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Abstract

Being able to accurately estimate an object’s pose (location) in an image is important for
practical implementations and applications of object recognition. Recognition algorithms
often trade off accuracy of the pose estimate for efficiency—usually resulting in brittle and
inaccurate recognition. One solution is object localization—alocal search for the object’s
true pose given arough initial estimate of the pose. Localization is made difficult by the
unfavorable characteristics (for example, noise, clutter, occlusion and missing data) of real
images.

In this thesis, we present novel algorithms for localizing 3D objects in 3D range-image
data (3D-3D localization) and for localizing 3D objectsin 2D intensity-image data (3D-2D
localization). Our localization algorithms utilize robust statistical techniques to reduce
the sengitivity of the algorithms to the noise, clutter, missing data, and occlusion which
are common in real images. Our localization results demonstrate that our algorithms can
accurately determine the pose in noisy, cluttered images despite significant errors in the
initial pose estimate.

Acquiring accurate object models that facilitate localization is also of great practical im-
portance for object recognition. In the past, models for recognition and localization were
typically created by hand using computer-aided design (CAD) tools. Manual modeling
suffers from expense and accuracy limitations. In this thesis, we present novel algorithms
to automatically construct object-localization models from many images of the object. We
present a consensus-search approach to determine which parts of the image justifiably con-
stitute inclusion in the model. Using this approach, our modeling algorithms are rel atively
insensitive to the imperfections and noise typical of real image data. Our results demon-
strate that our modeling algorithms can construct very accurate geometric models from
rather noisy input data.

Our robust algorithms for modeling and localization in many ways unify the treatment
of these problems in the range image and intensity image domains. The modeling and
localization framework presented in thisthesis provides a sound basis for building reliable
object-recognition systems.

We have analyzed the performance of our modeling and localization algorithms on awide
variety of objects. Our results demonstrate that that our algorithmsimprove upon previous
approachesin terms of accuracy and reduced sensitivity to the typical imperfectionsof real
image data.
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Chapter 1

| ntroduction

Object recognition remains one of the central problemsinthefieldsof artificial intelligence
and computer vision. The standard definition of the object-recognition problemisto identify
and locate instances of known objectsin an image [4, 23, 109]. That is, we do not smply
desireto know that an object existsin theimage, but that we al so need to know whereitisin
theimage. This location or positional information is commonly referred to as the object’s
pose.

Knowledge of an object’s pose has many important applications; it enables us. to
reason about the image scene, to interact with objects in the scene, to analyze geometric
relationships between objects in the scene, and to describe the scene for later synthetic or
physical reproduction.

Pose is also fundamental for practical object-recognition algorithms—impacting both
the accuracy and efficiency of these algorithms. Pose allows us to improve recognition by
enabling us: to accurately verify an object hypotheses using, for example, a project and test
strategy; to efficiently recognize time-varying image sequences via object tracking; and to
detect and reason about partial occlusion.

When we say that knowledge of the pose isimportant for applicationsin object recogni-
tion, we should qualify that by saying accurate knowledge of the poseisimportant. Object
verification [50] isavery difficult problem for recognition algorithmswhen poseis perfectly
known. If the pose is inaccurate, verification becomes a highly unreliable operation and
recognition efficiency and accuracy will be affected. Likewise, applications that rely on
knowing where the object iswill also fail when the pose error istoo large. Thus, we claim
that determining accurate pose is a fundamental requirement for object recognition.

Accurate knowledge of pose is also crucial for object tracking. Tracking is a simpli-
fication of the object-recognition problem. In the case of tracking, we know roughly the
position of the object in the image using a prediction from previous image observations.
Thus, an efficient local search can be used to find the new object position and verify it.
Tracking ability has great implications for practical recognition in the case of image se-
guences. If we can reliably track objects, we must perform full scale recognition only on
parts of images that contain something new.
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Unfortunately, much work on object recognition neglects the problem of accurately
computing the object’s pose. There are a wide variety of techniques for recognition that
give identity of objects and their rough pose (see Chapter 6 for a discussion of these).
Because of the highly unfavorable combinatorics of recognition, recognition algorithms
must often sacrifice pose accuracy (and, hence, recognition accuracy) for efficiency. The
best example of this is the alignment algorithm [70]. The alignment algorithm searches
for minimal sets of matches between image and object features to align a 3D object to a
2D image. Grimson and Huttenlocher [50] have shown that the resulting uncertainty in
the pose (when using a small number of matches) is enough to make verification prone
to frequent failure. For example, under realistic uncertainty in the location of featuresin
an image, an agorithm which estimates the position of the object using 3 or 4 point or
line segment matches may be off by 20 or more degrees in rotation. Thus, the predicted
positions of other features of the object will be significantly affected—resulting in avery
low probability to correctly verify the presence of the object in the image. The solution is
to search for more feature correspondences (create an over-determined system); however,
this results in combinatorial explosion which is what we were trying to avoid in the first
place.

The solution to this tradeoff problem is localization'—alocal search for the true pose
given the rough pose of an object in an image. If localization can be done efficiently and
reliably, recognition algorithms like the alignment algorithm and others will eventually
become practical in terms of accuracy and efficiency. In addition, a solution to localization
isimmediately useful as a solution to the tracking problem. Localization is fundamentally
equivalent to the object-tracking problem. Intypical tracking systems, theobject’sestimated
velocity and acceleration is used to better predict the object’s current position. From that
predicted position, a localization search is performed. Localization is a bit more general
than object tracking in that no information other than the object’s identity and pose is
assumed to be known.

This thesis presents solutions to the localization problem in the two most prevalent
sensor modalitiesin thefield of computer vision: the rangeimage (3D) and intensity image
(2D) modalities. Specifically, we present novel techniques for localizing 3D objectsin 3D
range-image data (3D-3D localization) and for localizing 3D objectsin 2D intensity-image
data (3D-2D localization). The solutions presented here in many ways unify the treatment
of the two domains.

This thesis also addresses another fundamental problem of recognition, tracking and
localization: model acquisition. In the past, models for recognition and tracking have
typically been manually created using computer-aided design (CAD) tools. Manual mod-
eling suffers from expense and accuracy limitations. The modeling solutions presented
in this thesis automatically construct object-localization models from real images of the
object. These modeling solutions are insensitive to the noisy datatypical of real image data
(for both range and intensity images). Robust model acquisition is achieved by searching

1The term localization has previously been used in [52] to denote the complete object-recognition task
(from image to object identity and pose). Here we use the localization as a synonym for pose refinement and
distinguish it from the task of object indexing and hypothesis generation.
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for consensus information among the views to determine which image features justifiably
constitute an element in the model. Together, the modeling and localization framework
presented in thisthesis provide a sound basis for building reliable recognition and tracking
systems.

This thesis makes the following contributions:

e Robust 3D surface model construction with the consensus-surface algorithm.

Robust 3D-3D and 3D-2D object localization by performing M-estimation using
dynamic correspondences.

Robust 3D edgel model construction with the consensus-edgel algorithm.

Treatment of occluding contoursin 3D-2D localization.

3D-2D localization performed in three dimensions, unifying the localization search
for the 3D-3D and 3D-2D domains.

1.1 Notation, Terminology, and Assumptions

Beforejumping into the technical portion of thisthesis, it is prudent to specify the notation,
terminology, and assumptions which will be used throughout thisthesis. Much of thiswill
be familiar to computer-vision and object-recognition researchers, however, some of the
terminology may have dightly different meanings than used elsewhere.

1.1.1 Mathematical Notation

First, welist afew of our mathematical notations and notes:

e Vectorsarein boldfacetype: x isavector, x isascalar.

¢ Unit vectors have the hat symbol: % isaunit vector, x may not be.

e Matrices are capitalized and in boldface type: M isamatrix, I istheidentity matrix.
¢ x Will be used to denote model points.

¢ u Will beused to denote 3D image coordinates (before projection to two dimensions).

e U will be used to denote 2D image coordinates (note, thisisthe only vector that will
be capitalized).

¢ y Will be used to denote image points.

e Vectors should be assumed to be three dimensional unless otherwise noted.
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e Pairsor tuples will be denoted using the angle brackets (.) (e.g., (x,y) denotes the
pair of vectorsx and y).

¢ p will be used to denote the object’s pose.

e The 3D rigid transformation defined by the pose p may be specified by one of the
following notations:

— simply by p
— by arotation and trandation pair (R, t) where R isa3 x 3 rotation matrix and
t isa 3D trandation vector.

— by theequivalent homogeneoustransformation R where R istheequivalent 4 x 4
homogeneous transform matrix and the point being transformed is assumed to
be extended to 4D homogeneous coordinates (i.e., by placing a1 at the end of
the 3D vector)?.

1.1.2 Terminology

We now define some of our terminol ogy.

We will often refer to range images (sometimes known as depth images). Here, arange
image is assumed to be a 2D view of a scene in which each image pixel contains the 3D
coordinate of the scene in someworld or camera coordinate system. The coordinate system
should be assumed to be Euclidean.

We will often discuss intensity edges extracted from intensity images. An edgel is an
individual point or edge element along an edgechain. Typically, an edgel will berepresented
by apair <U, f:> where U areimage coordinates of the edgel and t is its tangent direction,
again in image coordinates. The edgel chain is usually extracted from intensity images
using one of many edge operators (e.g., Canny [16] or Deriche[30]). For an example of an
edgel, see Figure 1.1(a).

A 3D edgel denotes the extension of a 2D edgel to an oriented point in 3D space. It
is denoted <x, f:> where x are the 3D coordinates of the edgel and t isits (3D) tangent
direction. Figure 1.1(b) shows an example of this. An edgel generator denotes the point
on an object which produces the image of the (2D) edgel in the intensity image.

For intensity edge images, Breuel [14] used the terms attached and non-attached to
distinguish between two types of edgels. Attached edgels refer to those detected edgels
which are attached to the surface of an object (e.g., a surface marking or corner). Non-
attached edgels refer to those detected edgels which belong to occluding contours of the
object, and appear to float across the surface of the object asit is rotated.

As mentioned previously, the object’s six location coordinates are collectively referred
to asits pose. Again, localization—also known as pose refinement®*—is alocal search for

2The homogeneous notation will be used in place of <R, t> for brevity when discussing a transformation
as asingleentity.
3The terms pose refinement and localization will be used interchangeably throughout thisthesis.
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Figure 1.1: An example of (@) 2D image edgels and (b) 3D edgels or edgel generators.

the true pose given the rough pose of an object in an image. 3D-3D localization refers to
the process of localizing 3D objectsin 3D range-image data. 3D-2D localization refersto
the process of localizing 3D objects in 2D intensity-image data.

1.1.3 Scope and Assumptions

We now briefly list some of the assumptions we make for the algorithms and experiments
described inthiswork. Our main assumptions are practical limitationsof the type of objects
that may be used and a requirement for calibrated cameras and range sensors.

Our first assumption is that we only address the problems of modeling and localizing
rigid, 3D objects. This means we consider objects with six degrees of freedom, three
rotational and threetrandational. Thisthesisdoes not addressissues related to deformable,
non-rigid or generic objects. While not totally general, rigid objects do account for quite
alarge segment of everyday objects. Rigid object modeling and localization is still avery
important area of current research with many applications. We view therigid object case as
an important first step which must be solved before considering completely general classes
of objects. We al so assume the the objects are opague and do not contain significantly large
portions of high frequency texture with respect to our sensors.

Lastly, we assume that we are working with cameras and range sensors which are
calibrated. The intrinsic sensor parameters must be known for us to be able to predict an
object’s appearance, using a 3D model of the object, in the sensor’s images.

Our modeling work assumes that we have a calibrated object positioning system (details
described in Chapter 2 and Appendix A), which limits the size of objects we may model
to those that are mountable on a robot’s end effector. We believe that this limitation will
soon be obviated with more work on view alignment (as will be discussed in Chapter 7)
and improvements in the area of structure from motion.
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1.2 Philosophical Background

We take a few paragraphs to describe some of the high-level issues and ideas which drive
thiswork.

1.2.1 Consensus

One of thekey ideaswhich isembodied by our approachto object modeling and localization
istheidea of consensus. For modeling from real data, consensus is the key to robustness.
Because of the typical data from our sensors, no single measurement can be trusted.
However, in sufficient numbers, several independent measurements of the same feature
(e.g., asurface point or edgel) can be considered quite reliable.

Consensusisalso subtly important for localization. Thekey for model based recognition
and localization is the over-constrained nature of the problem (i.e., more constraints than
free variables). Localization works because the consensus of the image data usually guides
thelocal search to the true object pose.

1.2.2 3D vsView-Based M odel Representations

Animportant decision iswhether to use view-based (2D) modelsor full fledged 3D models.
For recognition and localization in 3D image data, 3D models are obvioudy desirable.
For recognition and localization in 2D images, there exists an ongoing debate between
using many sample 2D views as the model or constructing a monolithic 3D model. One
advantage of basic view-based methodsis that model acquisition is trivia—take an image
and add it to the collection. The problem isthat an arbitrarily large number of images may
be necessary to build a complete model of appearance. The model is only as good as the
sampling resolution. For rigid, 3D objects, we will usually have six degrees of freedom
over which to sample views. If we then consider lighting variations and camera model
variations, the number of required samples can quickly become unmanageable.

Some view-based methods go alittle further and try to alleviate the sampling problem
by interpolating between views. This requires a complete set of correspondences between
two views—thisis not possible in general (see Chapter 6 for a discussion of this problem).
Foreground/background separation becomes an important issue for modeling from real
images; manua segmentation (i.e., selection of object features from the images) may be
required.

3D models have the advantage that one model can be used to predict appearances with
respect to all possible variations of pose, camera models, and illumination (if known a
priori). Verification, localization and tracking can be accomplished with a 3D model asthe
change in appearance can be smoothly predicted with respect to changesin pose. Themain
detraction of monolithic 3D models is that they are difficult to construct. Automatically
or semi-automatically constructing accurate 3D models from real images is a non-trivia
problem. As we are already considering the problem of building 3D models for 3D-3D
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localization, the acquisition of 3D models for localization in 2D images can be made
practical aswe shall show in thisthesis.

1.2.3 Point-Based Models

Another philosophical issue is the type of models to use for these localization tasks. Our
philosophy isto keep the model representation as ssimple as possible. Our choice of model
representation isto consider each object as a collection of points.

For 3D-3D localization we represent an object as a set of points on the object’s surface.
This representation can be acquired from a densely triangul ated surface model by sampling
points from the triangles.

We also use points to represent the object for 3D-2D localization. Instead of smply
using just any surface point, we use points on the model which generate edgelsin intensity
images. Werefer to these pointson the model as 3D edgelsor edgel generators. Such points
comprise surface markings, occluding contours and convex/concave geometric edges of the
object.

Not only are these representations ssimple, which makes them efficient to implement,
but they are also very general. We can model alarge subset of the possiblerigid, 3D objects
using these representations.

1.2.4 DataDriven Optimization

Our philosophy for localization derives much from the ideas of active contours introduced
by Witkin, Terzopoulos and Kass [75, 134]. The active contour paradigm allowed the user
to initialize the location of a contour and let the forces defined by image features act on
the contour to find its optimal state. Bed and McKay’s [6] iterative closest point (ICP)
algorithm for 3D registration is based on this principle: correspondences are computed, a
new estimate of the pose is computed and the process is repeated until the pose estimate
converges. Our localization algorithm is designed in much the same way. We simply start
it off inan initial position and find the local minimum of the energy function defined by the
object model and the nearby image data. Thisisin contrast to other localization methods
such as Lowe's [84], which performs a local interpretation-tree search that matches high
level image tokensto the model. Our methods are data driven and rely on the lowest-level
data available from our sensor (e.g., 3D points from range images and 2D edgels from
intensity images).

1.3 ThesisOverview

Therearefour maintechnical contributionsin thisthesiswhich correspond to the breakdown
of the following chapters:

e object modeling for 3D-3D localization
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e 3D-3D object localization
e object modeling for 3D-2D localization

e 3D-2D object localization

We will now briefly discuss our approach to each of these problems and give a simple
example to give the reader a hint of what follows.

1.3.1 Preview of Object Modeling For 3D-3D L ocalization

For the problem of object modeling for 3D-3D localization, we are interested in acquiring
a 3D triangulated surface model of our object from real range data. From the triangulated
surface model, we extract the points for the model for 3D-3D localization.

Our basic approach is to acquire several range-image views of the object, align the
image data, merge the image data using the aid of a volumetric representation, and then
extract a triangle mesh from the volumetric representation of the merged data. Our main
contribution is a new agorithm for computing the volumetric representation from the sets
of image data. Our algorithm, the consensus-surface algorithm, eliminates many of the
troublesome effects of noise and extraneous surface observationsin our data.

Figure 1.2 shows a simple example of the steps of the 3D object modeling process.
We begin with by acquiring range images of the object from various views, the views are
then aligned to the same coordinate system, and the views are merged into a volumetric
implicit-surface representation which is then used to generate a triangulated model of the
surface.

1.3.2 Preview of 3D-3D Object Localization

For the problem of 3D-3D object localization, we are interested in computing the precise
pose of a3D object in a(3D) rangeimage given arough estimate of the object’s posein the
image.

Our localization algorithm iteratively refines the pose by optimizing an objective func-
tion defined over the image data, model data and the object’s pose. The main contribution
of our algorithm is the use of an objective function which is specified to reduce the effect
of noise and outliers which are prevalent in real image data and a method for minimizing
this function in practice. The objective function is effectively minimized by dynamically
recomputing correspondences as the pose improves.

Figure 1.3 shows a simple example of our iterative 3D-3D localization algorithm. We
begin with arange image of the object and an initial pose estimate. The correspondences
between the model and image are adynamic function of pose and allow the search to follow
the proper path to the true pose of the object.
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Generate
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(©
(b)

Merge Data

Figure 1.2: An example of the 3D object modeling process. (a) range-image acquisition,
(b) view alignment, (c) the merged volumetric representation , (d) resulting triangulated
model.

1.3.3 Preview of Object Modeling For 3D-2D L ocalization

For the problem of object modeling for 3D-2D localization, we are interested in acquiring
a 3D model of the edgel generators of the object. Our approach is similar to our approach
to 3D surface modeling

We also collect a set of intensity-image views of the object and extract the edgels from
themusing astandard edgeoperator. Theedgelsarethen projectedandalignedintheobject’s
3D coordinate system using a 3D surface model of the object (built using the 3D surface
modeling approach alluded to previoudy). The aligned dataisthen merged to produce a set
of rigid edgels. To account for occluding-contour edgels, we use curvature analysis of the
pointson our 3D surface model to predict which surface pointsare contour edgel generators.
The main contributions of our 3D edgel modeling work is the consensus-edgel algorithm
for extracting rigid edgel generators and the framework for representing occluding contours
as edgel generator points. The consensus-edgel algorithm is able to reliably extract the
significant edgel generatorsfrom large sets of rather noisy input data. Edgel generators can
be used to efficiently and accurately predict the appearance of occluding contours in 2D
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(@) Range Image (b) 3D Image Points (c) 3D Surface Model

(d) Initial Pose Pose Refinement Precise Pose

Figure 1.3: An example of 3D-3D localization for a simple sphere object: (a) range image
of the sphere, (b) the 3D range data corresponding to theimage, (c) the sphere object model,
(d) threeiterations of the localization search with arrows indicating the correspondences.

images.

Figure 1.4 shows asimple exampl e of the steps of the 3D rigid edgel modeling process.
We begin by acquiring intensity edgesfrom variousintensity-image views of our object, the
edgels are then projected and aligned onto the object surface in the object’s 3D coordinate
system, and 3D edgel datais merged to form a 3D rigid edgel model.

1.3.4 Preview of 3D-2D Object L ocalization

For the problem of 3D-2D object localization, we are interested in computing the precise
pose of a 3D object in a 2D intensity image given arough estimate of the object’s posein
the image.

Our localization algorithm iteratively refines the pose by optimizing an objective func-
tion defined over the image data, model data and the object’s pose. The main contribution
of our algorithm is the use of an objective function which is specified to reduce the effect
of noise and outliers which are prevalent in real image data. The objective function is
effectively minimized by dynamically recomputing correspondences as the pose improves.
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Figure 1.4: An example of the 3D edgel modeling process. (@) acquired intensity edgels
(overlayed on the intensity images) (b) the object’s 3D surface model, (c) the edgels from
variousviews mapped onto the object’s coordinate system, and (d) therigid edgel sextracted
from the sets of mapped edgels.

Useful correspondences are efficiently found—despite significant pose errors and high
densities of edgelsin the intensity image—by extending the nearest-neighbor-search con-
cept to include edgel attributes such as edgel normals and reflectance ratios. We show that
the pose can be refined using much the same minimization algorithm as Algorithm 3D-3D
Localization of Chapter 3.

Figure 1.5 shows a simple example of our iterative 3D-2D localization algorithm.
We begin with an intensity image, its edge image, the 3D edgel model, and an initial
pose estimate. The pose is refined iteratively as in the 3D-3D localization algorithm, the
correspondences are computed dynamically as the pose search proceeds.

We now begin the technical discussion of object modeling for 3D-3D localization in
Chapter 2, followed by discussion of 3D-3D object localization, object modeling for 3D-2D
localization, and 3D-2D object localization in Chapters 3, 4 and 5, respectively. We then
discuss the related research which influenced much of thisthesis. We end by offering some
conclusions, the contributions of thisthesis, and a discussion of future research directions.
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Figure 1.5: An example of 3D-2D localization for a simple bulls-eye object: (a) the input
intensity image, (b) the intensity edges of the image, (c) the object model, and (d) three
iterations of the localization search with lines drawn between the image to model edgel
correspondences.



Chapter 2

Object Modeling for 3D-3D L ocalization

The goal of this thesis is to develop solutions for localizing known objects in images.
The first localization problem that we will address is the 3D-3D localization problem—
localizing 3D objects in 3D range-image data. This thesis also focuses on the problem of
acquiring models for localization, in addition to the localization problems themselves. For
3D-3D localization, a good starting point for an object model isa 3D surface model.

In this chapter, we present anovel approach for building a 3D surface model from many
range images of an object. The goa of this work is to use real images of an object to
automatically create amodel whichis:

e Geometrically accurate: depicts the correct dimensions of the object and captures
small details of the object geometry

e Clean: eliminates noise and errorsin the views

e Complete: models the surface as much asis observable from the sample views

Efficiency isdesirable, but isnot amain concern, since model creation will be done off-line.
The following section overviews the specific problems we face and our genera approach
for solving these problems.

2.1 Approach

The problem we are tackling in this chapter isto build a 3D model from a number of range
images of an object. In other words, we will take [V rangeimages of an object from various
views and use them to compute a unified surface representation of the object. We can
smply stick al of the image data together; this sounds easy enough. Well, this is amost
correct, but to do so, we must address several serious problems.

With alittle bit of wishful thinking, let us assume that we can obtain 3D surfaces from
various views and that we are able to align these views into a single object coordinate
system. The first problem is how to combine the surfaces from all views into a single

13
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surface representation—a data-merging problem. It isa problem of topology: how are all
these surfaces connected?

Our solution makes use of a volumetric representation to avoid difficulties associated
with topology. Wewill show how the volumetric representation simplifies our data-merging
problem—virtually eliminating the topology issue. The volumetric representation can be
conveniently converted into atriangulated mesh representation with little loss of geometric
accuracy. The merging problem isthen a matter of converting our input surface datato the
volumetric representation.

Conversion from surfaces to the volumetric representation is smple if we are given
perfect input surface data devoid of noise or extraneous data (image data which is nearby
the object but not belonging to the object). The conversion problem is exacerbated by the
fact that input surface data from real sensors (e.g., range sensors or stereo) isnoisy and, in
fact, will contain surfacesthat are not part of the object we are interested in modeling. Our
method for merging the surfaces into a volumetric representation takes full consideration
of these facts to best take advantage of the multiple observations to smooth out the noise
and eliminate undesired surfaces from the final model.

Unfortunately, the volumetric representation is not the answer to al that plagues us.
We must now step back and determine how to get the image data aligned in the first
place. Severa strategiesare possible, involving varying degrees of human interaction. Our
approach is to make alignment fully automatic by taking the images using a calibrated
robotic positioner.

Finally, we must consider the input from our sensor. Unfortunately, current sensors
provide us with point samples of the surface—not the surface itself. Range-image sensors
do not provide us with information on how the points in the image are connected. So even
from a single view, we cannot guarantee that we know the topology of the viewed surface.
Thisisadepressing state of affairs. Fortunately, we can make a good guess to get started.
Also, we are fortunate that our data merging algorithmis designed to robustly handle errors
such as the mistakes that we might make when converting our range data to surface data.

Another important issue which we do not address in this thesis is how to select views
in order to best cover the surface. The sensor planning problem is very difficult and isthe
subject of ongoing research [128]. In thiswork, we do not try to optimize the number of
views (i.e., taking the smallest number of views that cover the surface). Rather, we take a
large set of views with the hope that they cover the surface. The human operator in fact
determines the number of views and the object orientation for each view.

To summarize, to build a 3D surface model from multiple range images, we face the
following problems:

e Input data: Surfaces are desired but the sensor provides points.
e View alignment: To merge the data, it must be in the same coordinate system.

e Data merging: We need to merge all the image data while eliminating or greatly
reducing the effects of noise and extraneous data.
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Algorithm

Figure 2.1: Organization of this chapter.

Therest of thischapter providesthedetailsof our solutionsto these problemswhich combine
to form apractical method for building 3D surface models from range images of an object.
Figure 2.1 shows a diagram of the technical sections of the thesis. We begin by discussing
acquisition and alignment of surface views and then follow with a discussion of our surface
merging algorithm, the consensus-surface algorithm, which is the main contribution of this
chapter.

2.2 Surface Acquisition

Our first problem is that 3D sensors such as range finders produce images of 3D points,
however, for many purposesincluding ours, it isnecessary to sense surfaces. Unfortunately,
such a sensor is not currently available. The missing information is whether the scene
surface iswell approximated by connecting two neighboring surface samples. With alittle
work, however, we can transform the 3D points from the range imageinto aset of triangular
surfaces.

We can begin by joining pairs of neighboring range-image points based on our belief that
the two points are connected by alocally smooth surface. When joining two points, thereis
very littlebasisfor our decision. Thelimitationsof the sensor prevents usfrom knowing the
answer. However, we can make this decision based on our experience—understanding that
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Figure 2.2: The orientation, #, of the line connecting two 3D surface points x; and x, with
respect to the image plane of the camerais used to determine whether the two points are
connected.

we will often make mistakes. Our experience tells us that if two (pixel-wise) neighboring
range-image points have similar 3D coordinates, then they are likely to be connected by
alocally smooth surface; if 3D coordinates are far apart, it is very unlikely that they are
connected. This is using accomplished by using a threshold to determine whether the
two points are close enough in three dimensions according to our experience. We adopt
a thresholding scheme used by [64]. Two range data points, x; and x, are labeled as
connected if

(x2 — x1)

— =~ .V = C0SH > cosby
| x2 — x4 ||

where ¥ is the unit direction vector of the difference in image (pixel) coordinates' of the
two points, ¢ issurface angle of the two connected points with respect to the camera, and 6,
isthelargest acceptable angle (typically 80 degreesor s0). Figure2.2 geometrically depicts
the test performed here. This threshold scheme has the benefit that it does not depend on
a specific scale of data or on specific camera parameters (e.g., aspect ratio). After all pairs
of neighboring points are examined, we can create surface triangles by accumulating all
triples of mutually connected points.

This, like most thresholds, is an ad hoc assumption and will often result in mistakes:
surfaces will be created where there should be none, and some existing surfaces will be
missed. Figure 2.3 which shows an example of such mistakes. These errors are not
significantly different from other errors that our model building agorithm must confront.
Aswill be shown in Section 2.5, our model building algorithm compensates for errors such

1Thedirection vectors of pixel differencesintheimage plane can be converted to world coordinatesusing
the camera parameters, which are acquired via calibration as described in Chapter 1.
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Figure 2.3: Examples of triangulation errors shown via 2D dices. (a) an incorrectly
instantiated surface between two points and (b) a surface that is missed.

as these to produce correct surface models after merging.

2.3 View Alignment

After taking several range images of an object and converting them to surfaces, we need
to eventually merge all these surfaces into a single model. The problem is that each view
and, hence, the surface datais taken from a different coordinate system with respect to the
object. In order to compare or match the data from different views, we have to be able to
transform all the datainto the same coordinate system with respect to the object. 2

To do this implies that we need to determine the rigid body transformation (motion)
between each view and some fixed object coordinate system. This rigid body motion
comprisesrotation and trandation in 3D space—six degrees of freedom, threein trandation
and threein rotation. We can denote arigid body motion by alinear transform

X1 = RXO

where R isa4 x 4 homogeneous matrix® denoting therigid transform and the pointsx, and
x1 are in homogeneous coordinates. For clarity, let us denote R by R;. o which indicates

2|t is conceivable that we could merge all the data from different views without computing rigid motion
but by determining correspondences among al the data between views[54]. If correct correspondences can
be made, view aignment is certainly achievable [135, 106].

SWe will sometimes find it useful to denote a rotation and translation using either homogeneous transfor-
mations (i.e.,, Rx whereR isa4 x 4 matrix and X is understood to be extended to 4 dimensions by appending
a1 to the 3D vector) or rotation followed by trandation (i.e., Rx + t wheret isatrandation vector and R is
a3 x 3rotation matrix). Both are mathematically equivalent, however, the homogeneous form is used when
we desire to be concisein our notation.
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that the motion takes a point in coordinate system 0 and transformsit to coordinate system
1.

If we are given IV views, we can start by making one of the views the central view.
For convenience, the central view is chosen to be view 0. The goal isto compute therigid
motion Ro.; for all views: # 0. Once that is accomplished, the data in all views can
be transformed to a single coordinate system (e.g., view 0), and we can then consider the
problem of merging the data into a unified object model.

Notice the problem does not change if the camera is moving relative to the object or
vice versa* Determining the motion between two views can be a difficult task and is the
subject of alarge body of previous and ongoing research [82, 135, 130, 124, 106]. There
are several ways we can approach this alignment problem—each requiring varying levels
of human interaction. We break these into three levels—manual alignment, semi-automatic
alignment, and automatic alignment—which are briefly discussed in what follows.

2.3.1 Manual Alignment

The first option, and perhaps the least attractive, is manual alignment of the views. The
user could choose a particular view as the object’s coordinate system and manipulate each
view separately using agraphical interface to align the data of each view to the data of the
central view. Thisistedious and is made difficult by the limits of visualizing 3D objects
with 2D displays. For example, two points may be aligned as viewed from one direction,
but when viewed from another direction, the two points may lie at different distancesaong
the original line of sight.

A less painful and more precise option is the use of registration marks on the object.
The registration marks are easily identified points on the object that can be seen in multiple
views. These points may be painted (e.g., distinguishable white or black dots) onto the
object for this purpose.

Another option isfor the user to select them via a point-and-click interface. Care must
be taken to ensure that the selected points are really the same point in different views.

Regardless of how marks are selected/detected, the user must manually denote the
correspondence between marks in each view. Once this is accomplished, the motions
between all views and the central view can be computed. For 3D data, three corresponding
points between two views are sufficient to estimate the motion between the views. However,
if there are any errorsor noisein the 3D coordinates of any of these marks then the motion
estimate will also be noisy. The accuracy of the motion estimate can be improved by using
a larger number of points. The problem of rigid motion estimation, or pose estimation,
from corresponding pointsin three dimensions is discussed further in Section 3.4.

Note that either of these methods will be painful and time consuming for the person
doing the modeling; however, depending on the situation, it may be the only option.

4Thisisnot completely true. The case where the camera is moving creates the problem that the object and
background have the same motion which means manual editing will be necessary to separate the object from
the background.
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2.3.2 Semi-Automatic Alignment

With current motion estimation techniques [6, 135, 106], we may be able to automatically
compute the motion between each pair of views. This may be possible if the images are
taken in a single sequence with small motions between each view. What we would haveis
alist of transforms between neighboring views

Ro—1,Ri 0, ... Ry_2n_1.

From thisit is possible to compute the transform from each view to view 0 by composing
transforms, for example,

Ro—2> = Ro1R1 2.

While this sounds easy enough, it suffers from a fatal flaw. The flaw is that each
estimated transform will have some error associated with it, and that as we compose
erroneoustransforms, the error accumulates. What onewill find isthat Ro.__1 will betoo
inaccurate for practical purposes for even moderate values of V.

The solutionisto revert to manual alignment to finish the job by manually adjusting and
improving the motion estimates to align the views and eliminate the accumulated errors.
Thisismuch easier than the previousfully manual alignment since the estimated transforms
will actually be reasonably close and will only require small corrections.

2.3.3 Automatic Alignment

Finally, we can think about ways to achieve alignment without manual intervention. There
are basically two ways that may allow us to achieve automatic view alignment: automatic
motion estimation and controlled motion with calibration.

Fully automatic motion estimation [6, 135, 106] that isaccurate enough for 3D modeling
is still on the horizon. Currently, there are solutions to this problem which are becoming
mature [135, 130, 124, 106] but are still not quite reliable enough for practical application
which means some manual intervention may be required. The problem of error accumula-
tionwill still be anissue; however, recent work by Shum, Ikeuchi, and Reddy [127] using a
technique called principal components analysis with missing data shows promise to solve
this problem in the near future.

Because of the current state of the art, we use the second approach, controlled motion
with calibration—the most practical option for an automatic solution. There are some
arguments against such an approach:

1. Cdlibration isdifficult.
2. Robots, turntables, and other positioning mechanisms are expensive.

3. Requiring controlled motion limits the applicability.
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Whilearguments(2) and (3) arequitevalid, argument (1) isnot. Calibrationisamaturearea
in photogrammetry and computer vision and many excellent algorithms exist [136, 121].
The process of acquiring calibration points can be made |ess tedious with the use of special
calibration objects (specially painted boxes or boards) and simple techniques for detecting
these pointsin the calibration images.

In our experimental setup, we calibrate two axes of a Unimation Puma robot with
respect to a range-sensor coordinate frame. We can then mount the object on the robot’s
end effector and acquire images of an object at arbitrary orientations. The details of the
cameraand robot calibration process are described in Appendix A.

From this point we assume that the views are aligned. Next, we consider the problem
of merging al the data from these viewsinto a single model of the object’s surface.

2.4 DataMerging

We are now faced with the task of taking many triangulated surfaces in 3D space and
converting them to a triangle patch surface model. In this section, we assume that the
various triangle sets are already aligned in the desired coordinate system.

As discussed in Section 2.1, even if we are given perfect sets of triangulated surfaces
from each view which are more or less perfectly aligned, the merging problem is difficult.
The problem is that it is difficult to determine how to connect triangles from different
surfaces without knowing the surface beforehand. There are innumerable ways to connect
two surfaces together, some acceptable and some not acceptable. This problem is exacer-
bated by noise in the data and errors in the alignment. Not only does the determination
of connectedness become more difficult, but now the algorithm must also consider how to
eliminate the noise and small alignment errors from the resulting model. Recently, how-
ever, severa researchers have moved from trying to connect together surface patches from
different viewsto using volumetric methodswhich hide the topol ogical problems—making
the surface-merging problem more tractable. 1n the next section we discuss the volumetric
method which we use to solve the surface-merging problem.

2.4.1 Volumetric Modeling and Marching Cubes

When mentioning volumetric modeling, the first thought in most people’'s minds is the
occupancy-grid representation. Occupancy grids are the earliest volumetric representation
[95, 22] and, not coincidentally, the conceptually smplest. An occupancy grid isformed by
discretizing a volume into many voxels® and noting which voxelsintersect the object. The
result is usually a coarse model that appears to be created by sticking sugar cubes together
to form the object shape. Of course, if we use small enough cubes, the shape will ook fine,
but this becomes a problem since the amount of memory required will be O(n3) where the
volumeis discretized into »n slices along each dimension.

S\oxel isacommon term for an individual element, rectangular box or cube, of the discretized volume. It
is short for volume & ement.
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Figure2.4: Anexampleof zero-crossing interpolation from the grid sampling of animplicit
surface.

Recently, however, an algorithm developed by Lorensen and Cline [83] for graphics
modeling applications has made volumetric modeling a bit more useful by virtually elimi-
nating the blocky nature of occupancy grids. This algorithm is called the marching-cubes
algorithm [83]. The representation is dightly more complicated than the occupancy grid
representation. Instead of storing a binary value in each voxel to indicate if the cube is
empty or filled, the marching-cubes algorithm requires the data in the volume grid to be
samples of an implicit surface. In each voxel, we store the value, f(x), of the signed
distance from the center point of the voxel, x, to the closest point on the object’s surface.
The sign indicates whether the point isoutside, f(x) > 0, or inside, f(x) < 0, the object’s
surface, while f(x) = O indicates that x lies on the surface of the object.

The marching-cubes algorithm constructs a surface mesh by “marching” around the
cubes while following the zero crossings of the implicit surface f(x) = 0. The signed
distance allowsthe marching-cubesalgorithm to interpol ate the | ocation of the surface with
higher accuracy than the resolution of the volume grid. Figure 2.4 shows an example of the
interpolation.

The marching-cubes algorithm and the volumetric implicit-surface representation pro-
vide an attractive aternativeto other conceivable mesh-merging schemes (see Chapter 6 for
morediscussion onrelated 3D-modelingresearch). First, they eliminate theglobal topology
problem—how are the various surfaces connected—for merging views. The representa-
tion can model objects of arbitrary topology as long as the grid sampling is fine enough
to capture the topology. Most importantly, the whole problem of creating the volumetric
representation can be reduced to a single, smple question:

What isthe signed distance between a given point and the surface?

The given point is typically the center of a given voxel, but we don't really care. If we can
answer the question for an arbitrary point, then we can use that same question at each voxel
in the volume.
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Now we may focus on two more easily defined problems:
1. How do we compute f(x)?

2. How can we achieve desired resolutions and model accuracy knowing that the volu-
metric representation requires O(n3) storage and computation?

Thereal problem underlying our simple question is that we do not have a surface; we have
many surfaces, and some elements of those surfaces do not belong to the object of interest
but rather are artifacts of the image acquisition process or background surfaces. I1n the next
subsection we present an algorithm that answers the question and does so reliably in spite
of the existence of noisy and extraneous surfacesin our data.

2.4.2 Consensus-Surface Algorithm

In this section, we will answer the question of how to compute the signed distance function
f(x) for arbitrary points x when given NV triangulated surface patches from various views
of the object surface. We call our algorithm the consensus-surface algorithm.

As described above, the positive value of f(x) indicates the point x is outside the object
surface, a negative value indicates that x isinside, and a value of zero indicates that x lies
on the surface of the object. We can break down the computation of f(x) into two steps:

e Compute the magnitude: compute the distance,
from x

f(x) |, to the nearest object surface

e Compute the sign: determine whether the point isinside or outside of the object

We are given N triangle sets—one set for each range image of our object as described
in Section 2.2—which are aligned in the same coordinate system. The triangle sets are
denoted by 7;, where: = 0, ..., N —1, Theunionof all trianglesetsisdenoted by 7" = |J; 7.
Each triangle set, 77, consists of some number »; of triangles which are denoted by ; ;,
wherej =0,....,n; — L.

If the input data were perfect (i.e., free of any noise or alignment errorsin the triangle
sets from each view), then we could apply the following naive algorithm, Algorithm Clos-
estSignedDistance, to compute f(x):

Algorithm ClosestSgnedDistance

Input: point x

Input: triangle set 7'

Output: the signed distance d

(* Naive algorithm for computing f(x) by searching =)
( for the closest surface from all trianglesin 7" x)

1. (p,n) < ClosestSurface(x, 1)

2. dellx—p]|

3. if(h-(x—p)<0)
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4. thend « —d
5. returnd

where Algorithm ClosestSurface returns the point, p, and its normal, i, such that p is
the closest point to x from all pointson trianglesin thetriangle set 7.

Algorithm ClosestSurface

Input: point x

Input: triangle set 7'

Output: the point and normal vector pair (p, 1)
(* Return the closest point to x from all x)

(* pointson trianglesin the set 7', and the normal x)
(* of the closest triangle. )

1. 7 agminerminge, || x—p ||

2. péagmingg, || x—p ||

3. 1 + outward pointing normal of triangle r
4. return (p,n)

The naive algorithm for f(x) finds the nearest triangle from all views and uses the
distance to that triangle as the magnitude of f(x). The normal of the triangle can be used
to determine whether x isinside or outside the surface. If the normal vector pointstowards
x, then x must be outside the object surface. This fact can be verified by a simple proof.
First, no other surface point lieswithin the circle of radius| f(x) | around point x. For x to
be inside the object, it is necessary that every line drawn between x and any point outside
the object will cross a surface first. If y isthe closest surface point to x, the line from y
to x must cross a surface if x isinside the surface. The fact that no closer surface exists
excludes the possibility that any such surface exists between x and y.

Again, the naive algorithm will work for perfect data. However, we must consider what
happens when we try this idea on real data. The first artifact of real sensing and small
alignment errors is that we no longer have a single surface, but several noisy samples of
a surface (see Figure 2.5). We are now faced with choices on how to proceed. Clearly,
choosing the nearest triangle (asin Algorithm ClosestSgnedDistance) will give aresult as
noisy as the constituent surface data. For example, a single noisy bump from one view can
result in a bump on the final model, as shown in Figure 2.6 (a). Inconsistent values for the
implicit distances will appear when avoxel center ison or near a surface, since the samples
will be randomly scattered about the real surfacelocation. For example, we could seethree
surfacesformif noise or alignment error produces an inside-outside-inside-outside (+/-/+/-)
transition when, in fact, only one real surface was observed (see Figure 2.6 (b)). Thisis
especialy aproblem if the noise is of similar scale to the voxel size.

With many views, the computed implicit distances from the surface will be biased
towards the closest side of the surface and result in inaccurate zero-crossing interpolation
during surface-mesh generation. Thisisavery subtle problem best explained by considering
noisy samples of a surface as it crosses a line between two adjacent voxel points (see
Figure 2.7). We can show mathematically that the zero-crossing interpolation will generate
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Figure 2.5: In practice, rea surface samples are noisy and dightly misaligned and it is
difficult to determine where the actual surface might lie.
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Figure2.6: Someeffectsof noise and misalignment on our naivealgorithm, Algorithm Clos-
estSgnedDistance. In each case two observations of the same surface (actual surface is
denoted by the shaded line) are shown, the resulting surface is: (@) the resulting surface
is as noisy as the data, (b) three surfaces are detected when only one exists created by an
inside-outside-inside-outside transition of f(x).
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significant errors. Suppose that we are evaluating f(«) (along theliney = = = 0) at points
ro = 0and z; = 1, and thereisareal surfacein between the two pointsat = € [0, 1]. Also,
let us assume that two observationsare availableat = + ¢ and = — ¢. Assuming x¢ isoutside
the surface (i.e., f(xo) > 0), the signed distances will be

flzo) =2 —¢ (2.1)
fle) ==(1—(z+¢)). (22)
Using these values of [, the zero crossing will be interpolated to give an estimate, i, of x:
. T
= 1-— 2¢
The error of the estimate is
€y = — & (2.3
r — ¢
=TT (2.4)
e(1—2x)
= =/ 2.
1-— 2¢ (2.5)

Thus, theerror, e, will only bezero when = = 0.5 (i.e,, the real surface is exactly between
points xo and 1. The magnitude of the interpolation error will increase as the real surface
approaches either of the points. This illustration points out the fragility of zero-crossing
estimates based on inaccurate valuesof f(x). If adiscreteimplicit surfaceisto beused, the
estimates of f(x) must be as accurate as possible and the values must be locally consistent
across surfaces. I1n the above scenario, a ssmple estimate of the average of the observations
when computing f(zo) and f(x1) would yield the correct zero-crossing estimate.

