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Abstract. In knowledge generating production processes such as intelli-
gence gathering and news reporting, the quality of the result produced by
a given activity depends on its duration, and, due to resource limitations
and process deadlines, tradeoffs must invariably be made regarding how
much time to devote to various activities to achieve maximum overall
effect. In essense, some activities must be executed in faster time cycles
than would be desirable under non-constraining circumstances, with con-
sequent degradation of process quality. In this paper, we consider this
type of scheduling problem, which we refer to generally as quality max-
imization. Starting with normal resource-constrained project scheduling
problem (RCPSP) assumptions, we define a new type of scheduling prob-
lem by additionally associating a quality profile with each activity in the
project. Quality profiles have an “anytime” property, implying that ac-
tivities can be terminated at any point, with the quality of the output
being proportional to duration. Instead of finishing all activities as fast
as possible, the goal of scheduling in this context is to maximize the
overall quality given a hard project due date. We formulate this quality
maximization problem as a constraint-based optimization problem, and
present a new constraint posting algorithm for solving this problem that
incorporates a linear optimization program. Different constraint post-
ing heuristics are defined and evaluated on a set of quality maximization
RCPSP problems constructed from standard reference RCPSP problems.
The experimental results show the overall effectiveness of our approach
for generating schedules to maximize quality. And ratio-based heuristics
provide a promising starting point for stochastic sampling or other sched-
ule refining techniques by solving 100% problems without backtracking.

1 Introduction

In the past few years, constraint satisfaction problem solving (CSP) techniques
have been successfully applied to several classes of scheduling problems[1-8].
Most of this work has focused on generating feasible schedules, or on optimizing
some traditional scheduling performance measure such as makespan or weighted
tardiness. Another important, but typically ignored, performance objective in
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many practical domains is that of maximizing the quality of the outputs (or prod-
ucts) of scheduled processes. Quality maximization scheduling problems are par-
ticularly prevalent in so-called knowledge-intensive production processes, where
knowledge products are created and manipulated by shared (typically human)
resources to meet demands within tight deadlines. Such processes exist within
such settings as news reporting, intelligence gathering, and new product research
and development.

Consider the process of creating an issue of a weekly news magazine. Sev-
eral different types of activities need to take place: information gathering, data
analysis, writing, editing, confirming and duplicating sources, responding to late-
breaking events, etc. Activities have causal inter-dependencies and in many cases
are also competing for the same resources. For example, the writing of a news
story must precede any editing, and the fact that multiple news events are being
covered will create contention for available news personnel. The quality of many
activities will be a function of the time that can be devoted to it: a story written
in an hour by a news correspondent will be lower quality than it would be if a
day was spent on it. Given the production deadline associated with publishing
the next issue, decisions will invariably need to be made regarding which activ-
ities to spend more time on, and the best decisions are those that maximize the
quality of the final content of the issue.

Such a production process can be seen generally as a project, and can be mod-
elled as an extended resource constrained project scheduling problem (RCPSP)[9].
In addition to the normal set of constraints included in the definition of RCPSP,
a specification of each activity’s expected productivity is also incorporated. Anal-
ogous to the concept of performance profiles in anytime algorithms, a quality
profile is associated with each activity, which specifies the quality of the associ-
ated activity’s output as an increasing function of time. Hence, an activity can
be terminated at any time (subject perhaps to a required minimum duration),
with an output quality proportional to its duration. We refer to this extended
RCPSP as the Quality Maximization RCPSP (QM-RCPSP). Whereas under
standard RCPSP formulations, the goal is to establish resource-feasible activ-
ity start (end) times that optimize make-span or on-time performance assuming
fixed durations, the objective in the QM-RCPSP is to determine activity du-
rations that maximize overall output quality given project release and deadline
constraints. In the simplest case, overall output quality is defined as the sum of
the output quality of each individual activity.

In this paper, we propose a precedence constraint posting (PCP) procedure
for solving this quality maximization scheduling problem and investigate initial
constraint posting heuristics for producing good quality solutions. Our approach
draws on two complementary results from previous research. In [10] a PCP
procedure for iteratively transforming a time-feasible solution into a resource
feasible solution by successive “levelling” of resource conflicts is shown to provide
an effective basis for solving difficult instances of RCPSP/Max (an extended
version of the RCPSP formulation considered here that additionally incorporates
minimum and maximum time lags between pairs of activities). Given this result
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and the related nature of QM-RCPSP, we adopt this basic schedule generation
framework. A second element of our approach is drawn from more classic project
management research on the time/cost tradeoff problem[11], which addresses
the question of whether activity durations should be reduced (by using more
resources) at some increase in cost. It has been shown[12-14] that under the
assumption of linear and continuous cost function for each activity, the un-
capacitated version of the time/cost tradeoff problem can be efficiently solved
to optimality. Noting the similarity of this computation to the computation
required to compute maximum quality durations in a project network, we utilize
this procedure as the “constraint propagation” step of the solution procedure,
to adjust activity durations when a new precedence constraint is posted.

