovers a much steeper  approach to the saddle point 
at the end of the valley after  visiting Goal 1, prompting a detour  through an opening to the valley to the 

nor theast.
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then overnight (hibernating, in the shaded region). The following morning, the rover continues its course around the

mountain, then moves to Goal 2. 

Figure 4-15 shows the required battery energy profile over the same time span, also with a blue dashed line. Note that

the re-plan still enables the robot to start from an empty battery. However, well in advance of nightfall, the plan

requires a steady increase in battery charge to generate reserves for the night. The battery energy requirement falls

overnight - the morning sun is sufficient to charge the battery to the required Goal 2 level.

Standard path planners like A*  or D*  do not adequately address the problem presented in this example.  While A*

can efficiently find a path to avoid terrain obstacles, and D* is able to re-plan efficiently to avoid unexpectedly diffi-

cult terrain, neither is able to anticipate the need to charge in advance of nightfall.  Depending on the actual initial bat-

tery state-of-charge of the rover, following a plan that ignores energy could have disastrous consequences.  The

example can be extrapolated to the consideration of other resources, which might also be critical to data quality, time

efficiency or rover survival.

Figure 4-14: Progress Distance vs. Time: The initial plan (shown in red) follows a very direct path (compare to 
the straight-line maximum speed curve).  The re-plan detour  (shown in blue) requires the rover  to endure a 

night in hibernation, as shown by the flat region indicating no forward progress.  In the morning of the 
following day, the rover  resumes its course to Goal 2.
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4.7 Discussion
This chapter presents an approach to mission-directed path planning that displays elements of the five attributes listed

in Chapter 1.  It displays over-the-horizon foresight by considering large-scale terrain beyond the view of the robot in

planning.  It exhibits temporal and resource cognizance through a consideration of time and energy variables in the

state space, and in the enforcement of resource capacity constraints through ISE global constraint planning.  It dem-

onstrates an ability to handle some degree of uncertainty by enabling efficient re-planning in response to state and

model updates.  And the approach directs its focus to the mission objectives in terms of achieving goals, accommo-

dating goal action requirements and respecting constraints on activities.  

The example in simulation highlights how TEMPEST coordinates route, timing and battery energy to achieve multi-

ple goals. Unlike many approaches to temporal planning, TEMPEST approaches the problem as a whole rather than

by a simpler, but sub-optimal, hierarchical breakdown. Incorporating this strategic planning capability into a rover

could provide a significant boost to rover safety, mission time efficiency and reliability.  Specifically, TEMPEST

Figure 4-15: Battery Energy Requirement vs. Time: The initial plan enables the rover  to star t from total 
battery discharge to reach to the goal charge level.  The detour  from the re-plan requires the rover  to per form 

stationary charging to near ly full capacity in anticipation of the nighttime hibernation.  Note the similar ity 
between the re-plan profile in the morning after  hibernation and the or iginal plan profile.
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enabled a contingency plan that became necessary once the robot detected that its original route was not feasible.

Where a rover employing traditional techniques would have had to suspend its operations to wait for further instruc-

tions from human operators, the simulated robot was able to re-specify its route and schedule to achieve the origi-

nally-stated objectives.

The examples in this thesis all deal with problems combining space, time and energy.  Other factors are important to

planetary surface exploration and might be considered under the TEMPEST approach.  Rover health, limited by

rough driving, extended exposure to dust, or thermal cycling, could be treated as a resource.  One or more rover aux-

iliary health variables could be added to a model.  The state transition function, as derived from the World Model and

Rover Model, could describe the effect of activities on vehicle health.  Greater mechanical damage might be sustained

in areas of rough terrain or on steep slopes.  Dust might accumulate on solar arrays as a function of time1, and, if rep-

resented as a DPARMS state variable, could adversely affect the collection of solar energy.  The transition function

could model the change in temperature of certain components as a function of activity level, sun exposure and mate-

rial properties.  Thermal cycles of sufficient size might accumulate in another counter variable.  TEMPEST could

plan paths that prevent vehicle health variables from dropping below minimum tolerable lower bounds.  Alterna-

tively, one type of vehicle damage cost could be minimized over a path, while meeting constraints on other variables

and mission goals.  

Data from science and exploration activities might also be considered a resource.  Data transmitted to Earth might be

a resource to maximize.  Completion of goal activities could add data to vehicle memory.  Limitations in the size of

memory could limit the data stored aboard the rover.  Communications activities could downlink data to Earth, at a

maximum data rate, to achieve greater overall reward.  Downlink could only happen when in view of Earth or an

orbiting relay spacecraft.

1. However, a monotonic increase in dust is probably inappropriate for Mars.  Both Spirit and Opportunity experienced 
several events that removed a substantial layer of dust from their arrays, presumably from Martian “dust devils.”
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Sun-synchronous navigation is a promising strategy for rover-based planetary exploration in polar environments.  It

entails synchronizing a robot’s route and timing with the motion of the sun to provide continual solar energy while

maintaining a benign thermal environment. In 2001, the Sun-Synchronous Navigation project built a solar-powered

rover, Hyperion, and software to achieve semi-autonomous sun-synchronous navigation, and tested the combined

system in planetary-relevant polar terrain on Devon Island in the Canadian Arctic.  A significant outcome of that

research effort was the first version of TEMPEST, tailored specifically for sun-synchronous route planning. As a

background to the development and testing of TEMPEST, this chapter begins by describing the sun-synchronous nav-

igation strategy and provides an overview of the field experiment, the rover Hyperion, and its software architecture.

Several following sections then describe the planning approach used, and provide experimental results from the Arc-

tic field experiment.

Figure 5-1: Hyper ion Rover : Sun-synchronous navigation enabled solar  powered travel over  kilometers 
without the added complication and mass of a gimbal mechanism.

5. Sun-Synchronous Navigation
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5.1 The Polar Navigation Problem
The idea for sun-synchronous navigation emerged from mission design studies in the context of lunar polar explora-

tion.  The Moon’s axis of rotation is oriented just 1.53 from perpendicular to the ecliptic plane, the plane of the

Earth’s orbit about the Sun [23].  Therefore, directly at either of the lunar poles, the maximum sun elevation angle

ever achieved is 1.53 .  In the summer months, as on Earth’s poles, the sun remains above the horizon continually,

albeit only above the lunar “arctic circles”  at 88.47 latitude, within just 46 km from the poles.  But with such low-

skimming sun angles, terrain features cause extensive shadows, decreasing the effectiveness of solar-powered opera-

tions.  Furthermore, without an atmosphere, the thermal contrast between sunlit and shadowed conditions is drastic.  

One might suspect that moving slightly away from the poles would improve sunlight exposure.  Figure 5-2 is a dia-

gram showing sun elevation angles for polar and sub-polar positions.  It depicts the Moon’s axis of rotation  and

observing positions with surface normals n, which coincide with the zenith vectors.  Directly at a lunar pole in sum-

mer, the sun elevation is roughly constant, inscribing a “halo”  in the lunar sky, just above the horizon, whose center is

at zenith (Figure 5-2a).  Moving away from the poles to lower latitudes, the zenith vector oscillates around the pole,

nodding towards and away from the sun.  The center of the “halo”  inscribed by the sun in the lunar sky tilts a corre-

sponding angle from the zenith, causing the sun elevation to oscillate between a minimum value at local midnight and

a maximum value at local noon.  At the arctic circle, the sun meets the horizon at its lowest point in the sky, and past

the arctic circle towards the equator, the sun dips below the horizon for some portion of each lunar rotation (Figure 5-

2c).  Meanwhile, with increasing distance from the pole, the peak elevation continues to increase (Figure 5-2b).  So,

by moving from the pole, sun angles get better and worse from a solar power standpoint - higher mid-day sun angles

mean terrain will cause fewer shadows, but nightfall becomes inevitable.  At first glance, it might seem that the only

feasible surface exploration strategy would employ a rover with the means of surviving the extreme thermal range of

lunar day and night.  Closer analysis shows this is not the case.

Figure 5-2: Lunar  Sun Elevation Angle Var iations for  Polar  and Sub-Polar  Positions. At mid-summer  at a pole 
(a), the sun remains above the hor izon at a roughly constant angle.  Below the arctic circle, the sun elevation 

oscillates between a maximum elevation (b) above the hor izon and a minimum elevation (c) below the hor izon.
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5.2 Navigation Strategy
An alternate strategy avoids nightfall by circumnavigating the pole.  By travelling in a direction opposite lunar rota-

tion, synchronized with the sun, a vehicle could maintain day conditions as in Figure 5-2b for months at a time.  The

selected latitude of travel must balance at least three competing pressures: to maintain higher solar elevation angles to

minimize shadowing for solar energy and to keep the rover warm; to prevent the rover from overheating; and to

reduce the circumpolar distance to enable the traverse at reasonable speeds.  Surprisingly, the length of the lunar day

and small diameter the Moon result in a required average speed of 0.37 m/s at a constant latitude of 5 1.  The high

available solar energy, unattenuated by an atmosphere, provides ample power for locomotion and other activities.

The combination of long day, low radius and high solar energy is even better on Mercury [77].

The advantages sun-synchronous navigation are significant. Staying in sunlight means a rover can rely entirely on

solar energy - the technical, economic and political challenges of using radioisotope power sources can be prohibi-

tive.  Maintaining a consistent solar geometry also simplifies the vehicle design. Solar arrays can be pointed in a fixed

direction on the rover, removing the need for complex and heavy gimbal mechanisms.  A vehicle can be designed for

a narrower range of operating temperatures, and thermal radiators can be pointed in a direction opposite the sun to

improve radiation efficiency. Consistent light simplifies navigation using optical cameras.  Of course, circumnavigat-

ing a polar region of a planet or moon presents other enormous challenges - among them, vehicle endurance to enable

hundreds or thousands of kilometers of travel, and reliable rover autonomy software to sustain travel during periods

out of view of Earth (for the Moon), or too distant to enable real-time control from Earth (Mercury).  

However, a scaled-down version of sun-synchronous navigation improves solar-powered polar exploration over a

regional, rather than global scale.  Poleward of the arctic circles of Earth and Mars, a rover could follow path circuits

in an area of scientific interest, and synchronize its travel with the sun.  During summer months, falling prey to night-

fall is no longer a danger, but the problems of power management and thermal regulation remain. Without the

requirement to circumnavigate the pole, the vehicle endurance issues diminish substantially.  Sun-synchronous navi-

gation over a region simplifies solar geometry, enabling a simpler rover design, and provides access to areas that can

be circumnavigated with cyclic paths.  

A key challenge in enabling access to regions of terrain is to ensure that paths are repeatable.  Under solar power with

re-chargeable batteries, a sun-synchronous route must charge the batteries to at least the minimum required level to

execute the next day’s route.  Ideally, a rover would follow a circular route, and point its solar array continually

toward the sun (see Figure 5-3).  In the diagram, the array points radially outward to avoid shadows cast by centrally-

located features.  As the Earth rotates, the vehicle orientation rotates a corresponding amount by following the path

1. Of course this speed ignores the increase in path length required to avoid the massive terrain obstacles known to be 
prevalent near the lunar poles.

°



SUN-SYNCHRONOUS NAVIGATION

104

arc.  As long as the charge rate from solar power equals or exceeds the power consumed through driving and other

operations, the batteries will remain sufficiently charged.    

This idealized model is flawed in several ways.  First, it is undesirable to force the vehicle to remain in motion - sci-

entific measurements often entail extended contact with rocks or soil, or require a very stable platform.  Second, vehi-

cle power loads may outweigh available solar power, forcing periodic periods of stationary battery charging, with

corresponding reduction in circuit path length.  Third, medium and large-scale terrain will significantly divert a rover

from a circular path.  

These added complications make planning sun-synchronous routes a difficult task for humans.  The objective of an

automated sun-synchronous navigation planner is to take these complications into account, and still produce plans

that can be repeated over much of a summer season. 

5.3 Field Experiment
The Sun-Synchronous Navigation project explored a range of issues surrounding the regional variant of the sun-syn-

chronous strategy described above, from robot mechanical and power system design to automated planning and exe-

cution software. Of greatest importance, the project sought to perform tests with a real robot executing sun-

synchronous paths in a planetary-relevant polar environment on Earth.  

Figure 5-3: Idealized Sun-Synchronous Navigation
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Automated path planning was a central research topic of the project.  Research into path planning for planetary explo-

ration had to date focused on local navigation.  Sun-synchronous navigation was by definition concerned with global

issues as well as issues distinctly outside the realm of obstacle avoidance - terrain features that cast shadows and

interrupt travel, the temporal effects of planetary rotation and maintaining sun synchrony, and energy management.  

The field expedition conducted component and system-level tests on Devon Island in July of 2001.  It culminated in

two 24-hour, multi-kilometer long experiments designed to prove the concept of sun-synchronous navigation.  In

both experiments, the objective was to operate over long distances under solar power, with minimal human interven-

tion, and to return to the start position 24 hours later with equal or higher battery state-of-charge than at the begin-

ning. As the ambition was to prove a navigation strategy, no science or exploration activities were pursued by the

rover. 

The results for both experiments are described later in this chapter.  Before detailing the approach for planning or the

experimental results, the next sections briefly describe the operational environment on Devon Island, the Hyperion

robot, and the software architecture used in the tests.

5.3.1 Devon Island
Devon Island is extremely well-suited to testing sun-synchrony.  The test site was at approximately 90  W longitude

and 75 North latitude - above the Arctic Circle and hence appropriate for regional sun-synchrony.  In the summer

months, much of the terrain is uncovered by snow or ice, exposing terrain texture that is essential for local navigation

using stereo vision.  Also, it is largely devoid of plant life that would also otherwise complicate automated obstacle

detection algorithms not designed for seeing brush, grass or trees.  Though much of the terrain is smooth, there are

significant small and large scale terrain obstacles to prohibit the ideal, circular sun-synchronous path.  The Arctic sun

provides about 850 W/m2 of power, sufficient power for locomotion, and yet little enough to provide a challenge for

solar-powered rover designers.

5.3.2 Hyperion Rover
Hyperion was designed and built under the Sun-Synchronous Navigation project.  The rover is approximately 2.4

meters long and 2.0 meters wide [78], on the scale of the rover proposed for the Mars Science Laboratory mission

slated for 2009.  In its configuration in the Arctic, its mass was 156 kg, 18 kg lighter than the NASA Mars Explora-

tion Rovers1.  It is solar-powered, and employs a 3.5 m2 solar array of roughly 10% overall efficiency, and lead acid

batteries that provide roughly two hours of locomotion power without recharging.  For sensing, Hyperion made use of

a stereo camera pair mounted on the front mast, and made minimal use of a scanning laser designed to provide an

1. Hyperion carried no science instruments, little communications electronics, no thermal control and no mechanical 
hardware to enable it to stow into a small volume and deploy for operations.

°
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extra layer of security against obstacle collisions.  For this project, stereo camera-based local obstacle detection soft-

ware enabled the rover to drive at a maximum speed of 30 cm/s, or 1080 m/hr.

Hyperion’s solar array is fixed in orientation, pointing to the left side at an elevation angle of 22  to optimize solar

incidence over the day.  Fixing the solar array orientation greatly simplified the rover mechanical design.  Enabling a

large solar panel to rotate but keeping it stiff under driving and wind-induced loads requires a very substantial gimbal

mechanism.  Also, the rover design using a gimballed array must keep the  panel’s swept volume clear of protruding

components.  Interestingly, though, the fixed solar array places a much heavier burden on automated planning -

energy collection becomes highly coupled to driving direction.    

5.3.3 Software Architecture
One of the objectives of the rover design was to develop software that would enable a high degree of autonomy.