A more sinister problem for the naive algorithm applied to real images is the existence
of noise and extraneous data. For example, it is not uncommon to see triangles sticking
out of a surface or other triangles that do not belong to the object. This can occur due to
Sensor noise, quantization, specularities and other possibly systematic problems of range
imaging. Also, we must consider the fact that other incorrect triangles may be introduced
by the range image triangulation process as described in Section 2.2. This makes it very
easy to infer the incorrect distance and more critically the incorrect sign, which will result
in very undesirable artifacts in the final surface. For example, Figure 2.8 shows how one
badly oriented triangle can create an implicit distance with the incorrect sign. This results
in aholerising out of the surface as shown.

Our solution to these problems is to estimate the surface locally by averaging the
observations of the same surface. The trick is to specify a method for identifying and
collecting all observations of the same surface.

Nearby observations are compared using their location and surface normal. If the
location and normal arewithinapredefined error tolerance (determined empirically), we can
consider them to be observations of the same surface. Given a point on one of the observed
triangle surfaces, we can search that region of 3D space for other nearby observationsfrom
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Figure 2.7 Graphical illustration of the error in zero-crossing interpolation using Algo-
rithm ClosestS gnedDistance with two noisy observations.
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Figure 2.8: An example of inferring the incorrect sign of a voxel’s value, f(x), dueto a
single noisy triangle. The algorithm incorrectly thinks point x is inside the surface based
on the normal information from the closest point. The result will be ahole at that point in
the surface since additional zero-crossings will result around the error at x.

other views which are potentially observations of the same surface. This search for nearby
observations can be done efficiently using k-d trees[41] whichisastructurefor storing data
of arbitrary dimensionsfor optimal nearest neighbors search. Here, ak-dtreeiscreated for
each view, and containsthe 3D coordinates of al the triangleverticesin the view’striangle
surface set. Given apoint in 3D space, we can quickly locate the nearest vertex in agiven
view by searching that view’s k-d tree much like a binary search [41].

If an insufficient number of observationsarefound, then the observation can be discarded
as isolated/untrusted and the search can continue. Thus, we are requiring a quorum of
observations before using them to build our model. The quorum of observations can then
be averaged to produce a consensus surface. Thisprocess virtually eliminatesthe problems
described previoudy (with respect to the naive algorithm).

As an improvement over using an equally weighted voting scheme, we can assign a
confidence value w to each input surface triangle. A common technique is to weight the
surface points/triangles from arange image by the cosine of the angle between the viewing
direction and the surface normal [72]. Thisis simply computed by

w=v-Nn

where v and i are the viewing direction and normal, respectively, of the given triangle.
The consensus can now be measured as a sum of confident measures and the quorum is
over thisweighted sum. The rationale is that two |ow-confidence observations should not
have the same impact on the result as two high-confidence observations. We can now
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specify the consensus-surface algorithm. Instead of searching for the closest surface using
Algorithm ClosestSurface, we can search for the closest consensus surface:

Algorithm ConsensusSgnedDistance

Input: point x

Input: triangle set 7'

Output: the signed distance d

(* Compute the signed, implicit distance f(x) *)
(p, 1) + ClosestConsensusSurface(x, 7')

2. de|x—p|

3. if(h-(x—p)<0)

4, thend «+ —d

5. returnd

=

The only change from Algorithm ClosestSgnedDistance isthat Algorithm Consensus-
SgnedDistance computes the closest consensus-surface point and itsnormal inline 1. The
algorithm for computing the closest consensus-surface point and its normal is asfollows:

Algorithm ClosestConsensusSurface

Input: point x

Input: trianglesets 7;,: = 1..N

Output: the point and normal vector pair (p, 1)

1 O, 0
(* O, isthe set of non-consensus neighbors )
2. Cop 0

(x Cyey 1Sthe set of consensus neighbors )
3. for each triangulated set T;

4 do (p, ) «+ ClosestSurface(x, T;)

5 (p,n,w) « ConsensusSurface(p, i, T')
6. if & > Oyuorum

7 then Cs.; + Cier U (p, i, w)

8 ese Oyt < Oser U (p, 1, w)

9. ifCu #90

10.  then(p,fi,w) < agming 3 wyec.., | X — P ||
11.  dse (p,fi,w)  argmaX, a..yeo.., w

12. return (p,f,w)

Algorithm ClosestConsensusSurface examines the closest point in each view and searches
for its consensus surface if one exists. After computing the closest consensus surfaces for
each view, it chooses the closest of those from the consensus set C',.;. C,.; contains those
locally averaged surfaces whose observations confidence values sum to at least 8,0y, -
Note that two consensus surfaces are not differentiated based on their confidence sum w
but rather on their proximity to x. If none of the consensus surfaces exit, the algorithm
selects the average surface which has the highest summed confidence out of set O,.;.
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For completeness, we outline Algorithm ConsensusSurface which is required by line
5 of Algorithm ClosestConsensusSurface. Algorithm ConsensusSurface basically findsall
surface observations that are sufficiently similar to the given point and normal. These
observations are then averaged to generate a consensus surface for the input surface. This
algorithm relies on the predicate

_ < An - i >
Samesurfacel (po, fio) . (pa. fn)) = { l;lusee gih?a?wisgl < 84) A (o - iy > COSH,,)
(2.6)
which determines whether two surface observations are sufficiently close in terms of lo-
cation and normal direction, where ¢, is the maximum allowed distance and 4, is the
maximum allowed difference in normal directions. Now we present the pseudo code for

Algorithm ConsensusSurface:

Algorithm ConsensusSurface

Input: point x

Input: normal ¥

Input: triangleset 7' = |, T;

Output: the point, normal vector, and the sum of the observations confidences (p, i, w)
1. p+n+—w+0

2. forT,cCT

3 do (p’,1t,w’) « ClosestSurface(x, ;)
4 if SameSurface((x, V), (p’, "))

5. thenp « p +w'p’

6 n <+ n-+wn’

7 w—w+ o

8. p+ip

9. n« ﬁ

10. return (p,f,w)

Note that in Algorithm ConsensusSurface, the definition of Algorithm ClosestSurface
was dightly modified to also return the confidence w’ of the closest surface triangle.

Werefer to thisalgorithm as awhol e as the consensus-surface algorithm. Thefollowing
conditions are assumed:

1. Each part of the surface is covered by a number of observations whose confidences
add up to more than &0, s -

2. No set of false surfaces with a sufficient summed confidence will coincidentally be
found to be smilar (following the definition of Equation 2.6) or this occurrence is
sufficiently unlikely.

3. Given N surface views, the real surfaceis closest to x in at least one view.

If these assumptions are violated, mistakes in the surface mesh will result. From our
experiments, a quorum requirement, 6,,,,.., of 1.5 to 3.0 is usually sufficient given a
reasonable number of views.
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Figure 2.9: The extension of the implicit surface in unobserved regions of the grid.

2.4.3 Holesin the Marching-Cubes Algorithm

Using the standard marching-cubes algorithm [83] and consensus-surface agorithm as
outlined above, there is a problem if there are holes or missing data. The marching-cubes
algorithm works on the assumption that the surface is defined by zero crossings of the
implicit surface function. It isamost always the case that parts of the object’s surface are
unobservable. For theregions of the volume where the surface isunobservable, theimplicit
surface we compute will be rather poorly justified and perhaps ill-defined.

For example, consider what happens when we sample the surfacesfor al but the bottom
of acube. If we use the consensus-surface or naive algorithm described above, we will set
the voxels directly underneath the cube to have a negative value and the rest positive. As
shown in Figure 2.9, the effect is to literally extend the sides down to the bottom of the
voxel grid. Thisisthe best we can do using alocal computation for f(x). Essentially any
non-closed boundaries of the observed surface will be extended until the side of the volume
grid or another observed surface is reached.

Previous methods go to great lengths to prevent the difficulties presented by incomplete
data. These workaroundsinvolve creating special casesfor dealing with regions near holes,
greatly complicating implementation of the voxel filling aswell as requiring a modification
of the marching-cubes agorithm. For example, Curless and Levoy [28] try to detect this
situation and label those voxels near holes as undefined or not on the surface. Howevey, if
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Figure 2.10: The use of gradient testing to eliminate false surfaces at zero crossings of
the implicit surface, from the previous example. The gradient is labeled next to each zero
crossing. Gradients greater than 1 can be ignored by the marching-cubes algorithm.

one examines the values of the distances around holes, there is one significant difference
between the values around the real surface and those around holes. Around a surface,
the gradient of the signed-distance function is at or near unity. However, when at a zero
contour near a hole, the gradient at x, % is necessarily larger than one since the distances
from points in the neighborhood of a hole must be greater than one voxel length. This
fact provides a smple mechanism for eliminating holes without complicating the signed-
distance function. Figure 2.10 shows our previous example of the bottomless cube with
gradient values labeled over each zero-crossing—demonstrating how non-surfaces can be
easily detected by the marching-cubes algorithm. We can simply test the gradient at each
voxel before adding it to the surface. The gradient must be computed to find zeros already,
so it isasimple matter to modify the marching-cubes algorithm to check the magnitude of

the gradient.

2.4.4 Accuracy and Efficiency

First, to achieve desired accuracy we must use a dense sampling of the volume. Since the
memory requirements of avolume grid is cubic with respect to the density of the sampling
for volumetric modeling, the first thing that gets sacrificed is accuracy. With our problem,
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the standard volume-grid approach is also deficient in terms of computation time.

The straightforward use of volume grids presents several problems. One obvious
problem with a voxel grid representation is that the number of voxelsis n® where each
axis of the volume is discretized into n elements. This affects the achievable accuracy
since we must choose the dimension to be small enough that the grid can fit in memory:
we quickly reach the memory limits of our computers. In addition to storage cost, we
must remember that for each voxel we must compute the signed distance; thus, the number
of computations of our signed distance function f(x) will be cubic as well. Specifically,
computation resources are wasted by computing signed distances in parts of the volume
that are distant from the surface. For our purposes, the only voxels that we need to examine
are those near the surface, a small fraction of the entire volume grid.

Curless and Levoy [28] alleviate this problem by run length encoding each 2D dlice of
the volume. Thisapproach depends upon acomplicated procedure which carves out voxels
that are determined to be well outside of the surface. The procedure is tailored to their
scheme for averaging the voxel values iteratively, view by view; it is not well suited to an
algorithm such as ours which uses all the data simultaneously to compute each value. Their
algorithm is discussed in more detail in Chapter 6.

Fortunately, thereis a data structure, called an octree, that is perfect for our merging al-
gorithm and requirements. Octrees[95] were devel oped as an efficient way for representing
3D occupancy grids for computer graphics and CAD modeling. An octreeis a hierarchical
representation of the volume in which we divide a given volumeinto eight octants and then
we can subdivide each octant individually if necessary and so on to any level of subdivision
desired.

For our purposes, we are only interested in the surface of our object, which octrees can
efficiently represent. Octrees are designed just for this purpose: the sampling resolution
can be adjusted to the level of detail necessary at each region of the volume. It is efficient
in that respect—sampling finely near the surface and sampling coarsely away from the
surface. Figure 2.11 shows a 2D dlice of an octree representation of a smple surface.

The octree representation [95, 22] solves both the accuracy and the efficiency problems
while keeping the algorithm implementation smple. Instead of iterating over all elements
of the voxel grid, we can apply arecursive algorithm on an octree that samples more finely
in octants only when necessary. To interpolate the zero crossings properly, we will need
the implicit distance for the voxel containing the surface (the zero crossing) and all voxels
neighboring thisvoxel: these voxels must all be represented at the finest level of precision.
This constraint means that if we have a surface at one corner of an octant, the longest
possible distance to the center of a neighboring octant is one and one-half diagonals of the
voxel cube, which is a distance of 3—f cube units.

Given the current octant, we can compute the signed distance. If the magnitude of the
signed distance, | f(x) |, islarger than S—f of the octant width, then it is not possible for
the surface to lie in the current or neighboring octant. If the surface is not in the current or
neighboring octant, we do not care to further subdivide the current octant. The algorithm
isasfollows:
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Figure 2.11: A 2D dlice of an octree representation of a simple surface illustrates the
adaptive resolution which is high around the surface and low elsewhere.

Algorithm FillOctant

Input: octant (v, x, w, ¢) with value v, center x, width w, and children ¢

(x Fill the value and recursively subdivide the octant x)

(* to the finest required resolution. *)

1. v+ ConsensusSgnedDistance(x, 1)

2. if (Jv]< 2Buw) A (w > wines)

3. then create sub-octants <vi,xi, 7, ci> for : = 0,..,7 by subdividing the current
octant

4, for: < 0to7

FillOoctant({v;, x:, %, ¢; ))

o

6. ese c— 0

Theoctreein practicereducesthe O () storage and computation requirement to O(n?).
Thisis because the surfaces of 3D objects are, in general, 2D manifoldsin a 3D space.®

Thus, the octree allows us to efficiently compute the implicit surface representation
and uses memory efficiently—allowing us to achieve desirable levels of accuracy. The
marching-cubes algorithm must be converted to manipulate octrees rather than voxels.
This is handled by simply replacing the indexing of volume elements with macros that
traverse the octree.

SUnless it behaves as a volume-filling surface or a porcupine—surfaces that seem to fill occupy 3D
space—the surface of a 3D object will tend to sparsely occupy the 3D volume enclosing it.
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2.4.5 Cost of the Consensus-Surface Algorithm

We can get rough estimate of the cost of our model-building agorithm by first considering
the cost of the basic operation: computing a consensus surface. To smplify analysis, we
assume that there are N views being merged and that for each view the triangle set 7; has
n triangles.

Algorithm ConsensusSurface computes the closest surface for each view which on
averagewill bean O( N logn) operation assuming k-d trees [41] are used. Algorithm Clos-
estConsensusSurface computesthe closest surface and then therespective consensus surface
for each view, which addsupto acost of O( N2 logn). Since N will usually be much smaller
thann, thisoperationisrelatively cheap. Algorithm ClosestConsensusSurface is performed
for each voxel or octree element.

Assuming that an M x M x M voxel grid is used, the modeling algorithm will cost
O(M3N?logn). However, if octrees are used we may loosely assume that the number of
voxels or octree elements which are evaluated will be proportional to the surface area of
the object. For sake of approximation, we may assume that the areais O(M?) where M is
the number of elements in the equivalent voxel grid. This reduces the complexity of our
modeling algorithm to O(M?2N?logn) which is a significant reduction since M will be
relatively large in practice to enable accurate modeling.

2.5 3D Object Modeling Results

Herewe present some experimental resultsof our implementation of the 3D object modeling
algorithm described in this chapter.

The major limitation of our modeling system is the requirement for calibrated object
positioning. Our calibrated image acquisition system—a Unimation Puma robot, and our
range sensor, an Ogis light-stripe range finder—limits the objects which we are able to
model. Dueto this, the objects must be small enough to be imaged by the range finder and
to be mountable on the Puma. As described in Chapter 1, we assume that the objects are
rigid and opague (lucent surfaces are not usually detectable by the range finder). However,
despite these limitations there remains a large class of objects which we can use to test our
model-building algorithm.

Since the object must be physically attached to the Puma, we are further limited by
the surface area of the object which we can effectively observe. For this work, we do not
attempt to model the undersides of the objects. A process of reattaching the object and
aligning the new views would be required. Though it isfeasible, reattaching the object to
model its underside was not fundamental for testing our ideas.

For our experiments, we selected 5 objects to model using our system: atoy boxcar, a
rubber duck, a piece of fruit, a ceramic mug, and atoy car. For each object, we manually
determined the number of range images of the object to 1) maximally cover the viewable
surface of the object, and 2) provide a sufficient amount of overlap between views for the
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Figure 2.12: The two degrees of freedom, ¢, and 6, of the Puma used to vary of object
position with respect to the camera's coordinate system.

consensus-surface algorithm. The number of views required is related to the geometric
complexity of the object: varying from 18 for the boxcar to 54 for the toy car.

The views were acquired by varying the angles of two rotation axes on the Puma's end
effector: rotating around the camera’s y-axis direction and rotating around the camera’'s
x-axis direction. The Puma robot is capable of 6 degrees of freedom but for this work
using only two was sufficient to detect the visible surfaces of our objects. We refer to these
rotations as ¢, and 4, respectively. Figure 2.12 shows a diagram of the rotational degrees
of freedom used in our experiments. Generaly, we would vary 6, from -180 degrees to
160 in increments of 20 degrees and would vary 6, from anywhere from -30 degrees to
+30 degrees in 20 degree increments as well. For objects like the mug, we would have to
add some views to observe difficult to view surfaces such as the bottom of theinside of the
mug.

Each rangeimage contained 256 x 240 pixel swith each pixel containinga3D coordinate.
The resolution of data is approximately 1 mm (i.e., the distance between two pixels on a
flat surface at the nominal distance from the camera is roughly 1 mm). The accuracy of
datais on the order of roughly 0.5 mm.

The results of our modeling algorithm for each object are shown in Figures 2.13- 2.22.
Each of these figures show:

e anintensity image of the object
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e aclose-up of some of the triangulated range images used as input to the consensus-
surface algorithm (shaded to better indicate the roughness of the original data)

e adice of the volume grid where the grey-scale indicates the proximity to a surface
point (black closest, white furthest)

¢ threeviews of the resulting triangulated model

Therelevant statisticsof themodeling experimentsfor each object are presentedin Table 2. 1.
These statistics include the number of input images and triangles, the number of triangles
in the resulting model, the resolution of the voxel/octree grid, the percentage of voxels
in the volume grid which were actually represented in the octree structure, the execution
time on an SGI Indy 5 (a 124 MIPS/49.0 MFLOPS machine), and the parameters for our
consensus-surface algorithm (the quorum requirement 6,0, , the maximum distance, ¢,
between similar points and the maximum angle, ¢,, between normal vectors of similar
points). The volume grid was divided into at most 128 cubes along each dimension. Of
the parameters used by the modeling agorithm, the quorum requirement parameter is the
most difficult to determine. Proper choice of the quorum parameter depends on the number
of views, the geometry of the object (i.e., how many views in which a given patch of the
surface is visible), and the noise in the data. Setting this parameter automatically would
be a difficult problem. It isvery similar to the view-selection problem: how to choose an
appropriate set of viewsto cover an object when the geometry is unknown.



2.5. 3D Object Modeling Results 37

Figure 2.13: Results from modeling the boxcar. (a) An intensity image of the boxcar, (b)
aclose-up of some of the triangulated range images used as input to the consensus-surface
algorithm, (c) a dlice of the implicit-surface octree volume where the grey-scale indicates
the proximity to a surface point (black closest, white furthest), and (d) a 3D view of two
cross sections of the implicit-surface octree volume.
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Figure 2.14: Three views of the resulting triangulated model of the boxcar.

The resulting triangulated models had to be cleaned to remove data corresponding to
the Puma mounting device, which, despite the fact that it's surface is black, was rather
cleanly reproduced in the resulting models. If another object has the same rigid motion as
the object being modeled, our algorithm considers this other object to be part of the object
being modeled; it is unable to distinguish between objects with with identical motion with
respect to the camera.” Holes on the undersides of the objects were also filled during the
cleaning process.

As an example of what the naive algorithm, Algorithm ClosestSgnedDistance of Sec-
tion 2.4.2, would produce we show the example of the the result of the naive algorithm on
the duck data set in Figure 2.23. Notice how many extraneous surfaces exist near the duck

"Distinguishingtwo objects that have the same rigid motion is afundamental limitation of algorithmsthat
build models from sequences of data. Thisisthe fundamental advantage of modeling by moving the object
rather than modeling by moving the camera around the object. When the object is moved with respect to the
camera, the rest of the background is unlikely to follow the same motion and thus will not be consistently
detected by the data merging a gorithm.
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Figure 2.15: Results from modeling the fruit. (a) An intensity image of the fruit, (b) a
close-up of some of the triangulated range images used as input to the consensus-surface
algorithm, (c) a dice of the implicit-surface octree volume where the grey-scale indicates
the proximity to a surface point (black closest, white furthest), and (d) a 3D view of two

cross sections of the implicit-surface octree volume.
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Figure 2.16: Three views of the resulting triangulated model of the fruit.
Object | Images | Tris | Tris| Voxel | Octree Time O quorum 04 0,
In | Out| Res. Usage | (minutes) (mm) | (degrees)
boxcar 18 300k | 23k | 1.6mm 6% 17 15 2 45
fruit 36 370k | 49k | 1mm 6.8% 39 15 2 53
duck 48 555k | 27k | 1.8mm 4% 52 2.25 3 45
mug 50 680k | 24k | 25mm | 23% 48 25 3 45
car 54 747k | 26k | 2mm 5.5% 86 15 2 53

Table 2.1: Statistics of the modeling experiments for each object.
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Figure2.17: Resultsfrom modelingthe rubber duck. (a) Anintensity image of the duck, (b)
aclose-up of some of the triangulated range images used as input to the consensus-surface
algorithm, (c) a dlice of the implicit-surface octree volume where the grey-scale indicates
the proximity to a surface point (black closest, white furthest), and (d) a 3D view of two
cross sections of the implicit-surface octree volume.
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Figure 2.18: Three views of the resulting triangulated model of the duck.

from theinput range-image data. Also notice thelarge number of holes and bumps over the
resulting surface. The naive algorithm fails because it trusts that every surface observation
isan accurate observation of the object surface. As can be seen from the sample range data
of the duck in Figure 2.17, thisis not the case.

To more clearly illustrate the accuracy of our modeling algorithm, Figures 2.24- 2.28
show cross sections of our final models and the original input range-image data. These
examples demonstrate the ability of our consensus-surface algorithm to accurately locate
the surface in very noisy data.

Therange-imagedatawasmost noisy in dark regionsof an object and regionsof specular
reflection and interreflection. For the most part, the consensus-surface algorithm was able
to make sense of the data in spite of these significant errors. Small bumps sometimes
resulted in those regions (e.g., on the boxcar and the duck) but that is to be expected when
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Figure2.19: Resultsfrom modeling the ceramic mug. (a) Anintensity image of themug, (b)
aclose-up of some of the triangulated range images used as input to the consensus-surface
algorithm, (c) a dlice of the implicit-surface octree volume where the grey-scale indicates
the proximity to a surface point (black closest, white furthest), and (d) a 3D view of two
cross sections of the implicit-surface octree volume
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Figure 2.20: Three views of the resulting triangulated model of the mug.
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Figure 2.21: Results from modeling the toy car. (a) An intensity image of the toy car, (b)
aclose-up of some of the triangulated range images used as input to the consensus-surface
algorithm, (c) a dlice of the implicit-surface octree volume where the grey-scale indicates
the proximity to a surface point (black closest, white furthest), and (d) a 3D view of two
cross sections of the implicit-surface octree volume.
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Figure 2.22: Three views of the resulting triangulated model of the car.

the data is consistently bad in aregion. However, for the quality of the data, the model
surfaces in those regions are still very good. One problem we were unable to solve was
modeling the wheels on the toy car. The chrome wheel hubs refused to be imaged by our
light-stripe range finder. This is due to the highly specular nature and interreflections on
the wheel hub which gave no image data resembling a wheel surface from any views. To
work around this, we placed white tape over the wheels of the car.

2.6 3D Modeling: Summary

We have described a method to create a triangulated surface mesh from /N range images.
Robotic calibration is used to acquire images of the object under known transformations,
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Figure 2.23: The result of the naive algorithm, Algorithm ClosestS gnedDistance, on the
duck image.

allowing us to align the images into one coordinate frame reliably. Our method for data
merging takesadvantage of thevolumetricimplicit-surfacerepresentation and themarching-
cubes algorithm to eliminate topological problems.

The main contribution of this chapter is our algorithm for merging data from multiple
views: the consensus-surface algorithm which attempts to answer the question

What isthe closest surface to a given point?

With the answer to this question, we can easily compute the signed distance f(x) correctly.
While other known methods (described in detail in Chapter 6) also implicitly address
this question, their algorithms do not capture the essence of the problem and produce
answers by taking averages of possibly unrelated observations. In contrast, our algorithm
attempts to justify the selection of observations used to produce the average by finding a
guorum or consensus of locally coherent observations. This process eliminates many of the
troublesome effects of noise and extraneous surface observationsin our data.

Consensus surfaces can be computed independently for any point in the volume. This
feature makes it very easy to parallelize and allows us to straightforwardly use the octree
representation. The octree representation enables us to model objects with high accuracy
with greatly reduced computation and memory requirements. By modifying the marching-
cubes algorithm to do a simple gradient test at zero crossings, we aso are able to avoid
special casesin our algorithm.

We have presented the results of our modeling algorithm on a number of example
problems. These results demonstrate that our consensus-surface algorithm can construct
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Figure 2.24: A cross section of the final model of the boxcar (thick black line) and the
original range-image data (thin black lines) used to construct it.

accurate geometric models from rather noisy input range data and somewhat imperfect
alignment.
We now discuss our algorithm for 3D-3D object localization.
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Figure2.25: A crosssection of thefinal model of thefruit (thick black line) and the original
range-image data (thin black lines) used to construct it.
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Figure2.26: A cross section of thefinal model of the rubber duck (thick black line) and the
original range-image data (thin black lines) used to construct it.
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Figure 2.27: A cross section of the final model of the ceramic mug (thick black line) and
the original range-image data (thin black lines) used to construct it.
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Figure 2.28: A cross section of the final model of the toy car (thick black line) and the
original range-image data (thin black lines) used to construct it.



Chapter 3

3D-3D Object Localization

Themaingoal of thisthesisistolocalize aknown object in animage given arough estimate
of the object’s pose. In the previous chapter, we described a method for automatically
building a3D triangulated surface model from multiple range-imageviews. Inthischapter,
we will detail our approach to using such models for the task of localizing 3D objectsin
3D range-image data—3D-3D object localization?.

For localization to be useful for recognition and tracking applications, it must be an
efficient, robust operation and should be applicable to a wide variety of object shapes.
There are many subtle problems to be solved to achieve robust and efficient localization
in practice. We begin this chapter by briefly overviewing the problems involved and our
approach to solving them.

3.1 Approach

Here, we assumethat wearegiven an accurate, triangulated model of our 3D object’ ssurface
(using the techniques presented in Chapter 2 or an appropriately triangulated CAD model),
a range image, and a rough estimate of the object’s pose in the image. The localization
task is to estimate the precise pose of the object in the range image. In approaching this
task, we regard as axiomatic that localization is an optimization problem: we can evaluate
any pose estimate, and the true pose has the optimal value. The primary problem is how to
evaluate a pose candidate. Once pose candidates can be evaluated the next problem is how
to efficiently and effectively search for the best pose candidate.

Our first decision is to evaluate the pose by measuring the distance between points on
the model and pointsin theimage. The rationale is that the range image provides us with
samples of visible surface pointsin three dimensions. Thus, it makes sense to match points
on the model surface with their samples in the image and measure the distance between
them. In general, we use one point per triangle in the model though we could easily sample

1Earlier versions of thisworked appeared in [144, 145, 146, 148].

53
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more or fewer points.?

We prefer to rely on low-level data available from the sensor rather than higher-level
features inferred from the data. 3D points (available directly from range images) are the
simplest possible feature and points suit our purposes nicely: they are efficient to process
and manipulate and relatively easy to match with one another. Pointsare also avery general
representation of shape. If higher-level features are used, the shapes that could be modeled
would most certainly be restricted (e.g., using algebraic surfaces).

At the highest level, our approach to localization comprises the following steps:

¢ Predict the appearance of model pointsin the image
e Match the model points to image points

¢ Refine the pose estimate using the point matches

The first problem we face is how to efficiently compute the visibility of the points of the
model with respect to the range-image view. We present a local approximation method
for efficiently predicting the visibility of points given the pose of the object and camera
parameters. This method is general for all standard camera projection models and obviates
the need for expensive ray-casting or z-buffering.

The second issue is how to compute correspondences between model and image points.
We describe the use of k-d trees [41] to perform nearest-neighbor searches for efficiently
computing these correspondences. We also describe a method for extending the nearest-
neighbor search to consider attributes other than 3D location to improve the accuracy of
correspondences when the error in theinitial pose estimate is high.

The third problem is dealing with incorrect correspondences and noise. Our reason
for computing the correspondences is to use them to refine our estimate of the pose. This
closely resemblesthe classic pose estimation problem—computing the optimal posefroma
set of correspondences. In pose estimation, the correspondences are usually assumed to be
correct but that the data is possibly corrupted by noise (e.g., Gaussian noise). Here we are
faced with a more difficult task—dealing with incorrect correspondences as well as noise,
and no fixed/precomputed correspondences. Knowing that many of our correspondences
will be incorrect, we draw upon the field of robust statistics [67, 96] to create a solution
that is relatively insensitive to noise and outliers. The solution is more complicated than
| east-sguares estimation—the standard solution for 3D-3D pose-estimation problems. The
solution to localization requires non-linear optimization. In general, closed-form solutions
do not exist for non-linear optimization problems—implying that an iterative solution
scheme is necessary, asisthe case here.

Our approach to optimization borrows much philosophically from Kass, Witkin and
Terzopoulos's [ 75, 134] work on active contour models and energy minimizing snakes and

2The models built using the methods of Chapter 2 can be composed of triangles of arbitrary size. If the
tessellation is too coarse, we can straightforwardly increase the density of triangles by interpolation using
many schemes. |If thetessellation istoo fine, we can use decimation techniques (e.g., Johnson [73]) to reduce
the triangle density.
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from Bed and McKay’s [6] iterative closest point (ICP) algorithm for 3D registration. In-
stead of assigning correspondences and statically solving for the pose, our method achieves
robustness by allowing the model to dynamically settle on the optimal pose with respect
to the constraints of the image. We accomplish this by making the correspondences a
dynamic function of pose during optimization. The objective function that we minimizeis
specifically chosen to make the estimation robust to outliers and is based on solid statistical
principles. Aswill be described later, this approach isintuitively and mathematically well
justified.

Therest of thischapter will providethe detail sof our solutionsto the problemsdescribed
above:

e Point visibility
¢ Point-to-point correspondence
e Pose optimization

Figure 3.1 shows a diagram of the technical sections of the thesis. We begin by discussing
an efficient approximation for surface point visibility computation. This is followed by
adiscussion of an efficient search technique for nearest neighbor correspondences and an
extension to include attributes other than spatial coordinates. We then discuss the pose
optimization problem and the main contribution of this chapter, our method for minimizing
arobust M-estimator via dynamic correspondences with standard non-linear optimization
techniques.

The chapter will conclude by summarizing the localization agorithm. The methods
and algorithms described here are of a very practical nature. We will attempt to describe
the steps with great attention to detail as there are many traps to catch the unsuspecting
practitioner.

3.2 Point Visbility

Before matching a surface point of a model with a point in a range image, it is prudent
to first determine if the model point is geometrically visible from the given pose. We
need to answer the question of visibility for every point of the model. Since the visibility
computation will be performed many times, the computation must be as efficient aspossible.
For an exact computation of the visible portions of an object model, there are two standard
algorithms from the field of computer graphics: ray-casting and z-buffering.

Ray-casting [40, 141] works by casting a ray from the camera's center of projection
through a given point on the model. The model point is visible if the ray does not first
pass through any other point on the model surface. A ray is thus traced for each point
of the model. Ray-casting is a rather complicated operation. For every triangle of the
object, it ispossible that we must test every other triangle on the object surface to determine
if the triangle is the first surface that intersects the ray—resulting in O(n?) ray-triangle
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Figure 3.1: Organization of this chapter.

intersection tests for a surface model composed of » triangles. Thisis much too expensive
to consider for localization in practice.

Z-buffering [40, 141] works by creating a depth image of the object. The object surface
isprojectedinto theimage, triangle by triangle. If asurface point projectsto the sameimage
coordinate as a previous point, the point that is closest to the camerais placed in the depth
image. Finally, only visible surface points are present in the depth image. Z-buffering
is less expensive than ray-casting, O(n) operations® for a surface model composed of »
triangles. Despite the existence of fast hardware implementations, z-buffering is still too
time-consuming for our purposes. Z-buffering only worksif the entire surfaceis projected
triangle by triangle onto the depth image. Thus, there is no speedup benefit to be gained
by using sparse collections of points. As a practical matter for efficiency, we must limit
our localization search to use only a sparse set of points on surface of our object model.*

3Assuming atrianglefill isa constant time operation.

4For example, a reasonable coverage of a small object could have 40,000 triangles. Using that many
triangles is inefficient and unnecessary to solve the task. Our experience is that using several hundred to a
few thousand trianglesis sufficient for localization of most objects.
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Z-buffering necessarily solves for the visibility of all points on the surface (at the specified
depth-image resolution); thus, z-buffering is not a desirable solution.

Since we are using a large set of points for localization, having a perfect visibility
computationisnot critical. Our localization algorithm should beresilient to afew mistakes
out of ahundred. Thus, exact solutions such as z-buffering or ray tracing are not necessary
for our purposes.

For 3D surfaces, we can reduce the problem to two cases: convex surface visibility and
concave surface visibility. The convex case covers all points which lie on the convex hull
of the surface: wherever the surface normal points towards the camera center, the point is
visible (assuming outward pointing normalson every surface). The concave case coversall
surface points which are not on the convex hull of the object. The solution for the concave
case subsumes the convex case but has an added complication that the concave point will
be occluded by other parts of the object surface from some viewpoints. In the following,
we present an efficient approximation to solve for convex and concave surface visibility.

3.2.1 Convex Surface Visibility

We discuss the smplest case, the convex case, first. For this discussion, let us assume that
the object is completely convex (e.g., a sphere or élipsoid). Asin Chapter 2, the surface
isrepresented as a set of triangles. For any point x on atriangle, we can straightforwardly
compute itsvisibility given the current viewing direction, v—the vector from the camera’'s
center of projection to x.°> Wherever the surface normal points towards the camera center,
the point is visible. Without loss of generality, we focus our interest on the center points
of each triangle. In the following, 7; denotes the :th triangle of the model, 1, denotes
7;"s outward pointing normal and c; denotes 7;’s center point. The visibility of point c; is
computed by the test

true n;-v>0

V|Sb|econvex(ci) - { false otherwise

where v is the viewing direction vector from the camera center of projection to ¢;. This
visibility test only requires a dot product and a comparison and, since it is local, can be
computed independently for each triangle. Note that the definition of v in this equation
means that this test will work correctly regardless of camera parameterization. v is the
only information that we need to know about the camera projection to make the visibility
determination.

In practice, apoint onthe surface will only be visible when the surface orientationisjust
less than 90 degrees from the viewing direction. Thus, we generally use a small threshold
instead of O for the comparison in the above test. The dightly modified test is:

true n;-v > cosé

false otherwise (3-1)

visible.per (1) = {

SThe camera scenter of projectionisreadily available from the camera calibration parameters as described
in Chapter 1.
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Figure 3.2: An example of the set of visible viewing directions (the unshaded portion of
the hemisphere) for the point = on the L-shape.

where ¢ is an angle close to 90 degrees which is the maximum orientation angle of the
surface that will be detected by the range sensor. ¢ ischosen empirically. Thisvisibility test
for the convex case nicely satisfies our requirements of efficiency and locality; however,
we are not smply interested in localizing ovoids. The concave surface case is discussed
next.

3.2.2 Concave Surface Visibility

In general, we must be prepared to compute point visibility for arbitrary shapes which
will include concavities and self-occlusions where our ssmple convex visibility test (Equa-
tion 3.1) would be grossly insufficient.

As in the convex case, we prefer a local visibility test for the concave points. We
can still make good use of our previous test for convex points. Since it is inexpensive, it
makes sense to first check to seeif the surface point in question is even oriented toward the
camera. Once that is determined, we can then perform more expensive tests to determine
whether the point is occluded by another part of the object or not. As stated previoudly,
we cannot afford to perform ray-casting or z-buffering each time that we need to compute
point visibility.

For each point, the visibility function is a binary function over the set of viewing
directions. In practice, by assuming that the point lies on the planar center of the triangle,
only the viewing directions lying in the unit hemisphere above the surface point (triangle)
need to betested for visibility. Figure3.2illustratesthisfor asimpleL-shaped object. Thus,
wecan reducethevisibility problem to representing the set of viewing directionsfromwhich
the point isvisible. For the convex case, the visibility set is trivial—the hemisphere above
the point’s surface. Our main problem is how to represent the visibility set such that:

¢ the membership test is efficient, and

¢ the memory requirements are tolerable.
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If it were necessary to represent the visibility set exactly, wewould beinalot of trouble.
First, as one can imagine, the visibility set could take on arbitrarily complicated subsets of
the viewing hemisphere—making the representation arbitrarily large. Secondly, it could
become very expensive to evaluate membership in such a set. Fortunately, we can tolerate
small errors. as described in Section 3.1 our localization agorithm must be robust to small
numbers of errors. Thus, an approximation of the visibility set is sufficient.

We will use adiscrete representation of the viewing hemisphere: alookup table (LUT).
We can tessellate the viewing hemisphere into discrete bins representing sets of similar
viewing directions—all viewing directionsin a particular bin are considered equivalent for
thevisibility computation. Such aschemeinvolvesatimeversusspacetrade-off. Ingeneral,
we are a\ways looking to reduce the time requirements of localization agorithms, thus, we
will usually choose time savings over space savings. In practice, the more important trade-
off is space versus accuracy. Do we prefer an LUT approximation which is accurate to 0.1
degrees or an approximation which is accurate to 3 degrees but can be efficiently stored and
loaded.

Onecommon LUT scheme[47, 81, 148] isto storeineach bin alist of all object features
(e.g., points, surfaces, lines) which are visible from the viewing directions corresponding
to the bin. The problem with this approach is that it assumes that all points on the
object are viewed from the same direction. Thisis adeguate for an orthographic-projection
cameramodel; however, under perspective projection the viewing direction depends on the
projected image coordinates of the scene point. For example, the LUT scheme described
above does not account for changes in the visibility set as an object transates along the
central viewing direction.

Since we do not wish to restrict ourselves to a specific camera model, we must devise
another approach. Instead of listing all visible entities in each bin, we allocate a separate
LUT for each surface point used in the model (for example, the center points of each
triangle). We refer to these LUTs as visibility LUTs. Each bininavisibility LUT contains
abinary value indicating whether the point is visible or not from viewing directions which
map to the given bin. Since we have avisibility LUT for each point, each point’s visibility
can be independently computed using the viewing direction to that particular point, thus,
allowing for arbitrary camera models.

The next issue is how to tessellate up the viewing hemisphere into discrete bins. We
have two criteriafor carving up the hemisphere:

1. The mapping from viewing directions to bins must be efficient.
2. The bins should cover approximately uniform areas of the hemisphere.

The first criteriais obvious: it is very important that the membership test is efficient as
it will be evaluated frequently (once for every point of the model). The second criteria
is a practical detail: if some bins are much larger than others, the error of the visibility
approximation will vary with respect to viewing direction.

The smplest and most efficient mapping between viewing directions of a hemisphere
and the binsof a2D LUT isorthographic projection. Consider the 2D LUT asagrid lying
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Figure 3.3: Orthographic projection of viewing directionsonto asimple LUT array.

on the equatorial plane of the hemisphere. The 2D orthographic coordinates, [f ¢]”, of a
viewing direction projected onto the gridsare smply the = and y components of the viewing
directionv (i.e,, f = x and ¢ = y). Thisisabit unsatisfactory, however, because the result
is that two different grid elements may cover vastly different areas on the viewing sphere
(see Figure 3.3).

We would prefer a more uniform tessellation of the hemisphere. No perfectly uniform
tessellation exists, however, there are several other options. One such improvement over
orthographic projection is stereographic projection: each point on the sphere projects onto
agridlying on the equatorial plane by intersecting this plane with aray passing through the
point and the south pole (i.e., lowest point) of thesphere. Figure 3.5 showsthe stereographic
projection of a2D LUT array. Stereographic projection is dightly more complicated than
orthographic, but not beyond reason. The stereographic projection of v = [z y z]T to 2D
stereographic coordinates, [ f ¢]”, isaccomplished by

I=Tr1 (32
Y
9=7""7 (33)

assuming that the radius of the sphereis 1, the sphere is centered at [0 00]7, and the 2D
grid [f g]T lieson the = = 0 plane. Using more advanced tessellations than orthographic
and stereographic projection would require much more elaborate (and computationally
expensive) mappings between viewing directions and LUT bins. One such tessellation is



Figure 3.4: Latitudinal/Longitudinal discretization of a hemisphere.

based on latitude and longitude (see Figure 3.4). The problem with alatitudinal-longitudinal
tessellation is the cost of indexing the LUT by viewing direction. Computing the latitude
and longitude of the viewing direction requires the (relatively) expensive evaluation of
trigonometric functions which we would like to avoid. What we can do, however, is
essentially to use LUT methods again to compute the latitudinal-longitudinal coordinates.
Sinceweareonly really interested in mapping the viewing directionto abinin thevisibility
LUT, the latitudinal-longitudinal coordinates can be ignored altogether. LUT methods can
be used to index the indices of our visibility LUT. Thus, we have two levels of lookup
tables:

¢ Vighility LUT: unique for each point, each bin contains the binary value indicating
the visibility of the point from the set of viewing directions that map to the bin.

e Index LUT: identical structurefor all pointsand models, each bin containstheindices
of the Visbility LUT which correspond to the set of viewing directions that map to
the bin.

It appears that we have the same problem as before: how do we tessellate theindex LUT?
The problem is a bit different for the index LUT than for the visibility LUTs.

Sinceonevisbility LUT isrequired for each point of thelocalization model, the number
of bins must necessarily be small; however, only one index LUT is necessary since the
mapping fromviewing directionsto binindicesisthesamefor all points. Thus, itisfeasible
to use amuch higher resolution table. The previous problem of uniform tessellation can be
ignored as long as the resolution of the index LUT is substantially higher than resolution
of the vigibility LUTSs (i.e., many index LUT bins correspond to each visibility LUT bin).
The index LUT can be indexed by the f and ¢ components of stereographic projection to
providethe corresponding indicesof thevisibility LUT (implicitly providingthelatitudeand
longitude, or any other mapping for an arbitrary tessellation of the hemisphere). Figure 3.6
demonstrates how the two-level indexing of viewing directionsto visibility works.
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Figure 3.5: Stereographic projection of viewing directions onto asimple LUT array.
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Figure 3.6: The viewing direction is mapped to theindex LUT using stereographic projec-
tion (note, in practice the resolution of the index LUT would be extremely fine as opposed
to the coarse LUT pictured here). The bin of the index LUT provides the index into the
visibility LUT which may have an arbitrarily complex tessellation (latitude and longitude
in this case).
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This two-level indexing technique will work for any discretization of the viewing
sphere. We can enumerate an endlesslist of possibilities, such astessellations of pentagons
or hexagons (asin asoccer ball), anicosahedron, or semi-regular triangul ation of the sphere.
The latitudinal-longitudinal tessellation alows us more control over the size of the bins
than some of these other practical tessellations. Any tessellation can be used; the only
requirement is that there is some (arbitrarily complicated/expensive) function that maps
viewing directionsto the index of the corresponding discrete chunk. This function can be
used to generate the index LUT off-line, and then we have a simple and efficient way to
map viewing directionsto the bins of our viewing hemisphere tessellation.