The remainder of the paper is organized as follows. In Section 2, we formu-
late the quality maximization problem and characterize its complexity. Then,
in Section 3, we present our constraint posting algorithm and define a set of
constraint-posting heuristics. In Section 4 we report the experimental results
that indicate the relative performance of various heuristics and give evidence of
the overall effectiveness of our approach. Related work is briefly summarized in
Section 5. Finally, in Section 6, some conclusions are drawn.

2 The Quality Maximization Resource Constrained
Project Scheduling Problem(QM-RCPSP)

Given a project composed of a set of non-preemptive activities V = {ay,...,a,},
a set of precedence constraints, a set of quality profiles and resources with limited
capacity, the quality maximization scheduling problem is to decide the start time
and the end time of each activity so as to maximize the sum of qualities of all
the activities. We use notations and make assumptions as follows:

— r;: release date for activity a;,

— D: a common deadline for all the activities, or the whole project’s deadline,

— s;: decision variable, the start time of activity i,

— e;: decision variable, the end time of activity i,

— t: current time,

— @;: output quality from activity a;, which is a non-decreasing linear and
continuous function of its duration with slope k;, i.e., ¢; = k; - (e; — 8;),

— d;: minimum duration® for activity a;,

— E: the set of edges in the precedence graph, if (i, j) € E, activity a; should
start after activity a; is completed,

— C' constant resource capacity over the entire horizon, without loss of gener-
ality, each activity is assumed to require one unit of resource.*

3 This assumption makes sense in reality because we are required to invest at least
some amount of time to each knowledge processing activity in order to guarantee
basic quality.

4 Our model can easily be extended to the problems where each activity or task can
require more than one unit of resource. In that case, we can divide an activity into
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— : objective, the total quality output from the project.
Given a schedule S = (s;,¢€;);ev, let
A(S,t) = {7, eV | 5 <t< ei}(t > O)

be the set of activities in progress at time ¢, also called the active set at time ¢.
Let
R(S,t) == |A(S,1)]

be the amount of resource used at time t. So the resource constraint is
R(S,t) < C

Then the problem can be formulated as follows:
maximize

QZZQiZZki'(ei—Si) (1)

subject to

e; <sj,(4,5) € B, (2)
R(S,t) < C, (3)
di<e—s;,i€V, (4)
ri < si,1 €V, (5)
e; < D,ieV, (6)

(2), (3), (4), (5) and (6) are precedence, resource, minimum duration, release
date and due date constraints respectively.

2.1 Complexity Analysis

For the single capacity (C' = 1) problem, there exist a polynomial algorithm to
solve it optimally.The main idea is to greedily schedule all activities assuming
their minimum duration and expand some of the activities in the best way to
fill in all the idle periods.®

several sub-activities, each of which requires one unit of resource and has a quality
curve with a smaller slope, and add temporal constraints to synchronize the sub-
activities’ start and end times.

an idle period is the period of time in which no activities are running; oppositely, the
period of time in which one activity is running is called a busy period. So idle period
is the time between the end time of a busy period and the start time of next busy
period, or between the end time of the last busy period and the project deadline.
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Algorithm for Single Capacity Problem
Input:A set of activities and the constraints.
Output: An optimal schedule.
1. Output:use a greedy approach to schedule all activities assuming their minimum duration:
2. start at earliest release date
3. schedule an activity from a set of ”eligible” activities at current time t: i.e.
(1) the activity whose release date is reached
(2) all of its predecessors have been finished
4. while there are some idle periods in the current schedule, start backward from the due-date
5 for each idle period:
6. find the activity who has the maximum quality slope and is before the idle period
7 increase its duration until this idle period shrinks to zero
8. Return current schedule

Fig. 1. Algorithm for Single Capacity Problem

The complexity of this algorithm is O(n?). Please refer to appendix A for
the proof of correctness and complexity analysis.

However, the multiple capacity (C' > 1) problem can be proved to be NP-
complete. Please refer to appendix B for the proof of complexity.

