

High Speed Navigation of Unrehearsed Terrain:
Red Team Technology for Grand Challenge 2004

Chris Urmson, Joshua Anhalt, Michael Clark, Tugrul Galatali,
Juan P. Gonzalez, Jay Gowdy, Alexander Gutierrez, Sam Harbaugh,

Matthew Johnson-Roberson, “Yu” Hiroki Kato, Phillip Koon,
Kevin Peterson, Bryon Smith, Spencer Spiker, Erick Tryzelaar

& William “Red” Whittaker

CMU-RI-TR-04-37

The Robotics Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

June 1, 2004

©2004 Carnegie Mellon University

This research was sponsored by generous donations from:
Boeing Intel SAIC
Alcoa Applanix Seagate

The Robotics Foundary Advanced Motion Controls BF Goodrich
Caterpillar Chip Ganassi Racing CMLabs

Crouzet ExelTech Earlink
TerraSim ATI StarBand
Google HD Systems Hutchinson

Mechron Zombie Studios Kubota Industrial Engines
Lord Corporation Space Imaging OmniStar
Acumen Systems Rod Hall: Team Hummer Trimble

Vicor Visual Intelligence Aliyance Group
Yamaha BAE Systems Carnegie Mellon University

Driverless MotorSports.com Harris ISI
Motion Picture Marine NATC S-B Equipment Service

Ro-Pro Design J&J Truck Bodies &
Trailers

i

Abstract
This report presents technologies that have been created and integrated to achieve high
speed navigation of unrehearsed terrain. The discussion is organized into three
technology areas: mapping & pre-planning, hardware, and navigation software.

The mapping & pre-planning component of the Red Team generated a massive, multi-
data format map of the ~50,000 sq. mile region surrounding the race corridor. This data
was utilized by an automated pre-planning system and a team of human experts to
generate a safe route across the Mojave Desert.

Sandstorm is the most recognizable component of the Red Team race system. It
incorporates a highly capable mobility base and high performance computing and
sensing. A critical component of the sensing system is a stabilized gimbal, used to ensure
useful data can be collected for the on-board software to digest.

The navigation software is capable of driving off-road trails at speeds over 35 mph. This
software is described with an explanation of its capabilities and limitations.

This report concludes with a summary of the Red Team’s performance at the 2004 Grand
Challenge, and outlines several lessons learned during the process of developing the race
system.

ii

Table of Contents
Abstract .. i
Table of Contents.. ii
List of Figures .. iv
List of Tables ... iv
Context.. 1
Introduction... 1
Mapping & Pre-Planning .. 2

Infrastructure... 4
Automatic planning... 4
Planning the path... 5
Vectorizing the Path.. 6
Route Editing Tool.. 7

Vehicle Hardware ... 9
Electronics Box... 10
Computation.. 11
Sensors .. 12

LIDAR .. 13
Stereo Vision... 14
RADAR... 14
Pose Estimation... 14

The Gimbal ... 15
Implementation ... 15

Navigation Software ... 18
Overview... 18
Infrastructure... 19
Gaze Control ... 20

Control Architecture ... 20
Calculation of stopping distance... 21
Calculation of desired yaw.. 21
Calculation of desired pitch .. 21

Gimbal Control ... 22
Interfaces... 22
Coordinate Systems .. 22
Internal States.. 23
System and Control... 23

Terrain Evaluation and Path Adjustment.. 26
Terrain Evaluation .. 26
Path Adjustment.. 27

Binary Obstacle Detection .. 28
Path Tracking .. 28
Vehicle Controller... 29

Gear Selection... 29
Steering Control .. 29
Velocity Control.. 29

iii

Performance .. 31
Description of Significant Incidents on Race day... 31

Impact with Fence Post #1.. 31
Impact with Fence Post #2.. 32
Momentary Pause.. 33
Impact with Fence Post #3.. 33
Impact with Boulder ... 34
High Centering in the Hairpin... 36
Other Points of Interest ... 38

Lessons Learned.. 39
Conclusions... 40
References... 40

iv

List of Figures
Figure 1. A comparison of USGS and Visual Intelligence DEM data quality. 2
Figure 2. A comparison of USGS and Visual Intelligence image quality. 3
Figure 3. An illustration of the operation of the global path planner. 6
Figure 4. Three views of data available to the route editors. ... 7
Figure 5. An illustration of how splines are constructed for the route editing tool. 8
Figure 6. The arrangement of shock isolation components that support the electronics

box... 11
Figure 7. The overlapping fields of view of sensors on Sandstorm.................................. 12
Figure 8. A model of Sandstorm showing the placement of sensors................................ 13
Figure 9. An exploded view of the gimbal roll axis. .. 16
Figure 10. The fully assembled gimbal.. 17
Figure 11. The on-board software architecture... 18
Figure 12. Various configurations where a non-pointed sensor performs poorly. 20
Figure 13. The gimbal control system. .. 24
Figure 14. A model of the gimbal control system. .. 24
Figure 15. The Root locus and Bode plot of the gimbal control system. 25
Figure 16. The frequency response of the gimbal control system. 25
Figure 18. A plot showing the response of Sandstorm's velocity control loop. 30
Figure 19. A sensor view of the first fence post Sandstorm hit. 32
Figure 20. A Nissan Xterra parked in the opening of the second gate. 32
Figure 21. A sensor view of the second fence post Sandstorm hit. 33
Figure 22. A sensor view of the large boulder... 34
Figure 23. The large boulder Sandstorm hit. ... 34
Figure 24. A plot showing the path constraints imposed on Sandstorm by the pre-planned

route. ... 35
Figure 25. The large rock that eventually ended Sandstorm's run. 36
Figure 26. A sensor view of the trail in the Dagget Hairpin.. 37
Figure 27. The pre-planned route around the hairpin. ... 37
Figure 28. Sandstorm's final resting place on race-day. .. 38

List of Tables
Table 1. A summary of HMMWV capabilities. ... 10
Table 2. A summary of the gimbal performance characteristics. 17

1

Context
The 2004 Grand Challenge was a 143 mile race across the Mojave Desert from Barstow
California to Primm Nevada. The team whose robot completed the course in the least
amount of time, and did so within 10 hours would win one million dollars. Prior to
competing in the race, each robot was required to demonstrate safety and navigation
capabilities in a qualification and demonstration event held at the California Motor
Speedway.

After successfully completing qualifications, invited teams transitioned to the race start
area near Barstow California. Roughly 3 hours prior to the race start, the organizers
provided each team with a CD describing the route. This description consisted of 2586
waypoints that marked the corridor within which the robots were required to travel. With
each waypoint, the organizers provided a maximum speed limit and a lateral offset that
defined this corridor. Once away from the starting lines, the robots were required to be
completely autonomous. The only communication allowed to the robot was through a
remote safety kill and telemetry system used by race personnel to ensure the safe
operation of the robots.

To maximize performance, the Red Team combined autonomous and human pre-
planning to optimize the route in the three hours prior to Sandstorm’s departure. Once
underway, the robot used onboard sensors to adjust the preplanned route, to account for
obstacles that were not visible in the pre-planning database, and to correct for errors in its
position estimate.

The Red Team system proved to be the most successful approach to solving this grand
challenge and demonstrated a new and unique approach to the cross country navigation
of unrehearsed terrain. The Red Team was the only team to qualify based on the original
specification for the qualification event and went the farthest and fastest on race day.

Introduction
Completing the Grand Challenge requires a leap in autonomous navigation capability.
To date, autonomous robots have enjoyed successes traveling at high speeds on regular,
well structured terrain, such as highways [12][16]. In other work, robots have been
shown to drive autonomously at slow speeds across a variety of off-road terrains
[3][8][13][14]. There has been limited success in driving at high speeds off-road [4]. At
this point, the basics of the cross country navigation problem are well understood [11]
and ongoing research can be divided roughly into two thrust areas: driving faster, and
driving in more complicated terrain.

The technology implemented by the Red Team for the Grand Challenge makes novel use
of prior information and real-time planning combined with a good mechanical design and
sensing scheme to achieve high speed travel over unrehearsed, off-road terrain. Past
systems have used low resolution a priori knowledge to generate high-level plans [17].
These systems generally operate with very course prior data, thus requiring the real-time
navigation system to operate in an exploratory manner [18]. By utilizing high resolution

2

prior data, an onboard navigation system is exhibited to plan over a smaller area without
compromising global optimality, and can potentially plan with much higher resolution.

This report describes the component technologies created and integrated to perform high
speed navigation over unrehearsed, off-road terrain. Three key technology areas are
described: Mapping and pre-planning, hardware and the navigation system.

Mapping & Pre-Planning
Mapping synthesizes a high resolution, high accuracy map of the race region to enable
autonomous planning and human refinement of a winning route. In building the “perfect
map” for the 2004 Grand Challenge, the team collected roughly 650GB of various forms
of cartographic data over the months leading up to the race. The bulk of this data was
acquired early on through freely available data sources originating from the United States
Geological Survey (USGS). This data was in the form of:

Digital Line Graphs (DLG): Vector representations of various layers such as
road networks, rail roads or lakes and rivers.

Digital Elevation Models (DEM): A regular grid of elevation samplings
available in a geo-referenced raster format called GeoTIFF.

Digital Orthographic Quarter Quads (DOQQ): Overhead imagery also in
GeoTIFF format.

As more data sources became available, the early data set was augmented with very high
resolution data acquired from two partner companies: Space Imaging and Visual
Intelligence. Space Imaging provided high resolution satellite imagery but because of
difficulties with ortho-rectification, it was not properly integrated into the mapping
database and thus was not used extensively. Visual Intelligence provided narrow swaths
of ultra high resolution/accuracy imagery (approximately 20-40cm pixel size) and digital
elevation models with 5m postings. Figure 1 shows a comparison between USGS and
Visual Intelligence elevation data, while Figure 2 shows a comparison of USGS and
Visual Intelligence image quality.