One subtle point that was omitted from the preceding discussion was the coordinate
system of the viewing direction vector ¥. Each point must have its own coordinate system
since the viewing hemisphere is oriented in the direction of the point’s normal; there is
no single coordinate system which will work for all points on the model. The viewing
direction must bein the point’slocal coordinate framein order to index the correct element
of the point’svisibility LUT. We can define local coordinate system of triangle ;’s center,
c;, asfollows. Werequirethe z direction, z;, to correspond with the 7,’s normal:

Z;, = 1n;.

The z and y directions can be arbitrarily chosen to be orthogonal to z,. We choose the «
direction, x;, to be the direction from the center point, c;, to 7;’sfirst vertex po:

. _ Po—¢
p=
Ipo — &

The y direction, y;, followsdirectly from z; and x;:

Vi =2Z; XX;.

To index our LUT all we need to do is convert v to local coordinates, which can be
accomplished by the following matrix multiplication:

Vi= Xy v (34)
G =R, ¥ (35)

The stereographic coordinates of v; index abin intheindex LUT which gives us the index
into the visibility LUT. The computation cost of this visibility test is also reasonable: one
matrix-vector multiplication and two table lookups. The index LUT can be computed
off-line and loaded at run-time, and for each concave point we must precompute and store
itsvisibility LUT. The visibility LUT is most efficiently implemented as a bit vector. The
resolution of the vigibility LUT can be chosen based on memory limitations, required
accuracy or efficiency requirements. For example, we can carve up the viewing hemisphere
into 256 chunks and store thisin eight, 32-bit words.
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3.2.3 Off-line Lookup Table Creation

Now that we have chosen arepresentation for the visibility set, we must compute the LUT
for each point of the model. Though this computation is relatively expensive, it can be
computed in reasonable time (severa minutes) off-line and stored with the model.

For each triangle 7;, the algorithm for filling the visibility LUT is as follows

Algorithm CreateMsibilityLUT

Input: point ¢; of triangle 7;

Input: triangle set 7'

Output: thevisibility LUT for point ¢; of triangle 7;

1. createtheindex LUT of dimenson N x N

2. createbitmap LUT of dimension N x N, initialize all binsto true

3. forrelstr#mn

4. if ; occludes 7,

5 then project 7; into 7;’s local stereographic coordinates

6 fill in the bitmap LUT bins corresponding to the projected triangle with
false to denote occlusion

7. if al bitmap LUT bins are true

8. then declare 7; convex

9. return

10. else createand clear thevisibility LUT

11. for all bitmap LUT bins, initialize all binsto true

12. if binisfalse

13. then set the corresponding visibility LUT bin to false

14. returnvisbility LUT

Theindex LUT is created and a bitmap of the same dimensionsis created to record the
visibility at each of these bins. Thevisibility of the bitmap’s binsis computed by projecting
all occluding triangles onto the bitmap and marking those bits which overlap thetriangle as
occluded (i.e., painting the triangle onto the bitmap). After doing thisfor al trianglesof 7',
we can convert the bitmap to the (coarser) visibility LUT bitmap. If the bitmap indicates
that all bins arevisible, the point ¢; is convex and no visibility LUT is necessary.

3.2.4 On-line Visibility Testing

When performing localization, we need to test the visibility of a point before using it for
refining the pose. If we're dealing with orthographic projection, then we can use the same
viewing direction for all points (and previous aspect LUT methods become an option).
For perspective projection, the viewing direction depends on the point’s location in the
image. Thus, for perspective, we must first compute the image projection of the point and
compute v using the image coordinates and the known camera parameters. ¥ must then be
rotated into the model’s coordinate system and then the point’s coordinate system. These
transformations can be composed for efficiency. Once v istransformed to the point’slocal
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coordinate system, wefirst perform the convex visibility test from Equation 3.1. If the test
returns true and the point is concave, then the visibility LUT is checked as described in
Section 3.2.2.

The visibility tests described in this section are very efficient. Practical requirements
force us to make approximations; however, the approximations as discussed here typically
err onthesafe side: pointsmay be declared invisiblewhen in fact they arevisible, however,
it is not possible that a point is declared visible when it is geometrically invisible. Since
our localization algorithm will have to cope with asignificant number of errors, declaring a
few visible pointsto beinvisible will not have a big effect on the result. On the other hand,
declaring afew invisible points to be visible is pointless as they will never be detected.

3.3 3D-3D Correspondence

Oncethe set of visible model points has been computed, we need to compute the correspon-
dences between these model points and points in the range image. The correspondences
will be used to evaluate the current estimate of the pose.

The correspondence problem is circular. One cannot easily find the correct correspon-
dences without first knowing the pose of the object (i.e., knowing where to 1ook), but our
interest in finding correspondencesisto aid our search for the correct pose of the object.

One of the points of this thesis is that the exact correspondences are not necessary to
refine the pose. What is necessary are correspondences which lead to improvementsin the
pose estimate. When starting with asmall pose error, local search can often provide aset of
correspondences that are close enough to the correct correspondences to guide the search
to the correct pose. What we desire is a quick local search which will usually produce
matches to points which are nearby the correct match. Asthe pose estimation isimproved,
these matches will approach the correct matches.

Given apoint on the model and a current pose estimate, we must select a corresponding
point from our range image. The obvious approach is to find the nearest point in 3D
(Cartesian) space (nearest neighbor or closest point). Mathematically, the closest image
point y to agiven point x can be defined as

=argmin|jx —
y = agmin|jx — |

where D isthe set of three-dimensional datapointsintheimage. Thetheoretical complexity
of the nearest-neighbor search is O(|D|). However, geometry is on our side. 3D objects
occupy a volume in 3D space and their surfaces occupy 2D manifolds in 3D space. The
surface tends to sparsely occupy the 3D volume. Thus, it is possible to partition the surface
pointsin the 3D space to more efficiently search for the nearest pointsin practice. We now
describe a technique which utilizes this characteristic distribution of surface pointsin 3D
gpace to make the search efficient.
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3.3.1 K-D Treesfor Efficient Correspondence Search

The key to efficient search in two or more dimensionsis a generalization of binary-search
trees called k-d trees [42] (“kd” isan abbreviation for k-dimensional where & isan arbitrary
integer greater than zero). ® The k-d treeis created by recursively splitting a data set down
themiddle of itsdimension of greatest variance. The splitting continues until the leaf nodes
contain asmall enough number of data points. The result isatree of depth O(logn) where
n is the number of points stored in the k-d tree. Figure 3.7 shows an example of how 2D
points would be separated into leaf nodes using this technique.

The k-d tree can be searched efficiently by following the appropriate branches of the
tree until a leaf node is reached (as in binary-tree search). The distance to al pointsin
the leaf node is computed. A hyper-sphere centered at the key point (with radius of the
distance to the current closest point) can be used to determine which, if any, neighboring
leaf nodes in the k-d tree must be checked for closer points. This test can be performed
very efficiently. Once we tested al the data in leaf nodes which could possibly be closer,
we are guaranteed to have found the closest point in the tree.

To use k-d trees and nearest-neighbor search for point sets in a particular coordinate
system, we need a measure of dissimilarity between apair of points. The dissmilarity, A,
between k-d points x and y must have the form

Alx,y) = F (ZZ; fi(Xivyi)) (3.6)

where the functions f; are symmetric functions over a single dimension and functions f;
and [ are monotonic. Most notable of these restrictionsis that A must be composed by a
sum of dissimilarities along each individual coordinate. All metric distances satisfy these
conditions—most importantly, the Euclidean distance

Alx,y) =[x =yl (3.7)

Such a dissmilarity allows us to partition the k-d tree for optimal expected time of the
nearest-neighbor search.

Though its worst case complexity is still O(n), the expected number of operations
is O(logn), which will be the case if the data is evenly distributed—as is the case for
surfaces in 3D space. The overhead involved is that the k-d tree of range-image points
must be built prior to the search. This is a one-time cost per image of O(nlogn) time
since the points in the range image are static. For most cases of 3D localization, using
closest pointsis sufficient. Thisis because surfaces sparsely occupy 3D space and points
are not often found immediately above the surface of a visible object. As long as the
magjority of correspondences are to the correct surface in the image, localization will often
succeed. The next section discusses an extension of this nearest-neighbor search to make
the correspondence search alittle more robust to initial position errors.

5The k-d tree [42] representation and nearest-neighbors search are extremely useful tools for many
problemsin computer vision, computer graphics, as well as computer science and artificial intelligence. K-d
trees are used for many applicationsthroughout thisthesis, notably in Sections: 2.4, 4.3, 4.4, and 5.3.
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Figure 3.7: K-d tree subdivision of 2D points. Each line splits the data in half across the
dimension of greatest spread. The number indicates which level of the tree at which the
split occurs.
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Figure 3.8: An example of nearest-neighbor correspondence (left) versus nearest neigh-
bor+normal correspondence (right).

3.3.2 Attributesfor Improving 3D-3D Correspondences

Besides proximity there are other possible constraints which we may want to consider
when searching for correspondences. One such exampleis surface normal similarity—the
surface normal of the model point should be similar to the normal of its matching image
point. Figure 3.8 shows an example where, because of the error in the pose estimate, the
simple nearest-neighbor search results in non-useful correspondences, while the addition
of normal constraints on the local search improvesthe utility of the matching.

The ideal dissmilarity measure for comparing two unit vectors (normals) is the angle
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between the two vectors
Ag(f1, fiz) = cos ™ (fig - fip).

Thismetricisnon-linear in termsof the two normals, », and n, that we are comparing and
can not be decomposed into adissimilarity function as specified in Equation 3.6.

As amatter of efficiency, we would prefer alinear metric that is of the form of Equa-
tion 3.7, such as the metric

A, (fi1,02) = || — Ayl (3.8)

We need to characterize A,, to determine if it is suitable for our purposes. whether A,

bears any relationship to our desired dissimilarity measure A,. Without loss of generality,
we can rotate ri; and i, such that

'=Rn;=[100]" (3.9
f, = R fi; = [cosf sind 0] (3.10)
where 6 is the angle between ni; and n,. This step uses the facts that the normals are

unit vectors and that 3D and angular distances are invariant to rigid rotation. Now we can
smplify A, (i1, fip) to

A, (i, Aip) =[] — || (3.11)
\/(cose —1)2+9n§? (3.12)

— \/cos62 — 2cos0 + 1+ sin6? (3.13)

= 4/2(1 — cosb) (3.14)

. 0
= ’/48”‘]25 (3.15)
.0
= 29n§. (3.16)

Using the small-angle approximationfor 4, 2sin % ~ 0 for small valuesof 4. If weplot this
function (see Figure 3.9) over thevalid range of ¢, which isbetween 0 and 180 degrees, then
we see that though this metric is not linear, it is close to linear and monotonic in é—only
diverging near 100 degrees. Thisis qualitatively sufficient for our purposes.

Our immediate goal is to efficiently compute correspondences. Proximity is our first
criteria, normal similarity isanother. Comparing both of these quantities at the same time
is a difficult proposition with no absolute solution. For example, assume we have three
pointsx = [0 0 0] with normal #i = [100]7, x; = [0 0 1]7 with normal fi; = [100]7,
and x, = [000]" with normal fi; = [001]?. How do we decide which of x; and x> is
closer to x? x; hasacloser normal to point x, while x, iscloser to x in position; the choice
isnot clear.

The answer depends on what the application’s requirements are. Returning to the
previous example, isit more important to have a point whichis closer or a point which has
a closer normal vector? We have to decide which constraint is more important and how
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Figure 3.9: Plot of A(fi1,12) (the 3D distance between two unit vectors) with respect
to 0 (the angle between the two vectors). The (desired) angular distance is plotted for
comparison.

much more important it is. We can do this easily by weighting either the point or normal
and combining the vectorsto form a higher-dimensional vector (e.g., Sx dimensionsin the
previous example).

Each data point isthen stored in the k-d tree as the 6D vector
T
p= [XT wnT] (3.17)
= [z y z wn, wn, wnZ]T (3.18)

where w is the scaling factor for the normals. Applying the Euclidean distance metric to
these points gives

A(p1,p2) = [|p1 — P (3.19)
= \/||X1—X2|| + ||wiy — wiy)| (3.20)
= /|1 — x| + w ||y — fig| (3.21)

whichisthedesired effect. For example, if we decide that an error of one unit in distanceis
just as undesirable as an error of .25 units between normals, then we can scale the normals
by setting «w = 4 in the previous equation.
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Thus, no modification of the k-d tree and nearest-neighbor search technique isrequired
to add the additional orientation attribute for correspondence search. The weighting factor
w Isused to effect the desired constraint on the correspondences.

Depending upon other constraints of the system, other attributes can be added in a
similar manner. Curvature is another possible attribute for improving the correspondence
search in 3D-3D localization. The main drawback of curvatureisthat computing curvature
from range imagesis a particularly noise-sensitive operation. Another potential source for
attributesis color information. The key isto select attributes that can be reliably measured
and are invariant to object pose and other possible scene variations such as lighting.

3.3.3 3D-3D Correspondence Summary

Given an estimate of the pose, we have shown how to efficiently compute nearest neighbor
correspondences between visible model pointsand pointsin therangeimage. We have also
shown how the nearest-neighbor search can be extended to consider attributes other than
3D positional information.

One must be reminded that for 3D-3D localization, the use of additional attributes for
correspondence search will only be necessary in extreme situations. In generd, if the pose
is reasonably accurate, correspondences based on proximity will yield useful results (i.e.,
model point is matched to a point near the correct point of the object surface). Thisis
due to the nature of range-image data. The points in the image sparsely occupy 3D space.
Thus, as a point moves away from a surface, the space between the point and the surfaceis
usually empty. If theinitial position estimate istoo far or, perhaps, the current pose estimate
is closer to an object other than the desired object, then proximity may not be sufficient
for effective localization. Using additional attributes for the correspondence search may
aleviate the problem, but there are limits. If the pose estimate is nearly correct, proximity
will almost always be sufficient for 3D-3D localization to converge to the true pose.

Now that we have a method for efficiently generating local correspondences, our goa
iSto use these correspondences to improve our estimate of the pose; thisis the topic of the
next section.

3.4 3D-3D Pose Optimization

This section discusses avariety of techniques dealing with the computation of pose of a3D
object (point set) with respect to observed 3D points. Werefer to thisgeneral areaas 3D-3D
pose optimi zation which includes the problems of 3D-3D pose estimation and 3D-3D pose
refinement.

The desired results of pose estimation and pose refinement are much the same: find the
pose of theobject intheimage. The assumptionsarequitedifferent; pose estimationisgiven
a set of correspondences while pose refinement is given an image and a rough initial pose
estimate. For pose estimation, the given correspondences are assumed to be correct and are
fixed. Pose estimation is very much a static problem. Because of this, the pose-estimation
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problem is well suited to abstract formulations and theoretical analysis. In contrast, the
problem of primary interest here, localization, is a dynamic operation involving possibly
al information available from the image.

It must be noted that there is a medium ground between pose estimation and pose
refinement—hybrids of pose estimation and pose refinement. Some examples include the
work of Grimson [52, 49] and Lowe [85, 84, 89, 90] in which the pose is iteratively
computed by a sequence consisting of pose estimation and correspondence search. During
each iteration a new correspondence (found using local search) is added to the previously
accumulated set of correspondences and pose estimation is performed on the whole set.
The goal is to gradually increase the accuracy of the pose estimate by adding constraints
(correspondences).

Instead of jumping straight to our solution for 3D-3D localization, we will build up to
it by first discussing a simpler version of the problem—pose estimation. The form of the
pose-estimation problem of interest hereis 3D-3D pose estimation—to compute the pose of
an object given anumber of correspondences between a set of measured 3D (image) points
and a set of 3D points of our prior model. The 3D-3D localization techniques presented in
this thesis borrow much from the theory and practice of 3D-3D pose estimation.

We begin by considering the problem of 3D-3D pose estimation—a problem which has
along history [36, 1, 66, 58] and is generally considered to be solved.

3.4.1 3D-3D Pose Estimation

The 3D-3D pose-estimation problem isto compute the pose (arigid transformation) which
alignsthe 3D model points x; with their corresponding image pointsy; where: = 1, ..., n.
The rigid transformation is specified by the matrix-vector pair (R, t) where R isa3 x 3
rotation matrix and t isa 3D trand ation vector.

Each correspondence provides three linear constraints on our unknown pose variables
viathe rigid transformation equation

Y. = RXZ' + t.
In general, the sensed pointsy; will be contaminated by noise:

yi = yiactual T 6

where 3 isarandom 3D variable. Assuming that /3 isunbiased (i.e., #’smeanis[000]7)

and follows a normal distribution (i.e., P(/) e~ %), then the optimal transformation is
the least-squared error solution—-thevalues (R, t) that minimize

F(R.t) =D [ Rx; +t -yl (322)

Thisseemslike an easy enough problemto solve— f isquadraticinitsinput parameters—
until we consider rotation. A rotation in 3D space has only three degrees of freedom, yet
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is represented in our linear formulaby a3 x 3 matrix R. The three degrees of freedom
restrict the values of R in anon-linear way. R must satisfy the constraints

RRT =1 (3.23)
R| =1 (3.24)

where I is the 3 x 3 identity matrix. The first constraint requires the rows of R to be
orthonormal. The second constraint ensures that the rotation is rigid and not a reflection.
Capturing all these constraints while taking advantage of the linear matrix form of rotation
isdifficult.

The generally accepted solution to the rotation problem isto represent the rotation using
aunit 4-vector called aquaternion. A quaternion is composed of a 3-vector [« v w]? and a
scalar s. We will use the 4-vector

q=[uvw S]T

to denotetherotation. Therotation matrix, R, corresponding to q isdenoted by R(q) (refer
to Appendix B for the derivation).

The 7-vector .
p=|q"t"]
denotes the complete set of pose parameters/rigid transformation. Now we have three
equivalent notations for the pose which will be used interchangeably: (R,t), p, and
(R(q),t).

The best intuitive description of a quaternion is that the 3-vector of the quaternion
represents the axis of rotation and the scalar represents the angle of rotation. This is
not entirely accurate, as the quaternion is not simply an axis and angle representation.
Quaternions have many nice mathematical propertieswhich have proven useful for deriving
several solutions as will be described below. For the reader’s convenience, an overview of
quaternionsis provided in Appendix B.

Theimportance of the gquaternion representation for the 3D-3D pose-estimation problem
was first demonstrated by Sanso [116] in the field of photogrammetry and then later intro-
duced to thefield of computer vision by thework of Hebert and Faugeras[36] and Horn [66] .
They independently showed that a closed form solution for (R, t) existed by formulating
the minimization of Equation 3.22 using quaternions to represent rotation. Their methods
are dightly different, but we will describe the general idea central to both. First, both sets
of points x; and y; are trandated so that the centers of gravity of both translated sets are
located at the origin. The centered points are denoted by x¢ and y respectively. Using the
centered points we can solve for the rotation quaternion ¢ independent of the trandation t.
The optimal quaternion can be computed as the eigenvector corresponding to the maximum
eigenvalue of a matrix composed from the points x¢ and y¢. The reader should consult
[116, 36, 66] for the derivation of thismatrix. With q and, hence, R determined, t iseasily
determined to be the difference between the centroid of the point set y; and the centroid of
therotated point set Rx;.
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Horn also showed that the closed-form solution generalizes to weighted least squares
as well. Haralick [58] and Arun [1] presented a closed-form solution for 3D-3D pose
estimation which compute R directly using singular value decomposition of a matrix
composed from the pointsx¢ and y¢. The quaternion formulation is favored over the SVD
formulation which is not as robust, numerically speaking.

If the errorsin the observed data are not normally distributed, | east-squares estimation
may be inappropriate as the resulting estimate is optimal only for normally distributed
errors. It may be necessary to consider a different objective function which is the optimal
estimator with respect to the error distribution of the data. Also, if we have statistically
significant errorsor outliers, then the closed-form solutionsfor (R, t) are no longer useful.
In fact, least-squares estimation will usually fail when outliers are present asthe estimation
isvery sensitive to large errors.

Unfortunately, the existence of outliers is the rule for computer vision applications
rather than the exception. When viewing objects, it is often true that parts of the object
surfaces are occluded by other objects in the scene or shadows. When points on an object
are occluded or go undetected, the errors for the corresponding point of the model will be
much larger than the errorsfor visible points of the object. Thisisbecause these unobserved
points violate the assumption that the observation actually corresponds to a point in our
model.

Since the closed form solution is no longer valid, an iterative approach is probably
necessary to solve this problem. The best known method for iterative search is gradient-
descent search. Thebasic agorithmisto follow the path of best improvement (the gradient
direction) until nolocal moveimprovesthe estimate (i.e., until theminimum of our objective
function is reached).

There are a couple of well known problems with gradient-descent techniques. First,
they assume astarting positionisavailable. Thisisnot a problem for pose-refinement since
a starting point is already assumed. Second, gradient descent is a dave to local minima.
Depending on the starting point, the desired minima may or may not be reachable. For
example, Figure 3.10 shows an example search of a one dimensiona function with two
starting positions, s; and s, that lead to different local minimar; and r,. Inthis example,
ro isthe desired result. The range [ in, ma.] denotes the set of starting points that will
lead to the solution r;; thisrangeisreferred to as r,’s basin of attraction. To ensure ahigh
probability of success, wewould like agood initial starting guess (i.e., |s — r| issmall) and
awide basin of attraction (i.e., |¢min — ¥max| iS1arge). In general, the size of the basin of
attraction and the initial error will depend on the complex interaction of the model and data
pointsthat are matched as well as the number and size of any outlier correspondences.

We can now step back and examine how our localization problem relates to the pose
estimation problem. The main similarity is that local minimawill be a problem, since we
will in general have some number of incorrect correspondencesto deal with. However, the
localization problemisstill moredifficult. First, wearenot given absol ute correspondences,
only arough pose as a starting point of the search. Correspondences are acquired using the
efficient local search described in Section 3.3; however, it is unlikely that any significant
portion of these correspondences will be correct unless the pose estimate is also correct.
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Figure 3.10: Examples of local versus global minimaand basins of attraction.

We must deal with two problems:

e Poor initial correspondences. we must assume that at the start of the search most of
the correspondences will not be correct.

e Outliers: even when most of the correspondences are correct, we must be able to
handle outliers gracefully.

The next section will describe methods from the field of robust statistics to handle outliers.
The methods described there will lead to an approach that also overcomes the problem of
poor initial correspondences.

3.4.2 Robust Estimation

We return to the pose estimation problem described in the previous section. We are given
a set of n observed pointsy, and corresponding model points x;, and we want to compute
the pose (R, t) which will align the two sets. The additional complication is that some
percentage of the n correspondences will be incorrect, and we do not know which ones
areincorrect a priori. The errorsfor these incorrect correspondences will not fit a normal
distribution that describes the expected errorswhen comparing a point with its observation.
We look to the field of robust statistics [67, 96] for a solution to this problem. Robust
statistics provides solutions to the problem of estimating statistics reliably despite data
contaminated by outliers—data which do not belong to the desired sample population.
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There are three classes of robust-estimation techniques that we will consider here:
outlier thresholding, median/rank estimation, and M-estimation.

Outlier Thresholding

Thefirst class of solutions, outlier thresholding, is the ssmplest and, hence, the most promi-
nent robust-estimation technique used in computer-vision applications such as localization.
Outlier thresholding is also the most efficient of the three methods, but, unfortunately, the
most unreliable. The basic idea is to estimate the standard deviation, o, of the errorsin
the data and eliminate data points which have errors outside the range [— ko, ko] where
k is typically greater than or equal to 3. One problem with this is that an estimate of o
may be grosdy incorrect if there are many outliers. Another problem is that outliers with
errorslessthan ko arepossible. If alarge number of these outliers exist, then least-squares
estimation will still be inaccurate. Another popular (and somewhat similar technique) isto
find the first mode of the distribution of data and throw out the data past that point [151].
This assumes that the number of outliersis much smaller than the correct data and that the
outliers do not harmfully alter the shape of the mode.

The essential problem with these methods is that a hard threshold must be used to
eliminate the outliers. This is an unfortunate Situation since regardless of where the
threshold is chosen, some number of valid data points will be classified as outliers and
some number of outlierswill be classified asvalid. Inthissense, itisunlikely that a perfect
method for selecting the threshold exists unless the outliers (or perhaps their distribution)
are known a priori. Aswill be discussed in Sections 3.4.2 and 3.6, a hard threshold aso
creates a highly non-linear (non-smooth) objective function which causes difficulties for
numerical optimization techniques.

The above methods may not always be useful for the localization problem since the
initial correspondences and pose are likely to be incorrect anyway. Initially, these errors
may not have any unimodal distribution and the valid correspondences and outliers may
have indistinguishable error values.

M edian/Rank Estimation

The second class of robust estimators that we will discuss is the median/rank estimation
methods. The basic ideaisto select the median or kth value (for some percentile &) with
respect to the errorsfor each observation and use that value as our error estimate. Thelogic
behind thisisthat the median isamost guaranteed not to be an outlier aslong as half of the
dataisvalid. In fact, median estimation has the optimal breakdown point of any estimator
(smallest percentage of outliersthat are capable of forcing the estimate outside some finite
range).

An example of median estimators is the least-median-of-squares method (LMedS)
[96, 79]. LMedS computes the parameters p which minimizes the median of the squared
error:

p = ag n}!n (medizi(p)z)
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where z;(p) is the error in the :th observation and med; returns the median value of
it's argument over all values of ;. Generally, to solve this problem, we must perform
exhaustive search of possiblevalues p by testing | east-squares estimates of p for all possible
combinations of matchesfrom model to observed data. Techniques like randomization and
Monte Carlo methods are necessary to make searches such asLMedS feasible. The need to
exhaustively try all combinations of estimates p underscores a major limitation of median
methods for localization. Localization is based on the idea that local search can solve the
task efficiently. Aswill become clear later in this section, the efficiency is gained vialocal
optimization of a smooth objective function. LMedS and other median methods are not
well suited to thistype of search, since the objectiveis the error from a single data point.

LMedS bears a striking resemblance to a couple of classic methods in pose optimiza-
tion and object recognition: random sample consensus (better known as RANSAC) by
Fischler and Bolles[38], the aignment method of Huttenlocher and Ullman [70], and the
interpretation-tree(1T) search of Grimson and Lozano-Perez [52]. The common ideaisthat
combinations of subsets of the data are used to estimate the (pose) parameters, after which
the evaluation of the parameters can be performed. In the case of RANSAC, aignment, and
I'T search, the evaluation involves checking the correspondence of other model pointswith
the observed data set, whilein LM edS it involves measuring the median of the errorsfor all
the model points. These methods solve a dightly more difficult problem than localization,
however, since no set of correspondences or initial pose estimate is assumed.

While median/rank techniques can be very robust, they are also extremely computa-
tionally expensive.

M -estimation

The third and final class of robust-estimation techniques which we will discuss is M-
estimation. M-estimation isageneralization of least squares. The“M” refersto maximum-
likelihood estimation.

The general form of M-estimators allows us to define a probability distribution which
can be maximized by minimizing a function of the form

E(z) = Zp(zz) (3.25)

where p(z) is an arbitrary function of the errors, z;, in the observations. The equivalent
probability distributionto £(z) is

which, not coincidentally, is maximized by minimizing £(z). Thus, the M-estimate is the
maximum-likelihood estimate of P(z). Our choice of p(z) determines P(z) which is our
prior model of the distribution of errorsin our observations. It also determineswhether our
estimate will be sensitive to unusually large numbers of outliers.



3.4. 3D-3D Pose Optimization 77

As described previoudly, least-squares estimation is very sensitive to outliers. Least-
squares estimation correspondsto M-estimation with p(2) = 22 —equivalent to performing
maximum likelihood estimation of

P(z)=e" P

whichisreadily identifiable as the probability of » independent observations of a normally
distributed variable.

We can find the parameters p that minimize £ by taking the derivative of £ with respect
to p and setting it to O:

dp 822
Z 9z Op
By substituting
10p
we get
e : w(z;) z BT (3.26)

which, if we momentarily forget that w isafunction of z, hasthe same form asiif p(z) =
wz?—readily recognized as weighted-least squares. In this interpretation, the term w(z)
measures the weight of the contribution of errors of magnitude > towards a WLS estimate.

The weight term can also be interpreted as confidence in a given observation. For
pure least squares, we have w(z) = l—indicating that each error has equal confidence,
regardless of how large the error. A weight function, w(z), can be defined that has the
effect as outlier thresholding:

w(z) = { g') IZI Ez : (3.27)

In words, observations which have errors above the threshold ¢ areignored. Thus, we have
another way of specifying an M-estimator, as aweight function.

There are many other possible choices of p(z) to reduce the sensitivity to outliers on
the estimation. Table 3.1 lists severa possible functionsthat can be used for M-estimation.
Plots of the respective weight functions are shown in Figure 3.11 for comparison. All
except the Gaussian function (least squares) can be considered for robust estimation.

The five robust M-estimators—the threshold function, Sigmoid function and functions
by Tukey, Huber, and Lorentz—described in Table 3.1 strongly weight observations with
small errors while discounting observations with large errors. Looking at the plots of
the equivalent probability distributionsin Figure 3.12, we see that the distributions are all
similar to anormal distribution near the center of the distribution, but have noticeably larger
tails (i.e., ahigher prior likelihood for large errors).

In what follows, when we refer to robust M-estimation, we will be referring to the
minimization of a function of the form of Equation 3.25 where p(z) is derived from one
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Relative Weight

| | |  Torentzian
1.00— — Gaussian
Tukey— *
0.90__ _ Hupa”t!
Threshold
0.80__ _
0.70_ _
0.60__ _
0.50__ _
0.40__ _
0.30_ _
0.20__ _
0.10__ _
0.00__ _
| | | | | | Normalized Error
0.00 2.00 4.00 6.00 8.00 .

Figure 3.11: Plotsof w(z) for each of the M-estimatorslisted in Table 3.1 .
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Figure 3.12: Plotsof P(z) for each of the M-estimatorslisted in Table 3.1.
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| Function Name | w(z) | Comments
Gaussian 1 |east-squares
estimation
{ 1 |z <o .
Threshold w(z) = 0 outlier threshold-
|z| > o . .
ingg o is the
threshold
Lorentz's function w(z) = (1#1(&)2) o controlswidth of
2 distribution [111]
z2\2\2
Tukey’sfunction | w(z) = { él_ (51 IEI § Z o controlswidth of
distribution [137,
58]
1 |z2|<o

Huber’s function

o controlswidth of
distribution [67]

Sigmoid function

B controls falloff

79

and ¢ is the center
of the fdloff, re-
lated to mixture of
Gaussian and uni-
form background
[62, 143]

Table 3.1: Table of weight functions for M-estimation.

of the five robust weight functions described above or a function with similar weighting
characteristicsto one of the above five functionsin Table 3.1.

M-estimators are often loosely mixed with weighted least-squares (WLS) estimation.
Haralick et al. [58] use an iterative reweighting technique based on WLS for the optimal
pose with respect to a robust M-estimator. In our experience, weighted least squares is
only appropriate when the correspondences are fixed as is standard for pose-estimation
problems.

As one can see, the weight term in M-estimation is a function of the pose p. If we
attempt to solve the M-estimation as a WLS problem, the function being minimized is
different from the objective function, and the computed step may take the pose into a
different minima. Thus the closed form (WLS) solution isno longer valid. The problemis
that if the magnitude of the derivative of the weight function is great, small changes in the
pose will have large changes on the function being minimized. A proper implementation
of M-estimationis likely more computationally intensive than outlier thresholding, but itis
likely to be better behaved.
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3.4.3 Robust Pose Refinement

Our original problem isto solvefor the pose, p, of an object given aset of correspondences
between visible object points x; and image points y,;. Since we know that we will have
many outliersin our set of correspondences, we will use arobust M-estimator to solve for
p. Wewill minimize

> plzi(p)) (3.28)

where V (p) is the set of visible model points for the model pose parameters p (com-
puted using the methods of Section 3.2), z;(p) is the 3D distance between the sth pair of
correspondences. We define

z(p) = [[R(q)x; + t — yill

whereR (q) isthe 3x3 rotation matrix for the rotation component of p andt isthetranslation
component. Sincethereisno closed formsolutionfor thisproblem, aniterativeoptimization
technique such as gradient descent is necessary.

Unfortunately, minimizing £ isnot so straightforward. The correspondingimagepoints,
y:, areafunction of p aswell’:

yi = y(xi,p) = agmin|[R(q)x: +t — y]|

Ignoring thisfact can result in inefficiency and possibly incorrect results. This complicates
the minimization algorithm in practice.

The whole idea of localization is that we can start with a crude set of correspondences
and gradually converge to the correct correspondences and at the same time find the true
pose of the object in the image—much like active contour approach of Witkin, Kass and
Terzopoulos [ 75, 134] and the ICP algorithm of Bed and McKay [6]. Thus, as we search
the pose space, an improvement in £ should correspond to an improvement in p as well
as an improvement in the correspondences. If we hold the correspondences fixed for any
search, we are minimizing a different function.

Fortunately, with alittle work, we can perform the gradient-descent search to correctly
minimize the desired function . The basic agorithm for gradient descent search of a
function f () with initial guess z¢ is

Algorithm GradientDescent

Input: starting point x

Input: function f(x)

Input: gradient of f, V f(x)

Output: the location, x¢ of thelocal minimum of f(x)
1. repeat

71f attributesare used to find correspondences as described in Section 3.3.2, then thisfunction would have
to include the additional error term in this equation.
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J e f(x)
dx + -V f(x)
A < argmin, f(x + Adx)
X ¢ X + Adx

until f — f(x) <e¢

return x

Noabkwd

The crucia step of Algorithm GradientDescent is the computation of A in Line 4—
generally referred to as a line minimization [111]. If we take a step A in the gradient
direction, a proper evaluation of £ requiresthat we reevaluate the correspondences at that
step to determineif £ decreases with respect to the correspondences at that point. By doing
S0, the correspondences become dynamic, and the search begins to smulate the effect of
model pointsfloating in apotential field [75, 134, 29, 104, 133] in which the only force felt
by each point is from the attraction of the nearest point—its correspondence.

Another complication is that the set of points that are visible in the model is also a
function of p. With adight change of p, we could see alarge change in the set of visible
points. This can cause great problems for a line-minimization routine since changes in
vigibility will cause discontinuous jumpsin £ as A varies. Even though £ (Equation 3.28)
is normalized, adding and removing many observations will often have large changes on
the value of . For example, consider a cube rotating in front of a camera. As the cube
rotates, different sides become visible. The equivalent to thisin localization is when the
localization search rotates the model to improve the pose estimate. As the estimate of the
model’s orientation changes, surfaces of the model may make the transition from occluded
to visible and vice versa. This will cause the value of £ to abruptly change. Figure 3.13
shows an example of this effect with a cross section of a cube and the value of £ as the
orientation changes.

To implement line minimization efficiently and reliably, £(p) must be smooth aongthe
line (at least within the current basin of attraction). If weallow V (p) to vary, then we cannot
achieve smoothness during line-minimization: this is an unfortunate fact which we must
accept. Our solution is to compute the visibility set, V' (p), before the line minimization
and keep this set fixed during the line minimization.

One may wonder what the effect of changing correspondenceswill have on the smooth-
nessof £ (p). Theanswer isthat £ (p) isusually smooth when a change of correspondence
occurs. This is because the changes of correspondences usually occur continuously with
respect to z;. For example, consider the minimum distance ~ between point x and two
other points xo and x;. If point x isin between xq and x3, the distance function, z(x), is
maximum when the point is halfway between the two points and linearly decreases as it
approaches either of the points (see Figure 3.14). The important fact is that the functionis
continuous as the point moves. It isnot C'! as there are first derivative discontinuities at
each point and the midpoint between them as can be seen in the graph of = in Figure 3.14.

When using correspondences with attributes (e.g., points and normals as described in
Section 3.3.2), it isindeed possible that the minimum distance function will have disconti-
nuities. For example, we can modify the previous example to give each point a normal as
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Figure 3.13: Example of the fluctuation of £ due to changes in the pose and the set of
visible points. The graph shows the value of £ as the object rotates from one aspect to
another with respect to the camera.
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Figure 3.14: The minimum distance function with respect to the dynamic correspondences.
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Figure 3.15: Correspondences which compare normals can create discontinuities in the
distance function ~. Note how the transition point (where the correspondences switch) has
moved due to the influence of the normal constraint.

an attribute. 1f the two points have different normals, then the point at which the correspon-
dence shiftsis no longer the midpoint (depending on the weight of the normal constraint).
Figure 3.15 shows this effect. Point x has a left facing normal and is, thus, more strongly
attracted to xg, whose normal is aso facing left. Thus, as x approaches x;, the transition
point—the point wherex becomes closer to x; than x, inthe 6D point and normal space—is
closer to x; than x( since the correspondence prefers x because of its smilar normal. At
some point, the proximity to x; will overwhelmsthe differencein surface normal directions.
Ascan beseenin Figure 3.15, the minimum distance function has a noti ceabl e discontinuity
at the transition point. However, such discontinuities are relatively small compared to the
discontinuities caused by changesin the set of visible points.

To complete our minimization algorithm, the only thing remaining to discuss is the
computation of the gradient of £(p). The presence of dynamic correspondences does not
cause any problems since the gradient is an instantaneous measure and the likelihood of a
model point lying exactly on a discontinuity is small enough to ignore.

When computing the gradient of £(p) (Equation 3.28), we have from Equation 3.26

% = Zw(zz) % %

7

It turns out that we can greatly smplify the following derivations with a few algebraic
manipulations. First, instead of using

z(p) = [[R(q)x; + t — yill

we redefine z; to be
2
z(p) = [|R(q)x; +t —yi".



84 Chapter 3. 3D-3D Object Localization

Thisonly requiresadlight change in w(z) to compensate for having arguments that are the
sguare of the distance rather than the distance itself. We will also assume that the model
points have been pre-rotated so that the current quaternion is q; = [000 1]7 which has
the property that R(q;) = I. Thisalows us to take advantage of the fact that the gradient
of R(q)x hasavery smple formwhen evaluated at q = q;:

J(Rx)
dq

x = 2C(x)". (3.29)
qar

where C(x) isthe 3 x 3, skew-symmetric matrix (i.e, C(x) = —C(x)T) of the vector x
(the derivation of Equation 3.29 is presented in Appendix B). Multiplying by this matrix
and a vector is equivalent to taking the cross product of x and that vector, i.e.,

C(x)v=xXV.

Using these facts, 22 can easily be derived:

=
0z I(R(q)x; -V
o = 2AR(ax+ =y (R(q) ap+t yi) (3.30)
_ 2(x;+t—yi)
= l AC(2)T (% 4+t — y1) ] (3.31)
| 2Axi+t—yi)
_ l e ] . (3.32)

Thus, very simple formulas define the gradient with respect to the rotation quaternion and
trandation vector.

We now have covered thepoint visibility problem, the correspondence problem and pose
optimization as they relate to the 3D-3D localization problem. In this section, we described
an optimization method, gradient descent with dynamic correspondences, that solves the
localization problem using a robust M-estimator. We can now put together the methods
discussed so far into a complete algorithm for performing robust 3D-3D localization.

3.5 Putting It Together: 3D-3D L ocalization

We have described the principal components of our 3D-3D localization agorithm: point
visibility, point-to-point correspondence, and robust pose optimization.

Here, we put everything together to present a pseudocode description of our complete
3D-3D localization agorithm:

Algorithm 3D-3D Localization
Input: initial pose p

Input: range image point set D

Input: object localization model



3.5. Putting It Together: 3D-3D Localization 85

Output: fina pose p
1. createk-dtreefor the points D

2. repeat

3 compute the set of visible model points: V(p)
4. Fo « E(p)

5. dp + —VE(p)

6 A < argminy F(p + Adp)

7 p < p+ Adp

8. until Fo— E(p) < ¢

9. returnp

The above algorithm is more or less a complete description of the localization as we have
implemented it. There are however afew practical details which were omitted for clarity
and are discussed below.

3.5.1 Scale'sEffect on Gradient Directions

A problem affecting gradient-based search methods is that the amount of change due to
rotation and trandation isrelated to the scale of the data. The problem isthat a unit change
of rotation resultsin a change in the error that is dependent on the scale of the vector being
rotated. At the same time, a unit change in trandation is independent of the scale of the
data. Roughly, as the scale increases, the sensitivity of the rotation parametersincreases at
aratethat is much faster than that of thetrandation parameters. Thisisnot agood situation
for agradient-based search. Theimplicationisthat if we have agiven problem and smply
scale the data, the algorithm which uses gradients will follow two different solution paths
when rescaled.

From the derivation of the rotational Jacobian in Equation 3.29, one can quickly derive
the gradient of the following example, atypical squared error between a point x at pose
{(q,t) and an observation y

f=R(qe)x+t—y)>
Assuming that q = q; (i.e, the point x has already absorbed the current rotation), the
rotational gradient is of theform

af

o AC(x) T (x+t—y) (3.33)
=—4dxx(t—y) (3.34)
and the trandational gradient is of the form
af
5t = 2x+t—y). (3.35)

If the scale of our data, x and y, (assume t is zero, or equivalently that it is aready
subtracted fromy), isroughly 3, then

0 :
‘%‘ ~ 8nf x| |y| o« X2
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using the relation between the angle, ¢, between two vectors and the magnitude of their
cross product, while

at| =TI

using the law of sines and assuming that x and y approximately form an isosceles triangle.
Thus, asthe scale of our dataincreases, the gradient direction shiftstowards a purerotation,
and vice versa as the scale decreases.

When the gradient is a pure trandation or pure rotation, gradient-based searches will
have poor convergence characteristics. Imagine that the desired pose is a pure trand ation.
The gradient with respect to rotation will dominate, and infinitesmal steps will have to
be taken during each line minimization to ensure that progress is made®. What would be
desirable for most applications is that the solution to a problem at a scale where rotation
and trandation have roughly the same influence would be the same (modulo scaling of t)
regardlessif the data were rescaled or not. To affect thisis not difficult, it smply involves
normalizing the data to some canonical frame (say a unit cube). It isagood ideato include
the normalization in any algorithm that will deal with objects of different sizes, otherwise
algorithm performance may unexplainedly get worse when applying it to a new domain.

This is related to numerical conditioning of matrices for solving linear systems [61].
For purely quadratic functions, a standard technique for rescaling the variables to form
spherical objectivefunctionsiscalled preconditioning. Preconditioninginvolvescomputing
an approximation of theinverse of the quadratic coefficient matrix of the objective function.
The system is premultiplied with this approximation and if the inverse approximation is
accurate the condition number of the linear system can be improved (the objective is
transformed to be more spherical than elongated). Preconditioning and scaling the datawill
generaly improve the performance of gradient-based searches.

Hartley [61] recently showed that the scale of the data can cause numerical problems
for Longuet-Higgens 8-point algorithm for computing the fundamental matrix of two
uncalibrated cameras. He showed that by ssimply normalizing the data before applying
the algorithm, the condition number of the solution matrix is greatly improved resulting in
reduced error. The same logic applies to evaluation and use of the gradient in our case.

3.5.2 Efficient Gradient Search

Gradient-descent search (as described in Section 3.4.3) is notorioudy inefficient in practice
[7, 111]. While gradient descent solves the minimization problem, it does so inefficiently
since each gradient step requires the evaluation of the objective function’s gradient—
Equation 3.26, which isrelatively expensive to compute—and aline minimization. Ideally,
the gradient would point directly to the local minimum of the objective function, and the

8A seemingly straightforward solution is to iteratively move in pure trandations or pure rotations. This
may be effective in some cases, but it suffers from the same problems of pure gradient-descent search. For
example, if the error is pure trandation, a step in rotation that reduces the error will later have to be undone
to reach the desired result.
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solution would be found in one line-minimization step. In practice, thisis usually not the
case.