3 A Constraint Posting Algorithm for Solving
QM-RCPSP

We adopt a precedence constraint posting (PCP) approach to solve our quality
maximization scheduling problem (QM-RCPSP), motivated by the effective prior
use of this type of algorithm in standard RCPSP contexts[10]. Since our goal is to
maximize quality, we adapt the traditional PCP framework to take advantage of
an optimization procedure for solving the related time/cost tradeoff problem[11].
We first define our basic PCP procedure, and then propose several constraint
posting heuristics.

3.1 The Precedence Constraint Posting Framework

Following the tradition in previous PCP work, we begin by defining the notion
of a contention peak.

Definition 1. Given a schedule, a contention peak (or simply a peak) is a
set of activities, each of which simultaneously requires one unit of resource and
whose total resource requirement exceeds the resource capacity in the time window
[t1,t2], the length of a peak is (t3 — t1).

As usually formulated, a PC'P scheduling procedure acts to transform a
time feasible solution into a resource feasible solution by eliminating all con-
tention peaks. At each step of the search, a peak is selected for “levelling”, and
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a precedence constraint is posted between some pair of activities in the peak
to achieve this effect. Each time a constraint is posted, constraint propagation
is performed, to compute new activity start and completion times and confirm
that the solution is still feasible.

» Sub-procedure 1: Return
Project - ;
Nethvork LP Optimization failure

Return aschedule

Sub-procedure 2:
Precedence
Constraint Posting

Resource feasible?

Output the schedule

Fig. 2. The Precedence Constraint Posting Framework

In the case of QM-RCPSP, however, the situation is somewhat different. If
we ignore the resource constraint of the problem, we are left with essentially the
time-cost tradeoff problem. In brief, the time-cost tradeoff problem is a classical
variant of RCPSP which considers the option of speeding up an activity by
spending more on it. The goal is to meet the project’s due date, while minimizing
total crashing costs. If the cost function for each activity is linear and continuous,
the problem can be optimally solved in polynomial time by linear programming.
[12-14].

Given this result, we can reformulate the PC'P procedure to be one of trans-
forming an initial “quality optimized” initial solution into a resource-feasible
solution that optimizes quality through elimination of contention peaks. Essen-
tially this corresponds to replacing the traditional constraint propagation step
with a corresponding call to an LP Solver to solve the time/cost tradeoff problem
for the current activity precedence graph. If the LP solver returns a solution,
it will be the optimal quality solution for this graph. If it returns failure, then
the search has reached an infeasible state. The PCP framework is illustrated in
Fig. 2 and the algorithm procedure is described in Fig. 3.

3.2 Constraint-posting Heuristics

We propose two classes of constraint-posting heuristics: Peak-Driven heuristics
and Quality Loss Look-ahead Heuristics. Following traditional formulations of
PCP scheduling procedures, Peak Driven Heuristics first select a peak based
on some feature from the peak and then determine a pair of activities in the
peak to sequence. Quality loss look-ahead heuristics, alternatively look at all
conflicting activities in current schedule, select the activity most likely to lead
to minimal degradation of quality, and then look for a second competing activity
to sequence.
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Heuristic-based Constraint Posting Algorithm

Input: A set of activities with constraints.

Output: A solution or failure

1. loop

apply linear programming solver to find infinite capacity optimal solution
3 if there is no temporal feasible solution
4 then return failure

5. else begin
6
7
8

N

detect contention peaks
if there is no peak
then return solution

9. else constraint posting: sequence a pair of activities in some peak
10. end
11. end-loop

Fig. 3. Heuristic-based Constraint Posting Algorithm

Peak Driven Heuristics Observing that an activity’s length is closely related
to the quality contribution from itself and the other activities running in parallel
with it, peak length would seem to be a reasonable peak selection criterion.
We consider three possibilities: longest peak, shortest peak and random (length
doesn’t matter).

After choosing a peak, we intuitively prefer to post constraints between ac-
tivities in this peak with smallest quality slopes (k;) because shrinking these
activities would seem to lead to the smallest quality loss. But let us consider
an activity already at its minimum duration. It can not be shrunk at all, and
from its slope we can’t say anything about quality loss. Given this observation,
we define a second activity selection heuristic by introducing duration into the
activity selection criterion. Specifically we choose the activities with the largest
ratio of “reducible duration” to slope(%i;di), where the reducible duration of
an activity is the amount greater than its minimum duration. From this choice,
we actually bias on the choice toward activities with small slope and long re-
ducible duration. In all cases, the two selected activities are sequenced according
to the rule of Earliest Start Time First. Altogether, we list the possible heuristics
in Table 1.