Figure 1. A comparison of USGS and Visual Intelligence DEM data quality.

3

Figure 2. A comparison of USGS and Visual Intelligence image quality.

The final data type utilized in the map database came from ground reconnaissance of the
pre-race area. A team drove many of the possible routes, recording GPS traces of the
trails and roads with sub-meter accuracy. Since this data set is very accurate, ground
truth, location of traversable routes, it is trusted by the planning system more than any of
the other data types.

The road network DLGs form the backbone of the map, but are insufficient in themselves
as they are not held to specific standards of accuracy. In contrast to this, the DOQQ’s are
held to national map accuracy standards and are commonly used to correct DLG’s. Using
the available DOQQ imagery, the team corrected the DLG data throughout the ~50,000
sq. mile region surrounding the Barstow to Vegas corridor. Approximately 1000 man
hours were invested in this effort, and although large regions were revised, the coverage
of the revisions was not comprehensive enough, nor of sufficient quality to be trusted
completely.

Given that it was impractical to improve the mapping database for the entire race region,
a new approach was needed. The Grand Challenge rules indicate that the race route
would be revealed at least two hours prior race start. In this time, it is possible to correct
the narrow ribbon of the data that comprises the race route. This shift from producing a
“perfect map” to a producing a “perfect route” required the implementation of a system
capable of rapidly delivering the appropriate excerpts of the cartographic data to a cluster
of machines running custom route editing software, and synchronizing the revisions of
the route from the cluster. At each of the cluster machines, a human editor improves the
autonomously generated pre-plan using the full data set available in the database.

4

In this process the segments, defined by consecutive waypoints in the DARPA specified
route, are used as a fundamental work unit. The route revision process begins with an
automated planner which processes the route and then uploads way points specifying
where Sandstorm should drive within the route corridor. The server then assigns equal
length groups of work units to each of the cluster machines. As each of the 14 human
route editors progresses through their assigned segment, the route editing software
uploads the revised work units to the server which maintains the latest composite route.

Periodically, the server generates an estimate for the race completion time. This estimate
is crucial in that it allows the team supervising the pre-planning effort to understand the
characteristics of this particular race and to formulate an overall race speed strategy.
Given the completion time estimate, the supervisory team is able to scale speeds in the
route as appropriate to achieve a target elapsed time for navigating the route. The
software that performs the scaling is intelligent enough to avoid breaking speed limits
either defined in the route definition file or those imposed internally by the team. This
capability allows the team to set a reasonable pace for the race that may be slower than
the individual speed recommendations from the human route editors, resulting in a route
that is safe and consistent with the team’s race strategy.

Infrastructure
To store and transport the vast amounts of data between the central repository and the
route editing workstations, it is necessary to utilize a high performance file server in
combination with a gigabit network. This system is implemented using a two terabyte
RAID5 array attached to a dual Xeon processor based server. The server runs Linux and
Samba to allow for easy management and development while providing file serving to
the Windows based editing cluster.

The massive volume of data passed between the server and cluster machines is sufficient
to saturate a gigabit network, if implemented naïvely. To prevent this, a local image
cache is implemented on each client machine. Due to the intensity of pre-race training,
on race-day, most of the client machines already had local copies of all of the imagery
required for editing, greatly reducing the network burden.

To allow access to the massive data set, a standardized file organization is utilized and
the various data formats are aggregated into a Geographic Information Systems (GIS)
aware database. An XMLRPC server provides a front end for the client cluster, allowing
the route editing software to query the database for the availability of a particular form of
cartographic data in a given region. The database then replies with the standard location
for the relevant files in the archive. The client can then check its local cache for the file,
resorting to the network server only when necessary.

Automatic planning
The automatic planner uses the route definition file provided by the race organizers in
conjunction with elevation maps, road vector data, and GPS traces, to output an
optimized route with respect to travel time and implicit safety. The various data sources
are sampled to a 1m grid which creates a map over which the planner can operate. DLG

5

data, combined with pre-recorded GPS traces are used to provide six base tiers of cost
values. From lower to higher cost, the tiers are:

1- Highway or wide road with GPS trace
2- Narrow road with GPS trace
3- Off-road with GPS trace
4- Highway without GPS trace
5- Narrow road without GPS trace
6- Off-road without GPS trace

This tiering explicitly represents a higher confidence in areas that have been previously
traveled by a ground reconnaissance team. Cost values for each tier are set based on the
expected time to travel 1 meter of that terrain type.

To keep Sandstorm close to the center of the corridor, cost is increased as a function of
the distance from the center of the corridor. Similarly, in order to stay away from unsafe
areas of the terrain, cost is increased as a function of the slope of the terrain. The original
tiers are used as limits on how much the cost can be increased, such that the final cost
still remains within the same cost tier. For example, the planner will never generate a
path on “flat” off-road terrain instead of on a sloped, known road.

Planning the path
To generate the routes, a modified wave front planner is used. A wave front planner is
utilized since it has low memory requirements and because the search space is frequently
restricted to corridors with a large aspect ratio. These two facts essentially eliminate the
benefits gained by using a heuristically guided search, such as A*.

The planner incorporates a small modification that breaks ties between neighboring cells
of equal cost by preferring those that are closer to the line connecting the start to the goal.
In the race relevant planning domain this helps reduce problems associated with 8-
connectivity when planning in open areas. Since the cost values used for planning the
path represent the time required to travel each unit of area, the resulting path is a path that
optimizes the expected travel time.

Because the route is defined by corridors that the planner must stay within, rather than
waypoints that need to be reached, the planner generates paths for groups of three
waypoints at a time. If there are four consecutive waypoints P1, P2, P3, and P4 with
associated corridor widths, the planner first plans a path from P1 to P3. This path must
remain within the corridors between P1 and P2 and between P2 and P3. A new point is
now generated, P’2 which is the point on the path closest to P2, as illustrated in Figure 3.
The segment of the path from P’2 to P3 is then discarded and the planner is then run again
from P’2 to P4, with the constraints that the path must remain within the corridor from P2
to P3 and from P3 to P4. By iterating this process over all of the waypoints in the route,
an efficient path is generated for the entire race route.

6

Figure 3. An illustration of the operation of the global path planner.

Vectorizing the Path
The path calculated by the wave front planner is a sequence of points on a regular one
meter grid. This dense path representation is not easy for human editors to verify or
modify. Additionally, the resolution of the ground truth GPS traces used as input for the
planner may be on the order of 10 cm; resolution that would be lost if it were sampled to
a one meter grid. To avoid these problems, the path is vectorized, allowing a sparse
representation of segments where this is possible and a finer representation where
necessary.

To perform this data reduction, consider the points that make up the race route. If a
group of consecutive points can be represented by a straight line with a mean square error
of less than 2 meters, then the group of points is replaced by the end points of the line.
For example, in a one kilometer straight road this change of representation reduces the
number of points from 1000 to two. The vectorized representation is more suitable for
human editing, since manipulating the endpoints of the resulting vector implicitly
changes the location of the thousand points in the original path.

In order to increase the accuracy of the resulting path for segments with GPS traces, the
algorithm considers groups of points that lay on or near the GPS traces. These groups of
points are then replaced by the original GPS trace as long as they stay within one meter
of the planner output. Since the GPS traces can also have a large number of more or less
redundant points, they are also vectorized, but with a tighter error tolerance of 20 cm.
The resulting path is a vector path, containing few points to describe straight segments of
the road, and preserving the resolution of the original GPS traces.

The autonomously planned route may contain errors due the limited representation used.
Human editors are generally also able to extract subtle cues regarding the terrain
traversability from the various image data formats, allowing the route to be tweaked and
improved. To do this the human editors use a custom developed route editing tool.

P1

P2
P3 P4

P’2

7

Figure 4. Three views of data available to the route editors.

Route Editing Tool
The interface for the route editing tool was derived from an SAIC tool created to perform
a similar role [6]. The original software provided much of the low level capabilities
required to interface with GIS data sources. The interface is simple: it provides a
mechanism to view the route in the context of all of the cartographic information, and
then change the route as necessary. To do this, the software connects to the central
database server, and downloads the pre-planned route and imagery associated with the
current segment of the route the user is editing. Figure 4 shows three of the cartographic
data sources in the route editing tool. The top left image shows an overlay of the route
(cyan line) over DEM data. The top right image again shows the route, but overlaid on
satellite imagery. The bottom left image shows the route overlaid on a DLG based data
product. Note that though the route is intended along the path indicated in the data
source, there is a significant offset between the route and the path due to registration error
in the data source.

The route is represented to the user in two ways, first as a set of linear segments and
secondly as smooth spline. In addition to this information the application shows the
corridor as defined by DARPA, a safety corridor (which is 2 meters narrower than the
course corridor) and any GPS traces that were collected in the area. Each data layer can
be toggled on or off, and each data type is displayed in a customizable color.

8

To create executable routes for the vehicle, it is desirable to create paths that are
smoothly varying. A specialized spline was developed to generate smooth paths with an
intuitive user interface, which was important given the small amount of time available to
train the route editors. To be “intuitive”, the spline should:

• Intersect all of its control points.
• Localize the effect of moving a control point.

Figure 5. An illustration of how splines are constructed for the route editing tool.