By definition, each successive gradient step direction is perpendicular to the previous
step direction (otherwise the directional derivative in the current search direction would
still be non-zero). This means the search must travel between two points by making a
sequence of 90 degree turns. Unless pointed directly toward the minimum, the search will
be accomplished by a potentially large number of 90 degree steps which zig-zag back and
forth towards the local minimum.

The problem is that each gradient step undoes some of the work of the previous step
unless the change in the gradient direction along the new step direction is perpendicular to
thepreviousstep (i.e., thechangein gradient isin the sasmedirection asthe current gradient).
Such adirectionisreferred to as aconjugate direction. Asthe search moves away from the
current point along the conjugate direction, the gradient direction of the point on the line of
search continues to be perpendicular to the previous step.

For efficiency, a variation of gradient descent that follows conjugate directions, the
conjugate-gradient algorithm [7, 111], is used. Conjugate gradient search avoids much
of the zig-zagging that pure gradient descent will often suffer from. For purely quadratic
functions, conjugate-gradient search can be shown to convergeto thelocal minimainn line
minimization steps, where . isthe number of free parametersof the objectivefunction. The
modification of Algorithms GradientDescent and 3D-3D Localization to utilize conjugate-
gradient searchistrivial [7, 111].

LineMinimization

Line minimization (Line 4 of Algorithm GradientDescent) is a critical step for any lo-
calization method using gradient-based optimization. The critical issue is that the choice
of line-minimization method will determine the number of evaluations of the objective
function being minimized. In our case, the objective function, £(p) (Equation 3.28), is
very expensive to evaluate—computing correspondences and summing up the weighted
errors between model and image points. It is, thus, important to minimize the number of
evaluations of F(p) to compute the minimum point, A, along the search direction. For the
line minimization, there are many techniques to choose from [7, 111]. We use a combi-
nation of golden-ratio bracketing and parabolic fits[111] to quickly isolate the minimain
the gradient direction with as few evaluations of £(p) and % as possible. If the bracket
cannot be found quickly, we stop the search and return the best value of A so far.

3.6 3D-3D Localization: Experimental Results

In this section, we present the results of our experimental evaluation of our 3D-3D local-
ization algorithm.
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Wefirst present examples of the performance of the surface-point visibility approxima:
tion (described in Section 3.2) used by our algorithm. This gives us a qualitative feel for
the accuracy and errorsin the approximation.

Next, we present a qualitative evaluation of the smoothness of our objective function
F (Equation 3.28) with respect to the various M-estimator functions p(z) described in
Section 3.4.2.

We then present quantitative results demonstrating the convergence of our algorithm
with respect to the various M-estimators.

To provide a baseline for comparing our algorithm with the state of the art, the con-
vergence experiments were al'so performed using Bed and McKay's iterative closest point
algorithm [6]—the most widely used algorithm for 3D-3D alignment and localization.

Finally, we present convergence results for a randomized version of our 3D-3D local-
ization agorithm which shows that there is a potential for improving both accuracy and
efficiency of our algorithm.

Note, the models used in this section (with one exception®) were created using the
method of Chapter 2. The models created using this method generally contain on the order
of 30,000 triangles in the mesh. Currently it is not practical to perform localization on
surface meshes this dense. For the purposes of localization, we must decimate (reduce the
density of triangles) the triangle mesh.

There are several algorithms developed for triangle-mesh decimation including [119].
However, most of these a gorithmsare designed with graphics applicationsin mind—all that
isdesired is an accurate geometric approximation. For localization it isimportant that the
triangulation is relatively uniform across the object surface. Otherwise, the pose estimate
will be biased by the dense regions of the surface—the objective function will weight dense
regions more than sparse regions and the dense regions will thus be closer aligned to the
image data than the sparse regions. Fortunately, there is a decimation algorithm designed
with object recognition and localization tasksin mind. Johnson’s decimation algorithm[73]
optimizes the decimated mesh to keep the lengths of triangles nearly uniform, the result is
that the surfaceistriangul ated by nearly uniform areatriangles—no long, thin or extremely
large triangles are generated as is the case with other algorithms. Johnson’s algorithm was
used to produce lower resolution surface meshes for each object using approximately two
to three-thousand triangles per object. Thisnumber of trianglesisreasonablefor testing our
3D-3D agorithm on the SPARC 20 workstations (resulting localization time approximately
20 to 30 seconds for largeinitia errors). The geometric accuracy of the decimated model
is preserved in all but the high curvature regions of the surface. The decimated surface
meshes are sufficiently accurate for 3D-3D localization in range images with relatively
coarse resolution as used in thiswork—256 x 240 pixelswith aresolution of approximately
1 mm.

9The model of the Sharpei dog is courtesy of Heung-Yeung Shum [127]
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Figure 3.16: Three views of the mug object generated using our surface point visibility

approximation.

3.6.1 Qualitative Analysisof the Surface-Point Visibility Approximation

Wefirst briefly demonstratetheaccuracy (or rather inaccuracy) of our surface-point visibility
approximation as described in Section 3.2. Presenting afew simple examples will give us

aqualitativefeel for the accuracy and errorsin our visibility approximation.

The case of interest isthe approximation of hidden surface point removal. Asdescribed
in Section 3.2, the visibility function for a given surface point is efficiently approximated
by alookup-table (LUT) approach. The discrete sampling of the visibility LUT resultsin
errorssince there will invariably be abinin the point’s visibility LUT which contains both

occluded and unoccluded viewing directions.

The best example of these approximation errorsis the ceramic mug model from Chap-
ter 2. Figure 3.16 shows several views of the mug in which the visible surface triangles
are drawn using our approximation for visibility. For our purposes of localization, we only
use the center point of each triangle. A visbility LUT is defined for each center point
and the triangle is drawn if the center point is determined to be visible. Note that, in all
views, severa triangles are missing along the border between visible and occluded surface
points on the mug. Also note that no trianglesare drawn if their center point is occluded by
other surface triangles. Thisis true because our algorithm for LUT generation errs on the
safe side with respect to our localization task. Generally, the number of such incorrectly
classified pointswill be very small in relation to the total number of visible surface points.
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3.6.2 Qualitative Analysis of the Objective Function

We now consider the smoothness!'%and shape of our objectivefunction £ (see Equation 3.28)
with respect to the various M-estimators, p( =), that we may use for robust localization. For
3D-3D localization to be successful, it is necessary that I/ is smooth and has a wide basin
of attraction. That is, wewould prefer £ to be easily and reliably minimized using standard
non-linear optimization techniques!! over wide ranges of initial pose estimates.

Smoothnessis not an obvious property of £ (p). We have changes in the set of visible
points (V(p)) as p changes. The correspondences vary with respect to p aswell. Add to
that the non-linear effect of the robust M-estimators (described in Section 3.4.2) and it is
not obvious how smooth £(p) might be.

To inspect the shape of E(p), we computed the values of F(q) over several range
images containing known objects in known positions. Here, we show some plots of F(q)
for arangeimageof aceramic dog*®. Theintensity image corresponding to therangeimage
used for this analysisis shown in Figure 3.21 (@), an off-center view of the range data is
shown in Figure 3.21 (b), and the alignment of the dog model in the image is shown in
Figure 3.21 (c). The correct pose of the dog was manually estimated.

Barring large amounts of noise, partial occlusion, or shadows, we would expect the
correct pose estimate to be alocal minimaof any of the robust estimator functions described
previoudy and thisisindeed the case.

For each of the M-estimator functions p(z) from Section 3.4.2, we plotted the value of
FE aong various lines in pose space which cross the desired pose. The plot in Figure 3.17
shows the values of £ for each function p(z) along a pure transation through the correct
pose (at point + = 0). The axis dimensions of the plot is in millimeters and the range of
the plot is 120 mm. The dog is approximately 120 mm high. Figure 3.18 shows the value
of F for each function p(z) aong a pure rotation through the correct pose (at point 0). The
axis dimensions of the plot isin degrees and the range of the plot is 80 degrees. Finadly,
Figure 3.19 shows the value of E for each function p(z) along arotation and translation
through the correct pose (at point 0). The axisdimensionsof the plot isin combined degrees
and millimeters and the range of the plot is 80 degrees and 120 mm.

One can see that the F is relatively smooth for all M-estimator functions except the
threshold function. Once the poseis close enough to the desired pose, the threshold version
of I/ begins to become smoother but still has many bumps and local minima created by
the differential nature of the threshold. On a closer look (see Figure 3.20), we see that
FE is smoother for the smooth down-weighting M-estimators such as the Lorentzian than
it isfor the Gaussian. In practice, this difference in relative smoothness results in poorer
performance by the Gaussian.

10By smoothness of afunction, we refer to lack of bumps and local minimaalong the function’s landscape.
Optimally, we prefer a purely quadratic function which has a single globa minimum and no other loca
minima.

1 Randomized optimization techniques such as simulated annealing [43, 62, 111, 140] are not considered
here but are discussed in the futurework in Chapter 7.

2The mode of the Sharpei dog is courtesy of Heung-Yeung Shum [127].
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Figure 3.17: The variation of £ aong a line of trandation in pose space for five M-
estimators. Thetrueposeisat «+ = 0. The x-axisrepresents trandation in millimeters. The
rough range of the graph is [—60, 60] millimeters (about half the length of the dog).
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Figure 3.18: The variation of £/ along a line of pure rotation in pose space for five M-
estimators. Thetrueposeisat + = 0. The z-axisrepresents rotation in degrees. The rough
range of the graph is [—40, 40| degrees.
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Figure3.19: Thevariation of £ along alineof trandation and rotation in pose spacefor five
M-estimators. The true poseisat = = 0. The x-axis represents simultaneous rotation and
trandation. The rough range of the graph is [—60, 60] millimetersand [—40, 40] degrees.
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Figure 3.20: A close-up of a piece of the graphs of the function £ for the Lorentzian,
Gaussian and Threshold along aline of trandation in pose space. The Threshold and Gaus-
sian versions of £ have many small local minimawhich causes problems for optimization
algorithmsin practice.
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3.6.3 3D-3D Localization Convergence Results

We now present quantitative results demonstrating the convergence of our algorithm using
the various M-estimators described in Section 3.4.2. To provide some basis for comparison
with the state of the art, we al so repeated each experiment using Bes and McKay'siterative
closest point algorithm [6]—which is currently the most widely used algorithm for 3D-3D
alignment and localization.

We performed experiments on images of 4 objects: the dog, the mug, the car, and the
duck. For each experiment, we took a range image of our object in a known position—
using the robotic positioner or by manually estimating the object’s precise position. Each
image contains 256 x 240 pixels, each pixel containing a 3D point. The test images are
shown in Figures 3.21, 3.22, 3.23, and 3.24. These figures show the intensity image view
corresponding to the range finder’s view, an off-center view of the range-image points, an
overlay example of an initial (incorrect) pose estimate as used in the experiments and an
overlay of the object model on the intensity image at the estimated position.

Each experiment consists of 100 trials of the 3D-3D localization algorithm from a
randomly generated initial pose estimate. The initial pose estimates were generated by
perturbing each pose by a random trandation vector and a random rotation. Each trial
was performed with the same magnitude of initial pose error: 20 millimetersin trandation
and 30 degrees of rotation. We wish to emphasize that the initial errors are not uniformly
distributed between 0 and 20 millimeters of trandation, and 0 and 30 degrees of rotation,
but are exactly 20 millimeters and 30 degrees, respectively. Thus, there are no easy (i.e.,
close to the actua pose) initial estimates in our set of trials. Our algorithm is capable
of convergence from larger errors but characterizing the convergence range in genera is
difficult since convergence will vary greatly with respect to the input data. The objects
presented here havedimensionsof at most 200 millimeters, thus20 mmtrandation errorsare
significant. Combining thiswith 30-degree rotation errors makes for a difficult localization
task in general.

For each image, we performed the convergence experiment on four versions of our
3D-3D localization algorithm. The versions differ only by the M-estimator weight function
which is used. The following weight functions were used: Gaussian (constant weight),
Lorentzian, Tukey, and Huber. See Section 3.4.2 and Figure 3.11 for a review of these
functions. To account for large initial pose errors it is important that the errors = are
normalized accordingly so that the robust estimators do not immediately discount correct
correspondences. The errors are normalized by a progressively decreasing normalization
factor o (i.e, use 2’ = Z). Thisis effectively the standard deviation which controls the
width of the M-estimator weight-functions (e.g., a 3o threshold). In these experiments, we
beginwith & = 12 mm and reduceit to 6 mm and then to 3 mm as the algorithm progresses.

In addition to the four versions of our algorithm, we a so executed the same experiment
using Bed and McKay's iterative closest point algorithm [6]. ICP iteratively solvesfor the
closed-form pose estimate (using technigues such as those by Sanso [116], Faugeras and
Hebert [36], Horn [66], or Arun [1] as described in Section 3.4.1) given correspondences
between model pointsand the closest pointsin the 3D image data. Asdescribed previoudly,
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these closed-form techniques are very sensitive to incorrect correspondences and outliers.
Our implementation of ICP follows the typical approach and uses a hard threshold for
removing outliers. The threshold is progressively decreased from o = 12 mmtoo = 3
mm as in the implementation of our algorithm as described above.

We manually verified the results of each trial and determined the number of correct
trials—those that correctly align the model with the image—for each experiment. The
results arelisted in Table 3.2.

From these resultswe seethat the robust wei ght functions have much better convergence
propertiesthanapureleast-squared error objectivefunction (corresponding tothe Gaussian).
The Tukey and Lorentzian weight functions perform dightly better than Huber’s weight
function. We speculate that thismay be duethe first-order discontinuity in the Huber weight
function which may create morelocal minimathan the smooth Lorentzian and Tukey weight
functions. 1CP is not successful with such large initial pose errors. For each convergence
trial, our localization algorithm typically performed 40 conjugate-gradient steps and 180
function evaluationsfor each trial (approximately 25 seconds on a SPARC 20 workstation).
The ICP algorithm typically performed 30 iterations per trial.

There is nothing special about the images used for these tests (i.e., they weren’'t hand
chosen, but rather randomly selected from alarge set of sample images). They were taken
with a plain black background which would suggest that the localization task would be
trivial. Thisisabit deceptive since they do contain a considerable amount of background
noise (random points floating in space), much of which is near the object. The range data
of the dog image (Figure 3.21) is the cleanest of the four which partly explains the better
convergenceresultsfor that image. Thisnoiseistypical of thelight-striperangefinder when
imaging black points in the scene. The duck and car images are made difficult by the fact
that they are nearly singular views. A dlight twist of the duck will reveal many previously
hidden surface points. The mug image is a tough problem for any localization algorithm
because other than the handle the object is symmetric. Thus, alocalization search could
settle on any rotation that matches the body of the mug to the image while down-weighting
or ignoring the large errorsfor the handle. Surprisingly the robust M-estimators were very
adept at locating the precise pose of the mug, though the above problem was the main
source for the trial failures. The dog object is also very tricky, the problem isthat it has a
lot of low curvature surface area which leaves two degrees of freedom. The localization
task is also more difficult when one considers the large change in point visibility from the
initial to final pose. So though these |ocalization tasks may appear smple or trivial to most
readers, there are many subtleties to beware of .

Seeing the poor convergence results for ICP in the experiments, we performed two
more experiments with variations of 1CP. We repeated the duck image experiments using
a weighted-least squares version of ICP and using the Gaussian and Lorentzian weight
functions. This was done to determine if the use of hard thresholds (and their known
susceptibility to local minima as demonstrated in Section 3.6.2) were the reason for ICP's
failureand whether smoothly weighting the errors(asdone by the other robust M-estimators)
would offer an improvement. The results of these experiments are shown in Table 3.3.
The results showed that by changing to a smooth down-weighting function (the ICP w/
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Figure 3.21. The Sharpel dog convergence test data: (@) the intensity image view, (b)
an off-center view of the 3D range data points, (c) atypical initia starting point for the

convergence tests (20 mm trandation error and 30 degrees rotation error) (d) an overlay of
the dog model at it's estimated actual location.

Object % Correct

Gaussian | Lorentzian | Tukey | Huber | ICP
dog 65 98 100 | 8 | 24
mug 52 70 67 67 2
car 37 54 61 57 4
duck 50 60 58 58 9

Table3.2: Resultsof the convergence experimentswith variationsof our 3D-3D localization

algorithm and ICP. The initial errors were of uniform magnitudes: 30 degrees of rotation
and 20 mm of trandation.
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Figure 3.22: The ceramic mug convergence test data: (a) the intensity image view, (b)
an off-center view of the 3D range data points, (c) atypical initial starting point for the
convergencetests (20 mm transl ation error and 30 degreesrotation error), and (d) an overlay
of the mug model at the estimated location.

Lorentzian case) the convergence isimproved. It aso showed that using a hard threshold
is dightly better than none at al (the ICP w/ Gaussian case). However, neither attempts
managed to improve the convergence to approach that of any of the versions of our 3D-3D
localization algorithm.

location for the above images:

We offer a few hypotheses about ICP's relative inability to converge to the desired

1. 1CP does not anticipate changes in visibility sets when taking a step in pose space.
It often inadvertently forces itself out of the local basin of attraction by stepping to
aview with a significantly different set of visible points. For example, in the duck
example (see Figure 3.24), the view is singular. A dlight rotation introduces many
newly visible surface points on the duck. Thus, creating a situation where ICP has
jumped to a position of a function which it has little information about.
originally designed to register two (true) 3D data sets. Range images are incomplete

|CP was
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Figure 3.23: The toy car convergence test data: (a) the intensity image view, (b) an off-
center view of the 3D rangedatapoints, (c) atypical initial starting point for the convergence
tests (20 mm trandlation error and 30 degrees rotation error), and (d) an overlay of the car
model at the estimated |ocation.

3D data sets with respect to an object. The overlap between model and image data
will necessarily be limited and I CP was not designed with thisin mind.

2. ICP does not cope well with inaccurate correspondences. In our experience, it does
well if all or most of the image data belongs to the object or if the initial pose error
issmall. The images (a) through (c) have a substantial amount of noise. Range data
points are randomly scattered about in the background (see Figure 3.24) and are often
found to be correspondences. The closed-form pose estimation methods do not deal
gracefully with such inconsistent correspondences.

3. ICP attempts to make a global decision using information (correspondences) which
isoften only valid locally.

Theseresultsdemonstratethat using dynamic correspondenceswithin agradi ent-descent
search of a robust objective function is a key component to achieve a wide degree of
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Figure 3.24: The rubber duck convergence test data: (@) the intensity image view, (b)
an off-center view of the 3D range data points, (c) atypical initial starting point for the
convergencetests (20 mm transl ation error and 30 degreesrotation error), and (d) an overlay
of the duck model at the estimated |ocation.

Object % Correct
Lorentzian | ICPw/ Lorentzian | ICP w/ Threshold | ICP w/ Gaussian
| duck | 60 | 17 | 9 | 7 |

Table 3.3: Results of the convergence experiments with variations of 1CP on the duck
image. The leftmost entry is the result of our 3D-3D localization algorithm using the
Lorentzian weight function and is intended as a point of reference.

convergence for object localization in noisy image data.

3.6.4 Randomization Experiments

Viola[140] demonstrated amethod for aligning shapes by maximizing the entropy between
two functions. A key result of his work was the demonstration of a randomized gradient-
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Figure 3.25: Depiction of three iterations of the randomized localization search. Each
image shows an overlay of the randomly selected points from the model surface which
were used for localization during the iteration.

descent algorithm which increased the speed of the algorithm and reduced the susceptibility
of his algorithm to local minima (the randomness helps the algorithm to get “unstuck”).
While local minimais also a problem for amost every localization algorithm, including
ours, the opportunity for algorithm speedups viarandomization may be critical for practical
applications.

In this section, we present the result of an experiment to test the convergence of a mod-
ification of our 3D-3D localization algorithm to use a simple randomization strategy. The
modification isto perform each gradient computation and line minimization (Lines 6 and 7
of Algorithm 3D-3D Localization) of our search using only a small randomly sampled
subset of our model data to measure the objective function. Since the accuracy of the
localization result will increase with the number of samples of the error, we progressively
increase the number of random samples just as we decrease the standard deviation o in
the above convergence trials. In these randomization experiments, we doubled the num-
ber of surface point samples as we halved the value of #. The rationale is similar to the
simulated-annealing search algorithm [111, 43, 62, 24] which starts out with a high degree
of randomness in the search and gradually settles to non-random search. With a small
number of point samples we may not be able to accurately estimate the pose, but we may
be ableto quickly find a better estimate. Aswe get closer to the true pose, the convergence
rate improves thus we can afford to add more points as we get closer to get the desired
accuracy of the pose estimate. Figure 3.25 shows a snapshot of three iterations of the
randomized |localization algorithm. Each overlay shows the randomly selected pointsfrom
the model surface which were used for localization during the iteration. The number of
sampled pointsis gradually increased as the pose estimate converges to the true pose.

We performed three experiments with the following randomization schedules: 200 to
400 to 800, 100 to 200 to 400, and 50 to 100 to 200. The resultsof these experiments (again
performed using the duck image of Figure 3.24) are presented in Table 3.4.
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Object % Correct

Non-Random (3000) | 200,400,800 | 100,200,400 | 50,100,200
duck 60 57 52 34
speed (seconds) 275 8.5 6 45

Table 3.4: Results of the randomization convergence experiments. Each column lists
the number of surface point samples used in the randomization schedule, the number of
percentage of correct results and the execution timein seconds. All these experiments used
the randomization modification of our 3D-3D localization algorithm with the Lorentzian
weight function. Theinitial errorswere of uniform magnitudes: 30 degrees of rotation and
20 mm of trandation.

As these results show, the convergence accuracy gradually decreases as the random
set size decreases. The speedup is significant, however, thus the potential exists for
applying randomization techniques to capitalize on the relationship between speedup and
convergence and produce an algorithm that isfaster and has wider convergence on average.
For example, running the randomized algorithm multiple times from dlightly different
starting points may be more efficient and more likely to converge to the desired global
minima. Thiswork is beyond the scope of the current thesis.

3.7 3D-3D Object Localization: Summary

We have described the principal components of our 3D-3D localization agorithm: point
visibility, point-to-point correspondence, and robust pose optimization. Our algorithm
iteratively optimizes an objective function which is specified to reduce the effect of noise
and outlierswhich are prevalent in real image data.

Since an iterative algorithmis required, the computation of the objective function must
be as efficient as possible. Our solution utilizes an efficient and accurate approximation to
compute point visibility with respect to the pose and camera parameters. Point correspon-
dences are efficiently computed using k-d trees and nearest-neighbor search. We showed
how to extend the point correspondence search to includeattributes, such assurfacenormals,
in the nearest-neighbor search.

The most significant contribution of this chapter is our method for minimizing arobust
M-estimator via dynamic correspondences with standard non-linear optimization tech-
nigues. We described the use of robust M-estimators to define an objective function over
which to optimize the pose such that the effect of noise and outliersis greatly reduced. We
showed that optimizing such objective functions requires the use of dynamic correspon-
dences to properly evaluate the objective function. The optimization was implemented
using standard techniques such as conjugate-gradient minimization.
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Our results demonstrate that our 3D-3D localization algorithm using a smooth down-
weighting M-estimator, such as the Lorentzian, can consistently and efficiently converge
from rather large initial pose errors despite the presence of large number of extraneous
range-image points around the object. The convergence results showed that our algorithm
has much wider convergence ranges than Bed and McKay’s ICP agorithm [6]. We aso
showed that through randomization, the potential exists for a substantial speedup and
convergence improvement.

This ends our description of our 3D-3D localization algorithm. Experiments presented
in Section 3.6 show that this algorithm has a acceptable convergence time and produces
accurate results. We will now describe our extensions of this work to 3D-2D localization.
Our discussion begins with building object models for the 3D-2D localization task and is
followed by a description of our algorithm for 3D-2D localization.



Chapter 4

Object Modeling for 3D-2D L ocalization

The previous two chapters have described our approach for 3D object modeling and 3D-
3D localization. This chapter focuses on the problem of building models for the purpose
of localizing 3D objects in 2D intensity images—from here on referred to as 3D-2D
localization.

In many ways, model building for 3D-2D localization is similar to the problem of
building 3D models, which was addressed in Chapter 2. As in that work, here we seek
to build a model—for the task of localization—from several real images of the object
while automating the process as much as possible. 3D-2D localization is an inherently
more difficult problem than 3D-3D localization because the appearance of an object in an
intensity image is dependent on a combination of geometric and photometric properties
of the object rather than geometry alone as in the 3D-3D case.! The choice of model
representation is also not immediately obvious as the intensity images are 2D projections
of 3D phenomena.

4.1 Problemsand Approach

In this section, we overview the issues, problems, and our approach to building the models
for 3D-2D localization.

Before we can begin to build our object models for 3D-2D localization, we need to
know what information about the object will be required to solve this task. In order to
localize an object in an intensity image, we must establish some correspondence between
alocalizable feature of the object and its 2D projection in theimage. What features should
be used? Once we have decided on a certain set of features, we need to decide upon a
model representation that allows us to predict the appearance of those features in various
images of the object. After the features and model representation are decided upon, we

IPhotometric properties and effects do play a role in range-image acquisition (e.g., effects such as
interreflectance and specular reflection can cause problems for light-stripe range finders and stereo vision).
In general, these effects are ignored except during image processing. The range sensor effectively abstracts
away these effects.

102
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then face the problem of building such models from real images of the object. We break
the following discussion into three sections:

1. What features should we use for 3D-2D localization?
2. How should we model the features?
3. How do we build such amodel from a set of images of the object?

The focus of this chapter is on Question 3, but before jumping in we will answer the first
two questions—thus motivating our approach to 3D-2D localization (Chapter 5).

4.1.1 Featuresfor 3D-2D L ocalization

If we areto align a 3D object in a2D intensity image, we need to correlate the model to its
theimage. There are severa types of features which have been used to correlate/matching
an object with itsintensity image:

¢ Pixels/Regions: intensity/color/texture

e Interest points. corners, junctions, inflection points, distinguished points

Edge curves: lines/arcgellipsesfit to edgel chains

Edgels: edge points extracted by the edge operator.

We will discuss the use of each of these features for model-to-image correlation.

One possihility isto correlate regions of constant surface properties on the model with
intensity, color or texture of pixelg/regionsin theimage. Thisisdifficult because theimage
intensity of an object region may vary greatly because of changes in surface orientation,
lighting, shadows and reflections. Predicting pixel intensity or color requires detailed
knowledge of scene geometry, surface reflectance properties, light source properties and
positions, and the camera's geometric and photometric parameters. Without being able to
predict sensed intensities or colors, matching prediction with observation for localization
will be very error prone.

There have been several recent findings and results which may make pixel/region corre-
lation feasible in the near future. Nayar and Bolle [100] discovered a photometric invariant
involving the ratios of intensities between two neighboring points on a smooth surface.
Maxwell [93] has developed techniques to analyze and segment color images into con-
nected regions of similar material properties. Texture information may vary because of
the factors which influence intensities. However, texture the spatial properties of certain
textures may be reliably detectable—using methods such as Krumm's [78] local spatial
frequency— over awide range of lighting and scene variations. Changes in texture appear-
ance caused by changes in orientation and scale can be predicted since the rough object
location is known during the localization process. A drawback is that while many objects
have distinctive texture, most objects do not. Thus, texture alone will not be sufficient to
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localize most objects. Viola[140] presented an approach that minimizes the entropy of the
correlation of the model shape with the intensity image rather than simple pixel intensity
correlation. This approach avoids some of the above problems for some simple object
shapes and reflectance properties. His approach is discussed further in Chapter 6.

A popular class of featuresused for structurefrom motion[135, 130, 124, 106] and robot
navigation [98, 91, 92, 135] are interest points and corners. Definitions of these interest
points may differ but most follow the same principal: small image windows with distinct
intensity profiles. Some definitionsincludeimage windowswith high standard deviationsin
intensity, zero crossings of the Laplacian of the intensity, or corners. Tomasi [135] defines
a criterion for interest points based on the likelihood that the point can be tracked from
image to image. A similar feature is found by analyzing edge curves extracted from the
image and selecting junctions of multiple curves and high curvature (corner) points. These
kind of features are useful for motion estimation because they are distinct and can reliably
tracked fromimagetoimage. Suchinterest pointsare usually too sparsefor localization and
verification applications, however, they may be good candidates for recognition indexing
schemes where sparseness is more of an asset.

Another possbility isintensity edges—discontinuities in the image’s intensity profile.
Using present day techniques, intensity edges arethe most reliable, well-understood, practi-
cal, and, not coincidentally, the most popular feature for object recognition and localization
in intensity images. Intensity edges occur at points in the scene where there are geometric
discontinuities(e.g., occluding contoursof objects), surface orientation discontinuities(e.g.,
peak edges or corners) or surfacereflectance discontinuities(i.e., transitionsof surface color
or reflectance). These intensity edges have a direct correlation with points on the object
surface; however, there are other sources of intensity edges which may appear on an object
but are not intrinsic to the object—examples include cast shadows on the object, specular
reflections, or digitization noise. The intensity edges that are intrinsic to the object are
themselves subject to external sources of variation. For example, occluding contours will
only be apparent intheimageif the background reflectsa sufficiently different intensity than
the object, or surface markings may only be visible when viewed from certain directions
or under certain light source conditions. However, in general, the intrinsic discontinuity
sources of an object are detectable over wide changes in illumination and can be accurately
predicted without precise knowledge of the light source.

There are severa types of intensity edge features. Curves (e.g., line segments, arcs,
ellipses, etc.) fit to a collection of edgel data is the most common [47, 85, 110, 48, 49,
122, 54, 3, 15, 113]. Junctions and corners of the fitted curves are also a popular choice of
feature[81, 15, 110, 54]. Junctionsand cornersof edge curvesaremost smilar to theinterest
points described previoudly. Models consisting of a collection of curves and junctions can
belocalized by matching them to theimage curves and junctions. Thesefeaturesaresmple
to specify and the process of curve fitting greatly reduces the combinatorics of matching
since the number of curves and junctions will invariably be much smaller than the number
of edgels in the image. However, using edge curves immediately constrains the type of
objects for which localization/recognition systems will be applicable.
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Another option is to dispense with relying on a high-level feature extractor and use
the raw edgels themselves. This is the approach taken by [14, 143, 124]. Other than the
pixel intensities, edgels are likely the lowest-level information available from the image
that we can use for localization. This approach has been used recently by quite a few
researchers [143, 17, 14, 124] developing methods following the alignment paradigm of
Basri and Ullman [139]. Using the lowest-level edge data to perform localization makes
some sense since localization is not necessarily concerned with the same combinatoric
matching problem as in the general object-recognition problem. Thus, more data is not
necessarily a bad thing. This reduces the number of assumptions made by the algorithm
and restrictions placed on our system. The agorithm will aso be more robust to the
small variationsin edgel data which have significant effects on curve fitting or higher level
features extracted from the edgel data. Also, collections of edgels can represent a wide
variety of shapes.

For the reasons discussed above, we will use intensity edgels as our basisfor localizing
3D objects in intensity images. Of course, using combinations of color, intensity, texture,
and intensity-edge information would be preferableif practical, but for thisthesis, wefocus
on using intensity edgelsfor 3D-2D localization.

4.1.2 Edgel Modelsfor 3D-2D L ocalization

Now that we have decided on the type of feature to use for localization, we must choose
an appropriate representation. The key requirement for our representation is the ability to
efficiently predict the appearance of the object edgels from any given viewing direction or
arbitrary camera parameters. We must also keep in mind the difficulty of automatically
building the model from real images. Inthe following we consider two general approaches.
2D representations and 3D representations.

2D Edgel Models

By 2D representation, we refer to representing an object by a set of representative 2D
images (views). In our case, each view would be an edge image.

Each view is a discrete sample from the space of object locations and orientations, as
well aslighting conditions and camera parameters. To model an object using this approach,
we must sample a sufficient number of viewsto cover the expected variationsfor the given
task or application. The number of required views can be quite large for even afew degrees
of freedom since the number of required views is roughly exponential with respect to the
number of degrees of freedom which will be modeled. For example, for each degree of
freedom, if we take n samples along each degree of freedom, we will have n? samplesin
total whered isthe degreesof freedom. In addition to sampling the view space of the object,
for the task of localization, this space must be made continuous, thisis done by connecting
edges in neighboring views so that intermediate views can be interpolated. Computing
these correspondences between two views is nearly an impossible task in general, since
given any two neighboring views, the set of visible points is aimost never the same.
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Shashua [124] proposed an approach for modeling reflectance and geometry by computing
correspondences using optical flow. Gros [54] described a framework for matching line
segments and points by approximating the motion between views asan affinetransformation
and searching for an affine transformation using a clustering technique similar to the Hough
transform [2].

Much work has been done using 2D representations dating back to Basri and Ullman
[139]; this and other work using 2D representations is discussed in Chapter 6. This
representation is most popular for ease of building models, however, the price that is paid
is accuracy and applicability. The motivation for most of the 2D representations is for
the problem of object identification or indexing. Only the alignment method of Basri and
Ullman [139] is suited and intended to localize and verify an hypothesized pose; however,
their method is only applicable to orthography or scaled orthography.

Other basic types of 2D representation include efficient methods for image correlation
and pattern recognition. Murase and Nayar [99] introduced the eigenspace representation
for image sets. Using their method, the object is represented by alarge number of intensity
images. Eigenspace analysis is used to reduce the images to pointsin a low-dimensional
subspace (the principal components of the eigenspace). Image matching can then be
efficiently performed in the subspace. Huttenlocher, Lilien and Olson [69] used this
method to represent binary edgel images of the object, which is more robust to changes
in lighting. They cleverly showed that the correlation between vectors in the subspace is
approximately the same as a Hausdorff distance between the binary edgel images. The
Hausdorff relationship makes their formulation somewhat insensitive to partial occlusion
as well. The eigenspace techniques are essentially an efficient form of image correlation
and suffer fromall the same problemsas correlation. Another related techniqueisthe use of
artificial neural networksto solve pattern matching problems[107, 33, 114, 97]. Implicitly,
the networks learn a functional mapping between images and object/view identification—
equivalent to image correlation and pattern recognition. Localization and verification isnot
possible in this framework, though these methods show promise for solving the indexing
problem.

3D Edgel Models

The other choice for representation is a 3D representation. Here each edgel is represented
as an edgel in three dimensions in, preferably, the coordinate system of the object. The
advantage of thisrepresentation isthat we only need one model for all possible object poses
and camera parameters. The main drawbacks of such a representation are how to acquire
such amodel from 2D dataand how to efficiently predict the appearance from agiven view.

Much of the previous work [47, 85, 122, 3, 15] on 3D representations of edges for 2D
recognition and localization tasks have been based on CAD modeling and acquiring the 3D
edge model from CAD geometry; however, most of this work has been limited to smple
features such as straight edge segments, arcs, and junctions [81, 15, 110, 54]. In generdl,
CAD modeling is labor intensive and often results in crude models.



4.1. Problemsand Approach 107

Our approach is to treat edgels just like surface points in the 3D-3D case. That is,
the model is a collection of edgels (oriented points) on the object where each edgel has a
computationally efficient, local visibility criteria associated with it. Given such a model,
we can easily and accurately predict appearances of the object’s edges continuously with
respect to posefor any given cameramodel. Therest of this chapter describes our approach
to build an object centered, 3D edge model.

4.1.3 Building 3D Edgel M odels from Real I mages

We have decided to build an object-centered, 3D edgel model from a set of intensity images
of the object. Many of the problemsinvolved with thistask are very similar to the problems
of Chapter 2. Thestepsof view acquisition, view alignment, and datamerging seem rel evant
for the 3D edgel modeling problem as well. The basic problems involved in building 3D
edgel models from real images are:

1. Distinguishing background from foreground edgels

2. Converting 2D datato 3D data

3. Aligning all of the data into the same coordinate system

4. Merging al the edgel datato form a single 3D edgel model
5. Dealing with occluding contours

We now will briefly overview our method for building 3D edgel modelsfor 2D localization,
while addressing these problems along the way.

We begin by acquiring a set of intensity images of the object that adequately samples
the range of viewing directions and, if desired, lighting conditions that are expected when
applying 3D-2D localization. The intensity images are then processed to provide sets of 2D
edgels. We must then deal with anon-trivial complication—creating a3D model from a set
of 2D projectionsof the 3D object. There are possible waysto get 3D informationfrom sets
of 2D information such as structure from motion [82, 135, 130, 124, 106] or epipolar/stereo
analysis [45, 131]. None of these are currently practical, however.

Fortunately, we have atrick up our sleeve, namely, the 3D modeling techniques de-
scribedinChapter 2. That is, weareableto builda3D model of an object’ ssurfacegeometry.
Using the 3D surface model solves the first three problems: the foreground/background
problem, 2D-to-3D conversion, and alignment of the 3D data. In fact, acommon theme of
our work on 3D-2D localization is to use 3D information, whenever possible, to solve the
2D problems.

Once all the 2D edgel data is mapped and aligned in 3D model coordinates, the 3D
edgel data must be merged into a single, unified edgel model. Our agorithm for merging
edgelsisclosely related to the consensus-surface algorithm of Chapter 2 and isappropriately
called the consensus-edgel algorithm. The idea is to find clusters of similar edgels from
multiple views. Much like the surfaces from range images, the edgels that are extracted
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from intensity images are often noisy, and spurious edgels are frequently detected due to
reflections, specularities and image noise. Thus, we do not want every observed edgel as
part of the final model. Only stable edges—edges that are consistently detected over many
views—are desired. By searching for a consensus of edges from the observed edgel data,
we can guarantee that only stable edgel generators are part of the edgel model.

The consensus edgel algorithm is not sufficient for our purposes however; it is only
applicablefor building modelsof rigid edgel generators. That is, edgelswhose positionwith
respect tothe 3D model isfixed (e.g., surfacemarkingsor corners). Theother classof edgels,
non-attached edgel s, arethose resulting from occluding contoursof an object such astheside
of acylinder. Occluding contoursappear to be detectable over many views. For example, as
acylinder rotates about itsaxis, the projection of the side contoursremains stationary in the
2D image. However, the object coordinates of the apparent contour generator is constantly
changing asthe cylinder rotates. Thisisbecause the contour generator is changing between
views (i.e., a different point is generating the perceived contour). To model the edgels
generated by occluding contours, we can do no better than modeling the geometry of the
object surface. Since we already have an accurate surface model, we utilize the surface
geometry to predict the appearance of occluding-contour edgels for localization.

Figure 4.1 shows a diagram of the technical sections of the thesis. This chapter has
two principal components dealing with the modeling of rigid edgel s and occluding-contour
edgels. Rigid edgels (including surface markings and corner edgels) are modeled from a
large set of sample images of the object. We first describing in detail each step of our
rigid-edgel-modeling algorithm: view acquisition, view alignment via 2D to 3D mapping,
and edgel merging using the consensus-edgel algorithm. We then discuss the geometric
curvature analysis required to model occluding contour edgels of an object.

4.2 View Acquisition

Thefirst step of the edgel-modeling processis view acquisition—sampling intensity images
of the object from various views and processing them to produce 2D edgel sets representing
each view. Asin Chapter 2, we do not explicitly deal with the problem of view selection.
We ssmply assume that we are given a set of viewsthat provides adequate coverage for our
purposes.

To compute edgels from an intensity image, the usual process involves convolving the
image with an edge operator and linking the maxima of this operator into edgel chains.
The choice of edge operator is rather arbitrary, and there are a number of them to choose
from. The Canny operator [16] and Deriche operator [30] are the two most popular edge
operators for computer-vision applications.

We use the Canny operator, although other operators would give similar results. The
Canny operator is the most common edge operator and implementations are found in
nearly every computer-vision software package. It isimplemented as afirst derivative of a
Gaussian convolution operator, which Canny [16] showed to be avery close approximation
of the optimal convolution operator for detecting step edges. The Canny operator measures
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Figure4.1: Organization of this chapter.

the edge strength at each point in theimage. All pixelsthat are not local maximaof the edge
measure are suppressed. The remaining pixelsare local maxima of the Canny operator and
are linked to form edgel chains. The linker uses hysteresis thresholding [16] to connect
adjacent edgels that may not be as strong as other edgels on the chain. This prevent edges
from being broken into smaller pieces randomly due to fluctuations in the measured edge
strength along the chain. Linking also eliminates many spurious points from the immediate
neighborhoods of strong intensity edges.

The result of the Canny detector and edgel linking is a set of raw edgel chains. Fig-
ure 4.2 (a) shows an example of typical raw edgel chains from a Canny operator. As can
be seen in that figure, these chains are jagged—much like a staircase—due to the discrete
nature of the image pixels. For the purposes of modeling and localization, smooth edge
dataisvery desirable (thiswill be made clear later in thisand the next chapter).

Edge smoothness can be achieved by applying a smoothing operator over each edge
chain [88, 147]. Figure 4.2 (b) shows an overlay of the edgel chains resulting from such
a smoothing operation. As can be seen, the smoothing removes much of the noise and
aliasing effects (kinks) from the edgel chains while maintaining accuracy of the edgel
positions (an important aspect for localization). In fact the edgel positionsfor most edgels
are improved to sub-pixel accuracy after the smoothing removes the discrete kinks in the
chains. For details of the smoothing operation, the reader is referred to the the paper by
Wheeler and I keuchi [147]. Smoothing also makes the computation of edgel normals much
morereliable. After smoothing theedgel chains, it ispossibleto subsamplethe edgel chains
if desired to get adenser set of edgelsthan pixel resolution.

Theresult after image acquisition, edge detection, and smoothing isaset of edgel chains
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(a) Raw Edges (b) Smoothed Edgels Overlayed
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Figure4.2: An example of (a) raw and (b) smoothed edgel chains (overlayed over the raw
chains).

for eachimage. E; = Uje; ; denotesthe set of edgel chainsfor view i. ¢, ; = {Uo, ..., U, }
denotes the jth edgel chain of view . Each edgel chain is an ordered list of 2D edgels
pointswhere U, denotes the (continuous) 2D coordinate of the k£th edgel point in the chain.

After acquiring 2D edgel sets from various views of the object, these edgels must
somehow be mapped into acommon 3D coordinate system. Next, we describe our method
for mapping and aligning the acquired 2D edgelsin 3D model coordinates.

4.3 2D to3D: View Alignment

The goal of this section isto map al the 2D edgelsinto a 3D coordinate system so that the
datafrom all views can be merged to form the localization model. The problems (repeated
from Section 4.1) that we face include:

¢ Distinguishing background from foreground edgels

e Converting 2D datato 3D data
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Figure 4.3: An example of mapping a 2D edgel onto a 3D triangulated surface.

¢ Aligning all the datainto the same coordinate system

We can use the 3D modeling technique and calibrated-positioning system of Chapter 2 to
virtually eliminate the above problems while enabling us to align all of the edgel datain
the object’s 3D coordinate system.

To begin, a triangulated surface model of the object is built using the techniques of
Chapter 2. We assume that the pose of the object in each intensity image is known—for
example, using the calibrated object positioner as described in Section 2.3. The positionis
denoted by therigid transform Ro._;, which represents the motion between view 0 and the
view 7.2 We can use view 0 as the object coordinate system. All the 2D edgel datawill be
transformed to this central view.