Given the rapid pace of development for Hyperion, it was recognized early that the system was not likely to be fully

autonomous in the first year.  It was also understood that low and high-level testing benefits from an architecture that

permits an operator to select the degree of control autonomy based on the task at hand.  Hyperion’s software architec-

ture was designed to provide “sliding autonomy” , from manual control of individual motors on one end of a spec-

trum, to fully autonomous operations on the other.  

This chapter is mostly concerned with high level autonomy, in relation to TEMPEST and autonomous navigation in

general.  Autonomy was somewhat limited in Hyperion’s first field season.  Figure 5-4 shows a diagram of the soft-

ware modules relevant to this first year’s operations 

Figure 5-4: Hyper ion Autonomy Software Modules
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TEMPEST was Hyperion’s off-board Mission Planner (MP).  This early version of TEMPEST was substantially

slower than the current version, and did not yet incorporate ISE re-planning.  Because it could not yet respond to state

or model updates during execution, there was no reason to integrate it into the online software.  TEMPEST was run

off-line to produce plans that were used for an entire 24-hour experiment.  Despite the off-line distinction, TEMPEST

provided an autonomous capability to the human operators.

An Operator Interface (OI) utilized a graphical user interface and a direct communications link to send commands

and receive telemetry from the robot.  Noticeably absent from the software architecture is an executive process to

control and monitor the progress of plans.  Human operators assumed this role via the OI.  Plan Drive target way-

points were sent individually and manually to the rover at the times specified in the plan.  

Between periodic manual interventions to send plan actions, Hyperion performed local navigation autonomously.

The Local Navigator module used stereo vision to detect obstacles in its path, and called upon the D*  algorithm to

find optimal paths to the waypoints designated in the TEMPEST plans [71].  Local Navigator goals were goal regions

rather than points.  TEMPEST, as a global planner operating on coarse maps, cannot precisely designate goals.

Therefore, it is inappropriate to treat goals as precise when passed to the Local Navigator.  Furthermore, point goals

are likely to be placed in the midst of intraversible terrain, preventing the rover from achieving them.  Local Naviga-

tor goal regions were rectangular regions whose long axis was perpendicular to vector between the rover and the goal

point, 30 meters wide and 10 meters deep.  In practice this led to a behavior in goal seeking that maintained better

solar array sun pointing if local obstacles diverted the rover from its original course.  

5.3.4 Planning Problem
The main objective of system-level experiments was to demonstrate 24-hour solar-powered operations over as large a

circuit as possible, and to complete the circuit with the same or more battery charge than the at the start.  Rather than

fully selecting the route and distance for the sun-synchronous circuits, TEMPEST addressed a sub-problem.  Visual

inspection of the terrain on Devon Island revealed that there were many terrain hazards smaller in scale than could be

represented by the elevation map (25 meters spatial resolution), particularly steep-sided riverbeds.  Furthermore,

Hyperion’s local navigation system was not sufficiently capable of autonomously detecting and avoiding these same

unrepresented hazards.  Wisely, the team elected to perform the system-level experiments by pre-surveying a benign

sequence of via points, using a handheld GPS.  Adjacent points were separated by varying distances, but typically by

hundreds of meters.

TEMPEST was responsible for selecting the specific route between the sequential via points, separated by roughly

250 meters on average.    More interestingly, because the route was partially selected by humans, the planning prob-

lem became principally one of selecting the route timing to optimize battery energy management.  
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5.4 Planning Approach
Sun-synchronous planning was performed using TEMPEST, albeit a very early version.  Because of the early stage of

development, many planning details were different than described in Chapter 4.  Despite the differences, the termi-

nology and notions presented in Chapter 4 are sufficient to describe a majority of the approach.  Table 5-1 summa-

rizes the TEMPEST parameters used for the field experiment.  

Planning closely mimicked the sequential goal planning problem described in Chapter 4, with each pre-designated

via point acting as a Via Point goal (see Chapter 4, Section 4.2.4).  TEMPEST used a four-dimensional search space

under the ISE BESTDPARMS mode (see Chapter 3) to find the path requiring the least initial energy, subject to an

upper bound on mission duration.  The objective function, used to compute path costs relative to the upper bound,

minimized total plan duration.  Given the problem of sun-synchrony, TEMPEST constrained plans to be under 24

hours.  Under that upper bound, TEMPEST found the plan with the lowest battery energy.  Finally, because the under-

lying objective was to achieve lowest energy paths, the ISE dominance mechanism (see section 3.2.3) was used to

remove energy-dominated states from consideration.

However, TEMPEST deviated significantly from the algorithm and methods described Chapter 4.  As mentioned ear-

lier, a principal objective of planning for sun-synchrony is to determine the optimal start time.  This conflicts with the

method in Chapter 4 in which the start time is presumed to be known.  To determine the optimal start time, a user des-

ignated a 24-hour time interval representing the allowable range of start times.  Segment initialization followed the

general approach listed in the  function of Chapter 4, but with an important distinction.

Rather than projecting the latest allowable time to the final goal, then using the fastest possible speed to set the latest

allowable times for earlier segments, TEMPEST imposed the slowest allowable time on all goals in the sequence.

Referring to Figure 4-8, rather than imposing time interval bounds as shown in frame b), this early version of TEM-

PEST imposed the limits shown by the dashed lines in frame a), a much more conservative approach.  However, cou-

pled with the 24-hour start time interval, TEMPEST was still very free to pursue a wide range of time profiles.

Table 5-1: Sun-Synchronous Navigation Planning Parameters

Feature Description

World Model Terrain: elevation, slope
Ephemeris: CSPICE
Solar Flux: constant value during daylight

Rover Model Locomotion: simple force model (friction, gravity)
Power: Solar array, re-chargeable battery

INIT_SEGMENTS S Γ k, ,( )
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In planning, rather than using a single query for the first plan segment, TEMPEST performed start queries over the

entire start interval as it would for an intermediate segment.  Rather than use the objective function to distinguish

between plan solution over the start window, TEMPEST used a series of heuristics to find the best path.  We define

the set of candidate plans derived from repeated start queries over the 24-hour start time interval to be:

where each plan is defined by waypoints at listed in Chapter 4, Equations 4-1 and 4-2.  TEMPEST applied three heu-

ristics to select the optimal plan from the list of candidates:

Get Minimum Initial Energy Plans:  Given the definition of energy ei at each waypoint, a low initial energy corre-

sponds to the least initial battery charge required to achieve the goal state:

State Space IPARMS: 
• x, y (position) cells; resolution: 25 m
DPARMS: 
• t (absolute time) sec; CSPICE ephemeris time; resolution: 1 sec / 20 min
• e (battery energy) Joules; resolution: 1 J / 20,000 J

Action Set Mobile:
• Drive Actions: one action for each of eight adjacent map cell neighbors
Stationary:
• Charge Action: : solar optimal; : 20 minutes

Constraint Set Max. slope, max. battery charge

Mission Specification Set 24-hour start time interval
Start position, energy
Sequential Via Point goals (no goal actions)
Final goal energy

Planning Details ISE Mode: BESTDPARMS
Objective function: 

Better: if  and 

Dominates: if  and 

Re-Planning: none
Special:
• Path selection heuristics
• Latest allowable time limit imposed on every goal

 5-1

 5-2

Table 5-1: Sun-Synchronous Navigation Planning Parameters

Feature Description

θ ∆t

∆t

class t1( ) class t2( )= e1 e2<

class t1( ) class t2( )= e1 e2<

Πcand π1 … πn, ,{ }=

Π* i e argminπ e0( )=
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Get Minimum Peak Energy Plans: The peak energy in a plan represents the greatest demand on the battery over the

traverse.  Finding the minimum peak energy minimizes the peak demand on battery reserves:

Get Ear liest Star t Time Plan: Given a list of available start times, in many cases it is operationally sound to select

the first opportunity path, leaving fallback options in the event of failure:

Note that not all start times may be feasible, and that there may be one or more ranges of feasible start times.  These

are determined automatically by TEMPEST.  The heuristics were applied sequentially as a composite selection crite-

rion to produce the optimal solution:

In words, the composite criterion first selects on the basis of minimum initial energy requirement.  From those paths,

it selects on minimum peak requirement on energy over the path.  From those plans remaining, it selects the one that

departs the earliest.

5.5 Experiment 1 Results
Table 5-2 summarizes the results of Experiment 1 mission planning and execution.  Experiment 1 was the first system

level sun-synchronous navigation trial of the project.  The execution of the planned route was highly successful, prov-

ing the feasibility of the strategy.  The following subsections analyze the TEMPEST plan generated for the experi-

ment, and provide the results from its successful execution.  

5.5.1 Planning
Though the rover was capable of driving at 1080 m/hour, the first experiment was designed with a conservative target

distance.  The planned total distance was 5.6 km, to be covered in just under 24 hours, for an average speed of 236 m/

hour, or 22% of the maximum.  

 5-3

 5-4

 5-5

Π* pe argminπ max ei( )( )=

Π* st argminπ t0( )=

Π* opt Π* st Π* pe Π* i e Πcand( )( )( )=
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The field team pre-designated 19 Via Point goals to guide Hyperion away from hazardous mid-scale terrain hazards.

The separation between goals was on average 269 meters.  Figure 5-5 shows the Via Point goals and the selected

route superimposed on a contour map of the terrain.  The route progresses clockwise through the Via Points, starting

just above the bottom right extremity of the circuit.  

The Via Point goals were selected to guide the robot away from hazards that might be difficult for the robot to detect.

The positioning of the Via Points indicates how hazardous terrain prevented an ideal circular path.  Streambeds ran

along the outside of both diagonal legs of the route, and a rocky promontory rose just West of the northwest end of the

route.  The pre-designated Via Points steered clear of these terrain hazards, but forced an elongated shape for the path

circuit - a major deviation from the ideal circle.  Long, straight paths prevent a fixed-orientation solar array from

tracking the sun.  The challenge for TEMPEST was to select the route and timing to maintain battery energy despite

inevitable solar array mispointing. 

The rover start and final goal position is located at the point labeled Return To Start at the southeast (bottom right) of

the plot.  The plan follows the circuit in a clockwise direction to match the motion of the sun in the sky, for a  total

planned distance of 5.6 km. 

Table 5-2: Summary of Exper iment 1 Plan and Execution

Quantity Planned Executed

# of Goals 19 (last goal was also the start position)

Goal Spacing mean/min/max (m) 269 / 125 / 481

# of Actions 196 (183 Drive/13 Charge)

Representation Factor ( ) 1.0444 -

Avoidance Factor ( ) 1.0479 -

Loiter Factor ( ) 1.2212 -

Distance (m) 5600 5980

Duration (hh:mm) 23:45 24:01

% within 10 deg of optimal pointing 32.5 31.5

fR

fA
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Figure 5-6 plots Experiment 1 results versus Universal Coordinated Time (UTC).  Given the longitude of the test site,

the local time is computed by subtracting 6 hours from the UTC time.  Figure 5-6a) is a plot of progress distance,

mimicking the sequential planning diagrams in Figure 4-8.  The dashed line to the left of the figure is the line of fast-

est approach, whose slope is  (see Section 4.5 for definitions).  It emerges from the opening of

the start time interval, and denotes the earliest reachable portion of the state space.  Meanwhile, the dashed line to the

right of the figure is the line of minimum allowable rover speed.  Since the goals for these experiments were Via Point

actions without duration, the slope of this line represents the lower bound on minimum speed .

For both sun-synchronous experiments, the worst-case time increase factor  was set to 1.265. 

Figure 5-5: Exper iment 1 Route and Elevation Map

vmax Dmap ∆Tmin⁄=

vmin vmax f̃Rf̃A f̃L( )⁄=

f̃Rf̃A f̃L( )
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The labeled points indicate the planned arrival time at each goal Via Point, and their cumulative radial distance 

from the start position, through all earlier goals.  The solid trace through the goals is the progress distance of the plan

versus time.  One immediately sees that the average speed of the plan, as denoted by the average slope, is slower than

both the fastest possible approach line and the slowest allowable approach line.  By multiplying the duration factors

listed in Table 5-2, one computes the overall duration factor to be 1.337, larger than the factor imposed on the slowest

allowable approach line.  One also observes that the major component of this increase is the loiter factor.  The Exper-

iment 1 plan included 13 Charge actions.  At 20 minutes each, stationary activities account for over 4 hours of the

plan.

Figure 5-6b) displays the Experiment 1 minimum required battery energy predicted by TEMPEST, on the same time

scale.  The target end-of-traverse battery charge was set at 194 W-hr (700 kJ).  Observe that, with exception to the

final ascent to the goal battery state-of-charge, the plan maintains the required battery energy well below the maxi-

mum battery capacity of 250 W-hr, shown by the upper limit of the error bars. The peaks in the energy curve corre-

spond to conditions following Charge actions, and anticipate the times of greater energy demand in the plan.  The

final ascent of the curve at the end of the plan meets the demand placed at the final Via Point goal - to achieve an

energy of 194 W-hr.  The prominence of the final goal energy requirement relative to the rest of the plan indicates that

it was set too conservatively to enable the route to be repeated on successive days.  In theory, the final goal energy

could have been set to the required energy at the start of the plan.  

What explains the peaks and troughs of energy demand earlier in the plan?  To answer this question, we examine the

time-varying lighting and the solar array sun angles imposed by the plan.  The five frames of Figure 5-7 depict snap-

shots of the planned route, the projected lighting on the terrain, and the sun and solar array orientations at various

times for Experiment 1. The varying shading of the background reflects the changing average sun angle of incidence

on the terrain, from just before local noon in Figure 5-7a to roughly one hour before local midnight in Figure 5-7d.

Predicted shadows appear as black regions in Figure 5-7d.  Vectors representing the sun direction and solar array nor-

mal emanate from the rover position in each frame.  Note that the solar array normal points 90 degrees to the left of

the driving direction, as it does for Hyperion (see Figure 5-1).    

ρ
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Figure 5-6: Exper iment 1 Results: a) Progress Distance; b) Required Minimum Battery Energy

a)

b)

a)

b)
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Figure 5-7a shows an early snapshot of the path.  Note how the

sun direction is aft of the solar array normal.  Meanwhile, in

Figure 5-7c, the sun direction is forward of the solar array nor-

mal.  These snapshots reflect TEMPEST’s ability to schedule

the path to achieve the best average sun angle, considering the

entire path rather than favoring any path segment.  The length

of the northwest leg in these frames, coupled with a limitation

in rover top speed, prevented the plan from achieving an ideal

sun angle at every step. In an optimal compromise, TEMPEST

selects timing that achieves the best average sun angle.  It

biases the sun aft at the beginning of the leg (Figure 5-7a), in

anticipation that the sun will overtake the rover near the center

of the leg (Figure 5-7b), and biases the sun ahead of the rover

by roughly the sam angle at the end (Figure 5-7c).  A similar

behavior occurs in Figure 5-7d and Figure 5-7e on the return,

southeast leg of the traverse.

Referring back to Figure 5-6, observe that the least energy-

demand occurs between Via Points 5 and 10, or over the time

range from 19:36 to 23:09 UTC.  This matches the time period

where the sun was closest to normal to the solar array.  Further-

more, observe the demanding range of the plan between Via

Points 12 and 14, from 1:40 to 5:14 UTC.  This time range cor-

responds to northernmost extent of the route, and some of the

largest aft sun angles, biased to average out the return leg of the

cycle.  Furthermore, the time is approaching local midnight, the

time of least incoming solar energy of the day. 