The spline that best met these criteria is a weighted interpolation of arcs. Given an
ordered set of 4 points, there are two sets of three consecutive points which can define a
pair of circles, as shown Figure 5. The equation of these circles being C(t) and D(t) with
the constraints that:

2

1

2

1

)(

)0(

)(

)0(

PTD

PD

PTC

PC

=
=
=
=

For the segment where the two sets of points overlap, the spline is calculated as the
weighted sum of the two curves:

)()()(tD
T

tT
tC

T
t

tS
−+= (0�t�T)

In the degenerate case at each end of a list of waypoints, the second circle is replaced by
a linear fit between the remaining two points.

To edit the path, the user either selects and moves control points (i.e.: the endpoints of the
linear segments), or clicks somewhere along a linear segment to insert a new control
point. A feature, called “Snap to GPS” moves the currently selected points onto the
closest GPS trace. Associated with each point is an editable speed that represents the

P0

P1

P2

P3

D(t)

C(t)

9

maximum speed the robot should travel at that point. Also displayed for each point is the
DARPA mandated speed limit for that segment of the route. The application provides an
extensive set of keyboard shortcuts, to allow for efficient user operation.

The “Snap to GPS” implementation calculates the closest path segment to the point being
edited. A naïve way to perform this operation would be to find the closest point after
performing a search through all 200,000+ segments. Though the calculation is relatively
simple, this would not operate in real-time. To achieve real-time performance, an
efficient search is needed.

The application utilizes an axis-aligned bounding box (AABB) tree algorithm to
implement an efficient search. The AABB approach provides a fast search and is easy to
implement. An AABB is simply a box defined by the minimum and maximum extents
of the contents it represents. To build the AABB tree, the GPS trace is broken in to sets
of 100 adjacent nodes. Each set is a leaf in the AABB tree. The second layer of the tree
contains the pairs of adjacent leaf nodes; each additional layer is built by recursively
combining pairs of adjacent nodes. Searching this tree is very efficient, a point is
recursively compared to the nodes in the tree, if the point falls in the bounding box
defined by a node, the search descends that branch, otherwise a comparison is made to
the second branch, if the point is in neither box, the search terminates, indicating no node
is near by. At the leaves of the tree, the closest node is found by linearly searching
through the 100 segments.

The ability to rebalance the route editing work load in real-time is an important capability
for a system of this type. To achieve this capability, the route is divided up into several
discrete work units. Each work unit is comprised of one or more points. Each work unit
has two main pieces of information: an array of all the points in that work unit, and an
array of indices specifying the order of the points.

With this framework, insertion and deletion are simple operations to perform. New points
are inserted into the rear of the point array. Then, the index of this point is inserted into
the proper place in the index list. To delete a point, simply delete the index from the
indices array. The overhead of keeping old points around is minimal, as both arrays are
refreshed if the application receives any updates to a work unit. To enable efficient
insertion of new points, the AABB tree data structure is also used to represent the path.
Through this mechanism, a central control station is able to add and remove work units,
which are partitions of the pre-planned route, from each of the clients.

This hardware and software combined with an intensively trained team of editors
provides the a priori knowledge essential for Sandstorm to perform well during race
operations.

Vehicle Hardware
To maximize the probability of success in the Grand Challenge it is important to have
great software and a forgiving vehicle. The best mobility platform for a Grand Challenge
robot combines reliable, robust terrainability with agility and sufficient payload capacity

10

to support the large amount of sensing and computing hardware necessary. Toward these
goals, Sandstorm is built around a 998 military High Mobility Multi-purpose Wheeled
Vehicle (HMMWV). This foundation provides a very capable platform able to traverse a
wide variety of off road terrain. Table 1 highlights some of these capabilities.

Table 1. A summary of HMMWV capabilities.

Ground Clearance 40 cm
Approach Angle 72º
Departure Angle 45º
Breakover Angle 32.5º
Sideslope Capability 40%
Gradability 60%
Turning Radius 7.4m
Payload Capability > 1350 kg

Actuators and enhancements were appended onto this platform to make it amenable to
computer control and to improve upon its basic capabilities.

Electronics Box
The electronics box encloses all of the computation and power control components and
acts as the common inertial reference frame for the onboard sensors. The box was
designed to minimize the connections between the host vehicle and the navigation
“brain”. By containing all of the intelligence and power distribution in a single unit, a
replacement HMMWV could be rapidly automated should the original vehicle become
irreparably damaged or should a better vehicle platform become available.

The electronics box uses an open, forced air system for cooling. Investigation of the
expected race day temperatures, and temperatures leading up to race day indicated that
forced air would be sufficient, and considerably simpler to implement, than a closed air-
conditioned system. Initial analysis predicted a 4000W thermal load that would need to
be removed from the box. A brief thermal analysis showed that, given a 24ºC ambient air
temperature, this heat could be transferred to the air with roughly a 5ºC temperature
increase if 1100 cubic feet/minute of air is moved through the box. This specification
allowed the computers to operate within their nominal temperature range under the
expected race conditions. Additional fans are used to overpressure the electronics
enclosure to reduce the intake of dust and other contaminants.

11

Figure 6. The arrangement of shock isolation components that support the electronics box.

The electronics box is mounted to the vehicle platform through a set of coil over damper
shocks. The suspension lowers the natural frequency response of the electronics
enclosure so that sensors can be rigidly mounted to it and still provide useful
measurements of the environment. It also minimizes the shock dose to the computers and
electronics so they are protected from severe accelerations. Figure 6 shows the
configuration of shock isolation components that support the electronics box. The
orthogonal configuration of the shocks decouples the vertical and horizontal forces,
simplifying the tuning of spring and dampening constants. It also allows translations in
all directions without inducing any rotations. The suspension configuration leaves the
driver cockpit area open, which is important for logistical reasons.

Computation
Sandstorm’s computing was designed to ensure that computational power would not limit
performance. Sandstorm’s onboard computing includes a quad processor Itanium II,
three dual processor Xeon rack mount computers, and four Pentium III class PC-104
computers.

The Itanium II processor was intended to be used to perform faster than real-time
dynamic simulation of Sandstorm’s motion over terrain. The simulation would be used
as the feed-forward portion of a randomized dynamics cognizant planning algorithm [19].
Unfortunately, there was insufficient time to implement this planning scheme and so the
Itanium II was not used in the race day configuration.

The dual Xeon computers interface with Sandstorm’s sensor suite, and provide processed
data products to be used by the terrain evaluation and path adjustment process(es). The

12

various sensor interfacing processes were distributed across these machines to balance
I/O and processor bound tasks where possible.

The Pentium III class PC-104 computers are used to perform embedded control tasks
throughout Sandstorm and as an interface to the high speed stereo vision system. For
each of the embedded control tasks the same set of processor and input/output boards
were used. This facilitated the reuse of code and the sharing of software implementation
knowledge among systems.

These eight computers and the various Ethernet interfaced sensors are connected using
bridged, gigabit Ethernet. By utilizing a gigabit Ethernet in a bridged, star configuration,
any point-to-point high bandwidth communication does not effect throughput or latency
between other nodes on the network. In this way, the throughput of the network is
maximized allowing for the efficient transfer of information between processes in the
system.

Sensors

Figure 7. The overlapping fields of view of sensors on Sandstorm.

Sandstorm was designed to provide all weather sensing and driving capabilities. To
achieve this goal, it is necessary to incorporate a variety of sensing modes with
overlapping ranges and capabilities. Sandstorm incorporates a variety of LIDAR
sensors, stereo vision and RADAR and a combined inertial/ and differential GPS sensor
for pose estimation. Figure 7 illustrates the overlapping fields of view of each of these
sensors. The Riegl LIDAR is used to profile the terrain at long range, while the stereo
system was intended to provide short to middle range dense terrain modeling. Short
range SICK laser scanners are used to provide secondary obstacle detection, and

�

�

������
����

�	
��

�

������

������

��������
�	����	���

�������

�������
�� ���

�!""#$�$���#�
������

%���

13

potentially to assist in modeling underpasses and nearby walls in constrained operations.
A RADAR was included in the sensing package to provide sensing in dusty conditions
and to assist in the detection of robots and other moving vehicles. Figure 8 shows the
locations where these sensors are mounted on Sandstorm.

Figure 8. A model of Sandstorm showing the placement of sensors.

LIDAR
A Riegl Q140i scanning laser range finder was selected as the primary sensor, since it can
provide a model of the terrain at relatively long ranges, is easy to integrate and has few,
well understood failures modes. A limitation of scanned LIDAR is that it is generally
only possible to collect dense point data in a single plane. Flash LIDAR does not have
this problem, but is still too short range to be useful at speed. Two axis mechanically
scanned LIDAR have reasonable range, but cannot scan rapidly in both axes and thus
don’t provide much benefit over a single scanning plane for this application. The Riegl
LMS Q140i Airborne line-scanner that Sandstorm uses, operates with a 60-degree field
of view, 30KHz pixel rate, and has a specified line-scan period of 20ms (50Hz).

Each Riegl line-scan paints a straight-line series of pixels along a horizontal path with
respect to the robot’s forward motion; successive line-scans (starting at –30°, ending at

SICK Laser
Scanners

Stereo Cameras
Riegl Laser
Scanner

CWFM
Radar

14

30°) paint a series of stripes at forward intervals determined by the robot’s forward
velocity. The scanner is stabilized and can also be pointed by the gimbal.

Three SICK LMS laser scanners are used to provide short range supplemental sensing.
Two are mounted in the front bumper, providing low, horizontal scans over a 270° wedge
centered in front of the robot. These sensors can be used to detect obvious, large positive
obstacles. A third SICK LMS laser scanner is mounted to provide profiling of over
hanging obstacles, and to detect airborne dust.