Given the 3D surface model and its pose Ro._; in theimage with respect to the object’s
coordinate system, we can project the 2D edgels onto the 3D model—in a sense, texture
mapping the edges onto the model’s surface. This is accomplished much like ray tracing;
for each edge point in theimage, we follow the ray from the camera’s center of projection,
through the edgel in the image plane, and into the scene. We then determine which surface
trianglesintersect with the ray and select the closest of these triangles. Figure 4.3 shows an
example of the edgel mapping process.

Though this operation is intuitively ssimple, in practice there are severa changes of
coordinate system involved in mapping the 2D edgel to the model’s coordinate system. In
particular, we have 3 coordinate systems to deal with: image, camera, and object. The
image coordinate system is in terms of pixels while the others are defined as 3D Cartesian
framesin metric units. The transformations between coordinate systems are:

Xe = Rc<—me (41)

2Asin Section 2.3, Ro—; isa4 x 4 homogeneous transformation matrix.
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Figure4.4: A diagram representing the relationshi ps between the various coordinate frames
used in the analysis in this chapter.

u=R,_.x. (4.2)
U= [ w ] (43)

where x,,, and x. are the positions in model and camera coordinates respectively, u =
[u v w]T are the image projection coordinates, and U = [U V]* are the 2D image pixel
coordinates. R.._,, is arigid transformation that transforms model coordinates to an
orthographic camera-centered frame. The camera-centered frame is defined such that
[00 0]7 isthe center of projectionand [0 0 1]7 isthe camera'sfocal axis. R,._. transforms
the Euclidean camera coordinates to (possibly non-Euclidean) 3D projection coordinates.
Thistransformaccountsfor scaling factors(such as aspect ratio) and trand ation of theimage
center to non-zeroimage coordinates. Theimage projection coordinatesare specified so that
thefinal transformationis purely aperspective projection. Figure4.4 showstherelationship
between these coordinate frames.

The 2D edgel observations are defined in the image coordinate system, but to build 3D
edgel models of an object, it is necessary to have these measurementsin a 3D coordinate
system, preferably the model coordinate system. There are severa ways that one could go
about mapping these edges. We begin by projecting the triangles of the 3D surface model
into the image (much like z-buffering) using the equations presented above. Then, given
the 2D edgel coordinates, U, we can quickly determine which triangle intersects the ray
corresponding totheedgel. First, we convert theedgel U to aviewing directionv in camera
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coordinates by inverting the projection transform

U
v=R1 |V (4.9
1
We then compute the precise intersection of ray v with triangle 7
x, = 2 (4.5)
n;-v

where n¢ and c{ are the normal and center point, respectively, of triangle 7; in camera-
centered coordinates. Once the intersection point is computed, we can then transform the
point to the model coordinates by inverting the model-to-cameratransform:

-1
Xm = R.Z, X

We have now shown one way to map 2D edgels to 3D model coordinates. There are
many other possible strategiesto perform this mapping; however, nonewill be significantly
more efficient than the one above. In any case, since model building will be done off-line,
efficiency is not areal concern, thus, thereis no need to discuss other possible methods.

As each 2D edgel in a chain is mapped to 3D model coordinates, the ordering of the
edgels in the chain is maintained so that the 3D tangent direction for each edgel may be
estimated. For example, the tangent vector, t,, of the ;th edgel in achainis

r X1 — Xy
D X x|

where each x; is the mapped point corresponding to 2D edgel U;. The ith 3D edgel in a
chain isthen represented as the point and tangent vector pair <xi, ‘EZ»> . Thismapping solves
the foreground/background problem. Only the edgels originating from the surface of the
object are mapped to three dimensions; the other edgels may be ignored for purposes of
modeling the object.

The basic approach that we have presented is not fool-proof however. It will often fail
for edgels on or near occluding boundaries when the edgel rays do not intersect with our
surface model. Figure 4.5 shows an example of this problem. Several factors contribute
to the misalignment of occluding contour edgels with the surface model. Some degree of
variability in 2D edgel location is due to edge detection, image discretization, and image
noise. These errors will be propagated to the 3D mapping. Also, we can expect some
errors to be introduced by the 3D mapping because of alignment/calibration error (in our
calibrated image acquisition system) and 3D surface model error. Dueto all of these factors
an edgel corresponding to an occluding contour will randomly fall on either the object side
or non-object side of the actual edge position. Thus, there will always be many instances
of edgel raysthat are generated by occluding contours of our object but do not intersect the
object. We can rectify this problem by testing not only for intersection but also for near
misses—edgel rays passing near triangles on the occluding boundary of the surface model.
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Figure4.5: An occluding boundary edgel which does not project onto the model surface.
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Figure 4.6: The shortest distance between aray and the surface triangles when they do not
intersect.

Occluding boundary triangles are easily detected when the model is projected into the
image. Thesetriangleswill be adjacent to atrianglewhichisnot visible (using thevisibility
tests of Section 3.2) from the given pose—thus creating an occluding boundary. The
occluding boundary triangles can be checked separately for the near miss condition. We
calculate the shortest distance between the edgel ray and any triangle on the model surface
(see Figure 4.6). If this distance is within some threshold (for example, say 2 mm), then
we can accept it as a potential 3D edgel in the model. The 3D coordinate of thisedgdl is
the point on the edgel ray that is closest to the model (again see Figure 4.6).

This strategy seems like a reasonable solution. The result, however, is still unsatis-
factory. The problem is that while the 2D projection of the surface model’s occluding
contour may appear smooth, the contour is not smooth in three dimensions. Figure 4.7 (b)
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(@) (b) (c)

Figure 4.7: An occluding contour mapped to the object. (a) original 2D view, (b) another
view of the mapped contour in three dimensions shows that it is not smooth in three
dimensions, (c) the same contour after smoothing.

shows this phenomenon. The cause of the jagged 3D edgel is the triangulation along the
occluding contour of the model surface. Much like the problem with jagged edges after
edge detection in Section 4.2, we can use a smoothing operator to remove the kinksin the
edge while retaining most of the original edge shape. In this case, we are smoothing a 3D
edge chain. The smoothing operator of Wheeler and Ikeuchi [147] isaseasily applied to 3D
edgel chainsasit isto 2D edgel chains. The smoothed result is suitable for our purposes.
Figure 4.7 shows an example of such a 3D edgel before and after smoothing.

Asonemay imagine, the use of athreshold to attach edgel s to occluding boundaries may
be prone to errors. Often there will be edgels from the background that are near occluding
boundaries of our object. Such mistakes are not critical as they are indistinguishable
from spurious edgels that will invariably appear on the object. A successful agorithm for
merging the 3D edgel datamust account for the presence of extraneous and spurious edgels
in the set of observations. The algorithm must minimize the possibility of including such
edgelsin thefina model.

We have described how 2D edgels are acquired from aview of our object and how these
edgels are mapped onto the surface of our object. In this section, we have shown how to
align all of our edgel datainto an object-centered coordinate system via an edgel-mapping
process using a surface model. This process nicely eliminates two difficult problems: first,
it directly solves the foreground/background problem—aproblem that islikely unsolvable
automatically using any other method; second, the correspondence problemis now tractable
as al of the edgels are transformed to the same coordinate system which allows a natural
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and reliable way to match and compare edgels.

The next problem is how to convert alarge set of edgel observationsto a single model
representation of these observations. Our solution, the consensus-edgel algorithm, is the
subject of the next section.

4.4 View Merging: the Consensus-Edgel Algorithm

In this section, we will describe an algorithm for merging the 3D edgel sets acquired
by using the methods of the previous two sections. Given multiple aligned edgel sets, the
guestion ishow to combinethe edgelsfrom all the viewsto produce a unified representation
of the edgel generators of the object. The main problem here is distinguishing random and
extraneous edgels from those which will be visible over awide variety of scenes. We must
also be prepared for a significant amount of uncertainty in the edgel positions due to:

¢ Edge detection and discretization
e Imagenoise

¢ View alignment/calibration error
e 3D surface model error

This problem bears much similarity to the merging problem for 3D surface model building
described in Section 2.4.

One difference between the surface and edgel case is that the topological problem is
much smpler with edgels. In fact, topology is not necessary at all as we only need to
build amodel of edgels (points and tangent directions). Modeling the connectivity of the
edgels may be useful for other tasks but is not necessary for the current localization task.
We do not have the equivalent of the implicit surface representation to smplify the data
merging process, nor do we need such a device. The main reason for using the implicit
surface representation in Chapter 2 was to obviate a difficult problem of topology. If edgel
connectivity isdesired, thisinformationwould be easily obtainable as the topol ogy of edgel
chainsisquitesmple.

Asin the 3D surface-merging problem, our edgel-merging algorithm must compensate
for noisy/spurious edgel observations. Again, in the presence of such observations, there
is little or no basis to trust that a single observation should be part of the object model.
Our goal isto build models of edgel generators which are stable over many views of the
object. We wish to take advantage of multiple observations to get a better estimate of the
true source of the edgels with respect to the object’s coordinate system. Simultaneoudly,
we wish to exclude spurious and random edgels from the final model. Again, we are drawn
to the concept of consensus as the basis for merging the observed data.

The basis of the merging algorithm is to find consensus sets of similar edgels from
variousviews and compute an average of these edgel sto add to themodel. Asinthe surface-
merging problem of Chapter 2, the concepts of consensus and similarity are relevant for
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edgel merging. For the edgel-merging case, smilar edgels are defined to be observations of
the same edgel generator on the object. In the surface-merging case, similarity was defined
in terms of surface location and normal direction. In the edgel-merging case, it is much
the same; we define edgel similarity in terms of edgel location and tangent direction. Two
edgels are grouped as similar if the distance between the two is below a threshold and the
angle between their tangent directionsis smaller than athreshold. We define the predicate

A 2 true Xo — X1 ||< 64) A (|tg - t1| > CcOSH,,
SameEdge|(<x0, t0> , <X1,t1>) = { false (()|t|herW|Se || ) (‘ ‘ )
(4.6)
which determines whether two surface observations are sufficiently close in terms of lo-
cation and tangent direction, where 6, is the maximum allowed distance and 4, is the
maximum allowed difference in tangent directions. Much like the consensus-surface algo-
rithm, consensus is defined as the minimum number of similar observed edgels required to

instantiate an edgel generator in the model.

Our problem now is where to begin the search for consensus edgels. In the surface-
merging case, we only needed to fill al the voxelsin the volume grid; the order in which
we proceed is irrelevant as each voxel is independent of the other voxels. In the current
problem, all we have is an unorganized set of edgels with no obvious way to proceed.

Having no other information than the edge sets themselves and without the benefit of a
representational aid like the volumetric representation for surfaces, it makes sense to begin
the search for consensus edgels at one of the observed edgels. A good edgel to start withis
onewhichislikely to be aconsensus edgel (i.e., an observation of a stable edgel generator).
One possibility isto begin with large edgel chainsfirst. It isunlikely that noise or random
external events will result in the detection of very long edgel chains. Also, long edgel
chains are often indicative of significant geometric or photometric features of the object
which are often detectable over many views.

Our strategy will be to take each 3D edgel chain—Ilongest first—and check each edgel
of thechainto seeif it belongsto aconsensus edgel. We performalocal search of the edgels
from al other views to find the nearest edgel in each view. These edgels are tested for
similarity to the current edgel and if a consensus is found, we add the averaged, consensus
edgel to our final model.

Figure 4.8 shows an example of the local search for a case where we have four views.
The edgelsfoundto bein the consensus can be eliminated from further consideration. Thus,
we are ableto identify all consensus edgels from our set of 3D edgel observations.

As in the consensus-surface search, the local search for nearest edgels can be imple-
mented efficiently using k-d trees [42]. A k-d tree of 3D edgelsis built for each different
view of the object. A nearest-neighbor search of the respective k-d trees can be computed
in O(logn) expected time where n isthe number of edgelsin the given tree.

The consensus-edgel algorithm can now be specified more precisely. In the algorithm
below e; ; denotes the jth edgel chain of view «. Again, an edgel chain comprises alist of
3D edgels—3D points and tangent direction pairs (x;, t;).

Algorithm BuildConsensusEdgel Model
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Figure4.8: Thestagesof aconsensus-edgel search for thegrey edgel (center |eft). Eliminate
candidates first using proximity, then the tangent direction constraint, then average the
remaining edgels to form a consensus edgel.

Input: 3D edgel sets F;,: = 1,... N
Output: consensus edgel model £
1. Ef — @

2. for each F;

3 do Build K-D Tree( ;)

4. for eachedgel chaine, ; € U, F;, largest |e; ;| first

5, dofor al (x,t) € e;;

6 do <Xc, t., count> — ConsensusEdgeI(<x,f:> , Ey)
7 it count > 0,y0rum

8 then Ef — Ef U <Xc,£c>

9. return Ey

Algorithm BuildConsensusEdgelModel makes use of an important subroutine: Consen-
suskEdgel. Algorithm ConsensusEdgel performsthe local search around the neighborhood
of the given edgel to estimate the average of the edgels that are determined to correspond
to the same edgel generator on the object. Algorithm BuildConsensusEdgelModel uses a
threshold 8,,,...., to determine if the support for a given edgel is sufficient to add it to the
final edgel model.

Algorithm ConsensusEdgel
Input: edgel <x,f:> of chain ¢; in edgel set F;
Input: 3D edgel sets £y, k= 1,.., N
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Output: average consensus edgel and count: <xwg, fasgs count>
Xaug & X
toug — T
count + 1
for each edgel set F/; # E;
do (x.,t.) «NearestEdgel (£}, x)
if SameEdgel ((x, ), (x...))
then x,,, + Xauy + X
tavg ¢ bavg + te
count <+ count + 1

ROo~NO O0~MwWDNE

1
0. Xguy “Xavg
7 t(l’U
11, t,, g

lItavgll

12. return <Xavg, f:avg, count>

Algorithm NearestEdgel returnsthe closest edgel (interms of position) from aset of edgels
to the given edgel. Three thresholds are required and are almost identical to those required
for the consensus surfacealgorithm (see Section 2.4). 6, and §,, arerequiredfor the predicate
SameEdgel, which is defined in Equation 4.6, to determine how close the edgel points and
tangent directions must be to consider them as similar. These can be estimated based on
the variations expected from the observed data. 0,,,,... IS the consensus threshold which
determines the required number of similar edgels for consensus. This threshold must be
chosen while considering the number of total views and the number of views from which
the edgel sourcesmay bevisible. ,,,,... will determine how stable the edgels must be for
inclusion in the model.

Theresult of Algorithm BuildConsensusEdgel Model will be the set of consensus edgels
over the edgel setsfrom all views. The above description omits one bookkeeping detail for
clarity. We must keep track of which edgels have been used to add a consensus edgel to the
final model and eliminate these edgels from further consideration.

We now have a method to merge rigidly attached object edgels (i.e., edgel sources
whose position is fixed on the object). This method overlooks a large source of edgels,
namely occluding contours. Occluding contours are quite different from rigid edgels and
thus require dightly different representation and treatment for localization. It is unlikely
that the same point on the contour generator would be observable from a sufficient number
of views for consensus to be applicable. Since the appearance of occluding contours is
based purely on local geometry of the generator’s surface, we can utilize our 3D surface
model to predict the appearance of the surface's occluding contours. Thisisthetopic of the
next section.

4.5 Modeling Occluding Contours for 3D-2D L ocalization

Occluding contours are the boundaries observed at points on a smooth surface where there
is a trangition from visible surface points to occluded surface points from a particular
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viewing direction. Occluding contours are often detected as edges in images since the
object surface and background are often of distinctly different shades, colors or intensities.
Thus, occluding contours are prominent features for object recognition and localization.
For smooth convex surfaces, every point on the surface can generate an occluding contour
from many viewing directions. For example, each point on asphere generates an occluding
contour in theimage for all viewing directions v such that

v-n=0
where ii isthe surface normal at the given point. This set of ¥’'s spans the tangent plane of
the surface at that point.

For localization, we need to be able to predict the appearance of occluding contours
fromagiven viewing direction. Appearance prediction needs to be an efficient operation as
well. Another consideration isthat our representation must be derived from our 3D surface
model.

One possible solution would be to represent the surface of the object using an algebraic
polynomial, and then analytically solve for occluding contours. Thisis the approach taken
by Ponce and Kriegman [77]. The problem is that these algebraic equations can become
very large even for ssmple shapes. Another complication for algebraic representations of
occluding contours is how to build models of algebraic surfaces. In practice, objects will
have to be modelled using a collection of algebraic surfaces. Inferring the algebraic repre-
sentation from atriangul ated surface is an extremely difficult problem—fundamentally the
same as range-image segmentation [ 5], for which no completely satisfactory solution exists.
Even if segmentation were solved, the boundaries between surfaces greatly complicatesthe
solution of the algebraic surfaces.

Another possibility, and the approach that we use in this thesis, is to use a piecewise
planar approximation of the surface. It is areasonable option for several reasons:

e Our surfaceisalready approximated by apiecewise planar model (triangular patches).

e The approximation error of the contour projection can be made arbitrarily small (but
islimited by the original surface-model resolution).

¢ We can use apoint-based representation consistent with our rigid edgel representation
and 3D surface representation.

The piecewise-planar approximation idea is made clear by considering the piecewise-
linear approximation of a 2D circle (cross section of a sphere). Figure 4.9 (a) shows a
circleand aset of viewing directions (equivalent to tangent directions) at the corresponding
contour generators. As the viewing direction changes, the contour generator traverses the
circle. If thecircleisrepresented by a set of connected line segments (see Figure 4.9 (b)),
the contour generator still changes as the viewing direction changes, but now it changesin
discrete intervals corresponding to the endpoints of the line segments.

For the localization task, the most important aspect of the approximation isthe accuracy
of the projected contour. The worst-case error is the distance between the piecewise-linear
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!

Figure 4.9: A circle and its occluding contour points (a) continuous circle, (b) piecewise-
linear circle, (c) the error of approximation

circleandthetruecircleandismaximum at the midpoint of each approximatingline segment
(see Figure 4.9 (c)). We can represent a curve's occluding contours to a desired accuracy
using piecewise-linear approximation. Thisnaturally extendsto 3D using piecewise-planar
models (such as our triangulated surface models).

Applying z-buffering [40, 141] to our triangulated surface model is one possibility for
computing the occluding-contour edgels. Basically, the occluding-contour points can be
identified by finding points which lie on edges which border a visible triangle on one side
and an invisible triangle on the other side. However, as noted in Section 3.2, z-buffering is
too expensive for our localization application. Using the same idea with our surface-point
visibility approximation produces very poor results since the mistakes of the approximation
will always imply occluding-contours where none should exist.

I nstead we concentrate on defining alocal computation over pointson the object surface
to determine whether they generate a contour or not from a given viewing direction. Our
triangulated surface model consists of vertices which are connected to form triangles that
cover the surface. Each vertex or surface point is a potential contour generator. We are
interested in finding aquick local computation to determineif the vertex ison the occluding
contour generated by the surface model from a certain viewing direction. The curvature at
a point provides the information necessary to predict the appearance of contour points.
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451 Curvature

Curvature is, technically, a property of a curve, not a surface [102]. The curvature of a
surface usually refers to the curvature of a specific curve that lies on the surface. For a
length-parameterized curve in three dimensions, 4(t) = [z(t) y(t) z(¢)]", the curvatureis
the magnitude of the change in the tangent vector, 5'(¢). Curvatureisalso described as the
magnitude of the bending of the curve where the direction of the bendingis 3”(¢) Thus, the
curvature of 3(¢) isdefined as

r(t) = [|8"(D)]] = o (1) + y" ()2 + 2" (1)?

For acircle of radiusr, x = % A rough characterization of curvature isthe inverse of the
local radius of the curve.

For curves, the Frenet frame [102] defines a coordinate system at each point. The
coordinate system is defined such that the normal i = %. Thus, with the normal
direction aready specified, the magnitude of bending is sufficient to describe the curvature
at apoint on acurve.

Getting back to smooth surfaces, we are interested in whether a surface point generates
acontour fromagiven viewing direction. Thefirst requirement isthat the viewing direction
v is perpendicular to the surface normal i at the point (i.e,, n - v = 0). Givenv and i1,
we can extract a particular curve from the surface—the intersection of the surface with the
plane spanned by ¥ and ii. This curve is called a normal section [102] since the surface
normal liesin the plane of the curve. For example, the normal section of apoint on asphere
of radius r isacircle of radius r (see Figure 4.10). The curvature of the normal section at
the given point is appropriately called the normal curvature.

The curvature of anormal section isnot ssimply amagnitude (asinthe 2D case) but also
indicatesthe direction of bending by itssign. Surfaceshave aunique normal i at each point
whileanormal section at apoint may bend in either theni or —n directions(see Figure4.10).
Thus, the sign of curvature of a 3D point differentiates between normal-section curves that
bend away from the surface normal and those that bend in the direction of the surface
normal.

To generate an occluding contour for a surface with an outward pointing normal, we
requirethat thenormal section hasnegativenormal curvature (seeFigure4.10 (b)). Negative
normal curvature impliesthat the point is atransition from visible to invisible points—thus
generating the contour.

For a3D surfacepoint, thecurvaturedependson the specific normal section. Fortunately,
Euler’s formula gives us a simple characterization of the curvatures of all normal sections
given an arbitrary viewing direction v such that i - ¥ = 0. Euler’sformulais

/i(\/\/') = /il(él . \/\/')2 + /iz(éz . \/\/')2 (47)

where «1 and «; are the maximumand minimum curvatures, respectively, and arereferredto
collectively as the principal curvatures. é; and &, are the tangent directions corresponding
to the maximum and minimum curvatures, respectively, and are referred to as the principal
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Figure4.10: Exampleof normal sectionswith (a) positive normal curvatureand (b) negative
normal curvature.

directions. The principa directions are orthogonal to each other and form the basis of
the tangent plane of the point. «1, 2, €1, and &, completely characterize the curvatures
of normal sections at a point. Along any normal section, the curvature of a point can
be classified into three categories. positive, negative and zero. Only surface points with
negative curvature (convex normal sections) generate occluding contour edgels in a 2D
projection of the 3D object. However, the curvature at a surface point depends on which
normal section is taken. Since it is possible for a point to have x; > 0 and x; < 0,
some viewing directions in the point’s tangent plane would generate occluding contours
(x(¥) < 0) while otherswould not (x(¥) > 0).

Estimating Curvature from a Triangulated Surface M odel

Using curvature information, we can determine which points on our 3D surface model
are potential contour generators. Determining the curvature of the surface points of the
model istricky. The problem is that we have atriangulated (sampled) model of a surface:
much shape information has been lost. The surface model isaso not likely to be perfect—
the surface will invariably be contaminated by noise. Since curvature is a second-order
differential property, it isvery computationally sensitive to noise and the effects of discrete
sampling (e.g., aliasing).

Several solutions for computing the surface curvature from discrete data have been
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proposedintheliterature. Bed and Jain [5] presented aformulationfor computing curvature
from range images. Their formulation relies on the regular grid sampling of the depth (as
isavailable directly from range images) so is not directly applicable to our problem. Chen
and Schmitt [18] proposed a solution for computing curvature at points of a triangulated
model. Their method involves fitting circles to triples of points to approximate normal
sections and then use aleast squaresfit to Equation 4.7 to solvefor the principal curvatures
and directions. Unfortunately, the best fit circle for three haphazardly selected points on
a surface can give wildly inaccurate estimates of normal curvature. In addition, thereisa
singularity for collinear triples which makes fitting circles to these points unreliable.

A more stable and natural method is the one proposed by Koenderink [76]. His idea
is to fit a quadric surface in the neighborhood of each point and then use the algebraic
representation of the surface to derive the principal curvatures and directions. Thisis a
natural approach for estimating principal curvatures since, fundamentally, the principal
curvatures and directions define a locally quadratic approximation of the surface shape.
A variation of Koenderink’s approach was used by Shi et a. [125] to measure surface
curvature in tomographic medical data.

We also use a variation of Koenderink’s approach to compute the principal curvatures
and directions for each vertex on our triangulated surface model. While fitting a quadric
surface seems simple enough, there are some subtleties that may interest the reader. The
description of the quadric fitting and curvature estimation is presented in Appendix C.
The main point is that we can easily compute the principal curvatures, 1 and x,, and the
principal directions, é; and €,, from the local quadric fit.

Given £; and «, we can quickly classify each point into one of three categories:

1. (k1 > 0) A (k2 > 0): Thispoint is not a contour generator, and we can eliminate it
from consideration for our purposes.

2. (k1 > 0) A (k2 < 0): This point is either a cylindrical point (i.e, k1 = 0) or a
saddle point and generates contours from some tangent viewing directions—those
with negative normal curvature.

3. (k1 < 0) A (k2 < 0): This point is an elliptic point and generates contours for al
tangent viewing directions.

Figure4.11 shows examples of each of these three surface classes and the set of viewing
directions from which the point generates an occluding contour (i.e., x(¥) < 0).

Thus, we can classify all points on our model surface as belonging to one of the above
three classes. We use this information to predict the visibility of contour edges in images
of the object. The details of the visibility computation will be described in the next chapter
on 3D-2D localization.

One point worth noting is the effect of corners and very high curvature points. These
points are fundamentally different to occluding contours but also share some similarities.
They are given a separate class: convex edgels.
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Figure 4.11: Classes of surfaces based on curvature. The third row shows a tangent plane
for each class on which the dark shaded regions indicate viewing directions from which a
contour isvisible at the point in question.

Convex Edgels

High-curvaturepoints (e.g., corners) are ahybrid of therigid surface and occluding-contour
edgels. From some viewing directions, high curvature (corner) points generate occluding
contours. In this sense, the convex edgel is like an occluding-contour edgel. From
other directions, they may generate intensity discontinuities because of the surface normal
discontinuity across the edgel. In this sense, the convex edgel islike arigid surface edgel.

For the curvature analysis presented in this section, we need not distinguish high
curvaturepointssince our method for acquiring rigid edgel models(described in Section 2.4)
will usually detect thistype of edgel asrigid. However, aswe will seein the next chapter,
the visibility constraints for convex edgels demands treatment separate from rigid surface
edgels and occluding-contour edgels.

4.6 Object Modeling for 3D-2D L ocalization: Results

Herewe present some experimental results of our implementation of the 3D edgel modeling
algorithm described in this chapter.



126 Chapter 4. Object Modeling for 3D-2D Localization

Asdiscussed above, we make use of a 3D surface model of the object constructed using
the method described in Chapter 2. Thus, we are bound by the same constraints of the
modeling system described there: the objects must be small enough to be imaged by the
range finder and to be mountable on the Puma. We assume, as before, that the objects are
rigid and opague.

For our 3D edgel modeling experiments, we selected 7 objects to model using our
system. We use the toy boxcar, rubber duck, ceramic mug, and toy car which were used in
the experiments of Chapter 2. We also model 3 other ssimpler (planar) objects. a stop sign,
asignwithaT onit (T-sign), and abulls-eye like target.

For each object, we first built the 3D surface model following the methods of Chapter 2.
We then acquired intensity image views of the objects, again using our calibrated image
acquisition system. We manually determined the number of intensity image viewsfor each
object to 1) maximally cover the viewable surface of the object, and 2) provide a sufficient
amount of overlap between viewsfor the consensus-edgel algorithmto extract rigid surface
edgels. The number of views required is related to the geometric complexity of the object:
varying from 21 for the three planar objectsto 54 for the toy car.

Theviewswere acquired by varying thejoint angles§, and §,, of the robot’s end effector
asin Section 2.5 (see Figure 2.12 and Section 2.5 for areview of these details). Generally,
we would vary 8, from -180 degreesto 160 in increments of 20 degrees and would vary 4,
from anywhere from -30 degreesto +30 degreesin 20 degree increments as well.

In addition to varying the pose of the object, we also varied the illumination in order to
reduce the dependence of our models on any single light source condition. We used three
different illumination configurations for this purpose. The illumination configuration was
switched after every image in the sequence.

The acquired intensity images contained 256 x 240 pixels. Each image was processed
as described in Section 4.2 to produce a set of smoothed 2D edgel chains. The 2D edgel
chains were then projected into 3D object coordinates using the calibrated position and
3D surface model of the object. The edgels were then resampled in 3D coordinates a a
resolution of 1 mm. Theresulting 3D edgel setswere then provided to the consensus-edgel
algorithm to extract the significant 3D edgel generators from the observed data.

Theresults of the model acquisition for the test objects are shown in Figures4.12- 4.18.
Each of these figures show:

e anintensity image of the object

e an example from the set of observed intensity edge images

¢ the complete set of 3D edgels used as input to the consensus-surface algorithm
e aview of the 3D rigid edgels extracted from the data

¢ threeviews of the full edgel model, including 3D rigid edgels and occluding contour
edgels extracted from the 3D surface model (the views are displayed using hidden
edgel removal for clarity)



4.7. Object Modeling for 3D-2D Localization: Summary

127

Object

Images

Edgels

Edgels

Time

aquorum

In Out | (seconds) (mm) | (degrees)
stop 21 22k 914 10 11 15 25
T-sign 21 26k 970 14 8 15 25
target 21 18k 602 9 11 25 25
boxcar 33 39k 1537 48 7 3 45
mug 36 39k 1510 240 8 2 25
car 54 40k 1387 134 6 1 36
duck 49 21k 185 46 12 2 45

Table 4.1: Statistics of the edgel modeling experiments for each object.

The relevant dtatistics of the modeling experiments for each object are presented in
Table 4.1. These statistics include the number of input images, the number of edgels input
to the consensus-edgel algorithm, the number of edgelsin theresulting model, the execution
time on an SGI Indy 5 (a 124 MIPS/49.0 MFLOPS machine), and the parameters for our
consensus-edgel agorithm (the quorum limit 6,0, , the maximum distance, é,, between
similar points and the maximum angle, 0,, between tangent vectors of similar edgels).

Theresultsdemonstrate that we can createfairly accurate model s of the edgel generators
of an object given many sample views of the object and a 3D surface model of the object.
In particular, the consensus-edgel algorithm is able to extract the significant rigid edgels
from alarge set of rather noisy edgel observations.

4.7 Object Modeling for 3D-2D L ocalization: Summary

In this chapter, we have described our methods for automatically constructing a model
for use in localizing a 3D object in 2D intensity images—3D-2D localization. For this
localization task, we have chosen to match model edgels with image edgels using a 3D
model representation rather than a view-based (2D) approach.

In order to build a 3D model of the edgel generators of the object, we make use of the
3D surface modeling and calibrated view alignment described in Chapter 2. Knowing the
pose of the object and its shape allows us to convert 2D observations into the object’s 3D
coordinate system, while eliminating background edgels from consideration. We presented
the consensus edgel algorithm which extracts the stable rigid edgel generators from the
sample views of the object. To account for occluding-contour edgels, we proposed a
method for computing and analyzing the curvature at al points on our 3D surface model.
Knowing the curvature of a point, we can classify it as a contour generator or not. The
principal curvatures and directions of a point makes it possible to predict the viewing
directions from which a contour generator will generate a contour.

We have postponed discussion of the visibility computation for our edgel model. At
best, from our sampled data, we can collect a set of viewing directions from which each
model edgel was detected. Visibility conditionsof an edgel cannot bereliably or accurately
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Figure 4.12: Results from modeling the 3D edgel generators of the stop sign. (a) An
intensity image of the stop sign, (b) an example from the set of observed intensity edge
images, (c) the complete set of mapped 3D edgels used as input to the consensus-surface
algorithm, (d) the rigid surface edgels extracted by the consensus-surface algorithm, (e)
three views of the resulting 3D edgel model (including occluding contour edgels and rigid
surface edgels.
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Figure4.13: Resultsfrom modeling the 3D edgel generators of the T-sign. (a) Anintensity
image of the T-sign, (b) an example from the set of observed intensity edge images, (c) the
complete set of mapped 3D edgels used as input to the consensus-surface algorithm, (d) the
rigid surface edgels extracted by the consensus-surface algorithm, (e) three views of the
resulting 3D edgel model (including occluding contour edgels and rigid surface edgels .
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Figure 4.14: Results from modeling the 3D edgel generators of the bulls-eye. (a) An
intensity image of the bulls-eye, (b) an example from the set of observed intensity edge
images, (c) the complete set of mapped 3D edgels used as input to the consensus-surface
algorithm, (d) the rigid surface edgels extracted by the consensus-surface algorithm, (e)
three views of the resulting 3D edgel model (including occluding contour edgels and rigid
surface edgels .
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Figure4.15: Results from modeling the 3D edgel generators of the boxcar. (a) Anintensity
image of the boxcar, (b) an example from the set of observed intensity edge images, (c) the
complete set of mapped 3D edgels used as input to the consensus-surface algorithm, (d) the
rigid surface edgels extracted by the consensus-surface algorithm, (e) three views of the
resulting 3D edgel model (including occluding contour edgels and rigid surface edgels .
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Figure 4.16: Results from modeling the 3D edgel generators of the mug. (a) An intensity
image of the mug, (b) an example from the set of observed intensity edge images, (c) the
complete set of mapped 3D edgels used as input to the consensus-surface algorithm, (d) the
rigid surface edgels extracted by the consensus-surface algorithm, (e) three views of the
resulting 3D edgel model (including occluding contour edgels and rigid surface edgels .
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Figure 4.17: Results from modeling the 3D edgel generators of the car. (a) An intensity
image of the car, (b) an example from the set of observed intensity edge images, (c) the
complete set of mapped 3D edgels used as input to the consensus-surface algorithm, (d) the
rigid surface edgels extracted by the consensus-surface algorithm, (e) three views of the
resulting 3D edgel model (including occluding contour edgels and rigid surface edgels .



134

Chapter 4.

Object Modeling for 3D-2D Localization

(e) -
"‘ '\\ f\
” (Y 4 \
’ . I -
! A : \
1 se= ‘:-.' 3 ( :
) r\__. -, 1
Wt yl ™~ . N
) L) :"{( - P ., R N
- ‘.IA L .-..
/ =T g ll l' ’ ---..‘ll " =" .\
s i H &= ;
! H ( W } / ,‘.
O | kY ﬁ“' ’
H Y s * i H
y Y . -
/' POLRs ,;'f’ \ //
G M K4
',’ e —— \ - -
Nt

Figure 4.18: Results from modeling the 3D edgel generators of the duck. (a) An intensity
image of the duck, (b) an example from the set of observed intensity edge images, (c) the
complete set of mapped 3D edgels used as input to the consensus-surface algorithm, (d) the
rigid surface edgels extracted by the consensus-surface algorithm, (e) three views of the

resulting 3D edgel model (including occluding contour edgels and rigid surface edgels .
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inferred from a set of discrete observations. As before we turn to 3D geometry for a
solution. We can utilize the 3D surface geometry to infer visibility conditionsfor any point
on the object, which includes al of our edgels. Global visibility (i.e., self occlusion) can
be handled again asin Section 3.2 using the visibility lookup table approach to predict self
occlusion. The details of the visibility computations for our edgel model will be described
in the next chapter on 3D-2D localization.

Our results demonstrate that our consensus-edgel algorithm is able to extract the sig-
nificant edgel generators from a large number of observations, much of which is noise
and occluding boundaries. The results also demonstrates that the model acquisition can be
achieve despite inaccuracies of observed edge location due to alignment/calibration errors
and the typical noise and randomness of intensity edge locations which is magnified after
reprojection.

The next chapter details our 3D-2D localization algorithm and will clarify how the 3D
edgel model is utilized for localization.



Chapter 5

3D-2D Object Localization

The goal of this chapter and one of the principal objectives of thisthesisis to localize 3D
objects in 2D intensity images, which we refer to as 3D-2D localization. The discussion
of 3D-2D localization began in Chapter 4 by motivating our choice of model and image
representations to solve this localization task.

The object model is represented as a collection of 3D edgel generators—pointson the
object surface which often create edges when visible in intensity images. Using the edgel
generatorswe can predict the appearance of object edgelsin an image and then match them
with intensity edgelsin the input image. Using intensity edgels as the feature for matching
provides some degree of invariance to changes in lighting and viewpoint. Edgels (points
with tangent directions) are very ssmpleand, thus, very general for representing shapes. The
3D edgel representation of the object was chosen for its succinctness and generality (with
respect to cameramodels). Edgel generators provide an efficient method for predicting an
object’s appearance in images for purposes of matching. Chapter 4 detailed our method for
automatically acquiring an object’s 3D edgel generators from real images.

In this chapter, wefocus on how to use a 3D edgel model to precisely find thelocation of
the object inanintensity image given aroughinitial estimate of its pose. 3D-2D localization
shares much in common with the problem of 3D-3D localization which was described in
Chapter 3. The requirements for 3D-2D localization are indeed the same as for 3D-3D
localization. Applications of localization require it to be an efficient and robust operation.
As will be shown, the similarities are much deeper. In the next section, we will overview
the problems and our approach for 3D-2D localization.

5.1 Problemsand Approach

Chapter 3 dealt with problems and issues of localizing 3D surfaces in range images,
matching 3D surface pointsto 3D image points. Many of the problemswe face with 3D-2D
localization are similar to those encountered in the 3D-3D localization problem. We will
make use of the methods and techniques of Chapter 3 when applicable.

136
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Asin Chapter 3, weregard asaxiomaticthat localizationisan optimization problem (i.e.,
we can evaluate any pose estimate, and the true pose has the optimal value). The primary
problem ishow to evaluate apose candidate. For 3D-2D localization, using intensity edgels
as the primitive feature for matching the model to the image alows usto evaluate the pose
by measuring the distance between (edgel) points on the model and (edgel) points in the
image.

Since our model primitives (edgels) are essentially 3D points on the object’s surface,
we are able to take advantage of much of the work on 3D-3D localization of Chapter 3. The
basi c approach to localization remains the same. We must predict the visibility of features,
establish correspondences between model and image features, and use the correspondences
to refine the pose estimate. More importantly, the similarities make many of the techniques
for 3D-3D localization directly applicable for the 3D-2D problem.

Thefirst problem isto determine which edgels of the object are visible from a particular
viewpoint. As described in Chapter 4, we have three distinct types of edgels: rigid edgels,
occluding-contour edgels, and convex edgels. Thereisno general way to infer thevisibility
of edgel points simply from their appearance in sample image views'; geometric shape
information is necessary, which, fortunately, is available. Asin Chapter 4, before building
the edgel model we first build a 3D surface model of the object using the techniques of
Chapter 2. Here, we utilize the surface model for determining visibility requirements for
our various edgel points. The representation and computation of self-occlusion conditions
areidentical to that used in the 3D-3D localization case.

Oncewe have predicted the visible edgel s of themodel given the pose, we must compute
correspondences between the visible model edgels and image edgels in order to refine the
pose estimate. Like inthe 3D case (Chapter 3), we also rely on efficient nearest-neighbor
to compute correspondences. However, this time we must search in 2D image space.

Correspondences based on nearest-neighbor search in 2D are morelikely to beincorrect
thaninthe3D-3D case—especially withlargeinitial poseerrors. Thisisbecausethe density
of edgelsin theimageishigher thanin the 3D-3D case in which the data (visible surfaces of
the 3D scene) isa2D manifoldin 3D space—a sparsely populated space. For localizationto
work, improvements over ssmple nearest-neighbor correspondence is necessary. \We show
how to improve correspondences while maintaining efficiency by using additional edgel
attributes in the nearest-neighbor search.

Pose estimation in the 3D-2D case is—on the surface—much more complicated than
the 3D-3D case. In the 3D-2D case, we are matching 2D points to the 2D projection of
3D points. In general, assuming a perspective camera model, the 2D projection introduces
a non-linearity to the pose estimation problem that we must deal with. We show that the
optimal way of refining a pose estimate in the 3D-2D case is to formulate it as a 3D-3D
problem. Our formulation alows us to use much of the 3D-3D localization machinery for
the 3D-2D problem.

LAt best, we can say that an edgel was visible in the set of views from which it was observed, however
this set will usually be too sparse to specify its full geometric range of visibility. Photometric visibility is
another issue entirely and is discussed in Chapter 7.
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Figure5.1: Organization of this chapter.

While the basic formulation of localizationisfor localizing an object in asingleimage,
there is no fundamental limit to the number of images we may use. We show how 3D-2D
localization can straightforwardly be extended to use multipleimages simultaneously which
avoids a significant problem of stereo vison—that the scene points in one view may not
correspond to scene pointsin another view.

Figure 5.1 shows a diagram of the main technical sections of the thesis. We begin by
discussing efficient approximationsfor the various edgel types. Asin Chapter 3, we discuss
a method for nearest neighbor correspondences and an extension to include additional
attributeswhich are crucial for 3D-2D localization: edgel normalsand reflectanceratio. We
then show how a 3D error formulation in the 3D-2D problem makes our pose optimization
problem equivalent to the 3D-3D problem of Chapter 3.
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52 Edge Visibility

In this section, we describe our method for efficiently predicting the visibility of edgels
given the pose of the object.?

Our first task when localizing a 3D object in a 2D image is to determine which parts
(edgels) of the object are visible from the current viewpoint. As stated in Section 3.2,
achieving an exact solutionfor point visibility on a3D surfacerequiresexpensivetechniques
such as ray-tracing or z-buffering [40, 141]. Again, such techniques are too expensive to
consider for localization tasks. We desire an efficient approximation of visibility which is
preferably alocal computation. Such a solution for surface point visibility was presented
in Section 3.2.

As described Chapter 4, we will make use of our 3D surface model to determine the
visibility conditions. Since many of the problems of computing 3D surface visibility also
arerelevant to 3D edgel visibility—an edgel isreally apoint on the object surface—we will
make use of many of the methods and representations developed in Section 3.2.

The chapter on 3D edgel modeling differentiates three classes of edgels.

¢ Rigid surface edgels. the result of reflectance/color discontinuities (e.g., surface
marks) on the surface of the object. The surfaceislocally smooth in this case.

¢ Occluding-contours edgels. the result of boundaries observed at points on a smooth
surface where there is a transition from visible surface points to occluded surface
points from a particular viewing direction (e.g., the side of acylinder). An intensity
edgeiscreated only if the detected intensity of the background is sufficiently different
from the intensity of the surface at that point.

e Convex edgels. theresult of adiscontinuity of surfacenormals(e.g., theedge or corner
of acube). Thisisahybrid of the rigid surface and occluding-contour edgels—high
curvature (corner) points which generate occluding-contours from some viewing
directions but are rigidly attached to the surface and generate edgels from other
viewing directions that are not occluding boundaries.

Figure 5.2 shows examples of the above three classes of edgel generators. Clearly, the
visibility conditionswill differ for these three types of edgels.

All three of these types of edgels may be subject to self-occlusion or not. If so the
point’s visibility information is smply annotated with a visibility LUT as described in
Section 3.2.2. In generd, this visbility LUT is only consulted when an edgel point is
otherwise determined to be visible. In the following , we will only describe the visibility
computations specific to each edgel type. The self-occlusion LUT test is assumed to be
understood. We now describe the visibility constraints and computations for each of these
edgel types.

2Themethod for predictingvisibilityinthischapter ispurely geometric. For completely accurate prediction
of edgel visibility, we would need photometric constraints as well; however, photometric prediction would
require precise knowledge of the environment in addition to the object model.
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Figure 5.2: Examples of three types of edgel generators. (a) rigid surface marking, (b)
convex edges, (c) occluding contours.