A measure of TEMPEST’s ability to maintain sun exposure on

Hyperion’s solar array is shown in the histogram in Figure 5-

8a.  The histogram depicts the relative azimuth angle, in the

plane of local horizontal, from the sun to the solar array normal

resulting from the plan for Experiment 1.  Zero degrees relative

azimuth indicates optimal pointing, while negative and positive

values indicate sun-aft and sun-forward conditions, respec-
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TEMPEST achieved an optimal energy path 
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tively.  The histogram indicates that over 32% of the route was spent within 10 degrees of optimal solar array point-

ing.  We attribute the bias in sun angles toward the aft of the rover to the Get Earliest Start Time Path heuristic (see

Section 5.4).  Following the application of energy-based heuristics, TEMPEST selects the earliest path opportunity.

For clockwise paths in the northern hemisphere, earlier opportunities will bias sun angles aft, as the Earth has not pro-

gressed as far in its daily rotation.

The second histogram, in Figure 5-8b, depicts the same quantities for the executed Experiment 1.  Qualitatively, one

can immediately see the similarities between the profiles, indicating integrity of the execution to the mission plan.

Given how closely the plan was followed during execution, differences in these profiles are likely due to off-pointing

that occurred during actions taken by the Local Navigator to avoid obstacles [71].

Figure 5-8: Exper iment 1 Planned and Executed Solar  Ar ray Sun Angles
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5.5.2 Execution
The Experiment 1 mission execution proceeded smoothly over entire the 24 hour test.  Because the nominal rover

speed given to TEMPEST for planning was so conservative (8 cm/s as compared to 30 cm/s), Hyperion typically

completed each Drive action well in advance anticipated by the plan.  However, to keep on schedule, human control-

lers refrained from sending the next Drive action target until the start time specified in the plan.  Therefore, the

motion of the rover was uniform, but rather alternated between its top speed of 30 cm/s and rest at each of the Drive

action goals. Figure 5-9 shows the Experiment 1 executed progress distance as a function of time, compared to the

plan.  With exception for a few delays, the executed rate of progress matched the plan very closely. 

Perhaps the best measure of success is in how successfully the plan enabled battery charge management.  Due to high

noise levels in current measurements recorded on Hyperion during the experiments, the battery charge could not be

estimated.  However, battery voltage provides an indirect measure of whether the battery is charged or is approaching

discharge.  Battery voltage should remain roughly constant over a wide range of charge states, but will begin to drop

Figure 5-9: Exper iment 1 Executed Progress Distance: Execution followed the plan very closely
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as the battery becomes low on charge.  The battery voltages plotted in Figure 5-10 show that the plan maintained the

battery potential near the nominal 24 Volts for the entire 24-hour mission.

Though Experiment 1 proved the feasibility of the sun-synchronous navigation strategy, it did not prove whether the

strategy provided any substantial benefit above more standard navigation approaches.  Unintentionally, Experiment 2

provided strong evidence that sun-synchronous navigation, and TEMPEST, were essential in sustaining the rover

over an extended traverse.

5.6 Experiment 2 Results
Table 5-3 summarizes the results for Experiment 2, whose planned route is superimposed on a terrain contour map in

Figure 5-11.  In contrast to Experiment 1, the execution of Experiment 2 was fraught with operational difficulties

which caused the rover to fall far behind the schedule specified by the plan.  The sharp decline in rover performance

that occurred as a result of the deviation from the plan schedule clearly showed the sustaining effect of sun-synchro-

Figure 5-10: Exper iment 1 Battery Voltage: Data indicates that the batter ies did not show signs of extreme 
discharge.
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nous navigation, and of TEMPEST planning.  The next subsection analyzes the Experiment 2 plan in detail.  The dis-

cussion of the Experiment 2 execution follows in a second subsection.

5.6.1 Planning
A majority of the southeast portion of the circuit for Experiment 2 followed the route of Experiment 1.  However,

new Via Point goals directed the route significantly farther west and north, circumnavigating a rocky outcrop infor-

mally named “Marine Peak”  (see the topographic feature to the East of Via Points 9, 10 and 11 in Figure 5-11).  The

Via Points were placed at an average distance of 249 meters.  This route, at 8.4 km, was substantially more ambitious

given the success of the first experiment.  To enable a plan this long, the average drive speed used in planning Exper-

iment 2 was 11 cm/s, or 400 m/hr, only 37% of the maximum speed, but 39% faster than for Experiment 1.   

Figure 5-12 plots Experiment 2 results versus Universal Coordinated Time (UTC).  Recall that the local time is com-

puted by subtracting 6 hours from the UTC time.  Figure 5-12a) is a plot of progress distance.  As in Figure 5-6a, it

shows the dashed lines representing the earliest possible approach and latest allowable approach.  The lines originate

at the open and close of the 24-hour start time interval, respectively.  Also as in Experiment 1, the worst-case time

increase factor  was set to 1.265. The actual duration increase factor, computed as the multiplication of ,

, and  as listed in Table 5-3, was 1.342, very similar to the factor from Experiment 1.  However, the avoidance

factor from Experiment 2 was noticeably higher, and the loiter factor, noticeably less.  Though the specific reason for

greater avoidance is not obvious, the reduction in loiter factor is the result of a lower number of Charge actions in

Experiment 2. Four of twelve Charge actions were designated between Via Points 9 and 13, and account for the

reduction in slope in the curve before the plan halfway point.

Table 5-3: Summary of Exper iment 2 Plan and Execution

Quantity Planned Executed

# of Goals 30 (last goal was also the start position)

Goal Spacing mean/min/max (m) 249 / 71 / 559

# of Actions 301 (289 Drive/12 Charge)

Representation Factor ( ) 1.0526 -

Avoidance Factor ( ) 1.0730 -

Loiter Factor ( ) 1.1884 -

Distance (m) 8437 9059

Duration (hh:mm) 25:05 24:09
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Figure 5-12b) displays the corresponding Experiment 2 minimum required battery energy profile.  The Mission Spec-

ification end-of-traverse battery charge was reduced to 139 W-hr (500 kJ).  As before, the plan maintains the mini-

mum energy well below the capacity of the battery, with the exception to the rise to the final goal target.  Again, the

target energy could have been set far lower (to empty in this case) and still would have allowed sufficient energy in

the battery to repeat the route on following days. 

Figure 5-11: Exper iment 2 Route and Elevation Map: The route star ts and ends at the point marked ‘Return 
To Star t’ , and traversed a nominal distance of 8.4 km, including a circumnavigation around the terrain feature 

known informally as Mar ine Peak at the West end of the route.
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Figure 5-12: Exper iment 2 Results vs. Time: a) Progress Distance; b) Minimum Required Battery Energy

a)

b)

a)

b)



SUN-SYNCHRONOUS NAVIGATION

122

Curiously, the greatest demand on battery energy, according to the Experiment 2 plan, occurs on the northwest leg of

the plan (between Via Points 7 and 8, or 23:58 to 01:39 UTC) in the position where the energy profile was least

demanding for Experiment 1.  The least demand on battery energy appears to come between Via Points 15 and 18

(06:27 and 09:25 UTC), also curiously at the place in the route for Experiment 1 that demanded the greatest energy.

5.6.2 Execution
The execution of Experiment 2 was repeatedly interrupted near the beginning by communications loss between the

operations tent sheltering the human controllers and Hyperion.  Since each Drive action target was sent manually

over wireless ethernet, communications outages forced the rover to stop moving.  Figure 5-13 shows the executed

progress distance for Experiment 2.  Note that the execution started roughly an hour late.  Despite the conservatism in

the rover speed assumed in the TEMPEST model (11 cm/s for planning as compared to 30 cm/s maximum speed), the

delays eventually caused the robot to fall way behind schedule.    

Figure 5-13: Exper iment 2 Executed Progress Distance: the most substantial delay put Hyper ion behind the 
plan by several hours, causing significant battery discharge
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As time passed, the sun became more and more biased towards the front of the vehicle.  During periods of good com-

munications, Hyperion’s stereo cameras became blinded by sunlight, disabling autonomous local navigation.  In an

effort to keep up with the plan at any cost, human operators decided to teleoperate the vehicle using panoramic imag-

ery produced by Hyperion.  Unfortunately, the panoramic imagery was also negatively affected by the sunlight, wors-

ening the already low-resolution images.  Finally, teleoperated driving caused the robot to drive into a rock that it was

unable to cross.  During the struggle to surmount the obstacle, Hyperion’s front axle rotated beyond an angle limit

imposed by software.  The recovery from this final fault entailed physically moving Hyperion away from the rock

and re-starting rover software.  At 13 hours into the mission, Hyperion was over 3 hours behind schedule.  

These successive delays strongly negatively impacted rover power.  Each delay caused the sun to be biased to the

rover’s front, or even towards the vehicle’s right side (opposite the active side of the solar array).  Though operating

energy costs (i.e. driving, electronics, etc.) were fairly uniform over the route, the poor sun angles drastically reduced

incoming energy to offset those costs.  The battery state-of-charge could not be estimated due to high current mea-

surement noise.  However, the battery voltages plotted in Figure 5-14 provide a clear measure of Hyperion’s declin-

Figure 5-14: Exper iment 2 Battery Voltages: evidence strongly suggests that falling behind the TEMPEST 
schedule, which resulted in poor  sun angles, caused the substantial battery discharge dur ing the mission.
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ing battery charge.  Unlike in Experiment 1, Experiment 2 voltages dip to below the designed bus voltage of 24 Volts,

indicating a substantial battery discharge.  This dip corresponds in time to the period of greatest delay.

Interestingly, once Hyperion was rescued through a manual intervention, human operators teleoperated the rover at

full speed to catch up with the original plan.  Human operators were repeatedly forced to command Charge actions to

maintain minimum battery charge.  Observe in Figure 5-13 how the progress distance trace re-acquires the plan line

following the most substantial delay.  Meanwhile, the battery voltage in Figure 5-14 climbs back to pre-delay levels

in the latter part of the mission. 

This is strong evidence that TEMPEST plans enable battery charge management, and that deviation from the plan

resulted in severe battery discharge and other sub-optimal effects like camera sun blinding.  It also suggests an insta-

bility in the control of sun-synchronous routes.  As the rover gets further behind, the collection of solar energy is pro-

gressively more difficult to achieve, and the required speed to catch up to the plan schedule, and hence required

locomotion power, increases.  If the robot is required to get back on schedule before completing a full circuit, sched-

ule delays of a certain duration will be unrecoverable.  At some point, the power required for driving and survival out-

weighs the incoming solar power, and leads to a continual discharge of batteries.  The batteries must sustain the

recovery for its duration, or be fully discharged.  Alternatively, if the rover is not required to catch up to the plan

schedule before the completion of the circuit, the recovery speed could be adjusted to enable the system to sustain

itself.  Lastly, if shadowing is not expected to interfere with lighting, the vehicle could potentially stop and rotate in

place to follow the sun in a survival holding pattern, and reacquire the sun-synchronous circuit on the following day.

5.7 Discussion
The sun-synchronous field experiments plainly illustrated the utility of mission-directed path planning.  Sun-synchro-

nous planning would have been difficult for humans to do by hand.  Large-scale terrain obstacles prevented an ideal-

ized, circular sun-synchronous navigation path.  Determining the timing to achieve the optimal sun angle balance on

the irregular path would have entailed extensive trial-and-error, or a hierarchical approach that first selects the route

between Via Point goals and then searches over different schedules on the route solution.    Mission-directed path

planning provided a number of notable benefits for rover operations:

Sophisticated Reasoning: TEMPEST reasoned about how best to time the route, despite the elongated shape of the

traverse.  It minimized the overall effect of inevitable solar array mispointing by balancing the lead and lag of the sun

with respect to the solar array at various points in the traverse.  The plan for Experiment 1 proved highly effective in

maintaining battery energy during the entire traverse.  Executing the plan closely maintained the batteries well above

the minimum bus voltage for the entire 24 hours.  More interestingly, Experiment 2 illustrated the danger of substan-

tial deviation from the TEMPEST-derived plans.  Operational delays allowed the sun to be biased well to the front of
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the rover, and caused the batteries to discharge below the nominal bus voltage.  Re-acquiring the plan later in the mis-

sion allowed the batteries to re-charge to initial voltages. 

Use of Intermediate Via Points:  Intermediate Via Point goals enabled human operators to steer the route away from

terrain hazards that were not represented on the low-resolution elevation model.  Furthermore, the designation of

intermediate goals is analogous to hierarchical approaches - prior path selection to enable time-optimal trajectory

planning as in [5][17][58].  However, by selecting points rather than paths, TEMPEST was far more free to consider

the coupling between route, timing and resources in selecting a plan.

Natural Integration with Local Navigation: The cooperation and mutual abstraction between TEMPEST and the

Local  Navigator was natural.  The Local Navigator module reliably avoided rocks while moving toward TEMPEST-

defined waypoints.  It had no knowledge of the global path, resource usage, or timing requirements. Meanwhile,

TEMPEST solved for the mission-directed plan to avoid large-scale obstacles and to manage resources, but had no

knowledge of local obstacles below the resolution of the terrain map.  

The experiments also highlighted a number of future challenges for TEMPEST.

Br ittleness to Unanticipated Conditions:  The software provided no capability for planning under uncertainty, con-

tingency planning, or automated re-planning, and was therefore brittle to unanticipated problems.  In Experiment 2, a

planner capable of reasoning under uncertainty might have anticipated the possibility of schedule delays and biased

the plan ahead in time to avoid crippling sun angles.  Re-planning might have compensated for the delays by inserting

Charge actions to replenish the battery, taking more direct routes between Via Point goals, or electing to eliminate Via

Points as necessary to save time to get back on schedule.  

Lack of Richness in Mission Specification:  At the time of the experiments, TEMPEST was limited in how mis-

sions could be specified to it.  For example, it only allowed goals to be specified in terms of position, and in the case

of the final goal, minimum battery energy.  Plans must often meet constraints on battery energy for other goals, or fall

within allowable time ranges.  Specific activities might also be assigned to goal positions, and might be governed by

geometric or other constraints (e.g. goal must be achieved at least one hour before dark).  TEMPEST only modeled a

few operational constraints for actions, (e.g. maximum slope, minimum sun elevation angle).  Other restrictions on

line-of-sight to communications relays and enforcing sun-in-camera stayout zones would have been a major benefit

for Hyperion.
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Poor  Computational Per formance: This preliminary form of TEMPEST required significant computational and

memory resources.    Planning in a four-dimensional state space (x, y, time, energy), Experiment 1 took 5 hours 48

minutes to plan on a laptop with a 400 MHz Pentium II with 128 MB of RAM. 

Exclusively Offline Operation:  TEMPEST was run exclusively offboard Hyperion and in an offline mode for the

field experiments.  Slow planning and lack of re-planning capability removed the incentive to configure TEMPEST

for online operation. 

These lessons motivated substantial improvements in domain richness, re-planning, performance and in online opera-

tions.  Follow-on field experiments on Hyperion and a new rover, Zoe, demonstrate how mission-directed path plan-

ning enable far greater navigational autonomy and improve mission planning for rover exploration.

The sun-synchronous navigation planning problem is not yet solved.  It would be interesting in future work to

develop planning that could specify a sun-synchronous circuit given only high-level goals like target areas for explo-

ration and total traverse distance. It would also be intriguing to quantify the sensitivity of path cost on schedule

delays, as a way of bounding the delays from which recovery is possible.  Finally, this thesis did not examine the

behavior of plans in more desperate situations.  For example, would TEMPEST display a “ tacking”  strategy, as in

sailing, to travel in the direction of the sun?
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Astrobiology is the branch of biology concerned with the emergence and survival of life in the universe, the effects of

outer space on living organisms, and the search for extraterrestrial life.  Since Earth is the only known place to harbor

life, a primary activity of astrobiologists is to characterize the extreme habitats on Earth, and to identify the mecha-

nisms used by organisms to survive under conditions that mimic the extremes of other bodies in the Solar System.  A

second focus is to develop enabling technologies for remote life detection so that future missions to the Solar System

will be equipped to find extraterrestrial life if it exists.  The Life in the Atacama (LITA) project seeks to develop tech-

nology to enable robotic astrobiology for NASA, and at the same time to conduct useful Earth science in the Atacama

Desert of northern Chile [79].  