Quality Loss Look-ahead Heuristics This set of heuristics focuses directly
on posting the constraint that leads to minimal quality loss. The first activity is
selected from some peak according to either the criterion of slope or ratio. The
second activity selection and sequencing decision are based on one criterion—
quality loss. Quality loss is the difference of the two optimal® quality values

5 Here, optimality means the solution for the problem assuming no limits on resource
capacity. It is solvable by LP, as we mentioned before.
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Table 1. Peak Driven Heuristics

Heuristics Peak Selection Activity Selection in the peak Sequence

LPF-slope LongestPeakFirst SmallestSlopes EarliestStartTimeFirst
RPF-slope RandomPeakFirst SmallestSlopes EarliestStart TimeFirst
SPF-slope ShortestPeakFirst SmallestSlopes EarliestStart TimeFirst
LPF-ratio LongestPeakFirst LargestRatios EarliestStart TimeFirst
RPF-ratio RandomPeakFirst LargestRatios EarliestStart TimeFirst
SPF-ratio ShortestPeakFirst LargestRatios EarliestStartTimeFirst

from the problems with and without the candidate precedence constraint re-
spectively. The optimal quality will remain unchanged or degrade after posting
one constraint. We try to minimize the degradation—quality loss. To compute
it exactly, we can run the linear programming solver(LP) twice (before and after
posting a given constraint), but this is very costly in computation time. Hence,
we design the following estimation methods.

Quality Loss Estimation Method 1 - Loss Only

Suppose we choose the partially overlapped activity pair < a,b >. Without
loss of generality, we assume they have slopes k, > ky, start times s, and s, end
times e, and ep, minimum durations d, and d;. Based on the relative position
of a and b, we can either sequence a before b or b before a, and then shrink «
or b or both to eliminate the overlapping. If we assume all other activities’ start
times and end times are fixed in the solution with the newly posted constraint,
then the minimum quality loss can be estimated from resolving the resource
conflict locally. For different relative positions of a and b, we use a general form
to compute the estimated minimum quality loss. Let A;,ss be the quality loss
due to a’s duration change, Br,,ss be the quality loss due to b’s duration change.

QualityLOSS = Aloss + BLoss (7)

If sp — 84 > €4 — ep, then sequence a before b, so

Aloss = ko * [mazx{eq + dp, ep} — €p] (8)

Bross = kp * [min{e, — dp, €} — Sp] (9)
If sy — sq < eq — €p, then sequence b before a, so

Aposs = ko * [max{sy + dp, 50} — Sa (10)

Bloss = kp * [es — maz{sq, sp + dp}] (11)

We illustrate the estimation method with an example in Fig. 4. Because
Sp — Saq < €q — €p, we use the formula in equations (10) and (11). As shown in
Fig. 4, sp + dp > s4, so the quality loss can be estimated as follows:

Aloss = ka * [sb + db - Sa}
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Bross = ky * [ep — sp — db)
QualityLoss = Ajoss + BLoss

From observation, we can see the best quality solution is to sequence b before
a, shrink b’s duration to minimum duration, and shrink a’s duration a little
bit to leave enough space for b. This corresponds to the above computation.
Actually, the best quality solutions for all possible relative positions of a and b

BEFORE a AFTER

a | a | |

| b b
e dp Ab

Fig. 4. An Example for Quality Loss Estimation

are generalized in equations(7-11). If the durations of all other activities remain
unchanged after re-optimization on the new problem (with the newly posted
constraint), the above quality loss estimation will be the actual quality loss.
However, in most cases, if we post a new constraint, the other activities will
change, too. Thus this method only provide an estimate.

Quality Loss Estimation Method 2 - Gain Only

In the above quality loss function, we ignored some quality gain from a
and b’s predecessors or successors. If a shrinks by Aa and b shrinks by Ab, a’s
predecessors or successors can grow longer up to Aa, similarly, b’s predecessors
or successors can grow longer up to Ab. Let the sets of activities which are likely
to grow longer be Set, and Set,. For example, in Fig. 2, Set, is the set of activity
a’s predecessors, and Sety, is the set of activity b’s successors. The quality gain
can be given as follows:

QualityGain = Z ki x Aa + Z k; x Ab

i€Set, i€Sety

We notice that the computation of quality gain is overly optimistic because
the activities can be constrained by their other successors or predecessors so
that they may not be able to be stretched. However, quality gain also includes
the slope information about this activity’ predecessors or successors. It is thus
actually an indicator of how “connected” this activity is with other activities.
Instead of minimizing quality loss, a heuristic that strictly relies on QualityGain
selects the most connected activity with largest quality gain.