Stereo Vision
To complement the low density, long range stereo vision system, Sandstorm incorporates
a high speed stereo vision system. The stereo system, provided by SAIC, utilizes the
DeepSea Stereo engine which is a hardware implementation of the CENSUS disparity
matching algorithm [20]. The system is capable of achieving frame rates of ~120Hz on
512x512 images. The entire stereo vision processing unit comprising of a Pentium 3
based PC104 stack and the stereo engine are mounted in a ruggedized aluminum casing
on the electronics box.

The stereo vision system processes images generated by a stereo camera pair mounted on
the stabilized gimbal. The stereo system is therefore pointable and can be directed to
look at particular areas of interest.

RADAR
Both Stereo vision and LIDAR can have difficulties sensing in dusty environments.
RADAR, on the other hand operates at a wavelength that penetrates through dust and
other visual obscurants but provides data that is more difficult to interpret. Objects are
detected by finding amplitude peaks in the frequency shifted return signal. The
amplitude of the signal can be used to estimate the size, and thus significance, of an
object. This process can be confounded due to surface properties of the object, and the
orientation of the object relative to the transceiver.

To fill the role of complementary sensor, the NavTech DS2000 Continuous Wave
Frequency Modulated (CWFM) radar was selected. The DSC2000 provides 360°
scanning, at 2.5 Hz and provides an Ethernet interface to the RADAR range
measurements. The DS2000 system utilized on Sandstorm has a specially designed
antenna that generates a beam that is tilted down 3.22°. This down angle was selected to
cause the 4° vertical beam width to cover a range from roughly 24-100m. The RADAR
was not integrated with the primary navigation system due to difficulties extracting noise
free data.

Pose Estimation
Reliable and robust position sensing is essential. The implementation of position sensing
is a major undertaking that can drain valuable development resources. To avoid this
problem, Sandstorm uses an off-the-shelf pose estimation system. The Applanix POS-
LV provides position estimates by fusing inertial and differential GPS position estimates
through a Kalman filter. The output estimate is specified to have sub meter accuracies,

15

even during extended periods of GPS dropout. The POS-LV system also provides high
accuracy angular information, through carrier differencing of the signal received by a pair
of GPS antennas, and the inertial sensors. The POS-LV system outputs a pose estimate
over a high speed serial link at a rate of 200 Hz. This constant stream of low-latency
pose information simplifies the task of integrating the various terrain sensor data sources.

The Gimbal
Both the Riegl LIDAR and the SAIC stereo vision systems represent the state of the art in
high-fidelity terrain characterization sensors. The ability to interpret data from these
sensors can be severely hampered by pitching and rolling induced by robot motion over
terrain. The passive stabilization system discussed previously is somewhat able to
smooth these motions and reduce the principal frequency of terrain inputs, but is unable
to completely remove the disturbances.

The performance of a single axis scanning LIDAR is particularly affected by mechanical
excitation in the pitch axis. When sensing at reasonably long ranges, even small pointing
errors can result in a dramatic change in the location where the sensor’s beam intersects
the terrain. Because of this, range data associated with small obstacles or terrain details
at distance become ambiguous, and the overall perception performance is severely
degraded and convoluted with interdependencies on terrain dynamics, vehicle speed,
chassis and sensor-mount characteristic responses. Active attenuation of the terrain
excitations via a gimbal reduces this effect, yielding interpretable terrain range data.

The pitch, roll and yaw axis definitions are relative to a coordinate system attached to the
electronics box, not a fixed reference to the chassis or to world coordinate space. Under
these constraints the pitch, roll and yaw axes cannot be viewed as independently
stabilized entities and in fact are relationally interdependent. Since stabilization is
relative to the world coordinate frame, the axes are only completely decoupled when
system coordinate frame is exactly aligned with world coordinate frame.

This condition explicitly requires a stabilization scheme that utilizes all three orthogonal
axes in order to realize full stabilization of any single axis. In general, sufficient
stabilization can be achieved by actively stabilizing the combination of the roll and pitch
axes.

Implementation
The relatively low-mass active LIDAR and passive stereo vision sensors are co-mounted
to provide a common field of view and reference frame. The sensor mounting design
aligns the LIDAR’s optical aperture with the center of the gimbal and balances the mass
distribution around the rotational center. Each axis includes minimal-mass components
and the simplest possible gimbal support structure with the design goal of minimizing the
moment of inertia. By minimizing the moment of inertia, the overall responsiveness of
the gimbal is increased, yielding better perception data.

The pitch axis is most critically effected by vehicle excitations due to the large lookout
distance associated with downfield targets when the robot is moving at speed. The roll

16

axis is less critical to perception data continuity and generally effects the ‘tilt’ at which
the LIDAR pixel scan-line illuminates the terrain in front of the robot. The yaw axis
represents the least critical influence on the usefulness of data collected, since the field of
view of the sensor is wide enough that any reasonable excitation would not move the
terrain being characterized out of view. This understanding leads to the priority in
which the moments of inertia should be minimized: pitch then roll, then and finally yaw.

Harmonic drive (HD) actuators controlled by PID servo loops are used to actuate each of
the axes. Each axis also includes incremental and absolute position encoders, a fiber-
optic gyro (FOG), and an optical switch based limit detection sensor. Each gimbal axis
assembly is designed for electrical and mechanical simplicity. To achieve this goal
common design and components are used on each of the axis. The aluminum bracket
components are designed to have the minimal mass and moment of inertia about their
respective rotational axis while still maintaining sufficient strength and stiffness.

Figure 9. An exploded view of the gimbal roll axis.

Each HD actuator output shaft is attached directly to an aluminum frame using a five-bolt
pattern. The frame, shaft and FOG mount are bolted together to form a rigid assembly,
thus all of the components rotate in sync about associated axis. The absolute encoder
body is mounted and fixed relative to HD actuator housing via an encoder plate using six
machine screws. The absolute encoder stator is attached to the rotating axis shaft via a
friction-ring and machine screw. This arrangement for the roll axis can be seen in Figure
9.

1. Roll frame
2. HD actuator
3. Shaft
4. Encoder plate
5. Absolute encoder
6. FOG mount
7. FOG

17

Figure 10. The fully assembled gimbal.

The entire gimbal mechanism is enclosed within a protective shell. The shell prevents
water and dust from damaging the mechanism and electronics. The sensors operate
through a front window with specially coated optical glass. The fully assembled gimbal is
shown in Figure 10. Table 2 outlines the gimbal performance capabilities and
summarizes its interfaces.

Table 2. A summary of the gimbal performance characteristics.

Payload Compliment High Resolution LIDAR line scanner and
stereo vision head

Payload Dimensions 24mm x 25mm x 500mm
Payload Mass 12+ Kg
Gimbal Mass < 25 Kg
Computation Pentium III PC104 stack
Communication Interface 100Base-T Ethernet
Power Consumption 24VDC @ 50W

85VDC @ 350W
Enclosure Water resistant lightweight shell with

optical window with pass for 300–900nm
Mechanical Mounting 10 bolt pattern in base plate

Pitch
Range of Motion ± 40°
Angular Velocity 6.28 Rad/s
Angular Acceleration 863.63 Rad/s2

18

Roll
Range of Motion ± 40°
Angular Velocity 6.28 Rad/s
Angular Acceleration 73.89 Rad/s2

Yaw
Range of Motion ± 90°
Angular Velocity 6.28 Rad/s
Angular Acceleration 25.59 Rad/s2

Navigation Software

Figure 11. The on-board software architecture.

Overview
The navigation software drives Sandstorm by combining incoming sensor data and the
pre-planned path. The pre-planned path is loaded into the terrain evaluation and path
shifting program prior to the race start. The path is also passed to the gaze controller
which monitors the vehicle’s position and independently commands the gimbal controller
to point the laser scanner in the direction of anticipated driving. The Riegl point source
communicates with the Riegl laser range finder, receiving laser line scans at between 15
and 20 Hz. This range data is then transformed into a vehicle coordinate frame
referenced point cloud. This data is passed onto the terrain evaluation and path shifting
algorithm which makes adjustments to the path Sandstorm is attempting to follow.

Once the terrain has been evaluated and any necessary adjustments made to the pre-
planned path, the modified route is passed to the binary obstacle detection process. This
process uses the bumper mounted short range laser scanners to detect if any object in the
environment is an immanent threat. If an obstacle is detected, Sandstorm is commanded

Gaze Control

Riegl Point Source Terrain Evaluation &
Path Shifting

Gimbal Control

Left SICK Point Source

Right SICK Point Source

Binary Obstacle
Detection

Path Tracking

Vehicle Controller

Gimbal

Riegl

Sick

Sick

DbW

Pre-plan

Position Estimation

19

to stop. This process is only intended to be run during the qualification phase of the
race since the algorithms can potentially produce false positives, and the system is only
designed to stop for, not avoid, detected obstacles.

Once obstacles have been taken into account, the resultant path is handed off to a pure
pursuit path tracker. The path tracker is tuned to minimize deviation from the route.
Curvature and velocity commands are then passed from the path tracker to the vehicle
controller which interfaces with the robot hardware. Figure 11 illustrates this data flow.
The following sections describe these components in more detail.

Infrastructure
Sandstorm uses architectural and communications tools that were originally developed to
support the ongoing robotics research of the NavLab project [15]. The architectural tools
allow algorithm developers to view the rest of the system through a set of abstract,
reconfigurable interfaces. During initial development and ongoing debugging the
interfaces for an algorithm can be configured to read data from time-tagged files using a
common set of data access tools. As an algorithm matures, the interfaces are
reconfigured to use a common set of interprocess communication tools which integrate
the individual algorithm into the larger system.