In a vein of the LITA research program, the TEMPEST planner was further developed to support autonomous, wide-

area scientific investigations.  In the Sun-Synchronous Navigation project, TEMPEST demonstrated its capacity to

select routes, coordinate route scheduling, and to manage battery energy, albeit in an off-line mode.  The LITA project

motivates a much higher standard for online operations, richer representations for the planning problem, and planning

in support of science goals.

6.1 Life in the Atacama
The Atacama is one of the driest places on Earth, and has long been known to support very little life. The LITA

project conducted two field experiments, in 2003 and 2004, involving rover field testing and biological investigation,

and will culminate in 2005 in a multi-week integrated field demonstration.  In that final trial, a team of scientists in

the United States will direct a robotic search for life in Chile. To stress robot autonomy, scientists and engineers will

have limited communications bandwidth, and will only be allowed to transmit commands and receive telemetry once

per day.  Their mission will be to characterize the presence and distribution of microscopic life over tens of kilome-

ters of travel in an effort to better understand the limitations of life in the Atacama ecosystem.

6. Robotic Astrobiology
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6.2 Navigational Autonomy for Science
In sharp contrast with the Sun-Synchronous Navigation project, whose principal aim was navigation, the goal of the

LITA project is to develop a rover and software that enable remote, autonomous scientific investigation.  However,

LITA’s scientific approach continues to stress long-distance navigational autonomy.  It has baselined a strategy to

characterize regional habitats by conducting widely separated detailed surveys and faster periodic surveys along

traverses between detailed survey sites.  Scientists will analyze data sets from previous days and, by correlating their

findings with orbital data of the region, will select new targets to test hypotheses on patterns of life.  Most days will

be spent traversing a minimum of hundreds of meters and often several kilometers in pursuit of new goals.  Naviga-

tional autonomy must reliably transport the rover to target sites for this investigation to be meaningful.

The sun geometry for the Atacama desert favors a solar array that is horizontally mounted on a rover.  This configura-

tion eliminates the coupling between driving direction and incoming solar energy, which makes the planning problem

at once easier and yet less interesting.

The strategy also depends on interleaving science observations with traverses in a single day.  These phases cannot be

adequately planned independently - resource availability changes throughout the day, as does sun geometry that

might have a bearing on navigation.  Navigation plans must incorporate the position, time and resource requirements

of science activities to ensure that objectives are globally feasible.

Finally, the LITA field demonstration will not tolerate planning once per day.  As was shown in the Arctic, simple

delays can cause a plan to become infeasible.  Rather than forcing the robot to abandon a day’s activities in the event

of a schedule delay or other unforeseen event, re-planning to adjust to updates in state might allow the rover to

accomplish most or all of its goals. 

6.3 Atacama Desert
The Atacama Desert contrasts dramatically from the Canadian Arctic of earlier TEMPEST field experiments.  At 21

S latitude, continual sun was replaced by a day/night cycle closer to common experience.  Solar radiation was more

intense in the Atacama, however, and provided a flux of roughly 1000 W/m2 during the field experiments in 2003 and

2004.  The Atacama is far more dry - streams were completely absent, and compared to the Arctic, cloud cover was

rare1, leading to more reliable solar power for rovers. A common element between the Arctic and the Atacama was

the rarity of large-scale plant life.  The Atacama is a rocky, salty environment that supports life in small pockets.  The

result is a landscape whose appearance mimics the surface of Mars, a boon for local navigation designed for extrater-

1. However, surprisingly, humidity levels at the near-coastal sites rose dramatically at night, due to heavy fog banks 
originating from the Pacific, which sometimes extended well into the daylight hours.

°
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restrial use.  The Atacama presents a greater challenge to navigation that the Arctic - the terrain is more varied, and

rough terrain is more common.  Mid-scale terrain features, too small to be represented in maps deriving from orbital

data, yet too large to be perceived by traditional local sensing, are very common.

The next two sections provide results from TEMPEST tests from the 2003 and 2004 field seasons respectively.  The

objectives for each season were different, and developments between the campaigns resulted in an entirely new robot

and vastly updated software for the later season.  Therefore, each section introduces the objectives, rover and soft-

ware used in tests prior to presenting results.  

6.4 Field Experiment 2003

6.4.1 Objectives
The principal objective with respect to robot autonomy was to enable fully autonomous driving of at least 1 kilome-

ter, in preparation for integrated science experiments in coming years.  Where in the Arctic, short manual interven-

tions to send plan actions to the rover were commonplace, the new system had to operate completely without human

involvement.  Integrating TEMPEST with an executive and a plan monitor was essential to this performance jump,

but resulted in a far more complex system.  Specific to planning, the objective was to characterize TEMPEST and

overall system behavior in terms of plan quality, the reasons behind re-planning, and plan stability.  

Figure 6-1: Hyper ion in its L ITA Configuration
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6.4.2 Hyperion Rover
As described in Chapter 5, Hyperion is a solar powered robot originally designed for sun-synchronous navigation in

polar latitudes [78].  Operations in a mid-latitude environment prompted a re-design of Hyperion’s solar array mount-

ing - the new configuration oriented the array horizontally to best collect energy from the overhead sun.  This

removed the coupling between driving direction and incoming solar power, making the energy management problem

far more benign than in the Arctic.  That stated, Hyperion’s batteries still provided only two hours while driving with-

out the sun's input, so it remained critically dependent on its environment.  Unfortunately, Hyperion was not capable

of estimating its battery state-of-charge, preventing closed-loop control under TEMPEST.  At 160 kg, Hyperion’s

mass remained roughly the same as in the Arctic. Since it employed very similar navigation software, Hyperion’s top

driving speed remained at 30 cm/second, or 1080 m/hour.

6.4.3 Software Architecture
The Hyperion autonomy software comprised a Health Monitor (HM) in charge of responding to abnormal state con-

ditions while operating; a Local Navigator that used stereo camera data to locate and avoid hazardous local terrain

while seeking a goal; and TEMPEST which took the sole responsibility of mission planning. A rudimentary mission

executive (ME) coordinated mission-related data passing between these modules, and received and distributed Mis-

sion Specifications from the Operator Interface (OI). Figure 6-2 illustrates the basic set of inter-module communica-

tions relating to mission-level path planning and execution. Designed as a placeholder for future, more sophisticated

Figure 6-2: L ITA 2003 Autonomy Software Architecture
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executive modules, the ME adopted a simple, hierarchical state machine architecture. It enacted a collection of moni-

tors to keep track of system state while planning or executing plans: the Plan Request Monitor, Plan Execution Mon-

itor, Drive Monitor, and Charge Monitor. 

6.4.4 Sequence of Operations
The mission focus in LITA 2003 was navigation to a single distant goal.  Mission Specifications, consisting of the

goal position and required arrival battery energy level were sent via the OI.  Upon receiving a Mission Specification,

the ME determined the current robot position and time state, and requested a plan beginning at that state and terminat-

ing at the specified goal state. TEMPEST found and returned an optimal plan to the ME.  For each action in the plan,

the ME triggered one of two Action Monitors.

The Drive Monitor computed parameters for a 10 meter by 30 meter goal region surrounding the next position way-

point (see Figure 6-3), and sent them to the Local Navigator for execution. Using the goal region as its global goal,

the Local Navigator pursued this region while avoiding obstacles it detected. Once Hyperion was within the region,

the Local Navigator signaled its arrival, terminating the Action Monitor. The Charge Monitor stopped the rover and

waited for the assigned Charge duration before terminating. 

During plan execution, at the scheduled arrival time for each plan waypoint, the HM performed a one-time check to

confirm the robot was on time. If the rover was more than a fixed distance from the waypoint at the scheduled arrival

time, the HM notified the ME that the waypoint was “missed” . Receiving this notification, the ME terminated the

Figure 6-3: Plans and executed paths. TEMPEST plans assigned the location of per iodic goal regions. Goal 
regions gave the Local Navigator  flexibility in selecting the specific path between waypoints. 
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execution of the current plan, and commanded TEMPEST to re-plan from the current rover state to the goal in the

original Mission Specification.

6.4.5 Planning Approach
Table 6-1 summarizes the planning parameters used in the LITA 2003 experiments.  Notably, TEMPEST was re-con-

figured from Arctic field experiments to take advantage of the composite objective function approach (see Section

3.1.6 and Approach 2 in Section3.4.2).  By representing the battery energy state variable within the objective func-

tion, the energy dimension used in Arctic experiments could be removed from the ISE DPARMS. At each state tran-

sition in the ISE search, a path would incur the corresponding positive or negative energy cost, plus the path length

cost increment, defined as the absolute value of the greatest charge (negative cost) possible over the entire search

space.   The result was a dramatic improvement in planning speed that enabled TEMPEST to perform initial planning

repeatedly throughout a day’s experiments, if necessary.  Recall, however, that in removing energy from the state

space, ISE was no longer complete - solutions deleted from consideration early in the search on the basis of cost

could not be resurrected if ISE failed to find a feasible solution downstream.  In practice, this did not prevent TEM-

PEST from finding solutions.

Perhaps more important than the dimensionality reduction was incorporating ISE state update re-planning into TEM-

PEST.  In the Arctic, TEMPEST generated a single plan for a 24-hour traverse.  If operational delays prevented stay-

ing on schedule, as occurred in Experiment 2, the robot relied on human teleoperation to recover.  A prime ambition

for the LITA project was to obviate the need for periodic teleoperation.  Re-planning in response to evolving rover

state created a “safety net”  in case of schedule deviations, a likely occurrence during robot experiments.    Another

objective from prior work was to demonstrate a richer representation of rover, actions and constraints.

Table 6-1: L ITA 2003 Planning Parameters

Feature Description

World Model Terrain: elevation, slope
Ephemeris: CSPICE
Solar Flux: constant value during daylight

Rover Model Locomotion: simple force model (friction, gravity)
Power: Solar array, re-chargeable battery
Camera?

State Space IPARMS: 
• x, y (position) cells; resolution: 30 m
DPARMS: 
• t (absolute time) sec; CSPICE ephemeris time; resolution: 1 sec/30 min
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6.5 Results 2003
Over April 17 through 20 and April 24 through 26, TEMPEST generated 27 plans and 83 re-plans. These experiments

indicate qualitatively and quantitatively that TEMPEST planning sought longer than minimum length routes to avoid

costly regions of the state space.  Other analysis indicates that TEMPEST produced plans that were mildly unstable

with respect to specific route, but exhibited clear arrival time stability.  Most notably, TEMPEST enabled one traverse

of over 1 kilometer, and many traverses of several hundred meters.

6.5.1 Path Length
TEMPEST’s grid representation of position state interferes with the ability to produce shortest-distance paths, as

described in Section 4.5.  Recall that for a given ratio of ∆x to ∆y, the minimum increase in path length above the

Euclidean distance is given by the representation factor .  Figure 6-4 examines the ratio of plan distance to Euclid-

ean map distance for plans generated on April 20 through April 26 of the 2003 experiment to determine whether the

grid representation was dominant in extending path length beyond the minimum. The horizontal axis spans the range

of the absolute value of ∆x/∆y, representing an East-West heading on the left, a Northeast-Southwest or Northwest-

Southeast (diagonal) heading at the center, and a North-South heading on the right. The vertical axis spans the range

of the plan distance  divided by the Euclidean or map distance . From Section 4.5, recall that this ratio is

equal to the multiplication of the representation factor  and the avoidance factor .  The curve at the bottom of the

Action Set Mobile:
• Drive Actions: one action for each of eight adjacent map cell neighbors
Stationary:
• Charge Actions: : solar optimal; : 30 minutes

• Hibernation Actions: low power; : solar optimal; : 60 minutes

Constraint Set Max. Slope, Daytime, Nighttime, Direct Sun Line-Of-Sight

Mission Specification Set  minute start time interval
Start position, energy
Single via point goals (no goal actions)
Final goal energy

Planning Details ISE Mode: BESTPCOST

Objective function: composite path length and energy 

Better: if 

Dominates: never
Re-Planning: state update

Table 6-1: L ITA 2003 Planning Parameters

Feature Description
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plot shows the representation factor for the range of ratios of ∆x and ∆y. Therefore, the ratio of the point value to the

curve value beneath it is the avoidance factor .

Observe that all the plans fall barely to the right of center, confirming that routes traveled principally in a North-South

direction, but with a slant from Northwest to Southeast. More interestingly, though several points fall very close to

the minimum curve, most paths are much longer. This indicates a large avoidance factor and suggests that the eight-

connected representation was not the principal contributor to path length extension for most of the plans. For the

paths not near the minimum eight-connected curve, obstacle avoidance, energy cost minimization and constraint sat-

isfaction contributed to path length extension, often significantly.

6.5.2 Large-Scale Terrain Avoidance
TEMPEST demonstrated large-scale hazard avoidance on several occasions. The planning for April 25 suggests sub-

tlety. Figure 6-5a shows the sequence of plans and executed paths for the day. At first glance, the initial northeast

heading taken by the plans is mysterious. Why did the planner force this detour rather than a more direct route to the

goal? The answer appears to lie in slope avoidance. By plotting the same path over a contour map of the magnitude-

Figure 6-4: Avoidance Factor  and Representation Factor  for  L ITA 2003: The points suggest that avoidance 
was often dominant in determining path length.

fA
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of-gradient (slope) field (see Figure 6-6b), we observe that the path avoids steeper slopes to its left, and then turns

toward the goal at a break in this higher slope region. 

The most interesting, yet greatest failure in terrain avoid-

ance occurred on April 18 (see Figure 6-6). In a plan to

travel to the southern end of the area of operations, TEM-

PEST dictated a traverse near the rim of the large fault

running in a primarily North-South direction to the West

of base camp. According to observers near the robot on

this day, waypoint goals dictated travel down precariously

steep slopes on the West side of the fault ridge. This

motion prompted the team to abort autonomous travel at

this point. Errors in map registration with respect to the

terrain were likely responsible for causing the problem.

6.5.3 Energy Efficiency
In contrast to previous planning experiments in the Arctic [70], evaluating the plans from the Atacama field experi-

ment proves to be difficult. For Atacama experiments, Hyperion's solar array was horizontal. This removed the strong

Figure 6-5: Plan and re-plan routes from Apr il 25 on an elevation contour  map, and a close-up with contours 
of constant slope. The initial plans seem to have located a break in steeper  slopes.

(a) (b)(a) (b)

Figure 6-6: TEMPEST placed Hyper ion very close to 
a hazardous slope on Apr il 18. Map registration 
er rors or  position uncer tainty may have been to 
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coupling between the direction of travel and solar power in Hyperion’s Arctic configuration, allowing the rover much

more freedom of motion and schedule with little or no penalty. Furthermore, the solar flux in the Atacama was suffi-

ciently high in April, during daylight, to sustain the highest-power operations indefinitely. Shadows only occurred

very near sunset, so only intersected paths when operations were coming to a close. The planning models verify this -

TEMPEST executed plans never included Charge or Hibernation actions. Finally, due to an undiscovered software

bug, the telemetry logs did not log TEMPEST plan messages. Alternate records of plans, used to reconstruct plans

from April 20 and later, did not include the battery energy variable of the plans. Unfortunately, this lack of data pre-

vented determining when and where planning predicted energy-rich and energy-poor conditions.