5.2.1 Rigid Surface Edgel Visibility

The first and ssimplest case is that of rigid surface edgels. The necessary condition for the
surface edgel to be visible is that the surface point be visible. Fortunately, we have the
3D surface model at our disposal (thanks to the work described in Chapter 2). Given the
edgel point, we can determine the triangular surface patch of the model on which it lies.
We can then equate the visibility of the edgel to the visbility of the surface patch. From
Section 3.2, we have have the visibility definition of Equation 3.1:

true n;-v > cosd

false otherwise (5-1)

ViSibI€, s face (%) = {

where 11; is the normal direction of the triangle 7;, which is the surface triangle on which
the edgel point x lies. ¥ is the viewing direction to the point x of the edgel. 6 (similar to
Equation 3.1) is an angle near 90 degrees which is the maximum orientation angle of the
surface such that arigid edgel on the surface will be detected. Asin Chapter 3, 4 is chosen
empirically.

Thus, for rigid surface edgels, we need to precompute the normal 1i; by finding the
surface triangle 7; on which the edgel point x lies. ® For each rigid surface edgel, we need
to store 1i; in the localization model aong with the point and tangent <x, ‘E>.

3Again, k-d trees [42] come in useful to make the search for 7; efficient.
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5.2.2 Convex Edge Visbility

The next edgel type—in order of complexity of the visibility constraints—is the convex
or corner edgel. Thisisa point at the non-smooth junction between two smooth surfaces
of the object. While thistype of edgel is, in some sense, an occluding-contour edgel, the
visibility constraints are dightly different than the occluding-contour case. Fortunately, the
visibility constraints are ssimpler since corner edges are common in man-made objects.

The necessary condition for the visibility of a convex edgel is that one or both of the
adjacent surfaces (to the left and right of the edgel) are visible. If only one of the adjacent
surfaces is visible, the edgel would generate an occluding boundary edge between the
background and the visible surface. If both surfaces are visible, the edgel is more like a
rigid surface edgel since the two surfaces, which have different orientationswith respect to
the light sources and camera, will usually reflect different intensities—creating an intensity
edgel.

For a convex edgel, we can examine the triangular patches on either side of the edgel
and use the normal s of these two surfacesfor thevisibility computation. First, we determine
the closest surface triangle 7. to the edgel point x. This gives us a surface normal ii.. for
the edgel. We also have atangent direction t for the edgel. We can determine the surface
normalsimmediately to theleft and right of the edgel by locally searching along the surface
inthefi. x t and —f. x t directions respectively.

This gives us two triangle patches r;, and 7r with surface normals iy, and fig. The
visibility computation is then

true (i -V > cosd)V (g -V > cosé)

false otherwise (52)

Visible.nper (X) = {
wherev istheviewingdirectionfor edgel point x, n;, and i arethenormalsof the surfaces
adjacent to the left and right of the edgel point x, and ¢ isdefined in Equation 5.1.

Thus, in addition to the edgel’s point and tangent (x, ), we also need to compuite the
adjacent surface normals iy, and nr and store them with the localization model.

5.2.3 Occluding Contour Visibility

Finally, we must determine the visibility for occluding contour edgel points. Section 4.5
discussed the computation of surface curvature at each point on the surface model and how
to classify these points as either occluding contour generators, convex edges or non-contour
points. Having classified a surface point x as an occluding-contour point with normal n,
principal curvatures «; and «», and principal directionsé; and é,, we need an efficient way
to computeits visibility given viewing direction v.

In Chapter 4, we identified two classes of occluding-contour points based on their
principal curvatures:

1. (k1 < 0) A (k2 < 0): an dliptic point, which generates contours for all tangent
viewing directions
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2. (k1 > 0) A (k2 < 0): either acylindrical point (i.e., k1 = 0) or a saddle point,
which generates contours from a subset of the tangent viewing directions—those
with negative normal curvature

Let usfirst assume that we are able to sample the surface at infiniteresolution (i.e., we have
a continuous surface of points). The visibility predicate for eliptic points could then be
defined smply as:

true h-v=0

false otherwise (53)

visibl eemp“'c(X) = {
whereti isthe normal of the elliptic surface point x, and ¥ isthe viewing direction for point
X.

For saddle/cylindrical points, we require one more piece of info to make the decision.
We need to know the normal curvature of the point in the direction v. Fortunately, Euler’s
formulagives us

K(V) = k1(81- )2 4 k(8- V)2 (5.4)

and the vigibility predicate takes the general form

true (A-v=0)A(k(¥V)<O0)

Vis-bleoccludmg(x) = { false otherwise

(5.5)

where x (V) isthenormal curvature for arbitrary surface point x, and ii is the normal of the
surface point x. Thisisvalid for both classes of occluding contour generators. For elliptic
points, x(¥) < 0O, by definition.

Unfortunately, theabovetest will not bevery useful for usaswe must usefinitesamplings
of points from the model surface. The piecewise-planar approximation complicates our
task quite a bit. In Section 4.5, we rationalized the approximation of contour edgels by
point samples using the example of a piecewise-linear circle and its projected contours (see
Figure4.9). Wereturntothatillustrationto help ushere. If weweretousetheideal visihility
predicate as in Equation 5.5 for our sampled points, the contour would only be apparent
when the point is precisely normal to the viewing direction (in practice, almost never). In
order to make the contour continuously visible with respect to the viewing direction, we
must relax the constraint that the viewing direction ¥ must be exactly perpendicular to the
surface normal 1 of x. We then have a predicate of the form

true (|0-v| <e)A (k(V)<0)

false otherwise (56)

visible,.iuding (X) = {

where ¢ is some threshold near zero. Care must be taken when choosing ¢ so that we do not

predict that two adjacent points of the same normal section are visible smultaneoudly. This

can be accomplished by selecting ¢ based on the local geometry of the surface. Figure 5.3

shows an example normal section of a piecewise-planar surface. The viewing directions
that should generate an occluding contour edgel at point x span an arc of angle 6.

We can expand the point’s effective normal (for purposes of the predicate visible,..;yqing

to include half of the angle spanned by the normals of the two adjacent points. This
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Figure 5.3: A normal section of a surface. The point x will be an occluding contour edgel
for al viewing directions spanned by the indicated arcs.

effectively makes point x of the normal section visible when the viewing direction isin
between the normals of x and the adjacent surface point on the normal section. If i1, isthe
normal of the adjacent point on the normal section and i isthe normal for point x, then the
angle between the two normalsis

a =C0S "1 -1n,

which gives the threshold
€= cos%.

Note that this assumes that the normal section is symmetric about the point x and that the
threshold is for a specific normal section.

For elliptic points, we can compute the threshold ¢ along the normal sectionsfor both of
the principal directions—givingus¢; and ¢,. At execution time, thethreshold ¢ iscomputed
using the same formulaas the curvature (¥ ) is defined in Euler’s formula (Equation 5.4)

(V) = e1(81- V)2 + ex(€2- V)% (5.7)

This establishes a smooth transition between the two thresholds as the viewing direction
varies between &, and &,. Thus, thethreshold (V) is asmooth approximation of the surface
sampling along the given viewing direction.

For cylindrical/saddle points, we can use the same equation to our advantage. In this
case, if k() > 0, the contour point should not bevisible. To enforcethisusing thevisibility
predicate of Equation 5.6, we need ¢(v) < 0 whenever x(v) > 0. We can achieve this
by first computing ¢, (for the normal section along é,, remembering «, < 0) and then set
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1 = €5t Thismakese(¥) = (2« (V) ascaled version of normal curvature which provides
a smooth transition from the des red threshold for v = &, to a threshold of zero for the
direction such that «x(¥) = 0.

This allows us to test visihility for both elliptical and saddle/cylindrical points using a
surprisingly ssimple rule

true |- V| < e(V)

false otherwise (58)

visbl Coccluding (X) = {

which gives us the desired effect that when «(¥) > 0, then the point does not generate an
occluding contour since ¢(v) < 0.

Our biggest assumption isthat the points are uniformly and symmetrically sampled. Of

course, this assumption cannot be met in practice. For example, consider the problem of

uniformly sampling a sphere. The result for a surface that is sampled nearly uniformly is

that occasionally multiple points of the same normal section will be visible simultaneously.
However, this does not prove to be much of a problem for localization.

5.2.4 Edgel Visibility: Summary

We have described our solution for efficiently computing the visibility of edgels in our
model for 3D-2D localization. Each computation requires at most a few dot products and
acomparison. The visibility computation is also local—that is, independent of other edgel
points and the surface points of the model. Thus, we may compute the visibility of one
or al edgels. Global vighility (i.e., self occlusion) is assumed to be handled again asin
Section 3.2 using the visibility lookup table approach to predict self occlusion. For this
aspect, edgel visibility is equivalent to surface point visibility.

Off-line we must compute the normals and thresholds required to compute the visi-
bility of each type of edgel. Thisinformation is stored with the localization model. The
information required for each type of edgel is:

e Rigid surface edgels: the surface normal i of edgel <x,£>

e Convex edgels. the adjacent surface normalsni;, and iy of edgel <x, E>

e Occluding-contour edgels: the surface normal 1, the principal directions &; and é,,
and thresholds ¢; and e, for edgel (x. )

While executing the visibility prediction for a given edgel point x we must transform
the viewing direction corresponding to the model edgel point x into the model coordinate
system. Then we may execute the following predicates for each edgel depending on its

type:
e Rigid surface edgels: visible,,, f...(x) of Equation 5.1
e Convex edgels: visible.,,,... (x) of Equation 5.2
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e Occluding-contour edgels: visible,..;.q4ing (x) Of EQuation 5.8

These are al efficiently evaluated. For the occluding-contour edgels, we can save some
time by quickly ruling out pointswhereni - v >> O.

Another option for predicting visible contour points might be to use an LUT much like
the one used to detect self occlusion (Section 3.2). However, thisis not afeasible option as
the size of an LUT that achieves the same degree of accuracy would be excessively large.
Any LUT approach would also suffer from occasionally predicting multiple contour edgels
from the same normal section to be simultaneoudly visible.

Yet another option would be to model the smooth surface patches with algebraic equa-
tions[77, 46, 132]. Such arepresentation would be more precise than the piecewise-planar
representation offered here; however, many more complicated issues are involved with
algebraic surface representations. For example, surface patch segmentation, efficiency of
contour prediction, and sampling the contour for localization. Making this efficient enough
for localization applications would prove difficult.

5.3 Edgd Correspondence

We are given an initial pose estimate and a set of visible edgels of our model. In order to
evaluate and, thus, refine the pose, we must be able to compute correspondences between
the model edgels and edgelsin theimage. The image edgels are acquired using the method
described in Section 4.2 (without the calibrated positioner). The intensity image is taken,
the Canny edge operator and edgel linker is applied to the image, and the resulting edgel
chains are smoothed to remove the aliasing and noise effects. The result is a set of smooth
2D edgel chainsin image coordinates.

Since we know the rough pose of the object, we can use a local search to find the
nearest-neighbor correspondences efficiently. Asin Chapter 3, we do not need the absol ute,
correct correspondences in order to refine the pose. However, it is important that many
of the model edgels are connected or related to the corresponding image edgels (i.e., the
errors must be meaningful). If this is the case, the combined constraints of the related
correspondences will act to pull the model toward the correct pose. Unrelated and random
correspondences will not usually have any consistent trends to counteract the trend of the
correct correspondences—assuming enough correct correspondences exist.

As afirst attempt to find the correspondences, we will find the nearest neighborsin 2D
image space. Wefirst project the visible 3D model edgelsinto 2D image coordinates.* The
perspective projection of a3D point x,,, in model coordinatesis performed by thefollowing
sequence of transforms (repeated from Chapter 4):

Xc ey Rc<—mxm (59)
u=R,_.x. (5.10

4Without loss of generality, the projection equations will be presented as perspective projections. Other
projections such as orthographic, parallel and central projection will work as well.
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o

where x,, and x. are the positions in model and camera coordinates respectively, u =
[v v w]” are the image projection coordinates, and U = [/ V]7 are the 2D image pixel
coordinates. R.._,, is arigid transformation that transforms model coordinates x,, to
(Euclidean) camera-centered coordinates x.. The camera-centered coordinate frame is
defined such that [0 0 0]7 is the center of projection and [0 0 1]7 is the camera's focal
axis. R,_. transforms the Euclidean camera coordinates x. to (possibly non-Euclidean)
3D projection coordinatesu. R, .. accounts for any scaling factors (such as aspect ratio)
and trandation of the image center to non-zero image coordinates. The image projection
coordinates are specified so that the final transformation is a purely perspective projection.

Using the 2D coordinates of each edgel, we can then search for the nearest edgel in the
2D image using the dissimilarity measure

gleg =

] (5.11)

Alx,y) = [[x =yl (5.12)

where x and y are the image coordinates of two points being compared. The nearest-
neighbor search is again efficiently implemented using the k-d tree [42] data structure as
used in Section 3.3.

Unfortunately, the straightforward approach to correspondences in 2D edgel images
rarely provides sufficiently accurate correspondences for localization. The reason is that
the density of 2D edgels in a 2D intensity image is likely to be so high that the nearest
image edgel chain will often be unrelated to the actual edgel of the model. In the case of
3D-3D localization, the points of a range image occupy a 2D manifold in 3D space. Thus,
inthat domain, nearest-neighbor correspondences are likely to berelated to the same object
surface despite errorsin the pose estimate.

For robust 3D-2D localization, we must do better. Oneway to improve nearest-neighbor
correspondences is to enforce additional constraints on the search. In Section 3.3, we
showed that we could integrate additional constraints into the nearest-neighbor search by
adding attributesto each image-point entry in the k-d tree. Wewill consider both geometric
and photometric attributesfor this purpose.

5.3.1 Attributesfor Correspondence: Geometric

For edgel correspondences, the most obvious geometric attribute to use is the normal (or
equivalently the tangent) of the edgel in the image. The 2D normal direction can easily
be computed from the model edgel <x,£> by projecting the tangent direction t to image
coordinates. The normals of the image edgels are computed from the tangent direction
along the edgel chains. The edgel chain smoothing described in the paper by Wheeler and
Ikeuchi [147] and used in Section 4.2 proves useful for accurate estimation of the edgel
normals.

There are a couple of problems with using the edgel normal as an attribute. First, 2D
edgels do not have a unique coordinate system. It is an arbitrary decision as to which
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direction the normal (or tangent) is chosen (i.e.,, n or —n are equally correct normals).
Edgel chains have no distinguishable inside or outside as do 3D surfaces asin Section 4.3.
Thus, we must represent every image edgel twice—once for in and once for —n—in the
k-d tree to ensure that we find the closest edgel with respect to both proximity and normal
similarity.

Another problem with normalsis how to parameterize orientationsfor efficient k-d tree
search. One might first choose to parameterize the 2D normal by its orientation angle.
Unfortunately, there are additional ambiguities when using angles to represent an attribute
for nearest-neighbor search in k-d trees. There are any number of waysto specify the same
angle (e.g., 180 degreesis the same as -180 degrees). The orientation angle folds back on
itself asit completesacircle. If wewant to compare two angles using an Euclidean metric,
we require that

A(avﬂ) :| Oé_6|

behaves linearly for the nearest-neighbor search using a k-d tree. For example, if we
compare a model value of 180 degrees with an image value of -170 degrees, we require a
distance of 10 degrees rather than 350 degrees. The only way to make this happenisif we
store an edgel multiple times for each equivalent value of the angle. In this example we
would need to store the image edgel using -170 degrees and 190 degrees. This effectively
doubles the number of entriesin the k-d tree again. Add to that the expense of computing
the orientation angle using relatively expensive trigonometric functions for each model
edgel, then other alternatives are worth consideration.

We can follow the approach in Section 3.3 which represented the surface normal attribute
simply as 3D unit normal vectors. In the 2D case, the dissimilarity metric is the same as
Equation 3.8

A(fy, fip) = [|fiy — o] (5.13)

except that n; and n, are 2D vectors rather than 3D vectors. This equation has the same
properties as Equation 3.8 since any 3D rotation is equivalent to a 2D rotation in a specific
plane. Thus, from the analysis in Section 3.3.2, we may assume that Equation 5.13 is
roughly linear over itsrangewhich is [0..90] degreesin thiscase.® Thus, we represent each
image edgel by two entriesin the k-d tree

(U, V,wny,wny) and (U, V,—wny, —wny)

where the 2D edgel normal isn = [ny ny]? and w is the weighting factor for normals
as described in Section 3.3.2. For more details, the reader is referred back to Section 3.3
where thisissue isdiscussed at greater length.

There are other possible geometric attributes that can be used to describe/disambiguate
an edgel. One potentially useful geometric attribute is the curvature of the edge chain at
each edgel. Unfortunately, the computed curvatures of points in an intensity edge chain
are noisy even after applying the smoothing operators to the edgel chain. In addition,

5Since each edgeisrepresented at two oppositeorientations, thelargest angular distancewill be 90 degrees;
if the orientation of an edgel was unique the range would increase to 180 degrees.
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Figure 5.4: Using the tangent direction of an edgel to locate pixels to sample the left and
right intengities, /;, and I, for computing the reflectance ratio.

computing the curvature of projected model edgels can suffer from inaccuracy making
the dissmilarity metric very volatile. Thus, curvature is not utilized in the experiments
described in thisthesis.

5.3.2 Attributesfor Edgel Correspondence: Photometric

In addition to geometric attributes, it is also possible to use photometric attributes of the
edgel. The most obvious photometric attributes of an edge are the intensities on either
side of the edgel. Asdiscussed in Section 4.1, the detected intensities of points/regionson
the object are quite variable and depend on many external factors. While the intensities
themselves may be difficult to predict, there is auseful measure involving these intensities
called the reflectance ratio which Nayar and Bolle [100] showed to be invariant to light
source conditions and orientation (except for cases of shadowing and specular reflection).
They showed that the ratio of intensities of two adjacent surface patchesisinvariant if the
surface normals of the two patches are nearly the same. The reflectance ratio « is defined
to be
Iy, — Ip
‘= I + Ir

where I, and I aretherespective intensities of theleft and right side of an edgel or surface
patch boundary. Figure 5.4 shows an example of how we can locate the two intensities
for computing the reflectance ratio, «, for a given edgel. The use of reflectance ratios
assumes that the surface patches are connected, that the surface is locally smooth, and
that the patches have similar reflectance properties. This is approximately true for any
adjacent patches on a smooth surface if we sample points on the patch that are relatively
close. In our application, we have a class of edgels, rigid surface edgels, which fits these
assumptions. We can compute « for each edgel point when building our model, and
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k-d tree entries: (0,0,0,1, -1) (7,0,0,1,-1) (1,0,0,1,1)
(x.y, ne.ny, O) T A T
't BN R
# model edgel #
(O’O’ O"l’ 1) (1,0, O,-l, -1)
image edgels

Figure 5.5: Example of correspondence search using reflectance ratios. The model edgel,
though closer to the rightmost edgel will prefer the leftmost edgel since they share the same
reflectance ratio with respect to the same normal direction. Note the two k-d tree entries
for each of the image edgels.

average the observations when computing the consensus edgel for each rigid surface edgel
as described in Section 4.4.

We now have five dimensions—image position, normal and reflectance ratio—for the
k-d tree entries when looking for correspondences to a rigid surface edgel. We still need
to store each entry twice to account for the fact that we do not know which direction the
model edgel may be oriented. We ssmply add another entry to the k-d tree with the normal
and o negated—qiving ustwo entries for each image edgel:

(U, Viwny,wny,w, a) and (U, V,—wny, —wny, —w, o)

where w,, s the respective weighting factor for comparing reflectance ratios with image
coordinates. Not only does the reflectance ratio give us one more attribute to improve
correspondence accuracy, but it also solves a previous problem, namely orientation ambi-
guity. The choice of left or right when computing the reflectance ratio forces us to choose
one tangent direction (and normal direction) or the other. For example, Figure 5.5 shows
amodel edgel projected into a 2D image containing two edgels with similar orientations.
The k-d tree entries are labeled next to each edgel. From Figure 5.5, we can see that the
reflectance ratio rules out the correspondence to the nearest edgel in 2D image coordinates,
since the reflectance ratio for that point has thewrong sign. In thisway the correspondence
search can skip over nearby edgelsthat have ssmilar normalsbut different reflectanceratios,
which will be acommon occurrence.

As mentioned above, the reflectanceratio is only suitable for rigid surface edgels. This
requires us to build a second k-d tree, just for the rigid-surface-edgel class. When we
are searching for the correspondence to a rigid surface edgel, we use the k-d tree which
includes the reflectance ratio attribute, otherwise we use the k-d tree that includes only
image coordinates and edgel normals.
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Continuing along the line of photometric attribute, it may be possible to define other
attributes based on color. A desirable attribute would be an invariant or pseudo-invariant
that is applicable to occluding contours and convex edgels. One possibility involving color
ishue. Hueis essentially the dominant wavelength of the light [40, 2]. Hue is potentialy
useful as it isinvariant to intensity changes in the light source (assuming the intensity is
from diffuse reflection or has zero saturation specular reflection) and orientation changes
of the object with respect to the camera. Thus, we could acquire the hue on the object side
of an occluding contour or convex edgel and have a useful attribute for these edgel classes.
Unfortunately, there are problemswith using hue as an attributefor nearest-neighbor search.
Hueisasingle-dimensional attribute which foldsonto itself just like orientation does. Hue
also suffers from the significant disadvantage that the colors white/grey/black (i.e., zero
saturation) cannot berepresented. These problemsareequivalent to representing orientation
of normal vectors using an angle, but then wanting to represent the point [0 0] which of
course hasno well-defined angle. Just asthe solutionin the orientation caseisto use normal
vectors; the solution to the hue problem may be to use chromaticity (normalized color, a
2D quantity).

Conceptually, chromaticity is a two dimensional dice of 3D color space (e.g., RGB
space) where intensity is normalized [2]. By taking a constant intensity dlice of the color
space, we get a 2D space in which the color (hue) changes with the orientation of the
chromaticity vector and the saturation increases as the chromaticity vector moves radially
away from the center. Under a known light source color (e.g., white light or natural light),
chromaticity may be sufficiently invariant (again, assuming diffuse reflection) to use as an
attribute for correspondence search. For this thesis, we have not attempted to work with
color information.

We have described how correspondences between 3D model edgels and 2D image
edgels are computed given the object’s pose estimate. Now we face the problem of refining
the object’s pose using these correspondences as a guide.

5.4 Pose Optimization

The pose optimization problem that we face in this chapter is very similar to the the 3D-
3D pose optimization problem of Chapter 3. We have a rough pose estimate and many
correspondences between model points and image points. Most of these correspondences
will beincorrect initially. Inthe 3D-2D case, many model edgelswill be predicted that will
not be present in the image due to various lighting conditions? or occlusion. In addition,
it iscommon to detect spurious/background edgels in and around the object of interest. In
the sense of correspondence accuracy, we will have many more mistakes to deal with in
the 3D-2D case than in the 3D-3D case. Thus, for 3D-2D localization, robust estimation is
even more a necessity than for 3D-3D localization.

50ur method predicts the visibility of stable image edgels of an object over the light source conditions
used during the modeling stage. In our discussion of future work in Chapter 7, we discuss what would be
necessary to incorporate photometric constraintsfor edgel visibility prediction.
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Section 3.4.2 laid the groundwork for how we make the pose optimization robust to
incorrect correspondences. We will use the same framework here. We will consider
minimizing a robust M-estimator which has the form

E(p)= > »lz(p)) (5.14)

€V (D)

where z; is the error of the «th point (edgel) in the model and p(z) is one of the robust
M-estimator described in Section 3.4.2. V(p) isthe set of visible model edgels at pose p
with respect to the known camera parameters. The pose vector p isdefined asin Chapter 3

to be
p= [’ t"]"

where q is aquaternion representing the rotation and t is the 3D trandation vector.

The first difference between 3D-3D and 3D-2D estimation is the form of the error z;.
In the 3D-3D casg, z; was simply the 3D distance between the corresponding points. Inthe
3D-2D case, we have a correspondence between a 2D image point and a 3D model point.
The most obvious and common approach to measuring this error isto project the 3D model
into the image coordinates and minimize the 2D image distance between the points.

The transformation of the 3D model point x,,, to 2D image coordinateswas described in
Section 5.3. However, we now must account for the pose of the object p, which is defined
Adding the pose transformation into the list of transformations described in Section 5.3, we
have

x. = R(q)x,, +t (5.15)
u=R,_.x, (5.16)
U= [ w ] (5.17)

wherethe 3 x 3 rotation matrix R (q) and trand ation vector t replacethe 4 x 4 homogeneous
transform R.._,,, from model to camera coordinates from Equation 5.9.

The error of model point x; isthen the squared’ 2D image distance
%= ||U; — yil)? (5.18)

where y; is the corresponding image edgel to model edgel x;, and U, are the image
coordinates of x;.

Perspective projection is realy what makes the 3D-2D case more difficult than the
3D-3D case. Even in the noise and error free case, no closed form solution exists for the
even least-squares minimization (i.e., minimizing £ with p(z) = ). Iterative technigques
arerequired to solve this problem.

To facilitate further analysis, we now assume that the aspect ratio is unity, the focal
length is unity, the image center is exactly at image coordinates [0 0]7, and the camera

"Using the squared distance rather than the distance, simplifies the subsequent al gebrai c manipulations as
in Section 3.4.3.
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coordinate system is the same as the projection coordinate system. This can be done
without loss of generality. The projection equations are simplified to

u=R(q)x,, +t (5.19)
U l E ] . (5.20)

As in the 3D-3D case, we must use an iterative technique to minimize F(p) (Equa-
tion 5.14). We can use gradient-descent search (or some variant of hill-climbing search) as
in Chapter 3. In order to perform this search, we must be able to evaluate the gradient of
FE(p) which has the form (repeated for the reader’s convenience)

op ZZ:;/)(ZZ) b (5.22)
where ¢ (z) = d”d—(j) as described in Section 3.4.2.

In the next section, we examine the effect of following this gradient more carefully.
What we find is that the formulation that minimizes the image error (Equation 5.18) is not
optimal. We suggest an improvement which makes the formulation equivalent to 3D-3D
pose optimization.

54.1 3D-2D via 3D-3D

We can think of the gradient gi) from Equation 5.21 as a correction vector. The summation
of Equation 5.21 adds up several of these local correction vectors weighted by ¢ (z;). We
make an interesting discovery when we derive the form of the individual corrections. We

first use the chain rule to break the correction vector into two components
Oz, 0Oz Ou;
op ~ ow op

The first component, 2, tells us how we must move u;, the camera-centered coordinates

) aull
of x;, to reduce z; and the second component, 88“1‘ , Isthe Jacobian of the camera coordinates
with respect to the pose and is identical to the correction vector of Equation 3.32 in

Section 3.4.3. If welook closer at 8% the camera-centered correction of the point, we have

(5.22)

0z; ou;
LU, — y) T 5.23
o (Ui — i) o (5.23)
1o -y
=2Ui—y)" | 1 W (5.24)
0 o —u
If we substitute AU, = U; — y;, we get
0z; L 0 -y
L =2AUT | ¥ i 2
AU AV, —uAU; — v; AV,
:zl Ui AV —uidli —v ] (5.26)
w; w; wy
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Figure 5.6: Gradient-descent minimization path to align a 3d point = with the line of sight
v (@) infinitesmal steps, (b) discrete steps, (¢) shortest path.

Theinteresting thing to note about thisequationisthat u,- 52 = 0; thus, 22 isperpendicular
to the vector u,. Thisfact isintuitively justified as mot| on along the VIEWI ng direction of
u; does not reduce the error, z;, in the 2D image space.

If we were to follow the gradient correction at infinitesmal steps, the path of the point
would trace out an arc of radius u;—not a straight line. Since infinitesmal steps are not
possiblein practice, the path traced out will usually be moreinefficient. Examples of these
paths are shown in Figure 5.6 (a) and (b) respectively. If we wanted to choose a correction
vector to most quickly take us to the viewing direction of the matched edgel point, we
would choose a vector perpendicular to the 3D viewing direction of image point y; (see
Figure5.6 (c)). If ¥ istheviewing direction to point y;, we can determine the closest point
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Figure 5.7: An example of the 3D error vector between the 3D point x3p and the line of
sight of edgel u. Thisis opposed to the 2D error vector between u and the 2D projection,
Xop, of X3p-

on that line of sight to point u; as
vy, = (u;-¥v)v. (5.27)
We can use this formulato define a new error measure z; that uses y¢ rather than y;
C 2
zi = |lus = yi[|”

This error computation is now in 3D rather than 2D. Figure 5.7 shows an example of the
3D correction vector.

We can derive 8% using this formulagiving

0zi _ o ey _ O¥E
T 20u, —yH)' (I — 8ui)' (5.28)
where
Ay O(u;-¥)v
Ju. ou, (5.29)
AT . A
_ 20 w)v (5.30)
8ui
=397, (5.31)

Since—by construction of yi—v - (u; — y¢) = 0, then we have

0z;
L =2

8ui
2

(i —y9)"1 (5:32)
(i — ) (5.33)

which isthe desired correction from Equation 5.27 (shown in Figure 5.6 (c)).



5.5. Putting It Together: 3D-2D Localization 155

Perhaps the biggest benefit of this formulation is that the equations for computing the
gradient make our 3D-2D problem equivalent to the 3D-3D problem (after correspondences
are determined). We only need to compute the 3D point of correspondence, y¢, using
Equation 5.27. Thiscan easily be computed fromthe edgel position and cameraparameters.
The gradient of £ then takes the same form as Equation 3.32, substituting y§ for y,;. Thus,
we can apply Algorithm 3D-3D Localization as described in Chapter 3 after replacing the
visibility and correspondence search componentsto use those required for the 3D-2D case.

For 3D-2D localization, it makes sense to prefer 3D error measures over image errors.
Using apurely 2D error metric would favor parts of the object that are closer to the camera.
A 3D metric puts al points on an equal field. Haralick et a. [58] similarly utilized 3D
errorsfor 3D-2D pose estimation.

Now that the form of the optimization function and its gradient are established, we can
put it to use in an agorithm to perform 3D-2D localization.

5.5 Putting It Together: 3D-2D L ocalization

We have described the principal components of our 3D-2D localization algorithm: edgel
visibility, model-edgel-to-image-edgel correspondence, and robust pose optimization via
3D error minimization. Here, we put everything together to present a pseudocode descrip-
tion of our complete 3D-2D localization algorithm:

Algorithm 3D-2D Localization

Input: initial pose p

Input: image edgel set

Input: 3D edgel model

Output: fina pose p

1. createk-dtreefor rigid surface edgel matching

2. createk-d treefor convex and occluding-contour edgel matching
3. repeat

4 compute the set of visible model points: V (p)
6 dp + —VE(p)

7 A < argminy F(p + Adp)

8 p < p+ Adp

9. until Ex— E(p) < ereturnp

The above algorithm is more or less identical to Algorithm 3D-3D Localization.

In practice we use all the performance enhancements (e.g., conjugate gradient, golden-
ratio bracketing for lineminimization, etc.) asdescribedin Section 3.5. Differencesinclude
the methodsfor computing edgel visibility V' (p) and correspondence and slight differences
in computing the optimization function £ (p) and itsgradient V E(p).

As we show in Section 5.7, this agorithm has a reasonable convergence time and
produces accurate results.



156 Chapter 5. 3D-2D Object Localization
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Figure 5.8: The stereo correspondence problem: several points are not visible in both
views. Note especially the magnified regions of the two stereo images.

5.6 Multi-Image L ocalization

We now take a small diversion to discuss extending Algorithm 3D-2D Localization to
utilize multiple images to localize an object. Usually, when one thinks of using multiple
images, one thinks of thetraditional modefor stereo vision. Thetraditional mode for stereo
vision [53, 101, 74] has been to use two or more cameras to compute depth at each pixel
in the image. One well known problem with this approach is that there will invariably be
points that are visible in one image while not visible in one or more of the other images.
Figure 5.8 shows an exampl e of this problem. Thereisno solution to this problem; at best,
the obscured pixels can beidentified and labelled as such.

We propose another mode for stereo/multi-camera systems that does not suffer from
this problem. If we are able to calibrate two or more cameras to use the same coordinate
system, then we can localize our 3D model in any of the images. The minimization we
perform is smply matching image observations to our predicted model appearance for the
specificimage. Minimizing the error function for oneimageisno different than minimizing
the function £ over several images simultaneously. For example, extending Equation 5.14
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to handle observations from multiple imagesis straightforward:

E(p)=3_ Y. prlz;(p)) (5.34)

J€l ieV;(p)

where [ isthe set of imagesand V; (p) isthe set of visiblemodel edgelsat posep inimage ;.
z; j(p) now dependsonimage ; in additionto model edgel ;. Theonly required modification
to Algorithm 3D-3D Localizationis to iterate the summations for Equations 5.34 and 3.32
over the set of images. Theonly practical requirement isthat we have the cameras calibrated
with respect to the same world coordinate system. Thisisusually the case for stereo vision
systems designed to compute depth maps.

This method of using multiple cameras for localization alows us to apply multiple
constraints ssimultaneously. One advantage isthat model edgelswhich are not detected in a
givenimage (say, because of thelighting configurationor occlusion) may be detectedin other
images. Also, correct correspondences are likely to be consistent across images allowing
implicit triangulation to occur. The agorithm would implicitly triangulate points to force
convergence of the correctly matched points on the model. The accuracy of localization
will be improved over single image localization since the implicit effect of triangulation
is to reduce the uncertainty of the object’s depth in the image. Incorrect correspondences
(those matched to spurious edgels or background, or those that are occluded/undetected)
are unlikely to be consistent across images. Thus, localization will be more robust when
given multiple images as from a stereo system.

Localization with multiple cameras under this approach does not require depth map
computation. However, a very promising direction would be to utilize 3D data info in
addition to edgel info in an effort to make localization more robust. This is described in
Chapter 7.

5.7 3D-2D Localization Results

In this section, we present experiments to evaluate the performance of our 3D-2D localiza-
tionalgorithm. Wefirst present resultswhich giveaqualitativeeval uation of the smoothness
of the objective function £ of Equation 5.14 with respect to the various M-estimator func-
tions p( =) described in Section 3.4.2. Wethen present quantitative resultsdemonstrating the
convergence of our algorithm with respect to these M-estimators. Examples of using our
3D-2D localization agorithm to track objects through a sequence of images are presented
next. We conclude by presenting results and comparison of convergence and accuracy
using single versus multiple images with our 3D-2D localization algorithm.

5.7.1 Qualitative Analysis of the Objective Function

Asin Section 3.6.2 with regards to 3D-3D localization, we must determine if whether the
objective function F is smooth enough for alocal gradient-descent search to be effective.
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To inspect the shape of E(p), we computed the values of F(q) over several range
images containing known objects in known positions. Here, we show some plots of F(q)
for arange image of the toy car. For an example of the type of intensity image and edge
data used for thisanalysis see Figure 5.17 (used for an experiment in the next section). The
correct pose of the car was obtained via the automatic calibration system. Asin the 3D-3D
case, barring significant partial-occlusion or missing data, we would expect the correct pose
estimate to be alocal minimaof any of the robust estimator functions described previoudly.
Again, thisisindeed the case.

In this section, we only consider the Lorentzian and Gaussian weight functions. In
Section 3.6, the Threshold function was found to be inadequate, and the Huber and Tukey
functions provided qualitatively ssmilar performance to that of the Lorentzian; thus, we
now focus on the Lorentzian and Gaussian. For both of these functions, we plotted the
value of £ along various lines in pose space which cross the desired pose. The plot in
Figure 5.9 shows the values of £ for each function p(z) along a pure translation through
the correct pose (at point + = 0). The axis dimensions of the plot isin millimeters and
the range of the plot is 60 mm. The toy car is approximately 190 mm long. Figure 5.10
shows the value of £ for each function p(z) along a pure rotation through the correct pose
(at point 0). The axis dimensions of the plot is in degrees and the range of the plot is 70
degrees. Finaly, Figure 5.11 shows the value of £ for each function p(z) along arotation
and trand ation through the correct pose (at point 0). The axis dimensions of the plot isin
combined degrees and millimeters and the range of the plot is 70 degrees and 60 mm.

One can see that the £ isrelatively smooth out to about 15 degrees and 10 millimeters.
Asin the graphs of £ for the 3D-3D case in Section 3.6.2, £ is smoother when using the
Lorentzian or other down-weighting functionsthan with aGaussian. Even at acoarse view,
asin Figure 5.10, F has noticeable local minima for the Gaussian case both far away and
near the global minimum.

5.7.2 3D-2D Localization Convergence Results

We now present quantitative results demonstrating the convergence of our 3D-2D localiza-
tion algorithm using the 3D edgel models constructed in Section 4.6.

We performed experiments on images of each of the objects constructed in Section 4.6:
the bulls-eye, the stop sign, the T-sign, the mug, the boxcar, the car, and the duck. For
each experiment, we took an intensity image of our object in a known position—using
the robotic positioner or by manually estimating the object’s precise position. Each image
contains 256 x 240 pixels and is processed to produce a set of smoothed intensity edgels.

Thetest imagesareshownin Figures5.12- 5.18. These figuresshow theintensity image,
the smoothed Canny edgels, an overlay example of an initia (incorrect) pose estimate as
used in the experiments, and the overlay of the object model on the intensity image at the
estimated position.

As in Section 3.6.3, each experiment consists of 100 trials of the 3D-2D localization
algorithm from arandomly generated initial pose estimate. The initial pose estimates were
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generated by perturbing each pose by a random trandlation vector and a random rotation.
Each trial was performed with the same magnitude of initial pose error: 10 millimeters
in trandation and 15 degrees of rotation. As before, the initial errors are not uniformly
distributed between 0 and 10 millimeters of trandation, and 0 and 15 degrees of rotation,
but are exactly 10 millimetersand 15 degrees, respectively.

The size of the perturbation is reduced from those used in the 3D-3D localization tests
since local minima are more of a problem in typical intensity edge images. From the plots
of I/ in Section 5.7.1, we can see that the effective ranges which we may be ableto localize
an object in an intensity image is much smaller (by about half) than that of the 3D-3D case.
As one can see from the examples of initial pose estimates, a 15 degree and 10 mm error is
non-trivial.

For each image, we performed the convergence experiment on two versions of our
3D-2D localization algorithm: using the Gaussian and Lorentzian weight functions. See
Section 3.4.2 and Figure 3.11 for areview of these functions. In Section 3.6, the Thresh-
old function was found to be inadequate, and the Huber and Tukey functions provided
gualitatively similar; thus, we see no real benefit for considering them here.

To account for large initial pose errorsit is important that the errors = are normalized
accordingly so that the robust estimators do not immediately discount correct correspon-
dences. The errors are normalized by a progressively decreasing normalization factor o
(i.e, usez' = 2). Thisiseffectively the standard deviation which controls the width of the
M-estimator weight-functions (e.g., a 30 threshold). In these experiments, we begin with
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Object % Correct
Lorentzian | Gaussan

stop sign 97 94
T-sign 78 64
bulls-eye 43 16
duck 73 65
mug 54 52
boxcar 37 28
car 30 27

Table 5.1: Results of the convergence experiments for our 3D-2D localization algorithm
using the Lorentzian and Gaussian weight functions. The initial errors were of uniform
magnitudes: 15 degrees of rotation and 10 mm of trandation.

o = 20 mm and reduce it to 15 mm, 10 mm and 5 mm as the algorithm progresses.

We manually verified the results of each trial and determined the number of correct
trials—those that correctly align the model with the image—for each experiment. The
results arelisted in Table 5.1.

From these results we see that the Lorentzian weight function has dightly better con-
vergence propertiesthan apure least-squared error objective function (corresponding to the
Gaussian). For each convergencetrial, our localization algorithm typically performed 10 to
15 conjugate-gradient steps and 70 to 90 function evaluationsfor each trial (approximately
7 seconds on a SPARC 20 workstation).

Again, there is nothing special about the images used for these tests (i.e., they weren't
hand chosen, but rather randomly selected from a large set of sample images). They were
taken with a plain black background which would suggest that the localization task would
betrivial. Inorder to makeit morerealistic, the edge detection parameterswere modified to
produce noisier edgel images than would normally be used. This produced many spurious
random edgel s around the object where otherwise there might only be black background. It
also created spurious edgels on the object which can also foul up thelocalization algorithm
by creating more local minimaaround the correct pose.

The duck example provides a good example of the effectiveness of our occluding
contour representation for localization. The stop sign is probably the easiest case, but if
not for the use of reflectance ratios for the correspondence search, it would not be reliably
localized in that image. The bulls-eye result is a bit disappointing, but the symmetry of
the circles makes for quite a number of near-miss local minima where the orientation of
the bulls-eye plane is noticeably incorrect. The poorer performance of the localization of
the car and boxcar is possibly because these objects are significantly longer than the other
objects, thus, arotation will produce larger errorsin positions of points of the objects than
of more compact object.

In these experiments, the standard deviation of the trandation errors in depth were
consistently 5 to 7 mm across the various. This is a largely unavoidable problem for
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(d)

Figure 5.12: The bulls-eye convergence test data: (a) the intensity image, (b) the Canny
edge image, (c) atypical initial starting point for the convergence tests (10 mm trandation
error and 15 degrees rotation error), and (d) an overlay of the bulls-eye model at the
estimated location.
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(a) (b)

(€) (d)

Figure5.13: Thestop sign convergencetest data: (a) theintensity image, (b) the Canny edge
image, (c) atypical initial starting point for the convergence tests (10 mm trandation error
and 15 degrees rotation error), and (d) an overlay of the stop sign model at the estimated
location.
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Figure5.14: The T-sign convergence test data: (a) the intensity image, (b) the Canny edge
image, (c) atypical initial starting point for the convergence tests (10 mm trandation error
and 15 degrees rotation error), and (d) an overlay of the T-ssgn model at the estimated
location.
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(a) (b)

(€) (d)

Figure 5.15: The boxcar convergence test data: (a) the intensity image, (b) the Canny edge
image, (c) atypical initial starting point for the convergence tests (10 mm trandation error
and 15 degrees rotation error), and (d) an overlay of the boxcar model at the estimated
location.



166 Chapter 5. 3D-2D Object Localization

(a) (b)

(d)

Figure5.16: The rubber duck convergencetest data: (a) the intensity image, (b) the Canny
edge image, (c) atypical initial starting point for the convergence tests (10 mm trandation
error and 15 degrees rotation error), and (d) an overlay of the duck model at the estimated
location.
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Figure5.17: Thetoy car convergence test data: (@) the intensity image, (b) the Canny edge
image, (c) atypical initial starting point for the convergence tests (10 mm trandlation error
and 15 degreesrotation error), and (d) an overlay of the car model at the estimated |ocation.
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(a) (b)

(d)

Figure5.18: The ceramic mug convergence test data: (a) theintensity image, (b) the Canny
edge image, (c) atypical initial starting point for the convergence tests (10 mm transation
error and 15 degreesrotation error), and (d) an overlay of the mug model at the estimated
location.
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localizing objectsin single intensity images. We address this morein Section 5.7.4.

Theseresultsdemonstratethat our 3D-2D localization algorithmiseffectiveat localizing
awide variety of 3D objectsin relatively noisy input images.

5.7.3 Tracking Experiment

One important application of localization is object tracking in image sequences. In fact,
tracking can be defined as a special case of localization as described here. It is a specia
case since it is fundamentally the same problem with dightly more information: that the
position of the object in the previousimage(s) isknown. If wetake the most simple-minded
use of thisextrainformation, we simply look for the object at thelast place we saw it. More
information can be derived from knowledge of the immediate past—such as the velocity
and acceleration of the object [44]—and used to improve the initial guess.