The vast majority of interprocess communications in the Sandstorm system are analogous
to signals in electronics. Examples of such signals include periodic estimates of the
vehicles pose or line scanner data. Missing some of this data is unimportant, so long as
consumer applications have access to the most recent measurement with low latency. A
paradigm for the propagation of signal type information is global shared memory: A
producer sets the memory and a consumer reads the most recent value. The Neutral
Messaging Library (NML) demonstrates this control-centric method for integrating
robotic systems [7]. Sandstorm uses a simpler implementation of global shared memory
which has a "single-writer, multiple-reader" model. Processes communicating on the
same machine use System V shared memory, whereas processes communicating between
machines transparently propagate changing memory values from writer to readers via the
UDP socket protocol.

One reason for implementing a simple shared memory communications scheme rather
than purely adopting NML is that, while signals make up the bulk of the communications,
they are not the only paradigm for interprocess communications in a robotic system.
Symbols, i.e., atomic pieces of information, changes in state, or requests for information,
are very difficult to communicate via a signal-based communications paradigm. For
example, unlike signals, if a symbol value is missed, then information is lost, state
changes don't get noticed, and requests are ignored. The guarantee that a symbol has
been transported from writer to reader is worth significant additional latency and
complexity in the implementation. Symbolic information is typically communicated in
robotic systems via TCP/IP message based packages. In order to limit the complexity
and size of the software while still providing some abstraction and flexibility, a simple
TCP/IP based messaging package called the InterProcess Toolkit (IPT) [9] is used.

20

A key abstraction built using IPT is the concept of a central black board. Individual
algorithms mainly query the black board for their configuration parameters, but can also
post information in the black board and watch for changes in values on the black board.
Thus, the black board becomes a channel for propagating information through the system
that has to be generally available, but for which a certain degree of latency is acceptable.
In addition, since the system's information is being funneled through the black board, we
have chosen to make the black board manager the system process manager. It initiates,
parameterizes, and monitors the system processes. Interestingly, this paradigm of a
central black board was one of the earliest used in robotics [10], but it has been often
rejected because if the black board is the only means for propagating information through
the system, it becomes an intolerable bottleneck for the kind of low-latency, high-
bandwidth signal-type information that forms the backbone of information flow for real-
time robotic systems.

Gaze Control
The gaze control module points the primary sensors to provide information about the
world that a non-pointed sensor would not be able to provide. A non-pointed sensor loses
sight of the road when moved over hills and around corners. A pointed sensor can be
pitched up, down, left, and right to fill in data that would otherwise be missed.

As shown in Figure 12a, as the vehicle crests a hill, a non-pointed sensor that is aimed to
see flat ground at a reasonable distance will be looking out into the sky. Similarly, as
shown in Figure 12b, as the vehicle approaches the bottom of a hill a non-pointed sensor
will repeatedly sense the bottom of the hill rather than looking ahead up the hill.
Immediately before rounding a corner, non-pointed sensors look out beyond the road
rather than in the direction the robot is about to travel (Figure 12c).

 a) b) c)

Figure 12. Various configurations where a non-pointed sensor performs poorly.

Control Architecture
Inputs to the gaze control module are the current state of the vehicle, the current pointing
of the gimbal, the desired path ahead of the vehicle, and data from the long range
LIDAR. Roll and pitch are set to be in stabilized mode, and yaw is set in pointed mode.
High frequency pitching and rolling is taken care of by the gimbal control software. High
frequency yawing does not occur due to the mass of the vehicle relative to the magnitude
of input from the ground.

To make the control of the pointed sensors simple, control of the pitch and yaw are
separated. Roll is not pointed. This decentralization generally works well, as it is rare to
see hills that are very steep combined with roads that turn sharply enough to prevent this

21

mode of control from working. The path is fed to the gaze control module as a series of
x,y pairs in the global coordinate frame. A “look-ahead distance,” the distance down the
path to look, is chosen based on the current speed of the vehicle. The sensors are pointed
so that an obstacle can always be detected in time to stop for that obstacle.

Calculation of stopping distance
Stopping distance estimates of the distance over which the vehicle will stop, based on
friction and current velocity. If v is the velocity of the vehicle, � is the coefficient of
friction and g is gravity, the stopping distance, d, is calculated as

d = v2 / (2 � g)

A point on the path called the “look-ahead point” is chosen by traversing along the path d

meters and choosing the path point closest to d meters away. The look-ahead point has
coordinates (xl, yl) and the vehicle has coordinates (xv,yv)

Calculation of desired yaw
Desired yaw of the gimbal relative to the vehicle can be determined through
trigonometry. Although it is probably good practice to correct this angle for variation in
the terrain ahead, this information is not taken into account. The look-ahead point is first
transformed into vehicle relative coordinates (xl’, yl’). The yaw angle for the gimbal is
then

�y = atan2(xl’, yl’)

Calculation of desired pitch
Desired pitch, �p, is calculated as the sum of two factors. First a base pitch angle �pf is
calculated such that on flat ground, the long range LIDAR would hit the top of the
minimum sized object at (xl ,yl). Second, a feedback term, �pc, based on a window of
LIDAR ranges around the path is added to �pf. Letting minimum obstacle height be ho,
and the height of the LIDAR (which is at the center of rotation of the gimbal) be hl,

�pf = -atan2(hl – ho, sqrt((xl-xv)2+(yl-yv)2))

Calculation of �pc is more complicated as it is based on noisy LIDAR data. The set of
points within w meters of the center of the most recent LIDAR scan is selected. The
mean and standard deviation of the straight-line distance from the center of the vehicle to
these points is calculated. Any points more than one standard deviation from the mean
distance of the set are discarded and the mean distance of the remaining points, �d, is
recalculated. This produces an estimate of the distance from the vehicle to where the
LIDAR scan intersects the ground. Because this estimate is very noisy, a running
average, rk, is computed.

rk = �d*� + rk-1*(1- �)

22

The value of rk serves as an estimate of the actual value of d, the distance to the look-
ahead point.

e = d - rk

�pc is updated by adding a term proportional to the error to the current value of �pc. This
is similar to an integral term.

�pc = �pc + Kp*e

Finally, the correction �pc is added to the flat-plane estimation of �pf to produce �p.

�p = �pc + �pf

�p and �y are sent to the gimbal as desired pointing angles. It is important to note that �y
is relative to the vehicle frame of reference and �p is relative to the global frame of
reference. This difference is apparent in the calculations for each variable. Calculations
for yaw are computed in the vehicle frame of reference while calculations for pitch are
computed in the global frame of reference.

Gimbal Control
The three-axis gimbal stabilized platform provides Sandstorm with steady data from the
primary perception sensors: the Riegl long range laser scanner and the stereo camera
pair. The primary objective of the control loop is to eliminate the effect of terrain inputs
that generate vehicle rotations in the global coordinate frame. A secondary goal is to
provide a mechanism for sensor gaze control. The complexity of controlling the three
axis system was minimized by appending individual inertial sensors to each axis and
stabilizing each axis independently. The gimbal control hardware is identical for each
axis, simplifying the control loop implementation and allowing significant code reuse.

Interfaces
The gimbal control software accepts vector pointing commands and also accepts
commands for how fast the mechanism should servo to this vector. Commands can be
issued at up to 10Hz without disrupting operation. By default, the gimbal control
software stabilizes all three pointing axes but controlling software can disable this
functionality on each of the axes independently. To eliminate gyro drift, the controller
incorporates data from the onboard absolute pose estimation system. Periodically, the
gimbal control software publishes the current vehicle relative position of the sensor head.

Coordinate Systems
There are 4 coordinate systems to consider in the gimbal control code: local, electronics-
box, stabilized, and gyro. In the non-stabilized mode, pointing commands are specified in
the local coordinate frame, which is a fixed frame, located at the center of the gimbal.
The electronics-box frame is the same as the local frame, modulo translations that move
the reference frame to near the IMU in the electronics-box. While stabilizing, pointing
commands are issued relative to a stabilized coordinate system, which is coincident with

23

the local coordinate frame, but the z axis of this frame is always aligned with the gravity
vector. Ideally the gyro coordinate frame would be identical to the stabilized coordinate
frame, but due to gyro drift, the two are rarely aligned. The gyro frame therefore, is the
stabilized coordinate system as measured by the gyros.

Internal States
The gimbal control code has 4 primary modes and 3 transitional modes for each axis.
The primary modes are stabilized, unstabilized, marginal and emergency. Stabilized and
unstabilized correspond to whether the gimbal is actively stabilizing that axis, or is just
providing a pointing interface.

The marginal mode is engaged when the gimbal is about to exceed its safe operating
range. The controller enters the marginal run-mode when the pitch angle is outside of the
range of -32º to 25º, or the absolute value of the roll angle is greater than 18º or the
absolute value of the yaw angle is greater than 80º. When in the marginal mode, control
clips the commanded pointing angles to prevent the system from damaging itself. The
emergency mode is triggered if the gimbal’s inertia, or a software failure, allow it to
somehow exceed these soft limits by more than 2º. In this mode, solid state relays are
automatically tripped which de-energize the motor amplifiers. At this point a recovery
procedure is executed, where each axis is re-zeroed before the system returns to nominal
operation.

System and Control
Figure 13 shows a block diagram of the gimbal control system which operates at 1000Hz,
limited by the gyro data rate. In stabilized mode, the difficulty of the implementation
arises since random shocks can be introduced from the outside world at random timings
and in random combination, which can at best be modeled statistically. The passive shock
isolation stages soften these shocks, but do not eliminate them. Figure 14 shows a
control model of this system, from which the transfer function of the system can be
generated.

24

Figure 13. The gimbal control system.

Figure 14. A model of the gimbal control system.