6.5.4 Plan Monitoring and Re-Planning
A primary goal of the field experiment was to test re-planning in the context of rover operations and plan stability. As

mentioned earlier, TEMPEST called upon state update re-planning. The Health Monitor provided simple plan execu-

tion monitoring, and was the sole trigger of re-planning.

As position state estimation was quite accurate, the major cause of re-plan requests was deviation of average rover

speed from the rover model, shown in Figure 6-7 for plans executed on April 25. The figure illustrates the connection

Figure 6-7: Rover  Average Speed vs. Re-Plan Frequency. Operational delays often caused the HM to tr igger  
re-planning. The solid lines in a) show average rover  speed over  a Dr ive action. The dashed lines are the 

average rover  speed over  the par ticular  plan or  re-plan execution. Speeds below the TEMPEST rover  model 
speed (plans 2, 5, 7) caused re-plan events, shown in b). Blank regions in plot b) are human-designated 

suspensions of operation to enact manual fault recovery.
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between rover speed and HM re-planning requests1. Figure 6-7a plots speed as a function of time. The TEMPEST

rover model speed is the constant, thin dashed line. The series of numbered brackets indicates the time spans for the

execution of successive plans and re-plans.  The solid traces for each plan show the average rover speed over the exe-

cution of each Drive action. Note that on several occasions, Hyperion stopped for long periods of time (end of plans

4, 5, 6, 8).  These were not due to Charge actions, but reflect periods where the rover encountered irrecoverable faults

and could not continue executing the plan.  The dash-dot traces for each plan show the average rover speed over the

entire plan or re-plan execution. Note that for plans 3 and 9, the average rover speed over a plan exceeds the speed

assumed by the TEMPEST model, and in plans 2, 5, 6, 7 and 8, coinciding with faults that stopped the rover, the

speed is much lower than predicted by the model. 

Meanwhile, Figure 6-7b shows the timing of important plan execution events, denoted by vertical lines.  The long

solid lines correspond to TEMPEST initial planning runs, and the long dashed lines are re-plan events.  The shorter,

thinner lines correspond to when the Mission Executive sent waypoints to the Local Navigator.  TEMPEST was man-

ually terminated several times during the day after long operational delays (after plans 3, 4, 6 and 8). However, it is

clear from plans 2, 5 and 7 that re-plans correlate well with periods of slow average driving speeds. The figure also

underlines a logic error in the Health Monitor that overlooked faster-than-expected rover speed for re-planning. In no

case does faster-than-predicted rover speed trigger a re-plan (see plans 3 and 9).

6.5.5 Plan Stability
Plan stability is determined by the degree to which plans vary in response to evolving initial rover state during a mis-

sion execution.  Stable planning yields few changes in route or schedule with minor deviations from the current plan,

and yields predictable changes for greater deviations.  Unstable planning results in erratic behavior.  A planner that

exhibits stability enables mission operators to better predict the range of possible plan solutions without a exhaustive

check.  Whether planning is stable would also influence whether and how a planner might be integrated with other

planners as a component within a greater autonomy software architecture.  For example, if re-plans typically entail a

total re-specification of the mission timeline, it might not be computationally practical to plan beyond the first action.

Stable planning might permit a longer projection.

1. The gaps in data indicate time spans where autonomy was disabled by human operators to enact manual recovery 
actions from software or operational faults.
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Figure 6-8: Route Stability: Most routes became more stable, as measured by progress to the upper  left of the 
plot, with decreasing distance to the goal.
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The degree to which routes are stable affects the degree to which the execution of the plan can be predicted.  In a sce-

nario where TEMPEST is used as an offboard planning tool, route stability would enable an engineering team to pre-

validate TEMPEST plans without examining a wide range of contingency cases. Figure 6-8a) through f) illustrates

plan route stability for the field experiment. Each frame depicts the route stability for a re-planning sequence in pur-

suit of a single goal, beginning with an initial plan and continuing with a number of re-plans.  In each case, the hori-

zontal axis shows the fraction of the re-plan waypoints that are identical to the initial plan (Fi). The vertical axis

shows the fraction of the re-plan waypoints that are identical to those from the previous plan (Fp). The markers on the

traces correspond to results from specific re-plans. The traces begin at the enlarged markers, the first re-plan, and pro-

ceed in chronological order. It follows that all traces begin on the line Fi = Fp, since for the first re-plan, the previous

plan is also the initial plan.

Observe that for all but one trace, the endpoint falls generally left and above the starting point. One can infer that for

these cases, re-plans are initially unstable but grow gradually more stable as plan execution progresses. This seems to

make intuitive sense. With the greater freedom that comes with a large distance between start and goal, ISE finds a

Figure 6-9: Ar r ival Time Stability: Changes in ar r ival time in re-plans cor relate well with deviations from the 
previous plan dur ing execution.
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number of plans of similar cost but with differing routes. Subtle changes in initial conditions may cause substantial

route variations. However, as the distance to the goal shrinks, the freedom is reduced, leading to greater stability.

The exception is the plan sequence from April 25 (Figure 6-8d), whose first re-plan shares fewer than 10% of the ini-

tial route's waypoints. Successive re-plans deviate even more from the initial plan at first, but then return to match

about 40% of the remaining plan. Figure 6-3a may help clarify what is happening in this case. The plans seem to

alternate between two general routes over the last 1/2 of the traverse. Plan 2 (the initial plan shown) takes the right

fork, Plan 3 (the first re-plan) the left. In the first half of the route, Plan 2 and Plan 3 are almost entirely distinct, but

run very close to each other. In later planning instances, the plans settle on a variation of the right fork, increasing the

fraction of the plan that is identical to Plan 2.

A planner exhibits arrival time stability when re-plans, in response to time deviations from an original plan, result in

similar deviations in goal arrival time.  Experiments indicate that TEMPEST planning are stable with respect to time.

Figure 6-9 plots arrival time slip (vertical axis) against plan schedule slip (horizontal axis) for re-plans generated on

April 20 through April 26. Each marker corresponds to a different re-plan instance. The dashed line falls where

schedule slip exactly matches goal arrival delays. Re-plans falling above the dashed line are less direct then their pre-

decessors, while re-plans below the line are more direct. Aside from a few outliers, the data seems to suggest a strong

correlation between operational delays and schedule slips. 

6.6 Field Experiment 2004

6.6.1 Objectives
In anticipation of full science operations for the 2005 field experiment, the principal autonomy goal for 2004 was to

integrate science activities into operations.  For TEMPEST this meant representing human-designated science goal

actions within Mission Specifications, reasoning about the time and resource consumption of these activities in the

scope of the global traverse plan, and enforcing temporal and energy constraints imposed on the completion of goals. 

6.6.2 Zoe Rover
A new rover, Zoe, was developed to better integrate science instruments and to incorporate the lessons learned with

Hyperion (see Figure 6-10).  Its mass was 180 kg and its dimensions were 2.7 m long by 1.7 m wide, on par with the

mass and size of Hyperion.  It was far more capable of ascending steep slopes and crossing over rough terrain, and is

designed mechanically to drive at a higher average speed.  Enhanced computing onboard Hyperion enabled the Local

Navigator to reliably avoid obstacles up to 1.0 m/s (3.6 km/hr), though system-level tests documented in this thesis

were run at 0.5 m/s (1.8 km/hr).
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Zoe’s power configuration was more capable of collecting and storing solar energy than Hyperion.  Zoe utilized a

smaller solar array than Hyperion’s (2.4 m2) for supplying current to loads on the system and to charge batteries.  The

array’s solar cells were triple junction cells, which provided a nominal efficiency of 24%, a substantial improvement

over Hyperion’s.  The net effect between the size reduction and the efficiency enhancement was anticipated to be a

64% increase in solar power.  Zoe’s principal batteries for system-level tests were lithium-ion cells, designed for a

maximum capacity of roughly 1340 W-hr of charge.  The impact of these power upgrades was that in driving, Zoe

was even more power-rich than Hyperion.  However, with the addition of power-hungry science instruments enabled

during science activities, it was not obvious whether the previous system would have been sufficient to sustain the

rover in daily operations.

Increased navigational autonomy was a secondary goal of LITA 2004.  To achieve a greater level of space relevance,

rover state estimation no longer relied on GPS, but instead on a combination of wheel odometry, rate gyros, a sun

tracker to enable absolute measurements of vehicle attitude, and a novel non-linear smoothing algorithm to update the

position estimate history as new sun measurements are taken.  This approach holds promise for the future, but was not

functioning nominally during 2004 system-level tests.  The impact to TEMPEST planning was that position state

errors could no longer be maintained to below the resolution of the position state representation.   

Figure 6-10: Zoe Rover
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In contrast to Hyperion, Zoe had a substantial suite of science instruments, and could collect several types of mea-

surements autonomously by the end of the 2004 field experiment.  A stereo panoramic imager (SPI) comprised three

cameras mounted on a pan/tilt head on the Zoe mast, enabling mono- and stereo panoramic image data sets.  A fore-

optic for Zoe’s visual/near-infrared spectrometer (VNIR) was also mounted on the pan/tilt head, providing spectral

data for regions of the panorama.  Beneath the rover, a Fluorescence Imager (FI) could automatically deploy to acti-

vate and image the fluorescence of geologic or biotic materials.  Optical cameras whose field of views covered the

workspace of the FI provided context for fluorescence measurements.  

6.6.3 Software Architecture
Hyperion’s autonomy architecture was re-designed to better enable integrated science and navigation planning and

execution and fault recovery.  Zoe incorporated several new modules - a Rover Executive (RE), a replacement for

Hyperion’s Mission Executive, to coordinate the planning and execution of mission plans; a Goal Manager (GM) for

pre-processing of goal specifications sent to TEMPEST and goal elaboration following TEMPEST planning; and an

Instrument Manager (IM), an executive process to coordinate the execution of measurement activities.

The Rover Executive (RE) was developed under the IDEA architecture [45][15], and coordinated mission planning

and execution.  Unlike the previous Mission Executive, the RE aggregated logical models of each anticipated event

and possible state transitions.  It called upon the EUROPA planner [28][29] to perform both deliberative and reactive-

Figure 6-11: LITA 2004 Autonomy Software Architecture
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scale temporal constraint checking on plans generated by the GM and TEMPEST, maintained a set of timelines to

enforce temporal constraints on all planned activities, and enacted simple plan execution monitoring and recovery

actions for common vehicle faults.  

The RE coordinated the execution of plans encoded on the timelines.  Drive actions were passed on to the Local Nav-

igator as 18 m wide by 6 m deep goal regions similar to previous field experiments.  Charge actions were executed

directly by the RE by waiting the required duration.  Science activities were passed to the IM, which managed the

deployment of instruments and the execution of measurement sequences.  For all activities, the RE monitored the

execution timing of activities relative to the plan timelines.  If either the execution completed prior to the earliest

allowable time, or did not complete by the latest allowable time, the RE requested a re-plan from the GM and TEM-

PEST.  The RE was not given the flexibility to anticipate the failure of an action to take early recovery steps.

The Goal Manager (GM) was designed as a pre- and post-processor for TEMPEST planning.  As in 2003, goals for

Zoe were specified exclusively by human operators.  Under sequential goal planning described in Section 4.3.4,

TEMPEST expected a fully-ordered sequence of goals.  First, the GM elaborated goal activities, based upon goal

activity parameters (e.g. size of panorama, number of pan-tilt steps), to predict appropriate time and energy alloca-

tions, and to convert coarse representations into more detailed specifications needed for execution.  

Furthermore, the science and engineering team could not be expected to predict how many of the goals in the Mission

Specification could feasibly be achieved within daylight hours, or which goal to remove if achieving the entire set

was infeasible.  Given a goal sequence, rewards assigned to each goal, and the latest time by which the mission must

be completed, the GM used TEMPEST domain models and approximate energy constraints to estimate and select the

highest-reward subset of goals achievable within the allotted time. The resulting subsequence of goals was sent to

TEMPEST for planning.  The GM returned elaborated plans to the RE for execution.  Originally, the GM was

intended to reduce the goal set in the event TEMPEST could not find a feasible plan.  Time constraints in the software

development schedule prevented this feature from being incorporated into the system.

6.6.4 Planning Approach
Table 6-2 summarizes the planning parameters used in the LITA 2004 experiments.  To accommodate science activi-

ties, TEMPEST reinstated sequential goal planning, but unlike in the Arctic or in LITA 2003, with goal actions.

TEMPEST was never intended to solve the general planning and scheduling problem typically solved by classical AI

approaches (see Section 1.5).  Because TEMPEST’s principal role is to solve for traverse plans that satisfy temporal

and resource constraints, the critical parameters for a goal action are its position, duration and resource (energy) con-

sumption. For every science activity requested in a Mission Specification, the GM provided TEMPEST with duration

and energy consumption upper bounds.  For each of these activities, TEMPEST created a new science action using a
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Generic Science action template, and added it to the Action Set.  Other details, for example the hardware units desig-

nated for the activity or warmup and calibration procedures, were irrelevant to TEMPEST and left out of plan

requests.

In preparing for possible 24-hour autonomy experiments in 2005 and beyond, one objective was to enable TEMPEST

planning that would guarantee sufficient battery charge at the end of each to survive at low power overnight.  Without

knowing the completion time of a day’s mission, it is difficult to assign goal battery energies that would enable over-

night survival.  To accommodate this, TEMPEST was augmented to enable time-bounded sequential goal planning,

as described in Section 4.3.6.    All Mission Specifications included an additional goal (with a null action) whose posi-

tion was co-located with the final requested goal - an “End of Day”  goal.  To this goal, human operators assigned a

legal time bounds corresponding to sundown and the battery energy required for night survival from that time.  The

time-bounded goal planning mechanism restricted plans to terminate at the position, within the time bounds and at the

energy for the End of Day goal.  The completion times and battery energies for requested goals remained free.  With

no specialized delay action in the Action Set, Charge actions would allow TEMPEST to insert delays into plans.  To

enable longer delays without added penalty, the LITA 2004 Action Set included additional, longer Charge actions.

The End of Day planning strategy, as stated above, did not result in the desired behavior.  Ideally, plans would time-

efficiently achieve all goals through Drive and Generic Science actions, and then loiter at the final goal position using

Charge actions until satisfying the End of Day time bounds and energy.  However, because TEMPEST planned in

backward-chaining order, Drive actions were favored over most of the search, and Charge actions were only included

in optimal plans to meet the conditions of the start time interval of the Mission Specification.  This resulted in plans

that began with Charge actions to accomplish the delay, followed by fast-as-possible Drive and Generic Science

action sequences to achieve all the goals.  Operationally, this embodied a risky strategy that required flawless execu-

tion of the traverse and science activities to meet the overall objective.

