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Abstract. This paper presents a method of image-based 3D modeling for
intricately-shaped objects, such as a fur, tree leaves and human hair. We formu-
late the imaging process of these small geometric structures as volume rendering
followed by image matting, and prove that the inverse problem can be solved by
reducing the nonlinear equations to a large linear system. This estimation, which
we call inverse volume rendering, can be performed efficiently through expec-
tation maximization method, even when the linear system is under-constrained
owing to data sparseness. We reconstruct object shape by a set of coarse vox-
els that can model the spatial occupancy inside each voxel. Experimental results
show that intricately-shaped objects can successfully be modeled by our proposed
method, and the original and other novel view-images of the objects can be syn-
thesized by forward volume rendering.

1 Introduction

Reconstruction of 3D scene information from multiple view-images is a major research
topic in computer vision. Most of the existing methods of scene reconstruction attempt
to create a model of the object as a solid, using boundary representation. Many real
objects, however, have extremely intricate shapes, such as human hair and fur, on the
surface. It is therefore difficult to represent their geometry using boundary-based repre-
sentation.

It is difficult to model intricately-shaped objects for two reasons. Firstly, the
boundary-based shape representation is not suitable for such objects as human hair.
Secondly, the resolution of optical sensors, such as Charge-Coupled Devices (CCD), is
usually much lower than that of object geometry. Hence, it is inherently impossible to
reconstruct complete geometry from given images.

Although it is difficult to capture and reconstruct intricate shape on the object sur-
face, the captured image can preserve the appearance of these objects in sufficient qual-
ity. This fact implies that photorealistic view can be synthesized from a reconstructed
model even if the resolution of the model is not as high as that of object shape.

In this paper, we propose a method of volumetric scene reconstruction using the
voxels that model the spatial occupancy and color of the object. In practice, the spatial
occupancy is stored in the voxel as α value (opacity), and the synthetic view images are
generated through conventional volume rendering techniques.
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2 Related Work

2.1 Multi-view Reconstruction

The research on the method of 3D scene reconstruction from multiple view-images has
a rich history. Here we briefly describe the related work.

One of the first attempts for image-based modeling of 3D scene in computer vi-
sion is two-view stereo reconstruction [1]. Okutomi et al. [2] extended the conventional
two-view stereo reconstruction into the multiple-view problem and achieved convinc-
ing results. Kang et al. [3] discussed a method of multi-view stereo reconstruction from
images with large occlusions. These methods are designed to reconstruct depth maps
from particular viewpoints. Hence, they are not suitable for full 3D scene reconstruction
from images obtained from multiple surrounding cameras.

Visual hull reconstruction [4] is another approach to 3D scene reconstruction from
multiple view-images. The algorithm does not need to solve the correspondence prob-
lem. Instead, it simply calculates the convex hull of silhouettes in all view images.
While the visual hull method works robustly when cameras surround the object, a con-
cave object cannot be reconstructed using silhouettes alone. This problem was solved
by Seitz et al. [5] in the voxel coloring method. The original voxel coloring has a lim-
itation on the location of input view images, which is overcome in the space carving
method proposed by Kutulakos et al. [6] The opacity hull [7] method proposed by Ma-
tusik et al. is another approach to this problem. They simply use a visual hull model
as an rough geometric proxy, and map opacity images using view-dependent texture
mapping. This method avoids the difficulty in geometric reconstruction, but requires a
lot of input images to achieve photorealistic rendering.

Our proposed method is inspired by the space carving method, but has been extended
so that it can deal with intricate shape within a framework of voxel modeling. Specif-
ically, the geometrical structure within a voxel is represented as its spatial occupancy.
Our method is similar to Roxels method [8] in that both can reconstruct spatial occu-
pancy/opacity of voxels from images. The convergence of the Roxels method, however,
is not proven, and the method cannot reconstruct the voxels in high resolution owing to
the high computational cost.

2.2 Alpha Estimation

When a scene is captured by the digital optical sensors, such as CCD, what the de-
vice can record is not the light energy of a single light ray, but the averaged radiance
incoming from a finite space in the scene. If a part of an object is observable from a
single device cell, the recorded radiance is the combination of radiance coming from
the corresponding foreground and background.

Alpha estimation is the process that decomposes an RGB color Cp of each image
pixel into three components: foreground color Fp, background color Bp, and foreground
opacity Ap. The relationship between the variables can be described by matting equa-
tion.