U
CG

CG
D

CG
Y

+
+

+
=

11
1

From this equation, it can be seen that to minimize the effect of disturbance, it is
necessary to maximize the CG term at frequencies where the disturbance is acting. The
frequency response of the gimbal was determined using a series of step inputs. The poles
and zeroes of this function are plotted as the blue ‘X’s’ and ‘O’s’ in Figure 15.

The main controller is a lead-lag controller with an integrator. The bode plot and root
locus for this controller are shown in Figure 15. In addition to the integrator, the pole-
and-zero set for lag are used to increase the magnitude of the open-loop frequency
response at low frequencies. The zero-and-pole set for lead increases the phase margin at
the crossover frequency.

With this control system, it is important to not saturate the controller command input
since this prevents further reaction in that control direction. The controller is optimized to
minimize this problem, and in practice behaves well. A second consideration is that
pointing the gimbal requires frequent reference command changes. Hence, a reasonable
amount of phase margin is required in order to prevent large overshoots. However, the
desire for a large phase margin must be balanced against the need to aggressively

Controller Gimbal U Y - +

D

+

Gimbal Controller

Gyro
Drift

Vehicle
Rotation

AMC
Amplifier

& Controller

Harmonic
Drive

Actuator

Gyro Drift
Cancellation

Interp. Main
Controller

Mode Selection/
Monitoring

Absolute Encoder
Data

Measured
Global

Orientation

Pointing
Command

Sandstorm
Pose

Estimate

Pointing
Mode

Corrected
Orientation

Emergency
Mode

Signals
Solid State Relay

+

25

counteract any terrain inputs. This tradeoff required a fair amount of careful on-board
tuning to achieve. Figure 16 shows the resulting attenuation of input disturbances as the
control loop operates nominally.

Figure 15. The Root locus and Bode plot of the gimbal control system.

Figure 16. The frequency response of the gimbal control system.

The interpolator module generates a sequence of control inputs between the current
pointing angle and the input pointing command. This process generates a smooth
trajectory and more importantly, it minimizes the magnitude of the controller command.

26

This step is vital because the large commands combined with potentially high-magnitude
shocks could cause the controller to become unstable due to the small phase margin.

Every time a pointing command is issued, the gyro coordinate system and global
coordinate system are compared. The global coordinate frame is calculated in the gyro
drift compensation module by using data from the system pose estimation (i.e. the
electronics-box coordinate frame) and the absolute encoder data (the local coordinate
frame). When the difference between the coordinate frames exceeds the resolution of the
absolute encoder, (0.02 degrees) the modified global coordinate data is used to update the
gyro coordinate system. The dead-band in the absolute encoder is a potential limiting
factor in the pointing accuracy of the gimbal.

The mode selection and monitoring module is used controls which of the appropriate
operational modes the gimbal should be in and switches between them as appropriate.

Terrain Evaluation and Path Adjustment
The terrain evaluation and path adjustment software is the heart of the onboard
navigation system. It was developed after the disclosure that a majority of the Grand
Challenge route would be on trails or poor dirt roads. The module is also designed to
transition between sensor based navigation and blind navigation as onboard sensor data is
determined to be valid or invalid. The pre-planned path is adjusted by a control-law-
like navigation algorithm to ensure a smooth output path.

Terrain Evaluation
The terrain evaluation part of this module uses a statistical evaluation technique akin to
that used in the Morphin/Gestalt algorithms [8][18]. For each laser line scan, the
evaluation returns a vector of traversability scores, one for each point in the scan,
indicating how safe it would be for Sandstorm to drive over that portion of the terrain.

To perform the analysis, for each point in the line scan, the set of points within half a
vehicle width are selected. Using linear regression, a line is fit to this set of points. The
slope of this line with respect to the gravity vector is used as one part of the cost measure,
the steeper the slope, the less desirable the terrain is to drive over. A second
measurement of the cost of the terrain comes from the residual between the point set and
the line fit, if the residual is large, the terrain is irregular, and likely unsafe for driving.
Finally, a measure of the slope of the line relative to a vector in the direction of travel is
calculated. If the gimbal is pointed in the direction of travel, this measure can be used to
detect vertical relief in the terrain. Unfortunately, this measure will consider terrain seen
with the laser pointed in a direction other than along the direction of travel as unsafe. A
better approach would be to consider the slopes of various windows of the line scan
relative to the slope of the line generated by intersecting the plane of the laser scan with
the nominal ground plane; this second approach would avoid the off-pointing problem.

The three cost measures (two slopes and the residual) are scaled to have a value between
zero and one, with a cost of zero being equivalent to safe, and a cost of one being unsafe.
The worst cost value is returned as the cost for the vehicle to travel with its center over a

27

particular laser point. Figure 17 shows an example of this analysis. The red and green
set of roughly horizontal lines in the figure represents a laser scan intersected with the
terrain. Green regions are considered safe for Sandstorm to traverse while the red regions
are considered to be unsafe. Yellow circles mark the detected fence posts.

Once the line scan has been evaluated, the costs are clustered into regions. The clustering
uses the inherently ordered nature of the line scanner, so that very few distance
calculations need to be performed. An initial pass through the line scan finds the lowest
cost present in the array. If this cost is below a floor cost of acceptable terrain
traversability, the floor cost is used to clip regions; this floor cost is set to be the expected
limit of “easily traversable” terrain. If no point in the array has a cost less than the floor
cost, the lowest cost in the array is selected, and an amount of cost equivalent to the noise
in the terrain cost estimation is added to it to produce the value used to clip the regions.
Regions are also clipped if a point in the region falls out of the corridor width specified in
the pre-plan for this segment of the route.

Path Adjustment
The sets of connected points within the corridor with cost lower than the clipping value
are extracted and the center of each cluster is determined. The signed distance from the
pre-planned path to the calculated center point is used as the input to a controller servoing
the path. The control law is of the same form as that used to perform the velocity control
loop in the vehicle controller:

eKeKuu dpkk �++=+1

In this way, if the pre-planned path has smooth curves, the output of the path adjustment
will also be smooth. To simplify the path adjustment code, adjustments to the path are
only allowed to be made farther along the route than any previous path adjustments.

Figure 17. A sensor view of an opening in a fence.

28

During the initial testing of the path adjustment algorithm, the gimbal control code and
pointing code were not yet reliable, so a pair of simple filters were used to throw out laser
data should the gimbal be pointed incorrectly. The first filter calculates the distance
between the center point of the current region and the center of the last region and throws
out the new data if it is not within a one to three meter window. The second filter checks
to insure that the current region center is within a cone with its apex at the center of the
previous region. This second filter insures that the laser is not off-pointed in some odd
direction.

Referring to Figure 17 again, the yellow pixels along the vertical purple curve show the
preplanned path. The purple curve represents the path that is passed from the path shifter
to the path tracker. Finally, the yellow curve represents the time history of the center of
the safe region closest to the pre-planned path. Note that after it passes the current laser
scan, the route fades back towards the pre-planned route. This stitching of the pre-
planned and sensor planned route is required so that in instances where there is sharp
acceleration and the pure-pursuit path tracker exceeds the laser look-ahead distance
momentarily, there is some path for that software to track.

Binary Obstacle Detection
The binary obstacle detection module was written for the sole purpose of detecting the
moving obstacle during the qualification runs. During normal race conditions, this
module is removed from the data stream, and the adjusted path is passed directly from the
terrain evaluation and path adjustment module to the path tracking module.

The obstacle detection algorithm builds an occupancy grid model of the world using data
from a single pair of scans from the forward looking SICK LIDAR scanners. If any cell
in the grid receives more than a specified number of hits, it is considered to be occupied,
and thus an obstacle. The algorithm then checks to see if any of the obstacle cells are
within half a vehicle’s width of the adjusted path and are within some threshold distance
of the robot. If these conditions are both true, then the output path has all of the speed
fields set to zero. This causes the robot to stop, preventing a collision. Since the model
is constructed cleanly with each pair of laser scans, when the obstacle is removed,
Sandstorm will start in motion again.

This very simple approach has a variety of shortcomings; in particular, it will incorrectly
classify gently sloping hills as obstacles. Because of this, it is an inappropriate algorithm
to use in race conditions. However, in tightly constrained conditions such as those
associated with the qualification course, the algorithm works reliably.

Path Tracking
At the base of the onboard navigation system there is a conventional pure-pursuit
waypoint tracking algorithm. As is common, the look ahead distance is adjusted
dynamically based on speed. The control gains are configured to provide a balance
between good performance at both low speed in tight maneuvering situations, and at high
speed on straight-aways and soft corners. Two good references for pure pursuit path
tracking are [1] and [5].

29

Vehicle Controller
All of the software that interfaces with the mobility components of the vehicle is
contained within a single PC-104 stack. This stack has four functions, shifting, steering,
velocity control and emergency stop.

All control loops operate within a custom written timing loop running on a stock Redhat
9 kernel. This choice was justified since the amount of jitter and scheduling delay is
generally insignificant when compared to the mechanical time constants associated with
the vehicle. The software is structured so that descendant classes may increase the
capabilities of the drive by wire system. Each descendant class overrides the “loop”
function, to provide a capability. This software structure allowed for a logical decoupling
of each of the control functionalities.

Gear Selection
The HMMWV’s automatic transmission greatly simplifies gear selection. In practice the
onboard software selects between 3 gears: drive, neutral and reverse. Testing shows that
the velocity control loop functions equally well in any of the automatically selected gears
so there is no need to actively constrain which gears should be selected by the
transmission (via shifting to 1st or 2nd directly).

The electrical interface to the linear actuator controlling the shifter consists of a pair of
computer controlled relays. Since the smoothness of the control activity is unimportant,
it is possible to avoid adding other control electronics. The position of the actuator is
provided via a potentiometer. This interface lends itself to a simple bang-bang control
loop. The control loop servos the linear actuator until it is positioned at a set of pre-
calibrated locations that represent the detents for each of the gear shifter positions.