To remedy this situation, the objective function used in LITA 2003 was augmented with a third term that imposed

“reward pressure.”   Human operators selected a reward pressure constant, expressed in units of power per unit reward

(Watt-hours/reward), to be used over all planning segments.  At each step in the search, the additional reward pressure

cost was defined as the pressure power multiplied by the duration of the action multiplied by the reward remaining in

future goals.  The effect was to lightly penalize adding loiter actions towards the end of plans (the beginning of the

search), but heavily penalize adding loiter actions towards the beginning of plans.
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6.7 Results 2004
An experiment toward the end of the 2004 field season illustrated mission-directed path planning in support of inte-

grated science measurement and navigation.  The Mission Specification required Zoe to perform Panorama actions

(collect a full panorama image sequence) and Workspace Acquire actions (collect workspace camera images) at each

of four goal locations, entailing a traverse of 2.74 km in map distance that terminated in a narrow valley.  Figure 6-12

Table 6-2: L ITA 2004 Planning Parameters

Feature Description

World Model Terrain: elevation, slope
Ephemeris: CSPICE
Solar Flux: constant value during daylight

Rover Model Locomotion: simple force model (friction, gravity)
Power: Solar array, re-chargeable battery
Navigation Cameras: Field-of-view for sun blinding constraint

State Space IPARMS: 
• x, y (position) cells; resolution: 30 m
DPARMS: 
• t (absolute time) sec; CSPICE ephemeris time; resolution: 1 sec/30 min
• g (goal completed Boolean) 

Action Set Mobile:
• Drive Actions: one action for each of eight adjacent map cell neighbors
Stationary:
• Charge Action: : unspecified; : 30, 60, 120, 240, 300 minutes

• Generic Science: : unspecified; , : assigned by GM

Constraint Set Max. Slope, Daytime, Nighttime, Direct Sun Line-Of-Sight, Sun In Camera

Mission Specification Set  minute start time interval
Start position, energy
Sequential via point goals with goal actions
Final goal energy and time bounds

Planning Details ISE Mode: BESTPCOST
Objective function: composite path length, energy and reward pressure 

Better: if 

Dominates: never
Re-Planning: state update
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shows the terrain map and the initially-planned route for the traverse, which starts at the right of the map and

progresses uphill into a canyon between two peaks. Table 6-3 summarizes the planning results.

6.7.1 Planning
In examining the distance and time factors in Table 6-3, one observes that increases in plan distance above the mini-

mum were isolated to the eight-connected grid representation.  The route diagram in Figure 6-12 confirms this graph-

ically - the route follows horizontal, diagonals and vertical moves on the map grid rather than taking a direct path

between goal positions.  However, this is not to say that representation was at fault for increasing the distance.  It

seems apparent that TEMPEST used the degrees of freedom in the eight-connected path to avoid hazardous terrain

(as illustrated in Figure 4-11).  The final segment follows a path that avoids high slope areas by strategically alternat-

ing between diagonal and horizontal Drive actions.  In many cases, the straight-line path between goals would have

been inappropriate. 

Figure 6-13 depicts the plan progress distance and minimum energy profile for the initial plan.  The stair-stepping

behavior of time-bounded sequential goal planning is plain in the distance plot.  The plan allocates time for each goal

to accommodate the Panorama and Workspace Acquire actions.  The left dashed line in the distance plot is again the

line of fastest possible approach under a speed of 1 m/s.  The right dashed line is the line of slowest allowable

approach to the goal, which for these runs was a factor 20 slower than the maximum speed.  The intention is to pro-

vide ample time to allow for selecting circuitous routes or to insert Solar Charge actions.  This scenario required nei-

ther, as reflected in the avoidance factor and loiter factor.  The distance plot shows steady progress between each goal

at a slightly lower slope than the line of fastest approach, reflecting the extra distance due to eight-connected travel.

Unfortunately, this plan does not demonstrate the End Of Day goal mechanism - the End Of Day time bounds were

Table 6-3: Summary of October  18 Plan and Execution

Quantity Planned

# of Goals 8 (4 positions)

Goal Spacing mean/min/max (m) 284 / 0 / 942

# of Actions 84 (76 Drive/0 Charge/4 Panorama/4 Workspace Acquire)

Representation Factor ( ) 1.0728

Avoidance Factor ( ) 1.0000

Loiter Factor ( ) 1.0000

Distance (m) 2740

Duration (hh:mm) 01:08 (initial plan)

fR

fA

fL
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set to open at the time of the start time of the plan, and close just before sundown.

Looking at the energy plot, the plan satisfies the initial condition of 200 W-hr and reaches the final goal energy

requirement of 50 W-hr.  TEMPEST models predicted no trouble in achieving the plan from a power perspective.

The plan predicts that the rover could start with an empty battery and could remain fully discharged along the first

two segments and still reach the goal target energy.  It does predict a small, non-zero requirement at the start of the

fourth segment.  The plan terminates by rising to the target final goal energy.

Figure 6-12: L ITA October  18 2004 Route and Terrain Map
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Figure 6-13: LITA October  18 2004: a) Progress Distance; b) Minimum Required Battery Energy

b)

a)

b)

a)
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6.7.2 Execution
Global map registration was an unanticipated difficulty with the October 18 experiment.  Prior to the experiment, the

field team collected many GPS-derived ground control points that would allow cartographers at the US Geological

Survey to associate absolutely-referenced positions with specific locations in unregistered elevation data collected

from space1.  Using those control points, the USGS provided the team with the map of the terrain that was intended to

be referenced absolutely to Earth coordinates.   A globally-referenced map would have allowed the team to initialize

the rover state estimator with a correct map position using GPS.  However, in initial tests, the team discovered that

GPS measurements converted to map coordinates indicated substantial map registration errors (hundreds of meters in

translation, and unknown errors in rotation).  Matching GPS measurements of landmarks to salient elevation features

in the map, the team attempted to better register the map to the Earth with translation.  Closer examination of the

translated map seems to indicate the attempted corrections were also in error.  

Through the first three segments of the mission, Zoe exhibited reasonable navigational behavior.  However, during

the final segment, in attempting to enter the canyon area, Zoe attempted to follow a path that was farther south of the

canyon opening than was suggested in the plan.  Its course took it to the base of the large hill depicted in Figure 6-12,

where it struggled to find traversable terrain on steep slopes through a network of water drainages.  The preliminary

judgment is that map registration errors prevented Zoe from entering the canyon at the correct point.Unfortunately,

with mis-registered maps, the GPS “ground truth”  from Zoe is of ambiguous value.  It provides Zoe’s absolute posi-

tion on Earth, but does not yield Zoe’s true path through the terrain model.  

6.8 Discussion
These experiments highlight a number of important distinctions from experiments conducted in the Arctic.  First, the

mid-latitude environment presents a different set of challenges to mission-directed path planning.  In polar summer,

the sun never sets, but its low elevation angle does not favor a rover with a horizontal solar array.  At mid-latitude, the

sun rises and sets, but enables a rover to travel confidently during the day, under solar power, with a solar panel that is

horizontally mounted and unarticulated.  Daytime energy management in a polar environment demands a mechanical

or navigational strategy, whereas daytime energy management at mid-latitude is not as much a significant challenge.

From the perspective of demonstrating persistent operations on a planet, the two experiments were quite different.

Arctic experiments demonstrated operations over 24 hours; Atacama experiments started well after dawn, occasion-

ally extended until dusk, but never continued at night.  Consequently, the LITA experimental planning and execution

results presented here do not present the energy management challenges that might have arisen in enabling 24-hour

operations.  

1. Elevation data derived from imagery from the ASTER instrument aboard the Terra spacecraft.
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TEMPEST’s performance in LITA experiments demonstrated several new strengths above what was shown in the

Arctic:

Terrain Avoidance: TEMPEST planned paths that avoided high terrain slopes.  In a planetary setting, with a priori

data, a robot using TEMPEST could anticipate large-scale terrain from “over the horizon”  and take measures to avoid

slope hazards from a distance.  Current path planners for planetary exploration cannot consider terrain beyond their

sensor horizon.

Integrated Science, Energy Management and Navigation:  In the LITA 2004 experiment, TEMPEST coordinated

mission and navigation activities effectively.  It integrated naturally with other software modules - the Goal Manager,

and the Rover Executive - to create plans that achieved the navigation goals of the mission and accommodated the

requirements of science activities.  

Effective Online Re-Planning:  TEMPEST re-planning enabled far greater navigational autonomy than is possible

by planning once in advance.  A rover that can adapt its plans to unanticipated changes will be able to continue oper-

ating effectively without human intervention.  In response to requests from plan monitoring modules, TEMPEST re-

planned in fractions of the time required for initial planning.  Re-planning periods rarely caused the rovers to halt for

more than a fraction of a second.   

The LITA experiments also uncovered challenges for future mission-directed  path planning research:

Mission Re-Scoping: TEMPEST could not alter the scope of a mission in response to evolving state and environ-

mental conditions.  If operational delays are too significant, TEMPEST may not be able to find a feasible plan that

meets time constraints.  Conversely, if operations go more quickly than anticipated, TEMPEST cannot add more

goals to the mission plan to take advantage of the situation.  Deviations from expected behavior in position state and

energy state can cause similar problems.  

No Planning for  Uncer tainty: The Atacama again stressed the need to consider uncertainty in planning.  Experi-

ments in 2003 suggest map registration was responsible for a near disaster with Hyperion (see Section 6.5.2).  Map

registration in 2004 caused Zoe to struggle with navigation into a canyon.  Also, time uncertainty was a problem.

TEMPEST models only consider the nominal rover behavior.  TEMPEST cannot anticipate the effects of operational

delays, as often happen in the course of experiments, and more importantly, in planetary operations.  
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This thesis concludes that mission-directed path planning achieves a significant, practical advance in planetary rover

autonomy, and enables a new, challenging class of planetary surface rover missions.

The research is significant because it extends path planning beyond local obstacle avoidance to time, resources and

mission objectives and constraints - issues recognized by the space mission planning community to be of critical

importance.  Judging from MER, future missions will also seek to investigate regionally distributed targets, and may

baseline years of operation.  The greater ambition for autonomous regional exploration will require a commensurate

sophistication in navigation and activity planning.  Mission-directed path planning could automate path selection for

regional exploration.  With less manual planning to be done, missions would require far fewer operations staff and be

correspondingly far cheaper.  Greater robot autonomy would also reduce the frequency of decisions that require

human intervention, resulting in less wasted time and greater return for each operational day.   This research supports

the ambition for cheaper, more efficient surface exploration.

This research demonstrates a practical solution to mission-directed path planning.  TEMPEST derives plans that

exhibit sensible navigation behaviors under complex interactions between terrain, time, resources and constraints.

The approach combines models of the world, rover, relevant actions and constraints imposed on them, and mission

objectives.  Incremental search enables efficient search for optimal paths over three or more dimensions, and under

global constraints.  It offers efficient re-planning mechanisms to repair plans in response to unexpected state excur-

sions and measurements of the local environment.  Operating on the Hyperion and Zoe robots, TEMPEST operated

efficiently and effectively in conjunction with automated local navigators, science planners and executives.  In plan-

ning traverses of several hundred meters several hours in duration, TEMPEST spent on the order of ten minutes.  Fre-

quent re-plans thereafter caused only minor, and often imperceptible delays in progress.

7. Conclusion
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Mission-level path planning enables a new class of planetary surface missions.  Experiments demonstrate its utility in

a number of specific scenarios: missions with overnight hibernation contingencies; polar exploration under sun-syn-

chronous navigation; and missions that conduct widely distributed sampling to characterize regional variations.

More generally, this new approach best addresses missions that operate in highly-variable, complex lighting and

power, and missions that regularly interleave focussed stationary activities and extensive traverses.  Chapter 1 intro-

duces two planetary mission scenarios for which mission-directed path planning would certainly be an enabling tech-

nology.

Time, resources and mission objectives must factor into route selection to support the global needs of the mission.

Without reasoning about these factors, planners must make conservative assumptions about legal operating ranges to

guarantee a vehicle’s safety.  Imposing broad limits on operations can severely restrict the productivity of a robot.

Occasionally, the conservatism required to guarantee rover safety disallows all operations.   Deeper reasoning,

through mission-directed path planning, allows a rover to take advantage of time and resource opportunities if they

exist, and enables a measured level of protection against hazardous conditions when they arise.

7.1 Contributions
This research develops the most comprehensive global planner  for  planetary rovers to date.

Prior planetary mission planning has sought to optimize paths to avoid obstacles over traverses on the order of 100

meters.  This new work achieves multi-kilometer planning, temporal and resource planning and interleaving of

traverse and mission activities.

This research creates the first planner to optimize path selection for  a non-monotonic resource.

The planning developed here incorporates resource collection as well as consumption to solve problems that are

infeasible without recharge or refueling.  Other path planners rely on monotonic resource models that cannot repre-

sent recharging.  Non-monotonic resources, like battery energy, fuel or onboard memory, are commonplace in space,

military, transportation and many other applications.  

The research solves path planning in spatial, temporal and resource bounds using a non-hierarchical, resolu-

tion-optimal method.

The non-hierarchical approach developed in this research enables coupling between the spatial, temporal and

resource state variables and solves for globally-optimal plans.  Other path planners are sub-optimal or incomplete
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because they commit to a spatial path in one operation and then select a velocity or power profile to avoid time-vary-

ing obstacles and meet other constraints.

The thesis extends planetary rover  path planning into the realm of more general mission planning.

The plans generated in the approach developed here consider the time and energy expense of mission goals and obey

mission constraints.  As demonstrated in field experiments in this research, a mission-directed path planner can act as

a simple mission planner for a robot.  If acting in support of a general mission planner, the planning developed in this

research enables much tighter coupling between activities and traverses in a plan.  Planetary rover mission planning

has historically been the purview of classical artificial intelligence planning and scheduling approaches.  They typi-

cally insert traverse plans into the mission plan that derive from a path planner that is incapable of reasoning about

mission objectives.  

The research successfully demonstrates mission-directed planning for  solar  powered robots in three planetary-

relevant field exper iments.

TEMPEST planning guided and sustained the solar powered Hyperion rover on a 6 km, 24-hour long polar sun-syn-

chronous traverse.  TEMPEST planning and re-planning enabled Hyperion to achieve several long-distance autono-

mous traverses in the Atacama Desert, including one over 1 km.  TEMPEST created and maintained plans that

allowed the Zoe rover to interleave a traverse of several hundred meters with several targeted panoramic and under-

belly camera image sequences.

7.2 Perspectives
This thesis illustrates the power and limitations of incremental search as applied to time and resource-oriented path

planning.  In the positive, incremental search approaches offer the advantage of enabling guarantees of completeness

and optimality.  Conventionally, incremental search algorithms have been used to plan paths in two-dimensional

spaces.  Through the mission-directed path planning problem, this work illustrates the utility of incremental search

for problems of greater than two dimensions.  In enabling efficient representation of additional dimensions, the dis-

tinction between independent and dependent variables is a profitable segmentation of the state space.  In effect, it col-

lapses the representation of a very large space into the dimensionality of the independent variables, until the search

dictates that other dimensions are important.  Further, dependent variables can be treated at two resolutions, enabling

efficiency mechanisms like resolution-based state pruning and state dominance.  The resource optimization problem

also demonstrates how resources can be correctly tracked and constrained outside the state space, and even optimized

without adding the significant burden of an extra search dimension.  Specifically, if state transitions and transition

costs can be assumed to be independent of the resource variable, then that resource dimension can be represented
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within a composite objective function or as an auxiliary variable, at the cost of removing the guarantee of complete-

ness.  Reduction of search dimensions is the fastest means of reducing search time and space complexity, and in prac-

tice, the reduced-dimensionality planner readily produces solutions.  Under these efficiency mechanisms, incremental

search enables efficient planning and re-planning for complex domains, and yields provably resolution-optimal solu-

tions.

Efficient re-planning is a major advantage of the incremental search approach.  Re-planning enables a vehicle to com-

pensate for unanticipated excursions away from an initial plan trajectory, and allows it to repair plans in light of new

information.  In most real-world mobile robot applications, particularly for planetary surface exploration, models of

the world and the robot will be incomplete.  A planning method that rapidly adjusts to on-the-fly measurements is

essential for efficient robot operation.