We performed a ssimple experiment to test our algorithms performance on tracking an
object through asequence of images. Wetook 10 images of the car at 5 degree purerotation
increments. The simple minded approach—using the last known pose as the next starting
point for the localization search—was used here. Our agorithm was able to successfully
track the object through the 9 images (we assumed the pose of image 0 was known as our
starting point). Thisexperiment was successfully repeated after dropping every other image
in the sequence—creating intervals of 10 degrees. The step-by-step results of this sequence
are shown in Figure 5.19. Whilethistracking task may seem ssimple, thereisafair amount
of random edges around the car in the images and the last step in the sequence undergoes a
large aspect change—moving from one side of the car being visible to the other side of the
car being visible in one step. The aspect change is handled cleanly. Thisis a noteworthy
benefit of using a 3D object model.

Localization for these cases was very efficient due to the small initial errors—usually
accomplishedin2to5gradient search stepsand 10to 25 function evaluations. Theoverhead
for loading the image and computing the Canny edge image was greater than the actual
localization time.

Also of noteisthat thelighting used for this experiment was different from the lighting
used to build the car model in Section 4.6. This demonstrates some effective invariance of
our modelsto light source changes.

5.7.4 Multi-lmage L ocalization

Section 5.6 described a smple extension of our algorithm to utilize additional imagesfrom
cameras which are calibrated with respect to the same coordinate system as in a stereo
vision system. To test this idea, we utilized stereo images of our objects taken from a
calibrated stereo jig. Each camerawas calibrated with respect to a single world coordinate
system thus we are able to place our model in the world coordinate system and predict it's
appearance in each image simultaneoudly.
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Initial Position Tracked Position

Frame 3

Frame 5

Frame 7

Frame 9

Figure 5.19: Tracking the car through 5 images at 10 degree intervals. In this example
the car was tracked through frames 3, 5, 7 and 9 with the initial starting point at the car’s
position in frame 1. The left images in each pair show the initial guess from the previous
tracking result, and the right images show the localized result.
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Object SingleImage Two Images

% Correct | Std Dev. in Depth (mm) || % Correct | Std Dev. in Depth (mm)
stop sign 85 6 100 1.1
paint can 77 58 87 34

Table5.2: Resultsof thesingle versusmulti-imageconvergencetests. All these experiments
used our 3D-2D localization algorithm with the Lorentzian weight function. The initial
errorswere of uniform magnitudes: 15 degrees of rotation and 10 mm of trandation.

A serious problem with single image recognition and localization is the uncertainty in
depth. In the experiments of Section 5.7.2, the pose estimates from our algorithm would
have large standard deviations in the trandation estimate amost all of which are in the
depth direction (along the viewing direction to the object). The straightforward approach to
reducing uncertainty in depthisto triangulate asis done in stereo vision systems as well as
light-striping range finders such as the one used in Chapters 2 and 3. In addition to reducing
the uncertainty in depth, one would hope that the added constraints of more images would
also increase the convergence of alocalization agorithm.

We performed tests to determine the impact of adding a second image as input to our
3D-2D localization algorithm on convergence percentage and depth uncertainty.

For each experiment, we took two intensity images of the object using astereo jig.2 We
manually determined the precise position of the object. Then we performed two sets of
100 trials: one using a single image and another using both images ssimultaneoudly. Each
trial was performed asin Section 5.7.2—perturb the known pose by a random trandl ation of
magnitude 10 mm and arandom rotation of 15 degrees, and then localize the object. We per-
formed the experiment on two objects: the stop sign and apaint can. Figures5.20 and 5.21
shows the pair of intensity images of the respective object with an overlay of the respective
model at one of the initial perturbed poses, and with an overlay of the respective model at
the estimated pose.

Table 5.2 presents the results of these experiments. As these results show, the conver-
gence percentage is significantly increased (by over 10%) and the standard deviation in the
depth estimate is significantly decreased (by roughly 40% for the paint can and 80% for the
stop sign).

5.8 3D-2D Localization: Summary

We have described our method for localizinga3D object model ina2D intensity imageof the
object. The model isdescribed asa collection of 3D edgel generators which are matched to
edgelsderived from the intensity image. We have shown an efficient, local computation for
predictingthevisibility of 3D edgelsintheimage giventhepose. Thevisibleedgelsarethen
used to create correspondences between the model and theimage. Useful correspondences

8We do not use the stereo images to compute depth, we only use the jig to provide two intensity images
from cameras which are calibrated with respect to the same coordinate system.
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Left Image Right Image

Figure 5.20: The stereo pair of intensity images of the stop sign with (a) an overlay of the
stop sign at one of theinitial perturbed poses, and (b) an overlay of the stop-sign model at
the estimated pose.

are efficiently found—despite significant pose errors and high densities of edgels in the
intensity image—by extending nearest-neighbor search concept to include edgel attributes
such as edgel normals and reflectance ratios. Using these correspondences, we define an
error measure for the the pose by measuring a 3D distance rather than a 2D image distance
asiscommonly done. The error is formulated as the perpendicular distance between the
3D edgel and the line of sight of the image edgel—in other words, the shortest motion of
the 3D edgel to align it with theimage edgel. Thisformulation of the pose error leads to an
identical set of equations for computing the optimization function and its gradient asin the
3D-3D case of Chapter 3. Thus, the pose can be refined using much the same minimization
algorithm as Algorithm 3D-3D Localization of Chapter 3.

We also showed how Algorithm 3D-2D Localization can be applied to solving for pose
from multiple images without computing depth. This mode of using multiple images does
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Left Image Right Image

(@)

(b)

Figure 5.21: The stereo pair of intensity images of the paint can with (b) an overlay of the
paint can at one of theinitial perturbed poses, and (a) an overlay of the paint can model at
the estimated pose.
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not suffer from theill-posed problem of finding point-wise correspondence from images at
different views. By applying the constraints of multiple images of an object, localization
will be more robust and accurate.

Our results demonstrate that a wide variety of objects can be localized despite large
initial errors and noisy image data. Multi-image localization was shown to provide sub-
stantial improvementsin resulting pose (with respect to depth uncertainty) and convergence
accuracy.

This concludes our chapter on 3D-2D object localization. Wewill now discuss the work
of othersthat isrelated to the work in thisthesis.



Chapter 6

Related Work

Inthis section, wewill providean overview of related research on the problemsof modeling
and localization. The structure of this chapter will follow the structure of the technical part
of the thesis—beginning with a review of the work on 3D object modeling, followed
by reviews of 3D-3D localization, object modeling for 3D-2D localization, and 3D-2D
localization. Finally, we will review some of the important work on object recognition and
how it relates to the work here.

6.1 3D Object Modeling

In this section, we discuss the previous work related to the work on modeling 3D surfaces
from real image data which was presented in Chapter 2. We begin by reviewing three
methods which are most closely related to our work and follow that by a brief discussion
of other related work. The first three works are similar to our agorithm in that they all
make use of implicit surfaces and the marching-cubes agorithm [83] to merge the range-
image data from several views into a surface model. The main differences between these
algorithms are their methods for computing the signed distance from each voxel to the
closest surface.

Hoppe et a. [65] werethe first to propose constructing 3D surface models by applying
the marching-cubesalgorithm [83] to adiscrete, implicit-surface function generated from a
set of rangeimages. Their algorithm computes the signed distance function from the points
of therangeimages rather than from triangul ated surfaces generated from theimages. Their
reliance on points, thelowest-level dataprovided by rangeimages, isidealistic (as described
in Section 2.2, range images provide points not surfaces). Using points rather than surfaces
suffers from some practical problems. The main problem is that a surface is necessary
to measure the signed distance correctly—points are insufficient. For example, consider
computing the distance to the surface from a position lying between two neighboring point
samples of the surface: the result should be zero, however, the distance to the nearest point
will be non-zero. Hoppe et a. realized this and, to compensate, created an agorithm to
locally infer surfaces at a point from the neighboring points in the input data (points from
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all views combined). Fundamentally, this appears to be similar to the idea of consensus
surfaces, however, their algorithm does not attempt to test whether there is sufficient
evidence of a surface at the point in question. Instead, for each point, they estimate the
tangent plane with respect to the best fit plane of the local neighborhood of points. The
tangent plane gives a normal vector with an arbitrary sign (i.e., pointing out or in). To
ensure that the estimated normal's consistently point outward from the surface, a constraint-
propagation method isemployed. The signed distance isthen defined asthe distance from a
given point to the tangent plane of the closest point in the set. The signed-distance function
is evaluated for each voxel in the volume grid and the marching-cubes algorithmis applied
to the volume grid to generate the desired triangulated surface mesh.

Hoppe's [65] method suffers from several problems which limit its applicability for
many practical modeling problems. First, tangent-plane estimation from clouds of pointsis
not likely to givethe desired results for many configurations of points, especially inregions
of high curvature; the tangent planewill also be corrupted by irregular sampling of asurface
at any local region of the surface. Second, the algorithm does not compensate for noise or
extraneous point data—the data is assumed to be part of the object and noise is assumed
to be negligible. Thus, the algorithm would fail to produce useful results for the kind of
input data as was used in our experiments in Chapter 2. The third problem is inefficiency
of thealgorithm. Estimating the tangent plane at each point and enforcing normal-direction
consistency for all points makes their algorithm impractical for problems containing large
numbers of data points asin our experiments described in Chapter 2.

Curless and Levoy [28] followed Hoppe's general scheme with afew significant depar-
tures. First, they triangulated the range-image data so that they use triangulated surfaces
rather than points. Second, they do not perform asimple search for the closest point from a
voxel’scenter to determinethesigned distance. Instead, for each voxel, they take aweighted
average of the signed distances from the voxel center to range-image points whose image
raysintersect the voxel. Thisisaccomplished by following the ray from the camera center
to each range-image point and incrementing the sum of weighted, signed distances and the
sum of weights for each voxel that the ray intersects using the signed-distance estimates
fromthevoxel center to the given range-imagepoint. Thisprocessisrepeated for each point
of each range image, and when completed, the weighted average of the signed distance
can be computed for each voxel. To make this operation reasonably efficient, run-length
encoding of thevoxel gridisused and thevoxelsare only traversed around aspecified range
of distancesfrom the observed surface. To accommodate for holesand missing data, empty
(outside) and unseen (inside) voxels are marked with extremal values (of opposite sign) of
the signed distance function. Surfaces will automatically be created between empty and
unseen voxels during the isosurface extraction using the marching-cubes algorithm.

Curless and Levoy’s signed distance integration scheme has two fundamental flaws for
even perfect data. First, thin surfaces (i.e., the walls of the mug object from Section 2.5)
may not be detected properly since their algorithm may integrate signed-distance estimates
which correspond to surfaceswith opposing normals. Figure6.1 showsan exampleof athin
wall with two outward pointing surfaces. The graph of the signed distance contributions
of each surface in the local area and their sum are shown as well. Since their sum is
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Figure 6.1: lllustration of the result of signed distance integration in the neighborhood of
thin object parts. The object is a thin plate of width 1 unit with left sde at « = 0. The
graphs show the contribution of the signed distance to each surface as = varies. Their sum
is-1for all x—no zero contour exists. The true signed-distance function (in grey) shows
the proper zero crossings for both surfaces of the object.

constant locally there is no zero contour created and no surface will be generated by the
marching-cubes algorithm.

The second flaw in Curless and Levoy’s integration scheme is that the signed-distance
averagesarebiased. Themagnitude of theaverageswill alwaysbelarger than the magnitude
of the observed distance—even for perfect data. The bias is due to the fact that their
integration method potentially uses more than one ray through each voxel corresponding to
different range-imagepoints. Only onesuch ray will be an unbiased estimate of the distance
to the surface—the ray which is perpendicular to the surface. If aray is not perpendicular
to the closest surface point, the distance along the ray will necessarily be larger than the
true distance to the surface. Figure 6.2 shows an example of 3 image rays, v1,v2, and
v3, Which pass through a voxel. Only along v, (which is perpendicular to the surface) is
an unbiased estimate of the signed distance available. Even more problematic is that the
estimates used in the average may be estimates for the distance to some surface other than
the closest surface. Figure 6.3 shows an example of 3 image rays, vi,vo, and vs, which
pass through a voxel. v; and v, are not perpendicular to the surface but at least intersect
near the surface point closest to the voxel. v3 is perpendicular to the object surface but
not to the closest point on the surface. Thus, the signed distance estimates resulting from
their integration method will be biased, resulting in inaccurate zero-crossing interpolation
as described in Section 2.4.2.
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Figure6.2: Illustration of estimating the distance to the surface along rays passing through
avoxel. Of the three rays shown, only v,, which is perpendicular to the surface, provides
an unbiased estimate.
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Figure 6.3: Illustration of estimating the distance to the surface along rays passing through
avoxel. Of the three rays shown, only v, and v, are reasonably desirable for estimating
the distance from the surface the given voxel.

surface
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Another drawback of Curless and Levoy’s method is that it is still sensitive to noisy
data and extraneous data. Though their averaging scheme may smooth some of the noise,
the effects of large errorsin the data cannot be overcome. Curless and Levoy’s method is
naturally incremental which is an advantage over our approach and Hoppe's approach. As
for efficiency, it is unclear whether the use of octrees, as in our scheme, is more or less
efficient than their run-length encoding scheme.

The method most similar to our work is that of Hilton et al. [64]. As in our work
and Curless and Levoy’s work, Hilton et al. generate a volumetric implicit-surface repre-
sentation from a number of triangle sets (representing the observed surfaces of each range
image). Similarly to our algorithm, Hilton’s method uses a nearest-neighbor search to find
the surface points from each view which are closest to a given voxel’s center. For each
view, the signed distance and surface normal of the closest surface point is added to alist.
Basically, they then take the weighted average of all of these signed distances and use the
average as the value of the implicit surface for the particular voxel. Their algorithm is
dightly more complicated; heuristics are used to remove some of the undesirable points
fromthislist. First, they do not use points which lie on the boundary of aview’striangle set
unless all closest points (over all views) are aso boundary points. Second, they use only
those pointsin the list up to the point (if any) which has anormal direction opposite that of
the closest point of the whole list.

The biggest problem with Hilton et a.’s method is that it assumes that there will be no
large errorsin the data as there is no provision for discounting or removing outliers. Even
with perfect data, smple cases can easily be constructed which can result in arbitrarily
large errorsin their estimate. This can be done because their algorithm does not establish
that the sample observations belong to the same surface. Their heuristics eliminate many
incorrect points from being used to estimate the signed distance, however, the heuristics
are not sufficient to eliminate many other incorrect points which could result in arbitrarily
large errorsin the signed distance function. The problem isthat there is no guarantee that
the signed distances, which they use to compute the weighted average, have any relation to
each other (i.e., the signed distances used to compute the average will often be for different
parts of an object surface). Thisisthe point of our consensus-surface approach.

There have been severa other approachesfor creating surfaces from a number of range
images. We now discuss some of these methods.

Soucy and Laurendre [129] and Turk and Levoy [138] presented methods for piecing
together sets of triangulated surfaces. Soucy and Laurendre[129] presented acomputation-
aly intensive method which computed the Venn diagram for each pair of views (O(2"))
and projected each overlapping pair to a 2D canonic view over which the views could be
retriangulated and mapped back to three dimensions. Turk and Levoy’s [138] “Zipper”
algorithm merged pairs of triangle sets by eroding the overlapping regions and merging
the sets along their remaining boundaries. Both methods perform poorly if the surfaces
are dightly misaligned or if there is significant noise in the data. Typically, the resulting
surfaces would have noticeable seams along the edges at which they were pieced together.

Boissanat [9] proposed an algorithm for computing the Delaunay triangulation of a set
of 3D points. Rutishauser et al. [115] utilizes Boissanat’s method to iteratively grow amesh
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from many triangle sets. Rutishauser et al.’s method extends the initial mesh by searching
for a point nearby the boundary edge of the initial mesh and adding the triangle created by
the edge and the point only if the new triangle does not overlap the current mesh. Thisis
iteratively applied until the mesh cannot be extended anymore.

Higuchi, Delingette, Hebert and Ikeuchi [63] presented the smplex angle image (SAIl)
for representing 3D objects as attributes (smplex angles which are related to surface
curvature) spread among the nodes of a tessellated a sphere. Using their method, a sphere
was mapped to the surface of the object by allowing the points on the sphere to deform to
fit therange datafor each view. Oncefit, the smplex angle for each node on the tessellated
sphere is computed. Through the SAI representation, each view could be matched via
searching the space of 2D rotations of the sphere and merged by simply averaging their
respective simplex angles. Shum [126] extended this work to improve the robustness by
applying principal components analysis with missing data technique for simultaneously
estimating the view rotation parameters and SAI parameters given several views of the
object mapped to tessellated spheres.

Chen and Medioni [20] presented asimilar method for fitting a mesh to sets of aligned
range data. Their method involved inflating a balloon from within the object surface until
it fit the extremities of the surface. Both the balloon and SAl methods are limited to
modeling objects of spherical topology (genus 0) and have difficulty to accurately fit the
high-curvature regions of the data while smoothing other noise in the data.

Chen and Medioni [19] presented techniques for registering and merging range images
of an object. To merge the data, the range-data points were mapped to either a cylindrical
or spherical coordinate system and overlapping values were averaged. Obvioudy, this
produces a rather crude model (especially in areas of high curvature where the effects
of discrete sampling will be quite noticeable) and the topology of objects which can be
modeled is limited to those with a spherical topology.

Chien, Simand Aggarwal [22] devel oped an a gorithmfor merging multiplerangeimage
views into an occupancy grid, represented using octrees. This built upon their previous
work of constructing the 3D shape from intensity image silhouettes of the object [21]. The
algorithm marked as empty those octants/voxels which were outside the silhouette of the
object from each view. With a sufficient number of views, a reasonable approximation to
the occupancy grid of the convex regions of the object could be obtained. The principal
limitations of this method isitsinability to eliminate voxelsinside concavities of the object
and the requirement for cleanly detecting silhouettes. Several other approaches have been
presented for creating 3D models from occluding contours from intensity images, most
notably those by Szeliski and Weiss [131], Seales and Faugeras [120], and Kutulakos,
Seales and Dyer [80]. These techniques match the occluding contours over several views
and infer 3D surface meshes from the correspondences.

There have also been several efforts in constructing higher-level symbolic model rep-
resentations from range images. Bhanu’s approach [8] utilizes multiple range image views
of the object to build a 3-D planar surface description of the object. Parvin and Medioni
[103] presented atechnique for matching and merging range-image views using aboundary
representation—a collection of quadric surface patches. Shum, Ikeuchi, and Reddy [127]
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improved on thiswork by introducing theuse of principal componentsanalysiswithmissing
datato simultaneoudy estimate the transformation between each view and the planar patch
parameters of all observed patches. The variety of objects that can be modeled using the
previous two techniques is limited by their ssimple shape representations. In addition, the
reliability of thetwo techniquesgreatly dependson the quality of range-image segmentation
[5] (into planar or quadric patches) and the ability to match (or track) these patches between
views.

The above methods may only scratch the surface of proposed techniques for merging
3D image data to create surface models. In addition to these techniques, there are a
number of techniques for computing shape from motion sequences, these include methods
of [82, 135, 130, 124, 106] among others. Generally speaking, these techniques are limited
to finding sparse shape (i.e., sparse sets of 3D points) from intensity images. Many of the
above researchers have applied Boissanat’s triangulation algorithm [9] to generate rather
crude 3D shapes from the 3D points recovered in their experiments. Generally, the point
sets available from such current techniques are much too sparse for application to 3D-3D
localization, et aone accurate 3D object modeling.

6.2 3D-3D Object Localization

Many researchers have developed techniques to compute the location of the object given
the correspondences between model and image features (pose estimation) or given arough
estimate of the object’s location (localization or pose refinement). In this section, we will
discussthe previouswork on pose estimation and localization which isrelevant to our work
on 3D-3D localization.

The earliest research related to our 3D-3D localization work is the original work to
solve the 3D-3D pose-estimation problem. As described in Section 3.4.1, the closed-form
solution for the optimal pose given a set of point correspondences (assuming Gaussian
noise) was first introduced by Sanso [116] in the photogrammetry field and then later in the
computer-vision community by Faugeras and Hebert [36], Horn [66], and Arun et a. [1].
The first three solutions are essentially the same—making use of the quaternion to directly
solvefor rotation. Arun et al.’s[1] solution obtainsthe 3 x 3 rotation matrix directly using
singular value decomposition. These results form the basis for much of the subsequent
work on 3D-3D pose estimation and pose refinement in the computer-vision community.

The most closely related work to our 3D-3D localization work isthat focusing on shape
registration and tracking of 3D objectsin 3D data.

Bed and McKay [6] presented the first general method for registering two sets of rigid,
free-form data (e.g., triangles or point sets). Their method, the iterative closest-point (ICP)
algorithm, iteratively computes nearest-neighbor correspondences between points on the
model surface and points in the image data. They then compute the optimal, |east-squares
solution of the pose with respect to these correspondences and update the pose to this
solution. The process is repeated until convergence to a solution is achieved. The main
weaknesses of this method isits susceptibility to outliers: even a small number of missing
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data will corrupt ICP's solution. As demonstrated by the results of Chapter 3, ICP has a
much narrower convergence range when compared to our 3D-3D localization (even after
applying outlier thresholding). This is due to ICP's reliance on the closed-form solution
for pose which is used for each pose improvement step. When the pose error is large, the
optimal pose with respect to the available correspondences is not always an improvement
with respect to the object’s true pose.

We are not the first to propose robust solutions to the pose-estimation or localization
problems. Typically, computer-vision algorithms are made robust by outlier thresholding:
removing samples with especialy large errors from the set of data used for estimation.
While this is a reasonable and easily justified operation for some cases, more often it is a
source of problems—resulting in errors due to improper or unjustified threshold selection.

A relevant example of the use of outlier thresholding is the work by Zhang [151].
Zhang presented an improvement in the ICP agorithm to reduce the outlier sensitivity
of ICP. He proposed a method for dynamic threshold selection to remove outliers. His
improvement does little to extend the convergence range of 1CP as demonstrated in the
results of Section 3.61. However, hismethod for outlier threshol ding does reduce the outlier
sengitivity of ICP when the initial pose error issmall enough. With Zhang's enhancement,
|CP is applicable when portions of the model are not observed in the image data (i.e., in
cases of partia occlusion of the object or partially overlapping data sets).

Asdescribed in Section 3.4.2, there are anumber of other methodsfor robust estimation
[67]. These have been applied to alimited number of computer-vision problems. Haralick
et a. [58] proposed and analyzed the use of M-estimators for robust pose estimation. They
performed experiments to test the convergence ability of their algorithm with respect to
the number of outliers and the level of noise in the data. In their work, they dealt with
the pose-estimation problem and not the pose-refinement/localization problem; that is they
considered the problem of finding the pose given a fixed set of correspondences between
two sets of points. Their algorithm used iteratively reweighted least-squares estimation;
down-weighting M-estimators (such as those described in Section 3.4.2) were used as the
weight functions. In their experiments, they demonstrated that the pose estimate could be
accurately achieved despite high noise levels as long as a sufficiently large (e.g., 40) set
of point correspondences were available. 1n an earlier paper, Haralick and Joo [57] show
that their algorithm for 3D-2D pose estimation (using iteratively reweighted least squares
as described above) reliably converged to the correct solution in spite of up to 30% of
the correspondences being incorrect. In [58], Haralick et a. did not discuss their 3D-3D
pose-estimation algorithm’s sensitivity to outliers. We believe that this is due to the fact
that the closed-form, weighted-least-squares sol ution—necessary for their algorithm asin
| CP—is not valid when facing even a small number of outliers despite down-weighting.

Perhaps the first (explicitly) robust computer-vision algorithm was the random sample

consensus (RANSAC) method of Fischler and Bolles [38]. The specific problem they
addressed with RANSAC was the 3D-2D location determination problem for finding the

1Theoutlier threshol ding method used in our experiments was not exactly the same as described by Zhang
[151]. In our experiments, the threshold was gradually lowered as the iterations proceeded which is roughly
equivalent to his method.
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pose of aset of 3D pointswith respect to a perspective projection of the points. Essentially,
the location determination problem isthe general object recognition problem where objects
are collections of 3D points. The basic idea of RANSAC is to use the smallest possible
subset of the observed data points to get an initial estimate the model’s pose parameters.
Theinitial estimate of the parametersis then used to look for other data points whose error
with respect to the transformed model pointsis small enough. These data points are termed
the consensus set (in much the same way we use the concept of consensus surfaces and
edgels in Chapters 2 and 4). If the consensus set is large enough, the solution is refined
by re-estimating (using least-squares estimation) the parameters using all the data in the
consensus set. Thisideais much different than trying to directly estimate the parameters
using all the observed data.

The RANSAC algorithm is applicable to other regression (model fitting) problems as
well. A smple example of RANSAC isfitting aline to a set of observed point data when
many of the observed points do not belong to the desired line. Instead of performing least-
squares line fitting to all the data, RANSAC first chooses two data points (using random
selection), computes the line parameters, and finds the consensus set of points which lie
near the computed line. If the consensus set islarge enough, RANSAC would then perform
least-squares line fitting on the consensus set; otherwise, RANSAC would select another
pair of points and repeat the process.

For fitting a line to a set of points, RANSAC works quite well: one only needs two
observations which belong to the lineto make theinitial estimate. For general pose estima-
tion, the combinatorics are much less favorable: many combinations of correspondences
will need to be tested before a correct combination may be found. RANSAC is funda
mentally the same algorithm as Huttenlocher and Ullman’s [70] alignment algorithm for
object recognition which will be described later in Section 6.5. Without going into detail,
the difference between the two is the amount of prior knowledge used to determine the
initial correspondences. RANSAC uses random selection, while the alignment algorithm
searches serially through the set of possible correspondences (using depth-first search) and
applies prior congtraints to limit the number of combinations of correspondences which
must be evaluated.

Meer, Mintz and Rosenfeld [96] provide a review of robust statistical methods and
their application to several computer-vision regression problems. They also describe in
detail the least-median-of-squares method (LMedS) and it’s application to image filtering.
Another application of the LMedS technique is Kumar and Hanson’s [ 79] work on 3D-2D
pose estimation based on line-segment correspondences. While the LMedS algorithm can
handle up to 50% outliersin the data, it is very computationally expensive because, funda-
mentally, it must test every combination of correspondences. The practical implementation
of LMedS leads to an algorithm which is very similar to the RANSAC algorithm. For
object localization, we would like to avoid the expensive combinatoric search as performed
by robust algorithms such as RANSAC and LMedS.
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6.3 Object Modeling for 3D-2D L ocalization

As mentioned in Chapter 4, the representation of 3D objects for recognition and localiza-
tionin 2D images is a topic of great debate: 3D representations versus 2D (view-based)
representations.

While there is no work of which we are aware that automatically creates 3D edgel
models, as demonstrated in Chapter 4, the closest related work is the semi-automatic
approach of Clemens [25]. Most work on 3D-2D recognition/localization using 3D edge
models derives these edgel models from (manually generated) CAD models.

In contrast, most view-based approaches easily utilize real images to construct their
models. There is a great deal of recent research on view-based approaches. Thus, we
will mostly discuss view-based approaches to recognition and localization including the
following approaches:

¢ Interpolating view-based: work by Ullman and Basri [139], Wells [142], Shashua
[124], and Chen and Stockman [17].

e Pure view-based: work by Breuel [13], Murase and Nayar [99], and Huttenlocher,
Lilien and Olson [69].

e Characteristic views. work by Connell and Brady [26], Gros [54], and Pope [110]

6.3.1 Interpolating View-based Representations

Ullman and Basri [ 139] made the interesting observation that under orthographic projection
aview of aset of rigid 3D pointscan be constructed fromalinear combination of two or more
(appropriately chosen) orthographic views (LCV) of those 3D points. The requirement is
that the correspondence between the points in the two original views is known. For
generd rotation in 3D space, 3 nearby views are necessary to span the space of views.
Using this idea, it is possible to represent the space of 2D orthographic views as a set of
samples over the viewing sphere. The correspondences between points in every pair of
neighboring views must be determined. They also showed that occluding contours can be
roughly approximated by adding 2 more views. To account for trandation of the object
in the image, another view is required: making atotal of 6 views for smooth objects with
arbitrary rotation and translation. They demonstrated LCV using afew examples of linear
combinations of edge images of cars. One serious problem with the LCV approach is that
it isrestricted to orthography which is not arealistic model for many real world cameras.
WEells[142] presented methods for probabilistic object localization which utilized LCV
models of the objects. Asin our work, Wells used image edgels as the primary feature for
matching. Models were represented using the LCV method with correspondences between
edgels of multipleviews of the object. He made oneimprovement over Ullman and Basri’s
method; for each view, Wells used a mean-edge image rather than a single edge image
of the object. The mean-edge image is an average of severa views of the object with
varied illumination. Thus, only stable edgels (edgels apparent under several light source
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conditions) are included in the model. For LCV, manual correspondences were made
between the edgels of pairs of neighboring images. Chen and Stockman [17] also used the
LCV model representation for localizing 3D objectsin 2D images.

Shashua [124] presented two interesting extensions of the LCV idea of Ullman and
Basri [139]. First, he proposed a method for computing projective structure from a pair
of images. The notable improvement is that the reprojection of points is valid for both
orthographic and central projection (generalization of perspective). Shashua's method for
projective structure from two images requires the computation of the epipoles for both
images and must be given 8 point correspondences between the two images. With 8 point
correspondences from a novel view to one of the original views, the epipoles and two
reference planes can be computed and used to compute two planar projections of each
point. Combining these two projections with the original image projection and the cross-
ratio of the point (computed from the original pair of images), we can reproject any point
from the original views into the new view. The projection of the point in the new imageis
then determined by solving for the ray which produces the same cross-ratio.

Computing projective structure and reprojecting novel views depends on accurately
computing the epipoles and reference planes so that the cross-ratio can be accurately
determined. In general, the point locations in each image will have some error, and each
level of computation will accumulate some error and result in rather inaccurate estimates
for the reprojected views. Shashua does not consider occluding contour boundaries asin
[139], and it would be particularly difficult using the cross-ratio to define the projective
structure due to the noise sengitivity of the cross-ratio.

Shashua's second extension to LCV was to demonstrate that illumination factors could
be modeled viaan LCV method using three or moreimages of an object taken under varying
illumination. The basic ideaisthat if one has a set of images of an object (assumed to have
Lambertian reflectance) at a given position under various light sources, that any image of
the object in the same position is a linear combination of the original views. Thus, the
model can be compared to the image while accounting for the illumination conditions of
theimage. Shashua'sinsight into photometric alignment isinteresting, as compensation for
illumination variations would provide much greater reliability for a verification operation.

It remains to be seen if the photometric alignment method can be extended to a more
genera framework; otherwise, it may only be of theoretical interest. It suffers from the
requirement that several images (one for each different illumination condition) must be
stored in the model and that only a small variety of lighting variations can be practically
accommodated. The restriction to convex, Lambertian surfaces greatly reduces the gener-
ality of the method. We believe that a 3D model-based approach has more potential in the
long run. In other words, amodel of the surface reflectance parameters can be built using
the techniques of Sato and Ikeuchi [118] and thismodel can be used to more accurately and
generally predict the image intensities. Thisisdiscussed in more detail in Section 7.2.

Shashua also proposed a method for automatically computing full correspondences
using optical flow combined with geometric alignment. The correspondence problemisa
long-standing problem in stereo vision and shape-from-motion. His method is based on a
combination of affine structure from two views and optical flow constraints. For accurate
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optical flow, the motion between views must be extremely small. Shashua proposes to
bootstrap the correspondence by taking views in between the model views. This will
not always be successful as features disappear and appear between views and errors will
accumulate as the matching progresses across views. Because of the aperture problem,
many edges will just not be trackable between images—thisis an unfortunate fact. In his
thesis, Wells[142] reported that he experimented with Shashua's correspondence algorithm
to construct LCV models for testing his system; however, Wells used manually selected
correspondences for his experimental work.

Computing the full correspondence of points between two views is a very difficult
problem. Thisis not a practical requirement using present techniques and is not possible
in general. Correspondences do not exist across aspect changes [77, 12] for example, and
correspondences of occluding contours between two views is not always justified except
possibly at high curvaturepoints. The aperture problem, acommon problem of stereo vision
[53, 101, 74], is a problem here as well as it limits the number of correspondences which
may be determined in practice. How many views will be necessary in practice? Thisisa
difficult question. The answer depends on the number of free parametersto be considered.
In general, one should expect a very large number of samples to model a single object for
only 2 degrees of freedom. A related question, how close together must the views be to
make the correspondences and so that new views are accurately interpolated from a local
set of views? In stereo, a related problem for stereo vision is the choice of width for the
baseline [101]: the wider baselines provide better measures of geometry but less accurate
correspondences.

Another issue related to the interpolating view-based approximations[139, 142, 124] is
how to sample objects over the viewing sphere such that neighboring views are connected.
It isasmple case to vary 1 degree of freedom and determine the neighborhood relation
between views; this can be done by taking a continuous image sequence while the camera
or object moves. However, extending thisto two dimensionsis non-trivial and will usually
require some calibrated positioning device or user input to organize the mesh of images.
Extending the idea to more than two degrees of freedom would be nearly impossible.

A problem of both LCV and projective-structure methods is that rigid 3D transforma-
tionsare only asmall subset of thelinear operations. 1t ismuch morelikely for an alignment
search using LCV or projective structure to produce a non-rigid transformation than arigid
transformation.

6.3.2 PureView-based Representations

Another class of view-based approachesis in some sense the simplest approach: the pure
view-based approaches. The model of an object is simply a set of views of the object.
Recognition is then reduced to 2D-2D matching of image features or correlation of pixel
intensities between a model and input image. We will discuss the pure view-based work
by Breuel [13], Murase and Nayar [99], Huttenlocher, Lilien and Olson [69] as well asthe
related neural-network techniques for pattern matching [97, 108, 114].
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Breuel [13] argues that 3D models are not necessary and that interpolating view-based
approaches (e.g., LCV)? are unnecessary as well. He argues that the view space of a 3D
object is a 2D manifold and that under bounded-error assumption, a sufficient number of
views can be sampled to cover this manifold within the error tolerance. If one agrees with
his assertion, then all recognition reduces to 2D-2D recognition and a ssmple algorithm
such as RAST [13] may solve the problem. Unfortunately, Breuel’s argument is only valid
if orthographic projection is assumed.

Murase and Nayar [99] introduced the el genspace representation for image sets. Using
their method, the object is represented by a large number of intensity images. Eigenspace
analysisisused to reduce the imagesto pointsin alow-dimensional subspace (the principal
components of the eigenspace). |mage matching can then be efficiently performed in the
subspace.

Huttenlocher, Lilien and Olson [69] used the eigenspace method to represent binary
edgel images of the object. The binary edgels are more stable than intensities with respect
to illumination variations. They cleverly showed that the correlation in the subspace is
approximately the same as a Hausdorff distance [68] which makes it robust to partial
occlusion aswell.

Another group of pure view-based techniques is the use of artificial neural networksto
solve pattern matching problems[97, 108, 114]. The networks learn a functional mapping
between images and the object/view identification—similar to image correl ation and pattern
recognition.

The neural network and eigenspace techniques are essentially an efficient form of image
correlation and suffer from the problems encountered when using correlation for pattern
matching. Unlike pure correlation, both groups of techniques can be used to generalize over
several views, however, generalization can al so negatively effect performance. Localization
and verificationis not possible in this framework since thereis no real concept of amodel,
just images of the object. However, these methods show promise for solving the indexing
problem.

Related to Breuel’s approach [13] is 2D-2D recognition (i.e., the object is two dimen-
sional). Grimson [49] extended the interpretation-tree constraints of [52] to use circular arc
featuresin addition to linear intensity edges. This system recognized 2D objects using 2D
intensity edges extracted from grey-level images. To build the modelsfor hissystem, Grim-
son used the edge features extracted from a single image of the object in isolation—these
features completely define the model for recognition purposes.

6.3.3 Characteristic-view Representations

The final view-based approach which we will discuss is the characteristic-view approach.
The general idea of the characteristic-view approach isto represent a 3D object by a small

2WhileLCV isnot strictly a3D technique, the 3D information isimplicit in the correspondences between
the 2D views. Thisisa subtle but important difference between the methods of Breuel [13] and Ullman and
Basri [139]. If themodel isonly a2D sample view (as in Breuel’s case), recognitionis strictly 2D-2D.
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set of modelsof similar views. The model isin some sense acharacteristic view (or average
view) of the set of views it represents. Connell and Brady [26], Gros [54], and Pope [110]
have proposed various methods to automatically reduce many sampleimagesto asmall set
of characteristic-view models which can then be used to recognize the object.

Connell and Brady [26] represent an object’s edge contours from a given view as sym-
bolic graph relating the various parts and regions of the contour. Attributesof parts/regions
of the graph are represented by symbols attached to the graph. Models are created by
merging similar graph structures. Similarity between two graphs is basically measured by
the number of common nodes between the two.

Gros [54] uses a low-level definition of similarity between two views and uses a
bottom-up, best-first, clustering algorithm to group the example views into a small set of
characteristic views. Gros image similarity metric is based on the percentage of image
features which are matched between the two images. The matching of features (line
segments) between images is performed via a combination of alignment search and Hough
transforms over the space of similarity transforms. Given the estimated transform the
matches are then improved by estimating a projective transform which best aigns the
current matches. For each characteristic view, a model is created as the average of the
matches over all imagesin the given cluster. As can be imagined, inconsistencies must be
detected as the pair-wise matchings are not always transitively related. In addition, many
features may appear and disappear between images.

Pope [110] presented an approach which lies somewhere between the purely symbolic
approach of Connell and Brady [26] and the low-level approach of Gros [54]. Pope
represents viewsas an attributed graph of several types of features (including line segments,
arcs, junctions and ribbons). Each feature and their relation are quantified by attributes
as probabilistic distributions such as the distribution of position variation, probability of
detection, or probability of specific attribute values. As in Gros method [54], Pope
uses similarity transforms to map views into the same coordinate system for creating an
aspect model. Pope uses a minimum-description-length measure to cluster views into an
aspect model. The clustering algorithm adds each image to the cluster which will make
best increase the quality measure which is specified to favor simplicity and accuracy of
the resulting models. For recognition, a Bayesian probability measure is used to specify
the relative quality of a matching between model and image features. A probabilistic
alignment scheme is used to iteratively update the pose estimate (2D similarity transform)
for the model.

The characteristic-view approach is more directed towards the indexing problem and,
thus, it is best suited for that problem. Localization techniques such as those presented
in this thesis can be applied once the object is indexed and a few matches to higher-level
features (such asthose used by Pope[110] and Gros[54]) areavailable. Characteristic-view
model s constructed using the previous techniques may or may not be very representative of
any of the given views, the characteristic view may over-generalize the sample views such
that the original views are not accurately represented. Gros use of line segments as the
primitive feature greatly restricts the reliability and class of objects which can be modeled
using his method. Curved objects cannot be reliably modeled using such a representation
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since the linear segmentation of a curve will differ between any pair of images. While
Pope’s features can represent a wide variety of shapes, the accuracy and stability of the
representation can be a problem. Detection of these features can be unreliable as well,
such method's rely on redundancy of representation. There isno real mapping between the
model coordinate system and the object, localization and tracking is not possible. In fact,
the general definition of characteristic views as purely similar views makes it is possible
for non-neighboring views to be clustered together in amodel.

6.3.4 3D Representations

The only effort towards building 3D edge modelsfrom real imagesisthe work by Clemens
[25]. He developed an interface for manually building polyhedral object models from
multiple views of the object. The user labels the extracted edges and vertices from each
image to establish the correspondences. The 3D positions of the features are computed
by solving the system of simultaneous equations. This method isin some sense a hybrid
between our modeling approach and the LCV approach. With LCV, the 3D informationis
implicitly encoded in the correspondences.

While the view-based approaches of Ullman and Basri [139], Breuel [13] and Shashua
[124] offer an interesting alternative, they have fundamental problems and practical lim-
itations which makes it premature to dismiss 3D model representations. 3D information
is often desirable, if not necessary, for interacting and measuring the real world. Working
with 3D models, transformations are simply and naturally constrained to be rigid transfor-
mations. 3D models can also be easily applied to any type of camera model and, possibly,
any type of illumination condition (assuming the illumination is known or can be esti-
mated). View-based methods do not interact well with perspective projection. This is
because these methods invariably assume that the view-space is two dimensional. While
this assumption is perfectly reasonable for orthographic projection, it does not work with
perspective projection. Once the view space increases beyond two dimensions, the number
of images needed to model an object grows by an order of magnitude. Thisis all without
considering the other potential image variations on the dimension of the view space. 3D
models are naturally concise; for view-based methods, storage reguirements can quickly
exhaust resources.

The pluses of view-based methods include fast 2D-2D matching/recognition and their
conceptually simplicity (e.g., a model is a collection of images). The lack of reliance on
cameracalibration is also a benefit of view-based methods.

Our work in Section 3.2 and 5.2 showed that the object’s geometry is necessary to
accurately approximate and predict the visibility constraints for points on an object. In
the view-based approaches described previoudy, visibility is simply defined as what is
detectabl e the current view—the feature may or may not have been detected depending on
lighting, shadows and any other number of factors.

The requirement for calibration is one detraction for using 3D representations, how-
ever, much of the work on affine/projective structure from weakly calibrated views (i.e.,
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epipoles are computed/known) [ 34, 60, 124, 112] can be applied towards Euclidean camera
calibration with alittle work and some additional assumptions [31].

6.4 3D-2D Object Localization

Asinthe3D-3D case, severa researchershavedevel oped techniquesto computethelocation
of the obj ect given the correspondences between model and imagefeatures (pose estimation)
or given arough estimate of the object’s location (localization or pose refinement). In this
section, we will discuss the previous work on pose estimation, tracking and localization
which is relevant to our work on 3D-2D localization. A good starting point for this
discussion is the problem of 3D-2D pose estimation.

The problem of finding the pose of a 3D object from a 2D projection was solved as
early as 1841 by Grunert [55] who solved the 3-point perspective problem. The 3-point
perspective problemisthe simplest form of 3D-2D pose estimation and involvesfinding the
pose of 3 model points when matched to 3, perspective projections of the points®. Grunert’s
solution was later refined and new solutions were proposed independently throughout the
1900's. Haralick et a. [59] presented a historical overview and quantitative comparison of
the major solutions to the 3-point perspective problem. The solution of Finsterwalder [37]
was found to give the best accuracy.

The first solution of the 3D-2D pose-estimation problem that was presented in the
computer-vision community was by Fischler and Bolles [38]. Other solutions have been
proposed by Horn [66], Faugeras and Toscani [35], Phong et al. [105] and Haralick et
a. [58]. Many of these solutions use more than 3 points and perform an iterative least-
sguares estimation of the pose rather than a closed form as in the solutions to the 3-point
perspective problem. Shakunaga [123] and Dhome et a. [32] presented closed-form
solutions to enumerate the poses from 3D line-segment to 2D line-segment matches.

Haralick et al. [57, 58] investigated the use of robust weight functions with weighted
|east-squaresestimation for point-based, 3D-2D poseestimation. They analyzed the conver-
gence of their pose-estimation algorithm with respect to variouslevels of noise and outliers.
Haralick and Joo [57] show that their algorithm for 3D-2D pose estimation reliably con-
verged to the correct solution in spite of up to 30% of the correspondences being incorrect.
Asin our 3D-2D localization algorithm, Haralick et al. also used the 3D interpretation of
errors rather than 2D image errors.