Steering Control
The electrical interface for the steering control system uses an off the shelf motor
controller (an AMC-DR100EE series) to drive a DC harmonic drive actuator mounted to
the steering column. The motor controller provides a voltage controlled velocity loop
that is controlled by an analog signal from the drive by wire PC-104 stack. Position
control feedback is provided by a rotary variable differential transformer (RVDT)
mounted on the output of the power steering box. The measured angular position is then
used in a classical PD control loop, operating at 20 Hz, to set the speed and direction of
rotation of the steering actuator. An interesting anomaly of the steering configuration of
the HMMWV is that the mapping between steering column rotation and vehicle curvature
is linear.

Velocity Control
To control vehicle velocity, a single actuator is used to either press the brake pedal or pull
on the throttle cable. The actuator is driven by a DC amplifier driven by a differential
signal from the drive-by-wire PC-104 stack. The Applanix POS-LV system provides a
smoothed measure of the robot’s velocity that is used as the control input signal.

30

The prevailing wisdom regarding HMMWV velocity control is that the engine response
is very non-linear and would require a complicated scheme to maintain speed within a
reasonable error bound. This wisdom may be drawn from experience operating at very
low speeds, and where a +-1 mph error may be unacceptable. The control loop
implemented on Sandstorm, utilizes a very simple control law:

eKeKuu dpkk �++=+1

This formulation is similar to a PID controller but forgoes the integral term and instead
uses the previous command output. The intuition used to select this formulation is that,
independent of the terrain input (i.e uphill or downhill), the desired position for the
throttle/brake (expressed as a floating point value in the range of -1 to 1) is likely near the
current position. Furthermore this formulation uses the control signal to generate a
relative motion, rather than an absolute position, avoiding some of the difficulties
associated with a nonlinear controller. With this formulation, the speed controller was
able to operate within acceptable steady state bounds (+/- 0.5m/s with an oscillation
period of 0.1 Hz) with relatively short rise and drop times, over a range of velocities
ranging from 5-22 m/s (11mph- 49mph). Figure 18 shows the controller’s response on a
cross country run during testing in Nevada. The vertical axis in this figure indicates
velocity in meters per second, while the horizontal axis units are controller ticks, which
are approximately equal to 0.1 seconds.

Figure 18. A plot showing the response of Sandstorm's velocity control loop.

The emergency stop system incorporates a variety of safeguards to ensure that should
sub-components of Sandstorm fail, the robot can be reliably brought to a stop. The
throttle control system has in integral heart beat circuit that causes the vehicle service
brakes to be fully applied should the drive-by-wire computer system fail to maintain real
time performance or crash. The engine ignition and fuel pump are also wired into the kill
system such that should computing and/or actuator power fail, the HMMWV engine is
turned off and fuel flow stopped, further more, this system also causes the HMMWV
parking brake to engage, causing the robot to stop faster than relying on rolling friction.

Should Sandstorm need to be stopped or paused during operations where the computing
system remains operable, any operator requests for a kill are understood by the drive-by-
wire system and that system then engages the service brakes. In this state, the onboard

31

drive by wire computer disregards other drive commands until the e-stop signal is
cleared.

Performance
A good measure of a system is performance relative to intentions. Sandstorm was
developed to compete in and win the 2004 Grand Challenge. The Red Team and
Sandstorm had a strong debut: Sandstorm qualified first, and was the only robot to
qualify based on the pre-event rules.

Description of Significant Incidents on Race day
Though Sandstorm did not complete the Grand Challenge course, it traveled 7.4 miles
along the route at a pace that would have finished the race within the allotted time.
Sandstorm averaged over 15 mph, obeyed lower speed limits where specified, and hit a
peak speed of 36 mph while generally demonstrating smooth, stable driving over off road
terrain. During the 25 minutes of operation, Sandstorm traveled faster and farther than
any of the other competitors. Along the way, there were six incidents of off-nominal
behavior:

Impact with fence post #1
Impact with fence post #2

 Momentary pause
 Impact with fence post #3
 Impact with Boulder
 High centering in the hairpin

Each of these incidents is described below, with an explanation of why the incident
occurred.

Impact with Fence Post #1
Time: 8:43 into run
As Sandstorm approached a road crossing, it was slightly left of a narrow opening (~3.6m
wide) between two fence posts. The onboard sensors detected the fence correctly (the
yellow circles marked in Figure 19) but the onboard path planning code did not generate
a path to avoid these obstacles. This failing was a known weakness of the onboard
navigation system.

An assumption implicit to Sandstorm’s navigation system is that the trails and paths the
robot traverses generally have berms or rough terrain delineating their edges. The path
planning algorithm implicitly represents the obstacle at the location where the laser scan
intersects the path. In the steady state case, this provides reasonable behavior with a
fairly straightforward implementation. Again in Figure 19, this effect can be seen in the
yellow control points used to servo the path. Note that it bulges to the right to avoid the
obstacle, but the bulge is behind the true location of the post. Furthermore, the purple
output path is not responsive to the obstacle since the control loop that shifts the path is
over damped, and did not react in a significant way to avoid the obstacle.

32

Figure 19. A sensor view of the first fence post Sandstorm hit.

Impact with Fence Post #2
Time: 9:02 into run
Sandstorm also hit a second gate associated with the same road crossing. Again the
sensor system appropriately classified the gate as an obstacle but the path adjustment
software did not react appropriately. Figure 21 shows the sensor view of this gate.
Figure 20 shows the width of the gate, a Nissan Xterra is shown in the gate opening for
scale (the Xterra is roughly 35cm narrower than Sandstorm).

Figure 20. A Nissan Xterra parked in the opening of the second gate.

33

Figure 21. A sensor view of the second fence post Sandstorm hit.

Momentary Pause
Time: 10:36 into run
While traveling towards a trail intersection, Sandstorm decelerated to a stop, pausing for
approximately 5 seconds. The cause for this stop is likely a spurious e-stop pause signal.
After the pause Sandstorm continued without incident. The onboard navigation
algorithm, when running in race configuration, has no way to cause the vehicle to come
to a temporary pause. The duration of the stop (roughly 5 seconds) further supports this
explanation, as 5 seconds is the minimum amount of time the vehicle controller must stop
the robot for upon receipt of a pause signal. During testing, it was noted that the
government issued safety system would at times generate spurious signals causing
Sandstorm to stop temporarily. Omnitech robotics, supplier of the safety system,
believes that the pauses were likely due to external electro-magnetic interference.

Impact with Fence Post #3
Time: 10:57 into run
After the momentary pause, Sandstorm proceeded at low speed for roughly 40 meters
before hitting a third fence post. Sandstorm’s low speed and the fact that the post was
reinforced meant that it took almost 2 minutes of pushing against the post before the
robot was able to knock it over and continue.

Once again, the same weakness in the onboard obstacle avoidance software was the
principal cause of this incident. Sandstorm “saw” the post, but did not plan the correct
avoidance maneuver.

34

Figure 22. A sensor view of the large boulder.

Impact with Boulder
Time: 23:22 into run
After negotiating another 13 minutes of winding trail, Sandstorm drifted to the left of the
road and impacted a large boulder (see Figure 23). This impact caused the steering to be
jarred sharply left, causing Sandstorm to deviate from the path and leave the trail. Once
off the trail, the onboard recovery software kicked in, reversed Sandstorm, then pointed
Sandstorm back down the path and resumed motion. Sandstorm’s navigation system
overshot the trail once, corrected, and then continued along the course.

Figure 23. The large boulder Sandstorm hit.

35

Figure 24. A plot showing the path constraints imposed on Sandstorm by the pre-planned route.

This incident was caused primarily by the preplanned path overly constraining the
onboard navigation system. In Figure 24 the inner circles represent the range of freedom
that the onboard planning system had to adjust the path to avoid obstacles (the outer
circles represent the width of the DARPA route at that location). At its narrowest, this
corridor is only one meter wide. Prior to this narrowing, the robots path (the black curve)
was at the right edge of this boundary, indicating that the onboard navigation system had
detected the road and was tracking it, but was constrained by the corridor. As the
corridor narrows, Sandstorm is forced into the undesirable terrain and the onboard control
oscillates, possibly seeking marginally better areas to drive in.

The narrow corridor constraints would not have been a significant issue if the preplanned
route had been centered on the road. For some reason, at this location, the preplanned
route appears to be roughly 1 meter left of road center, when compared to the location
surveyed by a post race analysis team. Had the corridor constraints been looser in this
area, the onboard sensor based navigation system would have avoided the obstacle.
Figure 22 shows the sensor image of this boulder.

From the onboard stabilized stereo cameras, the effect of this boulder on the motion of
the robot can be seen, and it is dramatic. Even so, the onboard electronics box and
sensors received a peak vertical acceleration of only 16.5 m/s2, or just under 2 g’s. This
is a testimonial to Sandstorm’s passive shock isolation system. After this impact,
Sandstorm appeared to continue down the trail without any obvious difficulty.

36

High Centering in the Hairpin
Time: 25:11 into run
In the Daggett Switch backs, Sandstorm approached a tight hairpin wide and outside. As
it rounded the corner, it cut towards the inside and the left side wheels slipped off of the
trail. Sandstorm continued along the berm until it came into contact with a large rock
(see Figure 25) buried in the soil. For the next 400 seconds Sandstorm melted the rubber
off of its front tires, trying to extract itself from the berm. Eventually the crew in the
chasing control vehicle triggered a disable emergency stop which caused the front service
brakes to clamp down on the inboard side of the four half-shafts. This sudden stop
combined with the momentum carried by the fast spinning front wheels caused both front
half-shafts to snap.