This thesis also illustrates the limitations of an incremental search approach.  Despite the array of available efficiency

mechanisms, time and space complexity grows exponentially as dimensions are added to the state space.  Specific to

the mission-directed planning problem, time and energy are two of many interesting and important dimensions to the

problem.  One could easily envision problems where vehicle heading, multiple resources, and belief of state are

equally important.  In view of these larger, more general problems, it is not clear that incremental search is the correct

approach.

Hierarchical navigation was proven highly effective in all three field experiment involving TEMPEST.  The combina-

tion of a local navigator that senses the immediate environment and steers clear of rover-scale hazards with a mission-

level path planner that reasons about the large-scale, time and resources is natural and powerful.  

On the negative side, despite the array of available efficiency mechanisms available to incremental search, time and

space complexity grow exponentially as dimensions are added to the state space.  Specific to the mission-directed

planning problem, time and energy are only two of many interesting and important dimensions that might be consid-

ered.  One could envision problems where vehicle heading, multiple resources, and belief state are as important as

time and energy.  In view of so many additional variables, it is clear that incremental search cannot adequately

address such problems. 

TEMPEST proved vulnerable to a number of sources of uncertainty during the field experiments - principally time

cost uncertainty, as demonstrated in the Arctic, and position state uncertainty as shown in both expeditions to the Ata-

cama.  
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7.3 Future Work
Future work might fully character ize the benefit of mission-directed path planning, in compar ison to standard

spatial path planners, under  varying ter rain, lighting conditions and rover  power  configurations.  

Mission simulations, controlled by a mission-directed planner and parameterized on terrain, lighting and rover ener-

getics, could yield planning performance metrics in mission-relevant terms, for example time efficiency, energy effi-

ciency, likelihood of success.  Determining trends with respect to parameters would aid in establishing planning

utility bounds for future missions.

Future work might investigate the use of rapid re-planning as a means of evaluating contingency branches in a

meta-planning mode.

Fast re-planning could be leveraged to plan for hypothetical situations as easily as for actual ones.  Research should

evaluate the planning benefit in re-planning for hypothetical contingencies, and characterize the performance of re-

planning under model updates not necessarily in the immediate vicinity of the rover.

Future work might character ize randomized and anytime algor ithms that sacr ifice optimality but enable effi-

cient search over  higher  dimensional spaces, and evaluate them in the context of mission-directed path plan-

ning.

Research might determine whether randomized approaches can be designed to reliably generate reasonable, safe and

mission effective solutions under probabilistic completeness and without the guarantee of optimality.  Anytime algo-

rithms could provide sub-optimal path solutions for high-dimensional spaces with known bounds on cost with respect

to optimal.  Adapting these search algorithms to mission-directed path planning might enable efficient planning over

many additional variables, for example onboard memory, thermal state, or uncertainty parameters.  

Research might develop an integrated approach for  multi-scale navigation.

Unifying navigation at all scales might employ a common planning algorithm and encode a continuum of increasing

representational granularity and decreasing re-planning frequency with distance from the robot.  Unified navigation

would extend the use of robot sensors to identify and characterize mid- and large-scale terrain features, foster a con-

sideration of varying geometry, time, and resources at the local scale, and greatly streamline future rover software

architectures.  
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Future work might enable efficient approaches to planning under  uncer tainty, with a consideration of r isk sen-

sitivity, in a mission-directed context.

Research must identify the sources of uncertainty most apt to disable mission-directed path planning, and evaluate

current and develop new approaches to planning and sensing to diminish their effects.  Furthermore, assessing plans

in terms of risk, for instance by the variance in reward or cost, would enable a vehicle to select plans based on the

evolving risk tolerance of the mission.  Statistical methods are promising - they provide a natural, rigorous means of

integrating sensing, planning and control, and have been successfully employed in an increasingly wide range of

domains.  Addressing uncertainty would enable more reliable planning for long-distance traverses that are particu-

larly subject to errors in control, state and model accuracy.
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This appendix describes the Incremental Search Engine (ISE) algorithm in greater detail than presented in Chapter 3.

ISE search centers around a priority queue called the OPEN list.  The first section describes how the OPEN list oper-

ates.  The following section presents the ISE algorithm at the highest level, in terms of the ISE search modes: BEST-

PCOST and BESTDPARMS.  Each of these modes calls upon state expansion, whose details appear in the third

section.  An important feature of ISE is its ability to enforce and manage the dominance of some states over others.

The final section in the appendix describes the piece of the algorithm associated with that management task.

A1.1 OPEN List
As with D* , ISE maintains a data structure, called the OPEN list, containing states prioritized for expansion.  The

OPEN list computes the path cost from states to the goals, and propagates information about changes to arc costs

incurred during plan execution.  The OPEN list propagates information by repeatedly expanding the highest priority

state on the list.  When a state is expanded, it is removed from the OPEN list, and all its child states are added to the

OPEN list.  States that are modified through cost increases or decreases are also placed on the OPEN list.  All states

have an associated tag function  that defines their OPEN list status. Tags hold one of three values: 

if the X has never been on the open list,  if X is currently on the OPEN list, and  if

X was removed from the OPEN list.

For each state on the OPEN list, a key function  is defined to be equal to the minimum of   before a cost

modification and over all values  assumed after X was placed on the OPEN list. The key function classifies

states on the OPEN list into two types: RAISE states ( )and LOWER states ( ). RAISE states

propagate information about path cost increases, and LOWER states propagate information about path cost reduc-

tions.

t X( ) t X( ) NEW=

t X( ) OPEN= t X( ) CLOSED=

k X( ) h X( )

h X( )

k X( ) h X( )< k X( ) h X( )=

Appendix 1: ISE Algor ithm
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States are placed on the OPEN list using their key value, which for LOWER states is the cost , and for RAISE

states is the cost  prior to the cost increase. States are expanded in order of increasing ,

the optimal estimated path cost prior to a possible cost increase (note that for LOWER states, ).

The intuition is as follows.  RAISE states are not optimal, since .  Expansion allows them to re-

route the path through lower-cost states.  The value  of a RAISE state is a lower bound on the cost of

LOWER states it can re-route to (it cannot activate a state that is less costly than the current optimum). Therefore, if

all LOWER states’  costs  exceed the  value of the RAISE state, it is better to expand the RAISE state

first to possibly find lower-cost LOWER states. Note that if two OPEN states share the same  value, they are

prioritized by their key values.  This avoids creating cycles in state backpointers.

A1.2 Definitions
This section presents algorithmic details of ISE. The following two sections informally define several functions used

in the ISE algorithm description, presented in section A1.3. 

Table 1-1 lists the ISE application-specific functions that must be defined by the ISE user.

Table A1-1: Application-Specific ISE Functions

Encodes preferences of some DPARMS values over others.  Given two states 
X and Y with equal IPARMS and path cost, this function returns  if X is 

preferred over Y,  otherwise. 

Returns the backwards neighbors of a state, using the backwards arc transition 
function . Given a state X, the function returns a list of states from which 
X is reachable.

Defines the conditions on DPARMS under which one state dominates another, 
according to the definition in section 3.2.3. Given two states with equal 
IPARMS, the function returns  if X dominates Y,  otherwise.

Returns a list of states that might either dominate or be dominated by X, 
according to the definition provided in section 3.2.3.

Defines the conditions on IPARMS and DPARMS under which states are fea-
sible plan start states. Given a state X, this function returns  if X is a 

feasible start state,  otherwise. 

Returns the forwards neighbors of a state, using the forwards arc transition 
function . Given a state X, the function returns of list of states reachable 
from X.

Determines when two states share the same resolution equivalence class.  
Given two states X and Y with equal IPARMS, this function returns  if 

X and Y are resolution-equivalent,  otherwise.

h X( )

h X( ) f* X R,( ) k X( ) g X R,( )+=

f* X R,( ) f X R,( )=

f* X R,( ) f X R,( )<

f* X R,( )

f X R,( ) f* X R,( )

f* X R,( )

better X Y,( )
TRUE

FALSE

bneighbor X( )
β X( )

dominates X Y,( )

TRUE FALSE

domstates X( )

feasible X( )
TRUE

FALSE

fneighbor X( )
Φ X( )

resequal X Y,( )
TRUE

FALSE
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Table 1-2 describes several ISE domain-independent functions.

A1.3 BESTPCOST and BESTDPARMS Modes
At the highest level, ISE operates in either of two modes, BESTPCOST and BESTDPARMS.  The BESTPCOST

mode finds the minimum cost path. The BESTDPARMS mode finds the “best”  path below a user-designated upper

bound in path cost, where better paths are defined using the application-specific  function in Table 1-1.

Both modes share the underlying search algorithm, composed principally of two functions -

Table A1-2: Application-Gener ic ISE Functions

A search back-pointer.  Given a state X, it returns the next state Y on the opti-
mal path to one of the goals.

Returns  if a state X is marked for deletion, and  otherwise.

Deletes a state and associated memory from ISE.

Returns  if a state X is marked as dominated, and  otherwise.

GET_FMIN() Returns the vector , the path cost and key value corresponding to 

the highest-priority state X from the OPEN list, such that 
 and .

GET_MIN_STATE() Returns the highest-priority state from the OPEN list, where priority is given 
to the state X with the lowest value of . It removes the state from the 

OPEN list and sets  and .

Compares two vectors  and  and returns  if 

 or (  and ), and  otherwise.

Inserts a state directly into the OPEN list, with a path cost of . 

Compares two vectors  and , and returns  if 

 or (  and ), and  otherwise.

Returns  if a state is downstream (with respect to the search) of a set 

whose APARMS have been modified, and  otherwise.

Returns  if a state has been processed off the OPEN list (via 

GET_MIN_STATE()) at least once, and  otherwise.

Returns the state set containing X.  Given a state X, it returns the set of states 
sharing the same IPARMS as those of X.

Supplies the OPEN list tag for a state.  Given a state X, it returns  for 

states that have never entered the OPEN list,  if a state is currently on 

the OPEN list, and  if the state has been processed and is currently 
not in the OPEN list.

b X( )

del X( ) TRUE FALSE

DELETE_STATE X( )

dom X( ) TRUE FALSE

fmi n kmi n,� �

fmi n kmi n g X R,( )+= kmin k X( )=

f X R,( )
t X( ) CLOSED← proc X( ) TRUE←

GREATEREQ f1 k1,� � f2 k2,� �,( ) v1 f1 k1,� �= v2 f2 k2,� �= TRUE

f1 f2> f1 f2= k1 k2≥ FALSE

INSERT_STATE X h X( ),( ) h X( )

LESS f1 k1,� � f2 k2,� �,( ) v1 f1 k1,� �= v2 f2 k2,� �= TRUE

f1 f2< f1 f2= k1 k2< FALSE

modi fied X( ) TRUE

FALSE

proc X( ) TRUE

FALSE

set X( )

t X( ) NEW

OPEN

CLOSED

better X Y,( )
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EXPAND_NEXT_STATE and INSERT_STATE_CHECK.  The two modes and these functions are described in

detail in the following paragraphs.

The BESTCOST mode finds the minimum cost path. The BESTCOST algorithm appears in Table 1-3. Within an

upper bound on iterations, ISE continues to expand states (L4), checking at each expansion whether the start set con-

taining the robot start state  has been affected (L5). In lines L6-L7, ISE scans the updated  for states that

meet the termination criteria. A state must be feasible, must have been processed off the OPEN list (not awaiting cost

updates), and its cost must be lower than the least cost estimate on the OPEN list (unless the OPEN list is empty) and

than the current optimal solution. The optimal plan begins from the lowest cost state of states that first meet these cri-

teria. Given ISE prioritizes lowest-cost states for expansion, the first feasible state to be expanded also tends to be the

start state of the optimal solution. ISE returns the optimal state, its path cost and whether or not the maximum number

of iterations was exceeded.

The BESTDPARMS mode finds the solution with the “best”  start state DPARMS that falls below a maximum path

cost. In this mode, listed in Table 1-4, the objective function serves only to measure path costs against the maximum.

In lines L13-L16, ISE continues to expand states until the OPEN list is exhausted or the minimum path cost on the

OPEN list exceeds the cost upper bound. This ensures that all possible solutions at or below the upper bound cost are

processed.  ISE evaluates all states deposited into  as a result of the search. As in the BESTPCOST mode, the

best state must be a feasible start state, must be CLOSED, and must cost less than any state remaining on the OPEN

list. In contrast to BESTPCOST, the state need not be the least costly, but must fall beneath the cost upper bound. The

Table A1-3: BESTPCOST Mode Algor ithm

 L1 , , 

 L2 while 

 L3

 L4

 L5 if  or  then

 L6 for each state  do

 L7 if   and  and (  or )  and  then

 L8 , 

 L9 if  or (  and ) then return 

 L10

 L11 return 

R set R( )

R start state← Sopti mal NULL← i 0←

i TIMEOUT<

hopti mal ∞←

fmi n kmi n,� � updated,� � EXPAND_NEXT_STATE()←

updated TRUE= i 0=

x set R( )∈

feasible x( ) t x( ) CLOSED= h x( ) fmi n≤ fmi n 1–= h x( ) hopti mal<

Sopti mal x← hoptimal h x( )←

fmi n 1–= hopti mal fmi n< feasible Sopti mal( ) Sopti mal hopti mal TRUE, ,� �
i i 1+←

Sopti mal hopti mal FALSE, ,� �

set R( )
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search may generate many states satisfying these criteria. The  function prioritizes the qualifying states. The

search ends when no states remain within  below the cost upper bound. The optimal start state is the “best”

from among the qualifying states.

A1.4 State Expansion
Both ISE modes depend fundamentally on the function EXPAND_NEXT_STATE, listed in detail in Table 1-5. This

function processes states off the OPEN list and communicates their effects, in terms of cost updates and dominance,

on neighboring states. 

The function begins by removing the lowest cost state X from the OPEN list. It returns an invalid cost vector if the

OPEN list is empty.  If the state is downstream of a modification to APARMS, lines L26-L30 designate the back-

wards (downstream) neighbors of X, whose paths contain X, for deletion and recycles them onto the OPEN list for

future processing.  This allows ISE to delete the old graph structure, created under the old APARMS, in preparation

for creating graph nodes under the modified arc costs. 

If , then X is a RAISE state, and may not be optimal.  In lines L31-L34, ISE checks all the forward neigh-

bors of X to determine whether they might provide an alternate, cheaper path to the goal, with correspondingly lower

. If so, the state’s deletion status is unmarked, the path is re-directed, the state cost is re-computed to be the cost

to the goal through Y, and the state is marked as a reduced RAISE state (L34). 

Table A1-4: BESTDPARMS Mode Algor ithm

 L12 , 

 L13 while 

 L14

 L15 if  or  break

 L16

 L17 , 

 L18 for each state :do

 L19 if  and  and (  or ) and  and 

(  or ) then

 L20 , , 

 L21 if  then return 

 L22 return 

better

set R( )

R start state← i 0←

i TIMEOUT<

fmi n kmi n,� � updated,� � EXPAND_NEXT_STATE()←

fmi n 1–= fmi n MAXCOST>

i i 1+←

hbest ∞← checked FALSE←

x set R( )∈

feasible x( ) t x( ) CLOSED= h x( ) fmi n≤ fmi n 1–= h x( ) MAXCOST<

checked FALSE= better x Sbest,( )

Sbest x← hbest h x( )← checked TRUE←

i TIMEOUT< TRUE

FALSE

h X( ) k X( )>

h X( )
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RAISE states do not necessarily hold the same dominance relationships.  If the state is a RAISE state at L34, then

L35 re-checks the state’s dominance relationship in the OPEN list, without re-inserting it. Then, for states that remain

RAISE states, ISE re-creates the forward neighbor states that were previously dominated, and re-inserts them directly

to the OPEN list for re-processing (L36-L39). Finally, if a RAISE state itself becomes dominated, ISE marks it for

later deletion on line L40.