Gennery [44] and Lowe [81] have presented approaches to localization/tracking of 3D
polyhedral models in intensity images. Gennery [44] presented an algorithm for tracking
3D objectsin 2D image sequences. He uses a 3D polyhedron as the object model. On each
iteration of the pose refinement step, the visible edges of the polyhedron are projected into
the image. Points along each edge are sampled and matched to local intensity edgelsin the
image. The pose update rule uses a variant of Kalman filtering to iteratively estimate the
6 rigid body degrees of freedom along with 7 velocity components (3 trandational and 4

3Three points are the minimal number of points needed to determine a finite number of poses for 3D-2D
pose estimation. In genera, 4 solutionsexist for the 3 point case.
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rotational). Gennery also proposed (but did not demonstrate) theintegration of imagesfrom
multiple cameras in the tracking scheme as we have shown for our localization algorithm
in Section 5.6.

Lowe [85, 86, 87, 89, 84, 90] has presented techniques for recognizing, localizing and
tracking 3D objectsin intensity images. His methods model objects as collections of line
segments and arcs. His tracking and localization work uses best first search of model to
image matchesusing prior probability modelsto order thesearch. At each step of thesearch,
he computes least-sgquares fitting of the matched model segments to the image segments.
Lowe's method minimizes the least-squared error using a technique based on Newton-
Raphson root-finding (linearization) and Levenberg-Marquardt minimization to iteratively
compute the model parameters with respect to the image error of the projected model. His
technique attempts to achieve robustness via correspondence search as in RANSAC [38]
rather than using statistical methods such as robust M-estimatorsasin [58]. The search can
escape from local minimaby backtracking; however, incorrect correspondences made early
in the search will be costly to recover from. In addition, the representation of objects as
collections of arcs and line segments limits the variety of objects to which his method may
be applied. Chen and Stockman [17] present a hybrid of Lowe's pose-estimation algorithm
[81] (using Newton's method and Levenberg-Marquardt minimization) and LCV model
representation [139]. They demonstrate reasonable convergence results for small initial
pose errorsfor some simple shapes and images containing no background edges.

Wells [142] presented two view-based methods for probabilistic object localization* of
3D objectsin 2D intensity images. Wells first presented the MAP (maximum a posteriori)
model matching approach which formulated the objective function as a function over
both pose and correspondence space. He showed that the search of correspondence space
could be equivalently performed as a search through pose space using nearest neighbors
to determine the best correspondences with respect to pose. Wells then went on to show a
localization algorithm which did not utilize correspondences at all. Instead, the error of a
model edgel isasum of anon-linear functionover al possible correspondences(all edgelsin
theimage). Interestingly, Wells showed that in its smplest form, minimizing the objective
functionissimilar to maximum-likelihood estimation assuming Gaussian distributed errors
with uniformly distributed background noise. Thisisclosely related to robust M-estimation
using the Tukey or Sigmoid weight functions as described in Section 3.4.2. Wells also
presented a first attempt at multi-resolution localization, using low-resolution models and
smoothed image data for coarse scale localization. Wells method is prone to more local
minima than our 3D-2D localization agorithm since the model features will smply be
pulled towardsthe nearest image edgel. To avoid this, we utilize attributed correspondence
to efficiently improvethe quality of match. Asitispresented, Wells methodisalso likely to
be very expensive to compute since it compares all image edgels to each model edgel when
evaluating the objective function. Thislimitation could possibly be removed by performing
some cutoff of the evaluation with respect to distance from the model edgel.

4Wells [142] work, though presented in the context of solving the recognition problem, is more appro-
priately classified as localization since the indexing contribution was not a major focus of the work. Initial
alignments were provided using standard techniques of alignment search [70].
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Few approaches have explicitly used the occluding contours of smooth surfacesto lo-
calize an object. Wells[142] and Chen and Stockman [17] have applied Ullman and Basri’s
LCV approach [139]. Lowe [81] has approximated smooth objects as polyhedrawith some
success. Another approach to modeling occluding contoursis that of Ponce and Kriegman
[77] who represent the surface of the object using an algebraic polynomial, and then analyt-
ically solvefor occluding contours. Ponce and Kriegman algebraicly solve for the contours
using implicit surface equations and constraints for perspective projection of contours. The
problem is that these algebraic equations can become very large even for simple shapes.
They formulate localization as finding the root of aset of ssmultaneous algebraic equations
relating the shape of the object, it's pose, constraints on contour generation, and the detected
edgel pointsintheimage. Thisformulation requiresthat all contour pointsin the image be
identified as belonging to the object’s occluding boundary—avery impractical assumption.
Localization based on their method is impractical in all except trivial cases. Algebraic
representations of occluding contours are also difficult to build. In practice, objects will
have to be modelled using severa algebraic surface pieces. Inferring the algebraic repre-
sentation from atriangulated surface is an extremely difficult problem—fundamentally the
same as range image surface segmentation, for which no completely satisfactory solution
exists. Even if segmentation were solved, the boundaries between surfaces and greatly
complicates the solution of the algebraic surfaces.

Even fewer approaches have attempted to use intensities for 3D-2D localization (not
considering pure view-based or correlation methods). Viola[140] accomplishes this using
mutual information to align 3D objects in 2D intensity images. For 3D-2D localization,
Viola exploits the implicit functional relationship between surface normals and intensity.
This is achieved by maximizing mutual information which minimizes the joint entropy
(randomness) of two functions. The method, as presented, is only applicable for Lamber-
tian surfaces with (mostly) uniform surface properties. To minimize the joint entropy, a
stochastic gradient-descent algorithm is employed. Since random samples are used to esti-
mate distributions, the algorithm can be made efficient by using small numbers of samples.
In addition, randomization alows the search to escape from local minimawhich are many
since the gradient information will be very noisy and often uninformative (i.e., pointing
in the wrong direction, since the gradient is evaluated locally based on incorrect model to
pixel correspondences). Viola's agorithm takes on the order of 1000 iterationsto converge.

Our work on 3D-2D localization isuniguein many respects. Firstit usesageneral repre-
sentation of edgel generatorsin three dimensions—allowing smooth appearance prediction
of object edgels over arbitrary views and camera models. The point-based representation
can efficiently accommodate a wide variety of shapes at arbitrary resolution and accuracy.
Our use of attributed correspondence makes gives our method wider convergence ranges
than other methods. Our work isthe only one we are aware of that addresses the visibility
issue for iterative localization methods. Previous work uses simple visibility bitmaps or
aspects over the 2D view sphere (assuming orthography) [47, 85, 86, 148], uses brute-force
z-buffering [140], or assumes a ssimple geometric form of the objects [44]. Our method
is specifically designed to be robust to outliers. It makes use of the robust M-estimation
machinery used in our 3D-3D localization algorithm via the straightforward interpretation
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of errorsin three dimensions rather than asimage errors.

6.5 Object Recognition

Now we will briefly describe some of the important work on object recognition which
motivates much of the work in thisthes's.

Presently, the most prominent recognition paradigm istheinterpretationtree (IT) search
made famous by Grimson and Lozano-Perez [52]. The idea of IT search isto explore the
combinations of matches between image features and model features. These combinations
effectively form a tree of labelings where each path from a leaf to the root represents an
interpretation. The basic algorithm, searching all paths, is exponential in the number of
imagefeatures. Several researchers[47, 11, 36, 85, 39] have observed that at acertain level
intheIT, the pose of the object can be computed. The ideaisto first find a sufficient set of
matchesto determinethe pose and then to use therigidity constraint to efficiently determine
the other correspondences. The result is a recognition algorithm that is polynomial in the
number of image features. Its simplest form is the best known as alignment [38, 70].

Thealignment algorithm searches for minimal setsof matches betweenimage and object
features to align a 3D object to a 2D image. It is essentially solving a linear system of »
unknowns (the pose) using n equations (the constraints from the correspondences). Since
there is uncertainty and noise in the measurements, the estimate of the n unknownswill be
noisy as well. Thus, some form of pose refinement/localization is necessary to complete
the search to enable accurate verification of the result.

Several other researchersindependently developed I T/Alignment algorithms. The gen-
eral goal of these algorithms is to minimize search by applying prior knowledge to prune
and order the search. If thefirst few selected matches are correct, I T/Alignment algorithms
can be very efficient. Goad's approach [47] was a precursor for many as it performed
alignment with bounds on search for subsequent levels based on knowledge of the pose
at a given stage of the search. He also introduced concept of detectability for ordering
the search. The 3DPO system of Bolles and Horaud [11] started with the most obvious
possible match and grows the matches by searching for feature matches that will add the
most information to the current interpretation, thereby reducing the degrees of freedom in
the interpretation. Similarly, Faugeras and Hebert [36] used the rigidity constraint to select
subsequent matches in the I T—performing recognition and localization simultaneoudly.
Grimson and Lozano-Perez [52] explored the use of geometric constraints to prune the
search. lkeuchi [71] presented atechniquefor precompiling the order of comparisonsof an
interpretation tree. Flynn and Jain [39] used heuristic knowledge of the model database to
order and prune the tree for efficient search.

Using probabilistic evidence (perceptual grouping) to order thel T search wasintroduced
by Lowe [85]. Camps, Haralick and Shapiro [15] took the approach of using probabilistic
evidenceto cutoff or prunethelT. IT search isaconservative approach sinceit considersall
possibilities. Thisis both a strength and weakness; it isrobust at the expense of efficiency.
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One of the oldest object recognition paradigms frames the labeling problem in terms
of constraint satisfaction networks (CSN). Typically, each node in the CSN represents an
image feature and its label represents its matching model feature. An energy function that
accounts for the model constraints is specified over the CSN such that the best |abeling of
the image features produces the minimum energy value. Optimization techniques are then
appliedto solvefor theminimum energy state of the CSN. Bhanu [ 8] used relaxation |abeling
to determine the labeling of image regions to model regions that is most consistent with
the 3D model. Bolle, Califano, and Kjeldsen [10] described a paradigm for recognition
which uses networks of constraints between each level of representation from extracted
image features to object hypotheses. Cooper [27] modeled object and image primitivesin
a Markov random field (MRF) and used optimization to find good interpretations of the
scene. Wells [142] formulated the object recognition problem as a maximum a posteriori
(MAP) estimation problem over the correspondence and pose spaces. Ben-Arie [3] used
relaxation techniques with statistical constraints on interpretations. Wheeler and Ikeuchi
[148] introduced a recognition approach based on the ideas of alignment and probabilistic
congtraint satisfaction. Constraint satisfaction search ventures that the labeling metric
can correctly distinguish the correct from incorrect labelings—sacrificing robustness for
efficiency.

Image feature formation depends on the sensor (quantization, digitization, and noise),
the scene environment (lighting and background), the feature-extraction algorithm (biases
and thresholds), as well as the object (geometry and photometric properties)—a complete
model should account for these effects. Ikeuchi and Kanade [72] werethefirst to recognize
this problem. They utilized a model of the sensor (in addition to the geometric object
model) to compute the detectability of featuresfor recognition and the reliability (predicted
variance) of feature values with respect to the sensor. Sato et a. [117] developed a system
to recognize objects using specular reflections as the basic feature. The use of specular
features necessitated the use of a sensor simulator to predict the appearance of specular
features. Campset a. [15] also recognized this problem and devised an analytical model of
the feature formation process. Camps samples the predicted features to compute statistics
on feature attributes and relations. These statistics are used to define a probabilistic match
cost function. The cost function is used to prune the combinatorial search for theleast cost
interpretation of theimagefeatures. Thethree previoudy described algorithms[72, 15, 117]
all assume that the object features are segmented from background features—thisisavery
limiting assumption. Wheeler and I keuchi [148] used aray-tracing simulation of the entire
sensing process to derive recognition constraints from a CAD model of the object. One
finding of that work was the need to increase accuracy of constraints by eliminating the
approximations of the CAD model and sensor simulator. The approximations can be
eliminated using the techniques described in thisthesis as described in Section 7.2.

Verification remains one of the main roadblocks to accurate recognition. Typically,
the approaches described previously use a simple form of verification: a threshold on the
percentage of matched features. This statistic will often fail to answer the verification
guestion correctly. Grimson and Huttenlocher [50] studied the verification problem with
respect to 2D-2D recognition of point sets. They presented a formula for the optimal
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threshold on the percentage of matches. This threshold is a function of model size and
image clutter and the image noise. Grimson, Huttenlocher and Alter [51] later analyzed
the error bounds on 3D points after minimal alignment in 2D images. They showed that
the uncertainty regions for the reprojections of other object points can be quite large,
making accurate verification extremely difficult. Thisisthe main motivation for utilizing a
localization search for recognition. In general, the alignment of amodel in animagewill be
inaccurate using any of the efficient strategies for indexing. Breuel [13] makes interesting
observations with respect to verification and suggests a second-order verification metric to
account for spatial of missing data such as by occlusion, shadows, or undetected edges.
This idea was applied by Wheeler and Ikeuchi [148] in a 3D-3D recognition system with
much improved results over the ssmple first-order statistic.

This ends our discussion of related work. In the next section, we offer our conclusions,
the contributions of thisthesis, and present some ideas for future research which will build
on our work.
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Conclusions

In thisthesis, we have presented new algorithmsfor:

¢ 3D object modeling: automatically constructing 3D surface models of an object from
a set of range images of the object

e 3D-3D localization: localizing a 3D object in a range image of the object given a
rough estimate of its pose in theimage

¢ 3D edgel modeling: automatically constructing a model of edgel generators on the
object surface from a set of intensity images of the object and a surface model of the
object

e 3D-2D localization: localizing a 3D object in an intensity image of the object given
arough estimate of its pose in the image

Our experimental results demonstrate that our modeling algorithms can extract clean
models from rather noisy data, and that these models can be efficiently and effectively
used for localization tasks. Our 3D-3D localization results show that our algorithm has
much better convergence ability than Bed and McKay’sICP [6] for rather largeinitial pose
errors. Our 3D-2D localization results show that we can indeed localize a wide variety of
objects using a collection of edgel generators asthe basic model representation. The results
show that occluding contours of objects be effectively and efficiently utilized for 3D-2D
localization within the edgel generator framework.

We would like to highlight some of the conclusions which we can take away from this
thesis.
Consensus Works

For both modeling and localization, consensus is the key to make sense of the noisy data
available from real sensors. When modeling objects from many images containing even
small amounts of spurious data, one must take care when adding a feature (surface point or
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edgel) to the model. In particular, features observed only once or relatively few times are
often spurious. Model building algorithms must utilize redundancy from many viewsin
order to avoid the pitfallsinherent in real data.

In localization, consensus is aso the reason for our algorithms ability to convergence
from large pose errorsin noisy images. In genera, if thereis a significant initial error in
the pose estimate, none of thelocal correspondenceswill be correct. However, many of the
correspondences may be connected to the correct edge or surface and these correspondences
tend to dominate the objective function and force the model to move towardsthe true pose.
Once the pose estimate is close, the effect of consensus is great and convergenceis quickly
achieved.

Dynamic Correspondences for Robust M -estimation

The principal reason for our algorithm’s convergence ability is that the objective function
E specifies a relatively large and smooth basin of attraction in pose space. The size
and smoothness of the basin of attraction is principally due to the use of smooth down-
weighting M-estimators (e.g., Lorentzian or Tukey weight functions). Our use of dynamic
correspondencesin minimizing the obj ectivefunction ensuresthat we remaininthisbasin of
attraction asthe search proceeds. Dynamic correspondencesensuresthat weareminimizing
the desired objective function. While more expensive than the ICP agorithm in terms of
objective function evaluations, the convergence rate in terms of gradient steps taken is
comparable to |CP. Dynamic correspondences also implies dynamic weights. Large steps
arelikely to greatly effect the weights of each observation, the result of large (greedy) steps
is often getting stuck inlocal minima. Dynamic correspondences can be likened to closely
hugging the wall while following adark corridor, while ICP [6] is more like taking alarge
step while blindfolded and peeking at one’s feet.

Point-Based M odels

Representing the object modelsfor 3D-3D and 3D-2D localization as a collection of points
provides many benefits. First, it keeps the algorithms ssmple and efficient. We can
straightforwardly control the resolution of the models (by adding or dropping points)
without adversely changing their general appearance. This proves useful when applying
randomization strategiesto improvethese algorithms. I1n addition to being simple, the point
representation israther general, allowing usto model arbitrary (rigid) surface shapesin 3D
and arbitrary configurations of edgel generators of all types.

Using 3D for 2D
For both edgel modeling and 3D-2D localization, the use of 3D information and repre-

sentations makes things easier. When creating 2D models, the use of a 3D surface model
provides the following advantages:
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o Simplifiesthe foreground/background problem when creating models

¢ Allowsusto map featuresto aunique coordinate system for merging observed edgels
from multiple views.

e Givesusaway to predict the appearance of occluding contours.

For 2D localization, interpreting errors as 3D errors using known camera parameters sim-
plifies the pose estimation problem and allows us to use the same optimization engine as
used for 3D localization.

7.1 Contributions

We now list the main contributions of thisthes's:

e Robust 3D surface model construction with the consensus-surface algorithm: We
have demonstrated an algorithm can construct extremely accurate surface models
from rather noisy input data.

e Robust 3D-3D and 3D-2D object localization by performing M-estimation using
dynamic correspondences. We have demonstrated that our algorithm has superior
convergence properties to the recognized state of the art (ICP) with reasonable ef-
ficiency. These properties are largely due to the use of robust M-estimators for our
objective function. We have shown that the potential exists for even wider con-
vergence and more efficient performance through the use of randomization. The
localization searches in the 3D-3D and 3D-2D domains are unified by minimizing
the 3D error rather than 2D image error. The 3D error for 3D-2D localization was
shown to be optimal with respect to estimating a pose in three dimensions.

¢ Robust 3D edgel model construction with the consensus-edgel algorithm: We have
demonstrated amethod for extracting salient 3D edgel generatorsfrom large numbers
of intensity image views which contain alarge number of spurious edgels.

e Treatment of occluding contours in 3D-2D localization: We have presented and

demonstrated a new approach to predicting the appearance of and utilizing occluding
contours of an object for localization.

7.2 FutureWork and Discussion

We conclude with a discussion of open problems and future improvements which we are
interested in pursuing and would like to see pursued.
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3D-3D + 3D-2D

While we demonstrated strong results for 3D-2D localization with multiple (stereo) im-
ages, the next step is to combine the two modalities—range/depth images and intensity
images—to get the best of both worlds. 3D-2D object localization can help improve 3D-3D
localization and vice versa. In the depth image from stereo domain, the accuracy of the
depth data may be rather low. However it will usualy be good enough to get a rough
localization estimate in depth. Once close enough, 3D-2D localization can provide a much
finer resolution of the pose than would be available from 3D-3D localization alone.

L ear ning Recognition Models

The localization and modeling agorithms of this thesis have great potential for advances
in object recognition. Having the ability to track and locate objectsin 3D makesit possible
correl ate detected image features or attributes to specific locations on the 3D object. With
this capability, it is possible to use acquire/learn recognition constraints from real image
data (possibly requiring an operator to initialize the object pose before tracking it through
a seguence of views).

Uncalibrated Model Acquisition

The first step in making the modeling systems described here of general use will be to
eliminate the requirement of calibration. Shape from motion, motion estimation, and
registration algorithms (such as the 3D-3D and 3D-2D localization algorithms described
here) are becoming mature. At the very least, a reliable semi-automatic procedure for
view alignment is within sight. By combining sensor modalities (such as the depth and
intensity ideadescribed above), the accuracy of the alignments between viewswill improve.
Applying batch estimation techniques such as Shum, Ikeuchi and Reddy’s [127] robust
algorithm for simultaneoudly estimating the motions of all views may soon makeit feasible
to automatically align alarge set of views accurately.

Edgel Likelihoods

An improvement of the 3D-2D localization algorithm would be to incorporate edgel vis-
ibility likelihoods. For the implementation and experiments described in this thesis, the
number of views used (e.g., 40-60) were insufficient to really make any useful estimate of
edgel likelihoods.

Photometric Visibility

The thesis focused on geometric visibility constraints. Eventually, however, this may be
extended to include photometric constraints aswell. Techniques such as Sato and Ikeuchi’s
[118] algorithm for automatically modeling the reflectance properties of objects from real
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images may soon be useful for predicting the likelihood of edgel or surface visibility based
on photometric information of the object and some knowledge of the illumination in the
scene.

L ocalization and Local Minima

Finally, perhaps the most important area of future work is to reduce the effect of local
minimaon localization and recognition in general.

All localization searches are susceptible to local minima. The shape of the optimization
function for localization searches is determined by the object shape and image data. For
example, the worst case object for any localization program would be a porcupine like
object. The spikes present a problem when the rotation error is greater than the angle
between spikes. Each of these rotations creates a local minima since the optimization
function is smaller when the model and image spikes line up (even if it is not the global
minima) than when the model spikes lie between the image spikes.

Similarly, the image may contain extraneous data that happens to lie in front of (i.e,
partially occluding the object) or nearby the object being localized. The model may possibly
be closer to the extraneous object, thus creating alocal minimafrom which thelocal search
cannot escape to reach the global minima.

For the first problem, difficult object shapes, the local minima are predictable and it is
possible to add higher level info to deal with thiswhen localizing the object.

The second problem, dealing with extraneous data, is more difficult but is dightly
alleviated by adding attributes (such as surface normalsasdescribed in Sections 3.3 and 5.3)
to the correspondence search. When tracking objects with small velocities, it isunlikely to
become a problem until such point that the object is so severely occluded (i.e., more than
half occluded) that there isinsufficient correct correspondences to localize the object.

Unfortunately, these kind of solutionswill only help so much; localization searches will
still find themselves stuck in local minima more often than we would like. We believe
that the key to avoiding local minima must to first be able to detect when you are in a
local minimum—an incorrect pose. Once you can detect this situation, a strategy may be
available to deal withit. Thisleadsright back to the verification problem—the heart of the
recognition problem.

One potential solution which could utilize a verification capability is a simulated-
annealing search [43, 62, 111, 140]. Simulated annealing uses random perturbations of
the search direction to escape local minima—often making non-optimal local decisions to
improve its chances at finding a better global solution. Viola [140] made use of just such
a technique for localizing 3D objects in 2D images by maximizing mutual information.
Simulated annealing often requires many iterationsto converge, however if combined with
an efficient hill-climbing (gradient-descent) method which can detect when it is stuck, the
randomness may be efficiently harnessed.



7.2. Future Work and Discussion 201

Scale Space Recognition/L ocalization

One other idea which may prove useful in reducing the effect of local minimais to apply
the ideas of scale space [149, 150] to object localization. The idea would be to have
the localization model change continuously with respect to scale, from coarse to fine,
as the search proceeds. This would have the potential of smoothing away many of the
local minima which are near the global minimum. Wells [143] presented a first-order
approximation towards this idea with a multi-level localization recognition model. It will
be critical to use real imagesto acquire a scale-space localization model becauseitislikely
that the changes in the model with respect to scale will be difficult to otherwise model or
predict.



202 Chapter 7. Conclusions



Appendix A

Camera and Robot Calibration

In this appendix, we overview the method for calibrating the camera with respect to our
robotic positioner. Our experimental image acquisition setup comprises:

e aCCD camera
e an OGIS light-striping projector
e aUnimation PUMA robot

The setup is pictured in Figure A.1 which shows the configuration of the CCD camera,
robot end effector and the light-stripe projector. The light-striping projector projects a
set of stripes on the scene. Each stripe has a distinct pattern (e.g., a binary code). The
CCD camera is used to acquire images of the scene as the pattern is projected. Each
pattern correspondsto a different plane/stripe of the projected light. With knowledge of the
relative positions of the camera and projector, the image location and projected-light plane
determine the position of the point in the scene with respect to the camera.

Objects are mounted on the end effector of the robot in front of the camera. Inthiswork,
we control two rotation axes of the robot when acquiring data as shown in Figure 2.12 of
Section 2.5. To determine the motion of the robot with respect to the camera, it issufficient
to determine the location and direction for each of these rotation axes with respect to the
camera.

We have three calibration tasks;

e calibrating the CCD camera: internal parameters such as focal length, image center
and scaling

e rangesensor calibration: position of light-striping projector with respect to the camera
¢ hand-eye calibration: position of the robot’s end effector with respect to the camera

The first two calibration tasks are be accomplished in one step with the light-striping
rangefinder. A calibration cube, pictured in Figure A.2, is used to calibrate a 3D world co-
ordinate system withthe CCD cameraand thelight-striping projector. Theworld coordinate
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Light-striping projector

Calibration
cube

Puma

Figure A.1: Animage of the experimental setup including the CCD camera, light-striping
projector, and Puma robot.

system is defined with respect to the cube. The cube ismounted on the robot in the “home”
position. The light pattern is projected onto the cube. The human operator then proceeds
to click on the 12 (white) corner points (4 on each visible face) of the cube. For each face,
the 4 corner points are used to automatically detect the 10 white marks along the edge each
face. These markings are connected to form a grid, creating 100 points on each face of the
cube. We now know the 3D world coordinate of each point and the 2D image coordinate of
each point. These can then be used with a camera calibration method, such as Tsai’s [136]
or Faugeras and Toscani’s[35] method to determinethe internal camera parametersand the
projection matrix from cameracoordinatesto world coordinates. In addition, we also know
the pattern of the the projected light stripes at each point. The (world-coordinate) plane
equation for each stripe can be computed using | east-squares techniques. Using the camera
projection matrix and stripe plane equations, we can compute the 3D world coordinates of
any scene point given the image position and light-stripe slice identification.

The calibration cube is also useful for estimating the rotation axes of the Puma robot.
We can rotate the robot’s end effector by a fixed angle and determine the motion of the
cube in world coordinates. With small enough angular step of the end effector, we can use
our 3D-3D localization algorithm, presented in Chapter 3, to compute the precise pose of
the cube in the new image following rotation of the cube. This process can be repeated
for any number of steps. The result is that we have a sequence of angular steps of known
angles and a set of poses of the cube at these end-effector positions. We can then perform
aleast-sguares estimate of the rotation axis direction and location.
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Figure A.2: The calibration cube used for range sensor and camera calibration.

Estimation of the rotation axis is accomplished by first solving for the rotation compo-
nent of the rotation axis. the axis direction. We can compute the axis direction by solving
for the quaternion q that maximizes the following objective function:

fula) = Y _(R(q)f;) - fij41

where R (q) isthe 3 x 3 rotation matrix corresponding to the quaternionq (see Appendix B
for more details on the quaternion representation) and i, is the world-coordinate normal
vector of a face of the cube in view . The principal term in f,() is maximized when
the rotated normal vector of the current view matches exactly the normal vector from the
next view. The optimal quaternion q is an estimate of the axis direction and angle of a
single-step rotation of the end effector. The axis direction vector can easily be extracted
from the quaternion by normalizing the vector component of the quaternion (again, see
Appendix B).

Using the direction of the end-effector’s rotation axis, we can then compute the location
t of therotation axis. Thisisachieved by minimizing the function:

flt) = D (R(@)(x: — t) +t — xi11)°
where x; is the position of a specific point on the cube (not lying on or near the rotation
axis) in the :th view. The least-squares solution of the location t isa 3D line. We can
choose any point on this line as the location of the rotation axis. One choiceisto set t to
the point on the line which is closest to the origin of our world coordinate system.
Each rotation axis can be calibrated smilarly. The axis direction and location and the
angle of rotation of the end effector is sufficient to determine the motion of the robot in
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world coordinates. Rotations of multiple robot axes can be straightforwardly composed to
determine the motion in world coordinates.

Typically, we can accurately estimate the rotation axis using anywhere from 45 to 90
views of the cube taken at rotational incrementsof 4 to 8 degrees. Finer rotational sampling
is possible to improve the accuracy of the rotation-axis estimate. For best results, it is
important that the samples cover as large arotational range as possible.



Appendix B

Quaternionsand Rotation

In this Appendix, we review the use of quaternions to represent rotation and present the
derivation of the gradient of the 3 x 3 rotation matrix R with respect to the quaternion
parameters. We begin with a general overview of quaternions and their utility for motion-
and pose- estimation problemsin computer vision.

B.1 Why Quaternions?

A common problemin computer visionissolving for rigid-body motionsor posesconsisting
of a rotation and trandation in 3D space. For example, given a set of points x; and
correspondences p;, it is often of interest to compute the 3x3 rotation matrix R and 3-
vector trandation t such that

Although this system of equationsis essentially linear, a number of problems arise when
formulating solutions that account for the non-linear constraints on the components of
R. The constraints arise from using nine values of rotation matrix R to represent three
independent variables of 3D rotation. The rotation matrix is constrained to be orthogonal
which is satisfied when RTR. = I (i.e., the rows and columns are orthonormal). Also, the
rotation must not be a reflection; thisis satisfied when the determinantis 1 (i.e, |R| = 1).

A number of techniques have been developed to deal with this added complexity. One
of the most convenient is the quaternions representation. We will describe quaternionsin
some detail in what follows, but first we provide the reader alist of some of the advantages
and mathematical niceties of the quaternion representation of rotation.

e Maintaining the constraints (orthogonal with unit determinant) of rotation is made
simple with quaternions by standard vector normalization.

e Quaternions can be composed/multiplied in a straightforward manner to accumulate
the effects of composed rotations.
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e Theinverse of a quaternion (specifying the inverse rotation) is obtained by ssimply
negating 3 components of the quaternion vector.

¢ The rotation between two rotations can be computed by multiplying one quaternion
with the inverse of the other.

¢ One can easily transform a quaternion into an axis-and-angle representation. Using
thisand the previousitem, one can compute arotational distance metric between two
rotations—the angle of rotation between them.

¢ Quaternions can be easily transformed to a 3x3 rotation matrix for efficient compu-
tation when rotating vectors.

e It has been shown by Sanso [116], Faugeras and Hebert [36] and Horn[66] that with
the quaternion representation, the rotation can be solved for in closed form when
correspondences between three-dimensional point sets are available.

We would like to add to thislist that the quaternion representation of rotation has some
advantageous differential properties (to be described later). These differential properties
combined with the properties of quaternions described above make quaternionsparticularly
well suited to requirements of iterative gradient- or Jacobian-based search for rotation and
trandation. Inthissection, we deriveasimpleformfor the gradient and Jacobian of rotation
with respect to quaternions. The form of the Jacobian leads to a straightforward analysis
of the problem presented by scale when solving for rotation and trandation, and leads to
simple steps to ensure scale invariant performance of search algorithms,

B.2 Quaternions

In this section, we will define the quaternion and its essential properties for representing
and algebraicly manipulating rotations. For further details on quaternions the reader is
referred to [56, 36, 66, 94]. The quaternion q is a four vector [u, v, w, s]’ which is
often considered as a three-vector u = [u, v, w]” and a scalar s. We will often refer to
q as [u, s]” for notational simplicity. The dot product and vector norm for quaternionsis
defined as usual

qi1- g2 = Up-up+ s182
_1
ld| = (q-q)72.
Multiplication is defined over quaternions as
qi1 92 = [[sluz—l—szul—l—ul X 112]7 8182—111-112]T. (BZ)

The complex conjugate of a quaternion is defined by negating the vector component and is
denoted g = [—u, s]”. The complex conjugate of aunit quaternion, |q| = 1, istheinverse
of the quaternion with respect to multiplication, i.e.,

aq = qr
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whereq; = [0, 0, O, 1]T (wewill refer to this often). From Equation B.2, one can see that
qq; = q:q9 = q Which iswhy we refer to q; as the identity quaternion.

A unit quaternion q can be used to perform arigid rotation of avector x = [z, y, z]”
by two quaternion multiplications

X

/ y | -
z

0

wherethe scalar component of x issimply set to zero. Observethat quaternionmultiplication
isnot commutative; thisis consistent with the fact that general three-dimensional rotations
do not commute; however, quaternion multiplication is associative and distributive.
Working from this definition of quaternion rotation, one can derive a formulafor the
corresponding orthogonal (Euclidean) 3x3 rotation matrix from a unit quaternion

s% 4+ u? —v? —w? 2 (uv — sw) 2 (uw + sv)
R.(q) = 2 (uv+ sw) 52 —u? + 0?2 — w? 2 (vw— su)
2 (uw — sv) 2 (vw+ su) s —u? — v+ w?

We use the subscript « in R, to denote that this is the rotation matrix when given a unit
quaternion. Given an arbitrary quaternion, R, would no longer be unitary but rather a
scaled rotation matrix. The reader can verify that for the identity quaternion (defined
above) R(q;) = I, the 3x3 identity matrix.

Finally, we define the relationship between quaternions and the axis-and-angle repre-
sentation. A unit quaternion q can be straightforwardly interpreted to specify arotation of
angle # around the unit vector w using the relations

u=9Sn-o
2
0
5 = cos—.
2

This relationship can be derived (see [66]) from Rodrigues formula for axis-and-angle
rotation

x' = cosfdx +snf (& x x)+ (1—cosb)(w - x)© (B.3)
where x isthe vector being rotated.

The next section will examine some differential properties of quaternions with respect
to rotation.

B.3 TheJacobian of Rotation With Respect to Quater nions

In this section, we explore a specia case which greatly simplifies the form of the Jacobian
of rotation with respect to quaternions. This form of the Jacobian was introduced in
Equation 3.29 of Section 3.4.3.



210 Appendix B. Quaternions and Rotation

The rigid transformation of Equation B.1 is now a function of q instead of the nine
elementsof R
x' = R(q)x; + t, (B.4)

and the derivatives with respect to q (which is all that we are interested in at the moment)
areonly afunction of the rotation term.

We begin by eliminating the restriction to unit quaternions in our analysis. We can
enforce the constraint that the rotation matrix is orthogonal without requiring q to be aunit
vector by dividing the matrix by the squared length of the quaternion

1
R(q) = — Ru(a). (B.5)
This constraint isnecessary in general to ensure the Jacobian and gradient accurately reflect
the differential properties of a change in the quaternion parameters. As one might guess,
the addition of this constraint greatly complicates the form of the Jacobian; however, aswe
will see shortly, this constraint actually dightly simplifies the Jacobian when evaluated at
the identity quaternion, q;.

If we are computing the Jacobian of

x' = f(q,x) = R(q)x

with respect to q, things are greatly simplified if we know q = q;. Setting things up to
make surewe evaluate all derivativesat q; isquite painless. Say that quaternion specifying
the current rotation of the datais q.. We can easily change coordinate systems so that our
current quaternion is q; by smply premultiplying all of the model points by R(q.). That
is, replace x with x, = R(q.)x.

By premultiplying the data with the current rotation, we will now solve for a rotation
that composes with our current rotation position instead of attempting to solve for the
corrections of our current rotation parameters. The premultiplication should not increase
the number of computationsfor most applicationssince R(q.)x must be computed anyway
to computeerror terms. After estimating thisrotation, we can easily compute the quaternion
of the complete rotation by quaternion multiplication (i.e., ' = q q.).

Fundamentally, we have not changed the problem since

f(quxc) = f(qu)v

and we can still represent the same set of rotations. However, the form for the Jacobian is
much ssimpler when evaluated at q; as we will see.

We now derive the Jacobian matrix %‘ax)) a q;

af

af _ IR
dq

qr aq

qr

Using z(q) = ﬁ and Equations B.5, this can be broken up as follows
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JR oR, 0z
Ja (ar) 3 —| Ru(aqr) (B.6)
q qar q qar q qar
= aaRu g_z 1, (B.7)
q qar q qar

Us-ng R(CH) =Tand Z(Cl[) =1
The first term can be computed by realizing that only the componentsin R, (q) with a
factor of s init will have avalue in the derivative evaluated at q;

Ry = Ry Ry Ry Ry ]
o lq; Ju lq; v lq; dw lq, 9s lq;
00 O 002 0 -20 200
= | 00 -2 000 2 00 02 0] ].
02 O -2 00 0O 0O 002
The second termis easily found to be
0z
% I:—ZZ(CH) qII:—ZqII: [O, O7 O7 —2] 1.
qr

Summing up thetermsfrom Equation B.7, we see that theterm % q disappears (which
isnot true at other pointsin general). The normalization factor z(q) efféctively cancels out
any gainin f fromincreasing or decreasing the s component at q = q;; thus, the gradient
of normalized rotation accurately reflectsthe effect of changesin the parameters. Sincethe
Jacobian evaluated at q; isnonzero only in the «, v and w components, we only have three
rotation parameters to estimate.

We can now return to the original gradient equation and multiply through to get

af
dq

IR
aq qr

0 2 -2y O
= | -2z 0O 2z O

2y —2z 00

X

qr

wherex = [z, ¥, Z] T Ignoring thelast column of the Jacobian, theresult will befamiliar to
most readers as — 2 times the skew-symmetric matrix of x. For example, the cross product
of two vectors can be expressed as a matrix-vector multiplication

0 —z y
x xa=C(C(x)a= z 0 —z |a,
-y x 0
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where we refer to C'(x) as the skew-symmetric matrix of x. Notice that, by the skew-
symmetry of C'(x), CT = —C. Thus, we have avery simple form for the Jacobian of our
function at q;

af

dq

_ R

= XT. .
=% x = 20(x) (B.8)

qr

Theabovederivationenablesustotrivially and efficiently computethegradient/Jacobian
of any rotation with respect to quaternion parameters. The computation of these entities
at quaternions other than q; requires many more operations and involves aterm for the s
component as well.

Starting the search at q; has some other advantages for gradient-based searches of
rotation. Consider performing a line minimization in the (negative) gradient direction.
Remember the gradient direction with respect to q will have no s component and will be
of theform

dqg=— =L = [du, dv, dw, 0.
and each step of the each successive rotation in this direction will be of the form
q = q; + Adq = [Adu, 17 (B.9)

where du = [du, dv, dw]. Remember that g’ does not need to be normalized (we did
that in Equation B.5). This means that the rotation axis of our corresponding line search is
constant while the angle
1
= o B.1

0 = 2cos ()\2+1) (B.10)
increaseswith A (assume |[dq| = 1). Ifthegradientisevaluated at q # q;, weget agradient
with s # 0 and our steps in the search are now of the form

a()) = q. + Mg = [u. + A\du, s+ Ads]". (B.11)

Itisinteresting to note that searching across an arbitrary line in the 4D quaternion space
is equivalent to searching along ¢ while rotating around a fixed rotation axis.

Also note that # is not alinear function of A Equations B.10. It isvery closeto alinear
relationship for small angles and reasonably so for § < 90°. Beyond this linear region
the search may run into trouble. The gradient search can compensate for this by linearly
increasing the value of 6 directly, but this should rarely be necessary.

As we have shown above, the quaternions possess some advantageous differential
properties which make it amenable to gradient- and Jacobian-based iterative search. Since
they are easily composable, we can maintain a single rotation estimate while simplifying
the analysis by premultiplying our data with the current rotation estimate. The Jacobian
can be computed very efficiently, and line searches in quaternion space effectively equate
to linearly increasing the rotation angle (for al practical purposes) about a fixed rotation
axis.



Appendix C

Principal Curvaturesfrom Triangulated
Surfaces

In Section 4.5, we described the general approach that we use to estimate the principal
curvatures and directions at points on a triangulated surface. Our approach is based on
Koenderink’s [76] proposal to fit a quadric surface in the neighborhood of each point and
then use the algebraic representation of the surface to derive the principal curvatures and
directions. In this appendix, we present the derivation of our solution.

C.0.1 Fitting Quadricsto Triangles

We begin by fitting a quadric equation to the vertex of interest xo and its neighbor vertices
x; Wwhere: = 1,..,n. The genera form of aquadricis

flz,y,2) = Ax® + By? + C22 + Day + Faz + Fyz + Ga + Hy + 12+ J = 0. (C.1)

This has 10 degrees of freedom and admits surfaces such as spheres, ellipsoids, planes, and
cones among others. This form of the quadric is too general for our purposes. Some of
these surfacetypes, such ascones, areof nointerest to usfor computing curvature. Also, we
need at least 10 pointsin the neighborhood of agiven point to perform thefit. Fortunately,
we can reduce the number of degrees of freedom of the quadric while still representing the
surface types of interest to us. This is accomplished by reorienting the coordinate system
with respect to the surface (eliminating several degrees of freedom).

We choose a coordinate frame centered at xo whose =z direction is equivaent to the
estimated surface normal iy of point xq.! The = and y directions can be arbitrarily chosen
with the constraint that the coordinate system is orthogonal and right-handed. We then
transform each point x; to this new coordinate system

x: = R(x; — Xo)

1We do not know the surface normal precisely but can estimate it by averaging the normals of the
neighboring triangles; the accuracy of the surface normal at this stageis not crucial.
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where R is the rotation from the model coordinate system to the point’s local coordinate
system.

This change of coordinate system allows usto use asimpler equation for the quadric
flz,y,2) = A2®* + By> + Cay + D+ By + F+2=0 (C.2)

which has six parameters and eliminates the undesired quadric surfaces that were possible
with Equation C.1. Since each point adds one equation to a linear system of six variables,
we can solvefor these quadric parametersgiven six or more pointsinthelocal neighborhood
of Xg.

If more than six points are available, the system becomes over-determined and we can
use the pseudo-inverseto find the least-squares solution. If xq hasfewer than six neighbors,
we simply create new points by interpolating new points on the neighboring triangles.

C.0.2 From Quadricsto Curvature

From the fitted quadric surface, we would like to infer the principal curvatures and their di-
rectionsto characterize the curvature at the given surface point. From differential geometry
[102], the curvature of a point can be defined as

n

(V)= =V - Vg(

)

i

where V;; specifiesthe directional derivative with respect to direction ¥, and n isthe (non-
unit) normal direction of the surface. If we expand this equation, we can smplify it abit if
we assume that al v'swill be tangent vectors. If ¥ - n = 0, then

=~ ¥ Vo) = (¥ m) Vel ) (c4)
:_ﬁﬁvv¢m. (C5)

From our quadric surface approximation, the normal, n, of our quadric-surface approx-
imation isthe gradient direction at the given point:

n(e,y,2) = Vf(a.y,z) (C#)
24 ¢ o D1|"
—2lc 2B 0 E|]|"Y (C.7)
0 0 0 1 i
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Note, that n is generally not aunit vector. The directional derivative of n indirection v is
then conveniently found to be

Ven(z,y,z) =v-Vn(z,y, z) (C.8)
24 C 0

=| C 2B 0 |vV. (C9
0O 0 O

Using this, we can solve for the curvature

A S0
__ 24| ¢ B ole (C.11)
[n]| 0 0 O
B 2 ;| A % A
= —iATM\Af. (C.13)
]

Thisform of «(¥) makesthe principal curvatures readily computable from the eigenvalues
of the symmetric, 2 x 2 matrix M. The eigenvalues are the solution of the characteristic
eguation

02

7] 0.

(A=XN)(B-2X)

Using

y = JA2+ B2+ (2 - 2AB),

the eigenvalues are found to be

A = @ (C.14)
A\ = %. (C.15)

The principal curvatures differ from the eigenvalues by only the scale of the (non-unit)
normal vector n; in other words,

—2A
R (€47

Thus, we have a closed form of the principal curvatures with respect to our quadric surface
parameters. From the eigenvalues, we can then compute the eigenvectors of M, from
which we can compute the principal directions. The 2D eigenvectorsare extended to 3D by
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computing the = component such that &; and &, are orthogonal to n(0,0,0) = [D £ 1],
The closed form solution for the eigenvectors of M may be derived by solving for the
non-trivia (i.e., x # 0) solutions of x in

[A—)\ ¢

S B-2A

] x=0 (C.18)

for each eigenvalue \; and ), . The details are omitted here. Technically, only one
eigenvector needs to be computed since one principal direction and the normal uniquely
determines the other principal direction. Thus, we have a closed form for the principal
curvatures and directions from the quadric parameters.
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