Figure 25. The large rock that eventually ended Sandstorm's run.

This failure was a result of a variety of weaknesses acting in concert to end Sandstorm’s
race. Entering the corner, the onboard navigation system began to filter out laser data.
The filtering algorithm was triggered as a result of a sharp angle change in the preplanned
path which would not have been present if the path used smooth curves. Figure 26 shows
that even though the data was disregarded, the classification of the terrain from the laser
scan was still reasonable.

37

Figure 26. A sensor view of the trail in the Dagget Hairpin.

Figure 27. The pre-planned route around the hairpin.

38

Once the laser data was disregarded, the onboard planning system seamlessly switched to
following GPS blindly. At this point, Sandstorm began to cut towards the inside of the
curve. Sandstorm’s GPS measurement of the preplanned path had errors pushing it
towards the inside of the curve. In addition, the faceted nature of the preplanned path
caused it to be even farther towards the inside of the corner. Finally, the pure-pursuit
path tracking software can cause Sandstorm to cut corners. In this case, these three
effects combined to push Sandstorm roughly 1.5 to 2 meters to the left of the road center
such that one wheel fell off of the edge. Figure 27 shows a plot of the pre-planned
corridor (inner blue circles), pre-race reconnaissance (green) and Sandstorm’s ground
track (black). From this data, the path error seems to be due equally to the above
mentioned sources.

Once one wheel got over the edge, Sandstorm was unable to pull itself back onto the road
before it became stuck. Figure 28 shows Sandstorm’s resting place, just after the tight
hairpin corner, for scale, Sandstorm is roughly 2.25 meters wide.

Figure 28. Sandstorm's final resting place on race-day.

Other Points of Interest
GPS Error: The exact amount of GPS measurement error is unclear. In all incidents
described, if the GPS error had been zero, Sandstorm would likely not have failed, but the
GPS error appears to have been within the range that the onboard navigation system
should have been able to correct for.

It would be useful to better understand the effects of high voltage power lines on the
performance of the Applanix POS-LV unit. Though it is unlikely that GPS error was the
root cause of any of the incidents, all of the incidents occurred within close proximity of
power lines and error in Sandstorm’s pose was a contributing factor.

39

Laser Line Rate: The backup Riegl laser scanner (installed after the pre-race rollover)
was used on race day. This operated at only 15 Hz, instead of the specified 50Hz, and
only ¾ of the line rate achieved by the original Riegl scanner. The onboard filtering of
the laser data was designed to operate with a laser scan rate of 20 Hz. Though it appears
to have played no role in any of the incidents during race day, the decreased laser scan
rate did cause the onboard system to disregard the laser data several times when
Sandstorm accelerated to high speed. Had any of these accelerations occurred in more
challenging terrain, this weakness may have led to a failure.

Stereo Data
After reviewing the logged stereo imagery from race day, it is apparent that the onboard
stereo system would have been of little benefit during the early portions of the race. For
much of the time, Sandstorm was heading easterly into a rising Sun. Sun glare, exposure
problems and internal reflections from the dome faceplate rendered much of the imagery
unusable for standard stereo vision techniques.

Lessons Learned
Upon reflection on the implementation and testing of the Red Team race system, several
important lessons can be extracted:

Prior map knowledge changes the formulation of on-line planning- The availability
of high resolution, high accuracy a priori models o the world a robot is operating in
greatly reduces the complexity required of the onboard planning system. With sub-meter
a priori information, it is unnecessary for the on-board planning system to be concerned
with large scale local-minima in the planning space.

The impact of robot dynamics can be significant- Though not discussed in this report,
during testing Sandstorm rolled while driving at roughly 50mph. The root cause of the
role was an overlap in the route Sandstorm was tracking at the time. The roll occurred
because Sandstorm turned very sharply to respond to inconsistent path tracking
commands. Had there been a better model of the robots safety margin, the control output
could have been limited to prevent the roll over from happening.

Map based on-line planning is essential- The various filtering approaches that
incorrectly disregarded the laser data on race day would have been unnecessary if a map
based representation had been used instead of a single laser line based planning approach.
Furthermore, a map based model would have allowed for an algorithm more capable of
representing the true location of obstacles. By maintaining a better model of the world,
the online path adjustment software will be able to better react to complicated obstacle
configurations.

Understand the nature of measurement errors- The onboard navigation system was
constrained to the explicit route boundaries specified in the route definition file provided
by the race organizers. Because this error was not taken into account, Sandstorm was
constrained into a collision with a boulder at one point. Sandstorm detected the boulder,

40

and would have avoided the boulder if it were allowed to violate the corridor boundaries.
In future systems, this error should be incorporated into the constraint system.

Software development, integration & testing time is critical- The compressed
development and testing schedule required to field Sandstorm for the 2004 Grand
Challenge forced the cutting of much important scope, and did not provide sufficient time
to fully verify the onboard software. Future race robots should benefit from the existence
of Sandstorm, allowing for the parallel development of software with any new robotic
platform.

Conclusions
Sandstorm and the associated Red Team race system represent the state of the art in terms
of the product of speed and distance traversed by an autonomous robot on off-road
terrain.

The novel integration of high resolution prior map information combined with a primarily
reactive, control-law based navigation approach shows promise for future off-road
navigation work. Through a better integration of onboard sensor data and slightly less
reactive planning, a significant further improvement in navigation performance is
anticipated.

Though the Red Team was not successful in its goal of completing the 2004 Grand
Challenge, it generated a significant technological legacy and a basis from which future
advances will be generated.

References

[1] O. Amidi, “Integrated Mobile Robot Control”, Technical Report CMU-RI-TR-90-
17, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, May 1990.

[2] P. Bellutta, R. Manduchi, L. Matthies, K Owens & A. Rankin. “Terrain

Perception for DEMO III”, Proc. IEEE Intelligent Vehicles Symposium,
Dearborn, USA, October 2000.

[3] J. Biesiadecki, M. Maimone & J. Morrison. “The Athena SDM Rover: a Testbed

for Mars Rover Mobility”, Proc. i-SAIRAS 2001, St-Hubert, Canada, June, 2001.

[4] D. Coombs, K. Murphy, A. Lacaze & S. Legowik. “Driving Autonomously
Offroad up to 35km/h”, Proc. IEEE Intelligent Vehicles Symposium, Dearborn
USA, 2000.

[5] R. Coulter, “Implementation of the Pure Pursuit Path Tracking Algorithm”,

Technical Report CMU-RI-TR-92-01, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, May 1992.

41

[6] P. Drewes, “Demonstration of a Systems Architecture for Live, Virtual, and
Constructive UGV Operation”, AUVSI, Baltimore Md. 2003.

[7] V. Gazi, M. Moore, K. Passino, W. Shackleford, F. Proctor & J. Albus, “The RCS

Handbook: Tools for Real-Time Control Systems Software Development”, John
Wiley & Sons, NY, 2001.

[8] S. Golberg, M. Maimone & L. Matthies. “Stereo Vision and Rover Navigation

Software for Planetary Exploration”, In Proceedings of the IEEE Aerospace
Conference, Big Sky, USA, March 2002.

[9] J. Gowdy, “IPT: An object Oriented Toolkit for Interprocess Communication”,

Technical Report CMU-RI-TR-96-07, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, 1996.

[10] B. Hayes-Roth, “A Blackboard Architecture for Control”, Journal of Artificial

Intelligence, Vol. 26, pp. 251-321, 1985.

[11] A. Kelly & A. Stentz. “An Analysis of Requirements for Rough Terrain
Autonomous Mobility”, Autonomous Robots, Vol. 4, No. 4, December, 1997.

[12] D. Pomerleau, “RALPH: Rapidly Adapting Lateral Position Handler”, IEEE

Symposium on Intelligent Vehicles, September, 1995, pp. 506 - 511.

[13] R. Simmons, E. Krotkov, L. Chrisman, F. Cozman, R. Goodwin, M. Hebert, L.
Katragadda, S. Koenig, G. Krishnaswamy, Y. Shinoda, W. Whittaker, & P.
Klarer. “Experience with Rover Navigation for Lunar-Like Terrains”, Proc. IEEE
IROS, 1995.

[14] A. Stentz & M. Hebert. “A Complete Navigation System for Goal Acquisition in

Unknown Environments”, IEEE IROS, 1995.

[15] C. Thorpe. “Vision and Navigation: The Carnegie Mellon Navlab”, Kluwer
Academic Publishers, 1990.

[16] C. Thorpe, T. Jochem, and D. Pomerleau. “The 1997 Automated Highway Free

Agent Demonstration”, IEEE Conference on Intelligent Transportation Systems,
November, 1997, pp. 496 - 501.

[17] P. Tompkins, A. Stentz, and W.L. Whittaker. “Field Experiments in Mission-

Level Path Execution and Re-Planning”, Proceedings of the 8th Conference on
Intelligent Autonomous Systems (IAS-8), March, 2004.

[18] C. Urmson, M. Dias and R. Simmons, “Stereo Vision Based Navigation for Sun-

Synchronous Exploration”, In Proceedings of the Conference on Intelligent
Robots and Systems (IROS), Lausanne, Switzerland, Sept. 2002.

42

[19] C. Urmson, R. Simmons, “Approaches for Heuristically Biasing RRT Growth”, In

Proceedings of the Conference on Intelligent Robots and Systems (IROS), 2003.

[20] J. Woodfill, B. Von Herzen, "Real-Time Stereo Vision on the PARTS
Reconfigurable Computer," Proceedings IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa, pp. 242-250, April 1997.