Quality Loss Estimation Method 3 - Loss and Gain If we subtract
the quality gain from the above quality loss function, the modified quality loss
estimation function is as follows:

QualityLoss = k, x Aa + ky * Ab — Z k; x Aa — Z k; x Ab

i€Set, i€Set,,
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Altogether, we list the possible heuristics in Table 2.

Table 2. Look-ahead Heuristics

Heuristics 1st Activity Selection Quality Loss Computation

for 2nd Activity Selection
Slope-Loss SmallestSlope Estimationl—Loss Only
Slope-Gain SmallestSlope Estimation2—Gain Only
Slope-LossGain SmallestSlope Estimation3—Loss and Gain
Ratio-Exact LargestRatio Exact computation by running LP twice
Ratio-Loss LargestRatio Estimationl—Loss Only
Ratio-Gain LargestRatio Estimation2—Gain Only
Ratio-LossGain LargestRatio Estimation3—Loss and Gain

We should note that the choice of the second activity and how to sequence it
with the first activity to minimize quality loss is in fact a myopic decision. When
we start with an infinite capacity solution, we actually set an upper bound for
the final solution. A good resource levelling heuristic should achieve minimum
total quality loss from that upper bound transforming an initial infinite capacity
solution into a conflict-free solution. We not only need to minimize the quality
loss from posting one constraint, but also need to post as few constraints as pos-
sible. Even if the quality loss from posting one constraint is very small, posting
too many constraints can reduce quality dramatically.

4 Experimental Evaluation

Because there are no benchmark quality maximization scheduling problems, we
adapted a single mode resource constraint project scheduling benchmark prob-
lem set” to produce a test data set including 400 problems. We used the prece-
dence constraints defined in that problem set. Each problem has 32 activities.
And 32 uniformly distributed random integers in the range [1, 50] were generated
to represent the slopes for each problem. The algorithms were implemented in
Visual C++ 6.0, and LINGO 8.0 was used as the LP solver®. The CPU time pre-
sented in the following tables were obtained on a Pentium IV-2.40 Ghz processor
under Windows XP. We set capacity = 5, due date = 20, minimum duration = 1.
Uniformly distributed random integers in the range [0, 5] were generated to rep-
resent the release dates for each problem®. In the following tables, we compare
the performance of heuristics based on following measures:

" http://www.bwl.uni-kiel.de/Prod/psplib/data.html. Filename: j30.sm

8 http://www.lindo.com

9 We choose this range for release dates in order not to make the temporal constraints
too tight guaranteeing that feasible solutions exist for all the problems.
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1. quality(%). The average percentage quality'® normalized to the infinite ca-
pacity solution. Infinite capacity solution gives us the upper bound for ca-
pacitated problem.

2. runtime(sec). The average CPU runtime to reach a solution for one problem.

3. constraints. The average number of posted constraints to reach a solution
for one problem.

4. solved(%). The percentage of problems solved, where a solved problem means
the heuristic is able to find a resource feasible solution without backtracking.

Table 3. Results for the 400 problems assuming capacity = 5

Quality(%) Runtime(sec.) Constraints Solved(%)

LPF-slope 81.6442 1.35 9.29 98.75
RPF-slope 80.1333 1.61 11.07 99
SPF-slope 80.5363 1.20 8.22 98.75
LPF-ratio 77.4414 1.17 8.91 100
RPF-ratio 76.8603 1.15 8.42 100
SPF-ratio 76.8206 1.01 7.36 100
Ratio-Exact 79.4066 59.96 23.33 100
Ratio-Loss 78.9652 2.76 20.18 100
Ratio-Gain 76.5093 1.42 9.73 100
Ratio-LossGain 77.7703 1.56 10.62 100

From the results in Table 3, we can make several observations:

— solved Although there is only a slight difference among the heuristics, all
ratio-based heuristics solve 100% of problems, while none of slope-based
heuristics do. Here is the explanation. If the criterion is slope, a subset of
activities will be selected and shrunk again and again due to their small
slopes. In the end, they are sequenced and congested on one path in the
precedence graph from the first activity to the last activity and all of them are
already at or approach minimum durations. Then, if some of them already
at minimum durations are selected to be shrunk again, failure is reported. If
the criterion is ratio, after the smallest sloped activity is selected and shrunk,
it is less likely to be selected in next posting. The activities approaching or
at minimum durations are balanced on different paths from the first activity
to the last activity. So the ratio-based heuristics tend to avoid infeasibility
quite well.

