
Real-Time Ultrasound Image Analysis for the Insight
Toolkit

David Wang1,2,3, Wilson Chang2,3, and George Stetten1,2,3

1 University of Biomedical Engineering, Carnegie Mellon University, Pittsburgh PA 15213,
USA

2 University of Pittsburgh Medical Center, Pittsburgh PA 15261, USA
3 Department of Biomedical Engineering, University of Pittsburgh, Pittsburgh PA 15261,

USA

Abstract. We have successfully created a software environment in which ultra-
sound data can be manipulated by, ITK (the Insight Tool-Kit), in real-time. We
were able to access each frame generated within the resident computer of a
TerasonTM Ultrasound Machine, convert it into the ITK image format, and
demonstrate the concurrent operation of ITK on the same computer by writing
the images to an external hard drive. At a rate of 10 frames per second, 512 by
512 pixel grayscale frames were written by ITK methods to the external hard
drive through USB 2.0 while the ultrasound scan was occurring without thrash-
ing or delay in system performance. This simple exercise demonstrates the po-
tential of ITK in processing ultrasound images in real-time in addition to the
more traditional off-line processing.

1 Introduction

Of all medical imaging modalities, ultrasound is perhaps the one most often used
when real-time imaging is required. Therefore, image analysis of ultrasound data is
potentially useful when done in real-time as well. It is, then, necessary to create a
software environment with convenient APIs that allow testing of various image
analysis algorithms when ultrasound data arrives in real-time of at a rate of at least 10
frames per second. The Insight Tool-kit (ITK) offers a diverse collection of open
source image analysis algorithms ideal for this purpose. The problem is how to get
the ultrasound images into ITK in real time. Most ultrasound machines present their
data to the outside world as a video signal, which can be captured on a separate com-
puter and sent to ITK. One particular brand of ultrasound scanner, from Terason, Inc.
(Burlington, MA), is based upon a standard laptop computer running Microsoft Win-
dowsTM, and permits simultaneous operation of other software in such a way that the
image can be shared in real time. We have successfully developed and tested the
interface between Terason’s real-time ultrasound software and ITK.

We will present some necessary background information on ultrasound in Section
2. We will then explain the API for ITK and the Terason software in Section 3. In

Wang, Chang, Stetten

Section 4 we will review the performance of the system. Finally we will conclude
with pointers to future work.

2 Ultrasound

Ultrasound is a method of imaging that permits real-time visualization of the internal
anatomy of a human. Like CT and MRI, ultrasound is non-invasive, but ultrasound
does not carry any radiation exposure risk and is relatively inexpensive. Because of
the low risk and wide availability of ultrasound, it is being increasingly used in many
areas of medicine: radiology, cardiology, women’s healthcare, emergency medicine,
family practice, urology, nephrology, vascular surgery, general surgery, sports medi-
cine, ophthalmology, gastroenterology, telemedicine, veterinary medicine, etc.

Clinical ultrasound typically uses frequencies of 2 to 30 MHz. Pulses of sound en-
ergy travel from the ultrasound probe to an anatomical interface, which reflects the
sound back to the probe. Most ultrasound machines make the assumption that the
speed of sound passing through biological tissues is 1540m/s [1,2]. By measuring the
time it takes the sound wave to travel round trip, the distance from the probe to the
reflector can be calculated as:

Distance (m) = 1540 (m/s) × ½ time (s) . (1)

 The intensity of the reflections from a particular ultrasound pulse as a function of

time (distance) represents a given interrogation of the tissue. A series of such interro-
gation, sweeping through a plane, are collected for each scan. Each scan is then con-
verted in real-time to a 2D grayscale image, through a process called scan-conversion.
It is this 2D image, with its regular isotropic pixels on a rectilinear lattice, which is
the usually starting place for image analysis.

3 Method

The underlying ultrasound system we used consists of the Terason SmartProbeTM and
their proprietary software running on a standard laptop. The SmartProbe includes a
transducer, which generates and receives ultrasound and a small electronic package
for steering the ultrasound beam. The interface to the laptop include power and fire-
wire connections.

The Terason software provides remote control capabilities for other programs on
the same computer by exposing a Windows COM Automation interface. An external
application enabled as a COM controller can instantiate the Terason Ultrasound ap-
plication as a COM server or attach to a running instance of the Terason Ultrasound
application. The COM controller can initialize and perform essential control over b-
mode and color Doppler ultrasound acquisition. However, there is no built-in mecha-

Real-Time Ultrasound Image Analysis for the Insight Toolkit 3

nism to perform real-time image analysis. We solve the problem by modifying the
software that runs the COM controller for the Terason ultrasound machine.

When a frame containing one scan-converted image of ultrasound data is gener-
ated by the Terason SmartProbe, the OnFrameReady() method in the Terason API
is invoked. We modify this method to grab the frame from memory and place it into a
local two-dimensional texture array in OpenGL format. Using OpenGL for display
allows us to tap into the hardware acceleration built into most computer systems to-
day. By linking the local two dimensional array to an OpenGL texture, we effectively
tell OpenGL to obtain the image input from the two dimensional array whenever a
new image is ready. We define a function, DisplayFunction(), which is in-
voked whenever OpenGL is notified that a new frame is ready and which refreshes
the display. Besides displaying the image on the monitor, DisplayFunction()
also invokes our function outputImage() where we pass the two-dimensional
image to ITK, but other ITK functions could be added here for real-time analysis.