Following the previous reduction operations, the state could be either a RAISE or LOWER state. If ,

then X is a LOWER state and by definition optimal. Lines L42-L49 search amongst the backwards neighbors of

LOWER state X and propagate cost changes to them. Three conditions prompt ISE to re-insert these states to the

OPEN list (L43).  First, if the neighbor is a NEW state, it must be supplied with an initial cost.  Second, if a path is

directed from the neighbor to the state X, but the neighbor’s cost is mismatched,  then its cost must be re-matched to

reflect the optimal cost through X.  Third, if the path from the neighbor does not go through X, and the neighbor’s

cost is higher than if it were directed through X, its cost must be decreased to reflect a re-direction through X.  In all

three cases, if X is marked for deletion, so are the neighbors (L45).  If not, the neighbor backpointers are directed

through X (L47).  Furthermore, in all cases the neighbor is re-evaluated for dominance and placed onto the OPEN list

with its new, optimal cost (L48).  

Table A1-5: EXPAND_NEXT_STATE Algor ithm

 L23 , , , 

 L24 if  then return 

 L25 if  then 

 L26 if 

 L27 for each state  do

 L28 if  then 

 L29 , , 

 L30 if  then 

 L31 if  then

 L32 for each state  do

 L33 if  and  then

 L34 , , , 

 L35 if  then 

 L36 if   then

 L37 for each state  do

 L38 if  then 

h X( ) k X( )=

X GET_MIN_STATE()← R start state← updated FALSE← reduced FALSE←

X NULL= 1 1–,–� �
X R= updated TRUE←

modi fied X( ) TRUE=

Y bneighbor X( )∈

b Y( ) X=

del Y( ) TRUE← h Y( ) ∞← INSERT_STATE Y h Y( ),( )

set Y( ) set R( )= updated TRUE←

h X( ) k X( )>

Y fneighbor X( )∈

LESS( f Y R,( ) h Y( ),� � k X( ) g X R,( ) k X( ),+� � ), h X( ) h Y( ) c Y X,( )+>

del X( ) FALSE← b X( ) Y← h X( ) h Y( ) c Y X,( )+← reduced TRUE←

reduced TRUE= DOM_INSERT_STATE X h X( ) FALSE,,( )

h X( ) k X( )>

Y domfneighbor X( )∈

t Y( ) CLOSED= INSERT_STATE Y h Y( ),( )
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If the state is not a LOWER state, then it remains a RAISE state that may affect both is forwards and backwards

neighbors.  ISE searches the forward neighbors first (L51). If a forward neighbor does not direct a path through X and

the path from X through the neighbor reduces the cost from X, and the neighbor is not awaiting processing (L52),

then ISE re-inserts the neighbor into the OPEN list with its old cost (L53). For backwards neighbors (L55), three con-

ditions prompt changes (L56 and L63). As with the backwards neighbors of LOWER states, if the backwards neigh-

 L39 if  then 

 L40 if  then , 

 L41 if  then

 L42 for each state  do

 L43 if  or (  and ) or (  and ) then

 L44 if  then

 L45 , 

 L46 else

 L47 , 

 L48

 L49 if  then 

 L50 else

 L51 for each state  do

 L52 if  and  and  and 

 then

 L53

 L54 if  then 

 L55 for each state  do

 L56 if  or (  and ) then

 L57 if  then

 L58 , 

 L59 else

 L60 , 

 L61

 L62 if  then 

 L63 else if  and  then

 L64

 L65 return 

Table A1-5: EXPAND_NEXT_STATE Algor ithm

set Y( ) set R( )= updated TRUE←

dom X( ) TRUE= del X( ) TRUE← h X( ) ∞←

h X( ) k X( )=

Y bneighbor X( )∈

t Y( ) NEW= b Y( ) X= h Y( ) h X( ) c X Y,( )+≠ b Y( ) X≠ h Y( ) h X( ) c X Y,( )+>

del X( ) TRUE=

del Y( ) TRUE← b Y( ) NULL←

del Y( ) FALSE← b Y( ) X←

DOM_INSERT_STATE Y h X( ) c X Y,( )+, TRUE,( )

set Y( ) set R( )= updated TRUE←

Y fneighbor X( )∈

b Y( ) X≠ h X( ) h Y( ) c Y X,( )+> t Y( ) CLOSED=

GREATEREQ f Y R,( ) h Y( ),� � k X( ) h X( ) k X( ),+� �,( )

INSERT_STATE Y h Y( ),( )

set Y( ) set R( )= updated TRUE←

Y bneighbor X( )∈

t Y( ) NEW= b Y( ) X= h Y( ) h X( ) c X Y,( )+≠

del X( ) TRUE=

del Y( ) TRUE← b Y( ) NULL←

del Y( ) FALSE← b Y( ) X←

DOM_INSERT_STATE Y h X( ) c X Y,( ) TRUE,+,( )

set Y( ) set R( )= updated TRUE←

b Y( ) X≠ h Y( ) h X( ) c X Y,( )+>

INSERT_STATE X h X( ),( )

GET_FMIN() updated,� �
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bor of the RAISE state is NEW, or if it directs a path through X but its cost does not match, its cost is updated and it

is placed on the OPEN list after having its dominance relationships re-evaluated. Finally, if the path from the neigh-

bor does not pass through X, and the neighbor’s cost can be lowered by going through X (L63), then the state X itself

is re-entered onto the OPEN list, since X is not necessarily optimal.  This action is required to avoid creating a closed

loop in the backpointers.  

Function EXPAND_NEXT_STATE returns the vector the estimated path cost key value of the highest-priority state

on the OPEN list, as well as a Boolean value signifying whether or not a state contained in  was modified

before being placed back on the OPEN list.

A1.5 State Dominance Management
The management of dominance and “better”  relationships among states is a key component of the ISE algorithm.

Dominated states cannot legally be a part of any ISE solution.  Similarly, during a BESTDPARMS search, states

given lower priority according to the  function cannot be a part of a solution. The difficulty is that during

re-planning, dominating and “better”  states may become too costly to be optimal, in which case the states they domi-

nated become candidates for re-consideration.  In the original implementation of ISE, states dominated by other states

were maintained in their IPARMS sets in anticipation of that case.  In practice, this led to excessive memory con-

sumption for storage, since a majority of dominated states remained dominated during re-planning.  The solution was

to implement a function that manages these relationships, and deletes the states that are dominated.  Just as in initial

search, states can be re-generated in the event that their dominators grow too expensive.

Function  inserts a state X into the OPEN list after checking and asserting state

dominance relationships between the state and other states in the OPEN list. A state X is not put on the OPEN list if it

is dominated by other existing states, and states dominated by X are deleted from the list. If  is set to , the

state may be put on the OPEN list; if  is set to , its dominance relationships are checked, but it is not

inserted into the OPEN list.

At the outset, the new state is considered not to be dominated (L66). The function searches over all old states that

might either dominate or be dominated by X (L67). If the new state X is resolution equivalent to another state, then

the function determines which state the lesser state and can be deleted from memory.  Lines L69-L74 check whether

state X is either cheaper than the old state, or if equivalent in cost, whether the new state’s DPARMS values are pre-

ferred over the other’s.  If proven inferior, the old state is deleted outright if it has never been processed, and marked

as dominated and placed back  on to the OPEN list if not.  If the old state is not proven inferior, then the state X itself

set R( )

better X Y,( )

DOM_INSERT_STATE X h X( ) flag,,( )

fl ag TRUE

flag FALSE
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is deleted or marked dominated and placed on the OPEN list in the same manner (L75-L81).  If X is deleted the func-

tion returns.

If new state X is not resolution equivalent to the old state, the function checks to see whether a dominance relation-

ship exists between the two.  If X dominates over the old state, and the new state has the same or lesser cost, then the

old state is deleted or marked dominated and placed on the OPEN list (L83-L89). If the old state dominates over the

new state, then the new state is processed accordingly and the function returns (L90-L97). If the new state has not

been deleted or dominated, and the insertion flag is set, then the new state is inserted into the OPEN list. 

Table A1-6: DOM_INSERT_STATE Algor ithm

 L66 , 

 L67 for each state  do

 L68 if  then

 L69 if  or (  and ) then

 L70 if  then 

 L71 , 

 L72 else 

 L73

 L74 if  then 

 L75 else

 L76 if  then

 L77

 L78 else

 L79

 L80 if  and  then 

 L81 return

 L82 else 

 L83 if  then

 L84 if  then

 L85 if  then 

 L86 , 

 L87 else

 L88

 L89 if  then 

 L90 else if  then

dom X( ) FALSE← sflag FALSE←

Y domstates X( )∈

resequal X Y,( )

h X( ) h Y( )< h X( ) h Y( )= better X Y,( )

proc Y( ) FALSE=

DELETE_STATE Y( ) sflag TRUE←

dom Y( ) TRUE←

t Y( ) CLOSED= INSERT_STATE Y h Y( ),( )

proc X( ) FALSE=

DELETE_STATE X( )

dom X( ) TRUE←

t X( ) CLOSED= fl ag TRUE= INSERT_STATE X h X( ),( )

dominates X Y,( )

h X( ) h Y( )≤

proc Y( ) FALSE=

DELETE_STATE Y( ) sflag TRUE←

dom Y( ) TRUE←

t Y( ) CLOSED= INSERT_STATE Y h Y( ),( )

dominates Y X,( )
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 L91 if  then

 L92 if  then

 L93

 L94 else 

 L95

 L96 if  and  then 

 L97 return

 L98 if  then 

Table A1-6: DOM_INSERT_STATE Algor ithm

h Y( ) h X( )≤

proc X( ) FALSE=

DELETE_STATE X( )

dom X( ) TRUE←

t X( ) CLOSED= fl ag TRUE= INSERT_STATE X h X( ),( )

fl ag TRUE= INSERT_STATE X h X( ),( )
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In temporal path planning, it is difficult to express spatio-temporal relationships in two-dimensional plots.  Plots of

position ignore temporal aspects.  Plots of the individual spatial dimensions against time can be confusing.  Progress

distance captures important aspects of the spatial dimensions in a single parameter, and plots of progress distance ver-

sus time are useful tools for analyzing spatio-temporal plans. 

To define the term, assume a plan intersects a fully-ordered sequence  of  goals, that the Euclidean distance

between the start position  and the first goal  is given by , and the distance between two adjacent goals

 and  is given by .  The total minimum plan distance is then given by:

During the course of execution, goals may be achieved by a robot and removed from the list of remaining goals.  If

the new start state is  and the first remaining unachieved goal is given by , then the minimum remaining

distance is given by: 

The progress distance is the total minimum initial plan distance minus the minimum distance remaining:

 A2-1

 A2-2

 A2-3

Γ N

S G1 ρ S G1,( )

Gi Gi 1+ ρ Gi Gi 1+,( )

R ρ S G1,( ) ρ Gi Gi 1+,( )
i 1=

N 1–

�+=

X next Γ( )

Dr em ρ X next Γ( ),( ) ρ Gi Gi 1+,( )
i next Γ( )=

N 1–

�+=

DP R Dr em–=

Appendix 2: Progress Distance
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A distance-normalized version of the progress distance, the progress fraction, is given by:

The progress fraction varies from 0 to 1 over the course of a plan execution. 

The progress distance is a measure of the progress of the robot along the minimum-distance trajectory through the

remaining goals.  According to this measure, progress can only be made by reducing the minimum distance remain-

ing.  Moving away from the next goal results in negative progress, and moving in a circle about the goal results in no

progress. Figure A2-1 illustrates progress distance for a hypothetical spatio-temporal plan.  The left side of the figure

shows a sequence of four snapshots from a plan execution.  The right side shows corresponding plots of progress dis-

tance versus time.  Figure A2-1a shows the initial start position  and a sequence of two goals  and .  The total

minimum distance for the plan is shown by the dotted lines.  The plot in Figure A2-1e shows the position of  at the

 A2-4

 Figure A2-1: Plots of Progress Distance for  a Hypothetical Plan
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axis origin, and the distances to the goals on the vertical axis.  In this plot, progress speed is indicated by the slope of

a progress distance trajectory.  The maximum robot speed is given by the dashed line - no trajectory can advance

towards the goals more quickly than this line. In Figure A2-1b, the robot has made progress towards the goal at posi-

tion .  Note the trajectory from  to  in the plot of progress distance in Figure A2-1e.  Since the path does not

advance directly towards the first goal, the progress trajectory slope is shallow.  In Figure A2-1c, the path moves from

position  to .  In the corresponding progress distance plot in Figure A2-1f, the curve shows no net progress in

this move.  The reason is that positions  and  are equally distant from the next goal.  The final path frame shows

the robot at a position , having completed the first goal.  The progress curve in Figure A2-1f shows how the turns

of the path affect progress over time.  Though not shown in the figure, if a robot stops, it produces a constant interval

in the progress distance plot.  

Progress distance is useful because it is a measure of the directed progress to cover the distance between goals.  It

reflects the indirection a path might take to avoid obstacles, and also any stationary periods that would otherwise be

invisible in a purely spatial plot.  Note that progress distance cannot distinguish between stationary activities and

mobile activities that stay a fixed distance from the next goal.  However, taken together, the path plot and progress

distance plot contain sufficient information to determine the spatio-temporal state of the robot.  Progress distance

plots are used extensively throughout this thesis to illustrate spatio-temporal plan behavior.

S1 S0 S1

S1 S2

S1 S2

S3
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Atomic Resource A resource whose availability can be expressed by a Boolean variable, such 
that the resource is either available or unavailable.  Examples include space-
craft or rover components like cameras, science instruments or motors.

Complete/Completeness A search algorithm that is guaranteed to find a solution if a solution exists is 
complete.

Ephemer is A sequence of values describing the time-varying position of a celestial object 
in the frame of an observer.

Local Constraint A constraint whose violation depends only on  the current state.  The same as 
an obstacle.

Local Path Planning Path planning that utilizes only rover-local data, and because of the fine spa-
tial planning resolution, often considers the finite size of the rover, finite turn-
ing radii, and may consider vehicle dynamics.

Global Constraint A constraint whose violation depends on the entire state history.

Global Path Planning Path planning that utilizes a combination of locally-derived and globally-
defined data and, due to planning over long distances at coarse resolution, that 
generally neglects the finite size of the rover, finite turning radii and vehicle 
dynamics.

Metr ic Resource A resource whose availability can be expressed as a floating point number 
between 0 and 1, where 1 is available, 0 is unavailable, and numbers between 
0 and 1 express partial availability.  Examples include energy, solid state 
memory, and communications bandwidth.

Monotonic Resource A resource whose level either increases or decreases monotonically, for exam-
ple charge in a non-rechargeable battery.

Non-Monotonic Resource A resource whose level varies non-monotonically, for example the battery 
charge in a solar-powered vehicle.

Obstacle A state or set of states though which paths cannot pass.  Same as a local con-
straint.

Plan Stability Determined by the degree to which plans vary in successive re-plans during a 
mission execution.  Stable plans vary predictably in response to evolving ini-
tial state, while unstable plans vary erratically and may oscillate in response to 
small variations in cost maps or initial state.

Progress Distance See Appendix 2.

Resolution Optimal Optimal to the resolution imposed by the planning representation.

Glossary of Terms
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Sun-Synchronous Navigation A strategy for planetary polar navigation that synchronizes travel on a path 
loop with the sun to enable plentiful solar energy, foster benign thermal condi-
tions and permits repeated loops on successive days.
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