— quality Based on the commonly solved problems, slope-based heuristics are
better than ratio-based heuristics, although slope-based heuristics solve fewer

10 Because some heuristics can not solve all the 400 problems, the average percentage
quality is calculated based on the commonly solved problems by all heuristics.
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problems. This indicates there exists a tradeoff between solution quality and
the percentage of solved problems. The reason is slope-based heuristics tend
to squeeze small sloped activities together in a chain, which is good to leave
space for large sloped activities so as to increase quality, but is fragile to
approach infeasibility.

runtime “Ratio-Exact” takes much longer time than others; calling the
LP solver to solve time-cost tradeoff problems is the dominant factor on
computation cost.

— constraints “Ratio-Exact” and “Ratio-Loss” post many more constraints

than others.

Note that “Ratio-Exact” does not offer any advantage over the peak-driven
heuristics with slopes, which confirms that a completely myopic decision may
not be a good choice. To test the heuristics on harder problems, we decease the
resource capacity from 5 to 3 to make our problems more severely constrained
and rerun the experiments. Because of the huge computational cost, “Ratio-
Exact” will be eliminated in the following experiments. Results are given in
Table 4.

Table 4. Results for the 400 problems assuming capacity = 3

Quality(%) Runtime(sec.) Constraints Solved(%)

LPF-slope 54.9231 2.88 21.3 49
RPF-slope 53.374 3.1 22.73 31.25
SPF-slope 53.8113 2.24 16.71 42.75
LPF-ratio 52.4253 2.98 22.01 100
RPF-ratio 51.8315 3.03 22.46 100
SPF-ratio 51.8108 2.63 19.14 100
Ratio-Loss 51.63 5.93 43.34 98
Ratio-Gain 52.9687 3.45 25.49 100
Ratio-LossGain 53.3982 3.7 27.48 100

From the results in Table 4, we can make the following observations:

— solved For these more constrained problems, the superiority of ratio-based
heuristics becomes clear. Just as we expected, they show a big advantage in
avoiding infeasibility. All ratio-based heuristics are much better than slope-
based heuristics. Except for “Ratio-Loss”, all ratio-related heuristics solve
100%, while the slope-related heuristics solve much fewer problems.

— quality For these more constrained problems, “Ratio-Loss” achieves a lower
percentage quality than “Ratio-LossGain” although it does better on less
constrained problems. This is because “Ratio-Loss” always posts more con-
straints than “Ratio-LossGain” and the negative influence on quality from
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too many redundant constraints is more severe on more constrained prob-
lems.

Finally, we examine the effects of an extended stochastic sampling search
using the best heuristic found in each group - “LPF-Slope”, “LPF-Ratio” and
“Ratio-LossGain”. For each heuristic, the base search procedure is repeatedly
restarted some number of times, and the heuristic is used to bias a random
choice at each step of the search. We adopt the value-biased sampling approach of
[15]. Table 5 indicates the average best results obtained and average cumulative
times obtained for each heuristic over 10 iterations. In these experiments, “LPF-
Slope(10 iter.)” and “LPF-Ratio(10 iter.)” randomize the peak selection heuristic
and bias the selection of contention peak. “Ratio-LossGain(10 iter.)” randomizes
the first activity selection and biases the selection on ratio.

Table 5. 10 iterations results for the 400 problems assuming capacity = 3

Quality(%) Runtime(sec.) Constraints solved(%)

LPF-Slope(10 iter.) 55.8311 30.21 21.88 74.5
LPF-Ratio(10 iter.) 55.1247 27.98 21.31 100
Ratio-LossGain(10 iter.) 55.5087 34.33 25.53 100

Using iterative random sampling, both “Ratio-LossGain” and “LPF-Ratio”
achieve comparable percentage quality with “LPF-Slope”. Although the number
of problems solvable with “LPF-Slope” is increased significantly, it still shows a
big disadvantage in this regard.

5 Related Work

Work on related quality maximization scheduling problems to date has been
rather spare. Within the operations research community some work has at-
tempted to bridge the gap between time-cost tradeoff problem solution and
scheduling under resource constraints. But this work has restricted attention
to either the non-preemptive case with discrete cost functions[16,17], or the
preemptive scheduling case[18,19]. To our knowledge, there is no work dealing
with the problem addressed in this paper, which can be seen as the resource-
constrained, non-preemptive time-cost tradeoff problem with linear and contin-
uous cost functions.