#include "itkImage.h"
#include "itkImportImageFilter.h"
#include "itkImageFileWriter.h"

class ITKCode {
public:
 typedef unsigned char BytePixelType;
 typedef itk::Image <BytePixelType, 2> ByteImageType;
 typedef itk::ImportImageFilter <BytePixelType, 2> Im-

portFilterType;
 ImportFilterType::Pointer importFilter;

 typedef itk::ImageFileWriter< ByteImageType > Writer-

Type;
 WriterType::Pointer writer;

 char filename[10];

 ITKCode(int x, int y) {
 importFilter = ImportFilterType::New();
 ImportFilterType::SizeType size;
 size[0] = x; // size along X
 size[1] = y; // size along Y
 ImportFilterType::IndexType start;
 start.Fill(0);
 ImportFilterType::RegionType region;
 region.SetIndex(start);
 region.SetSize(size);
 importFilter->SetRegion(region);

 double origin[2];
 origin[0] = 0.0; // X coordinate
 origin[1] = 0.0; // Y coordinate
 importFilter->SetOrigin(origin);

Wang, Chang, Stetten

 double spacing[2];
 spacing[0] = 1.0; // along X direction
 spacing[1] = 1.0; // along Y direction
 importFilter->SetSpacing(spacing);

 writer = WriterType::New();
 writer->SetInput(importFilter->GetOutput());
 }

 void outputImage(unsigned char* greyScaleTextureData,

int x, int y, int count) {
 importFilter->SetImportPointer((BytePixelType*)

greyScaleTextureData, x*y, false);
 sprintf (filename, "%d.tif", count);
 writer->SetFileName(filename);
 try { writer->Update();}
 catch(itk::ExceptionObject & exp)
 { std::cerr << "Exception caught !" ;}
 }
}

The greyScaleTextureData variable is the two-dimensional array containing

the image frame. The x and y variables are, respectively, the number of pixels in the
x and y dimensions. Finally, the count variable allows sequential numbering of
output files. The outputImage() function connects the two-dimensional array to
an ITK import filter which then pipes the output to an ITK writer. For the sake of this
proof-of-concept test, the writer sends the image frame, uncompressed, either to the
internal hard drive or through a USB 2.0 connection to an external hard drive. In the
results section, we review the performance of these two systems.

4 Results

We tested the above setup and code on a Dell LatitudeTM with an Intel PentiumTM 2.4
GHz CPU and 512 MB of RAM where each image frame is set at 512 x 512 pixels.

Our initial use for ITK was simply to store the data, and as such we were limited
by the rate of actually writing to the disk. Table 1 shows that at approximately 20
frames per second (0.05 seconds per image), the computer was unable to keep up with
writing to the internal hard drive (0.067 seconds per image in one trial and 0.084
seconds per image in another). The situation improved by writing to an external hard
drive. However, the computer was only just barely keeping up when writing to the
external hard drive (0.060 and 0.047 seconds per image). The burden on the system
was also demonstrated by the between-frame lag displayed by the real-time ultra-
sound video.

Real-Time Ultrasound Image Analysis for the Insight Toolkit 5

Table 1. System performance with various system parameters on a Dell Latitude with an Intel
Pentium 2.4 GHz CPU and 512 MB of RAM where each image frame is set at 512 x 512 pix-
els. (HD=hard drive, Int.=internal, Ext.=external, Fps=frames per second).

HD Fps Seconds Images Sec/Image Video Quality
Int. 20 3.956 47 0.084170 Lots of lag
Int. 20 16.073 239 0.067251 Lots of lag
Ext. 20 2.553 54 0.047278 Lots of lag
Ext. 20 43.793 734 0.059663 Lots of lag
Ext. 10 20.219 213 0.094925 Smooth
Ext. 10 304.398 3133 0.097159 Smooth
Ext. 10 58.404 590 0.098990 Smooth

Writing the images at approximately 10 frames per second (i.e., writing every

other frame), allowed the system to output these images at a rate that did not over-
whelm the system. The images were written at approximately 0.096 seconds per im-
age, near the expected 0.10 seconds per image, and the ultrasound video was smooth.

5 Conclusion

We have successfully linked an ultrasound scanner with ITK in real-time without
requiring conversion to and from a video signal. We share the data within the actual
computer used by the ultrasound scanner. Although we have only used ITK here to
write to disk, and as such have been limited by the transfer rate at that point, we feel
that real-time image processing of ultrasound images is possible, especially if all the
original data does not need to be stored. ITK appears to be a promising software ar-
chitecture for such real-time image processing. In the future, we plan on using this
architecture to run various image analysis and manipulation algorithms already pre-
sent in ITK as well as those that we are writing ourselves.

References

1. Douglas Christensen, Ultrasound Bioinstrumentation, John Wiley and Sons, 1988.
2. J. Harness and D. Wisher, Ultrasound in Surgical Practice: Principles and Clinical Applica-

tions: 1st Ed. pp 40-60. Wiley-Liss, New York, 2001.