From the area of time-bounded computation, Schwarzfischer [20,21] has re-
cently explored the idea of combining anytime scheduling and deadline schedul-
ing, which he refers to as quality/utility scheduling. Like our model, this work
assumes that each activity has an anytime performance profile. However, this
work considers the problem of scheduling acyclic task networks on a single pro-
cessor, whereas our focus is on the multiple capacitated resource problem (cor-
responding to multiple processors).
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6 Conclusion and Extensions

In this paper, we have defined an extended Resource Constrained Project Schedul-
ing Problem(RCPSP)—Quality Maximization RCPSP(QM-RCPSP). We described
a new constraint posting algorithm for solving this problem that incorporates a
linear program for optimally solving the related time-cost tradeoff problem.

Several heuristics have been proposed and tested. The peak-driven heuristics
with simple slope-driven activity selection are found to yield fairly good quality
performance for those problem instances that they are able to solve. However, on
harder (more-severely constrained) problems, the percentage of problems that
are solvable using these simple heuristics degrades significantly. Instead, the ratio
based heuristics for activity selection show their big advantage in solving 100%
or near 100% of the problems in all cases. This is a promising result because
if we can easily get a feasible schedule, many other search techniques can be
applied to improve upon this initial schedule; some initial indication of this is
given in our experiments using stochastic sampling. These results also indicate
that there exists a tradeoff between solution quality and the percentage of solved
problems.

Another interesting result is when we try to make a better look-ahead qual-
ity loss prediction, we find the prediction that includes an overestimated quality
gain can actually achieve comparable percentage of quality while posting much
fewer constraints and saving significant computational time. The reason is it
actually biases the search toward the more connected activity (the activity with
more valuable successors or predecessors). The search benefits from this bias
in terms of fewer posted constraints. Just as we see, “Ratio-Loss” always posts
more constraints than “Ratio-LossGain” and “Ratio-Gain”. When the search is
completely guided by the quality gain just as the “Ratio-Gain” does, the solu-
tion isn’t improved further than “Ratio-LossGain”. So we conclude that com-
bining the information from the activities for which we are considering posting a
constraint between and their connectivity with other activities achieves a good
tradeoff among all the performance measures.

In the future, we will extend our research in the following directions.

— Multiple projects. In this paper, we look at scheduling within one project, say,
creating one news story. But in a news agency, there are many story projects
going on simultaneously with different deadlines and personnel. Extension
of our procedure to handle multiple projects is one area of further work.

— More complex quality dependencies. In our current model, the only depen-
dencies among activities are precedence relationships. Quality dependencies,
which imply that one activity’s output may influence it’s successors’ quality
profiles, are more realistic. In that case, instead of a simple summation form,
the objective will be a more complex function.

— Activity Profiles. We have assumed in this paper that the expected quality
of activities can be expressed by linear profiles. To achieve more realistic
formulations, linear profiles can be extended to non-linear profiles, and also
associated with resources. This latter extension allows for the possibility of
differentiating the skill level of different resources.
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Appendix A: Proof and Complexity for Single Capacity
Problem Algorithm

Proof. There are three cases for minimum duration schedules resulting from
greedy approach.

— Case 1. The end time of the last activity has passed deadline, then there is

no feasible solution. This is because in this single capacity problem, greedy
algorithm achieves minimum make-span schedule. If this schedule can’t meet
the deadline, no schedules can meet it.

— Case 2. There is no idle period in the schedule, then stop, obviously, the

current quality sum is the optimal value.

— Case 3. There is some idle time in the schedule.

We only need to prove the algorithm can find an optimal solution in case 3.

Activities in this area can fill g Activities in this area can NOT fill g

e di »| > 8 [«

> time

Fig. 5. Example for Single Capacity Problem

Fig.4 is a schedule in case 3, in which there are several busy periods and

idle periods. As before, we denote the minimum duration of activity ¢ as d;. We
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denote the length of an idle period j as a;, and the deadline is D, the time
horizon starts at time zero. Then

Zdi—&—Zaj =D
i J

It is clear that all the schedules assuming activities’ minimum durations have
the same amount of total idle time > a; = D — 3~ d;, and the same amount
of quality) ", k; * d;. Therefore, the key to maximize the final schedule’s quality
is to allocate the idle time to the most valuable activity which is eligible. This
is just what we did in the while loop:

Due to the greedy approach, we can’t allocate the idle time to the activities
after it(as shown in Fig.4), because they are ineligible at that time. So in the
while loop, we allocate the idle time period one by one from backward. The set
of activities before one idle period is a complete eligible candidate set including
all the extensible activities for this idle period. The activity chosen with the
maximum quality slope is the most valuable activity which is also eligible. So
we’ll reach the optimal schedule in the end. a

Complexity Assume n is the number of activities in the problem. Without loss
of generality, we assume all the release dates have been propagated according
to the precedence constraints, which means: if activityi and activityj’s release
dates are r; and r;, and (i, j) € E, we update j’s release date as max{r;,r;+d;}.
Then r; < rj, if (i,j) € E.

In the step of building a minimum duration schedule, creating an increasing
order of release dates of all the activities takes time O(nlogn). Then we work with
the activities one by one in the increasing order of release dates. If it is eligible,
allocate it into the schedule, then update the eligibility of other activities, which
takes O(n). Continue to do this until all the activities have been scheduled. So
finding a greedy solution assuming activities run for their minimum duration
needs time O(n?).

In the step of filling the idle times, we need to create a decreasing order of
all the activities according to their slopes of quality functions, which takes time
O(nlogn). Before we fill in the first idle period, we search from the head of the
ordering, and stop until we find the activity which is positioned before this idle
period. At this moment, we already know the first n; activities in that ordering
are positioned after this idle period. Because they won’t be selected in the next
steps, we delete the n; activities from the slope ordering and stretch the selected
activity to fill in the idle period. Then we do the same thing with the second
idle period and the n — ny activities in the remaining slope ordering. After all
the idle periods are filled in, the total number of searched activities is at most
n. So this step takes O(n-+nlogn).

Totally, the complexity will be O(n?).
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Appendix B: Proof of NP-completeness for Quality
Maximization Scheduling Problem

Proof. We prove this by reducing a known NP-completeness instance to this
problem.

Definition 2. Multiple Capacity Single Resource Quality Sum Problem
with Linear Quality Profile We are given a set A of activities, each activity
i having duration not shorter than d; € ZT, number C € Z* units of resource,
partial order < on A, for each activity i € A a release date r; € Z+ and common
deadline D € Z*. Can we decide the start time s, and end time €, for each
activity © to mazimize the linear quality sum, obey the precedence constraints
and meets all the deadlines?

Definition 3. Multiprocessor Scheduling with individual Deadlines We
are given a set T of tasks, each task i having length I; = 1, number m € Z% of
processors, partial order < on T, for each taskt € T a deadline D; € Z* and
a common release date zero. Is there a m-processor schedule o for T that obeys
the precedence constraints and meet all the deadlines?

Multiprocessor Scheduling with individual Deadlines is known to be NP-complete[22].
This optimization problem is harder than the problem of finding a feasible
solution satisfying all the constraints: precedence, minimum duration, resource
capacity, individual release dates and common deadline. We prove finding a
feasible solution is NP-complete.
Finding a feasible solution is in NP because the following verifier for this
problem runs in polynomial time in the number of activities n. Given a set A
of activities, if we have the values for the start time s, and the end time e} of
activity i.

Checking minimum duration constraint e — s; > d; needs O(n) time.
— Checking precedence constraint needs O(n?) time.

Checking the common deadline constraint e, < D needs O(n) time.
— Checking individual release date constraint s; > r; needs O(n) time.

To show NP-hardness, we reduce an arbitrary instance of multiprocessor
scheduling with individual Deadlines into the following instance of our problem.

Each activity in A corresponds to each task in T, the precedence direction in
A is the opposite direction of the partial order in T. Let d; = 1, D = max;(D;),
r, = D — D,L'.

Then if multiprocessor problem’s instance has a feasible solution (s;,e;), we
get e; = D—s; and s, = D —e; are feasible for the above instance of our problem.

— Check minimum duration constraint, e} — s} =e; —s;, =1 > d;;

— Check precedence constraint, s; — efj = s; —e; > 0, which is because for any
(j,1) € E(A), we have (i,7) € E(T);

— Check the common deadline constraint, ¢, = D —s; < D;

— Check individual release date constraint, s, =D —e; > D — D; = r;.



Generating Schedules to Maximize Quality 19

On the other hand, if the above instance of our problem has a feasible solution
(s}, el), we change the solution into (s}, e}), where s} is increased to s} in order
to make the duration equal to 1. (s}, e}) is still feasible for our problem instance.
Then, we get e; = D — s/ and s; = D — €} are feasible for the multiprocessor

problem’s instance.

Check duration constraint, e; — s; = €} — s} = 1;

Check partial order constraint, s; —e; = s/ — e/, > 0, which is because for
any (i,7) € E(T), we have (j,i) € E(A);

Check the individual deadline constraint, ¢; = D — s/ < D —r; = D;;

— Check common release date constraint, s; = D — e} > 0.