Cp = Fp + (1 − Ap)Bp. (1)



Inverse Volume Rendering Approach to 3D Reconstruction from Multiple Images 411

The foreground opacity, or simply, opacity Ap ∈ [0, 1] represents the contribution of
the foreground object color to the pixel. When the background color in the images is
controllable, we can separate these three components perfectly by capturing two images
with different background colors and computing Fp and Ap which are common in the
images [9]. The natural image matting methods [10, 11, 12] can solve this problem even
when the background cannot be controlled and only one image is available.

3 Inverse Volume Rendering

3.1 Assumption and Preprocess

In this paper, the scene is assumed to be static and the surface reflection follows the
Lambertian law. Under this assumption, the radiance emanating from the scene can be
observed as a single color. Our proposed method deals with the scene composed of
foreground object O, which we are interested in, and background B, which should be
removed in the modeling process. The background component is removed beforehand
by an appropriate method of alpha estimation described in Section 2.2.

The input to our modeling algorithm is a set of color images taken at Nview different
viewpoints. The accuracy of reconstruction and robustness to noise and other factors
not modeled in our assumption can be increased by using as many images as possible.
About 30 images uniformly distributed on the upper hemisphere surrounding O could
achieve good reconstruction in our experiments. Both intrinsic and extrinsic camera
parameters are supposed to be known. The output from our algorithm is a set of voxels
vi which has both RGB color ci and occupancy αi.

3.2 Volume Rendering Equation

When the interest object O is captured and digitized into images by CCD, the intensity
of pixel color Cp is in proportion to the sum of radiance emanating from the surfaces
within a frustum spanning between the scene and the device cell. At each depth along
viewing rays in the frustum, the transferred radiance is the sum of those emanating at
the point (S f ) and those coming from the behind (Sb). Hence, the pixel colors in input
images can be described by the following volume rendering equation [13].

Cp =
∑

i∈{along a viewing ray}
ciαi

i∏

j=0

(1 − α j), (2)

ci represents the radiance coming from light sources and reflected on the scene object
at the depth i along viewing rays. αi ∈ [0, 1] is the ratio by which the object located
at i occludes others behind it. Thus, this ratio α can be regarded as equivalent to the
spatial occupancy of the foreground object at the location. Supposing that ci and αi are
view-independent, they can be parameterized by the location in 3D space. We voxelize
the 3D space and assign ci and αi to each voxel.

3.3 Matting Equation

First the background components observed in input images are removed from each im-
age pixel Cp, which is combination of radiance transferred from the foreground object
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and the background scene. This process is essential in order to associate each voxel’s
values ci and αi with pixel intensity Cp to create a 3D model of the object from the
observed images.

Suppose that a voxel grid spreads infinitely in 3D space. Then, we can define the
mapping between the voxel coordinate (x, y, z) and the 1D coordinate s along viewing
rays. For each viewing ray that goes through the foreground objectO, there is a position
that separates O and background B. Dividing the 1D ray coordinate into the front and
back parts, equation (2) is rewritten in

Cp = Fp + (1 − Ap)Bp, (3)

where

Ap = 1 −
∏

k∈ f ront

(1 − αk) (4)

Fp =
∑

i∈ f ront

ciαi

i∏

j=0

(1 − α j) (5)

Bp =
∑

i∈back

ciαi

i∏

j∈back

(1 − α j). (6)

Intuitively, Ap is the contribution of the spatial occupancy of voxels along a viewing ray
to an image pixel, Fp is the contribution of accumulated colors of the voxels, and Bp is
the background color.

Compared with equation (1), it turns out that equation (3) is equivalent to the matting
equation. The values Ap and Fp can be estimated from Cp before modeling voxels, by
one of several methods of alpha estimation introduced in Section 2.2. Once the fore-
ground components Ap and Fp in input images is associated with the voxel values ci

and αi, we can estimate voxel values using equation (4) and equation (5) as constraints.
We refer to the estimation of 3D voxel values from 3D pixels values composed of fore-
ground components as inverse volume rendering.

3.4 Derivation of Constraints

We reconstruct the color ci and spatial occupancy αi of voxels from the accumulated
color Fp and occupancy Ap of image pixels in the following two-step procedure.

In the first step, we reconstruct only the voxel occupancyαi using foreground opacity
Ap. Taking the logarithm of equation (4) for each Ap � 1 and replacing opacity with
transparency as Tp = 1 − Ap and ti = 1 − αi, we obtain the following equation.

log(Tp) =
∑

i

log(ti) (7)

Since log(Tp) have already been estimated in preprocess, and therefore are regarded
as constants, equation (7) comes down to a simple linear system in which log(ti) are
unknowns.
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In the second step, we then reconstruct voxel color ci from foreground color Fp. Now,
the spatial occupancy αi has been reconstructed in the first step. Thus, equation (4) can
be reduced again into a linear system

Fp =
∑

i∈ f ront

[
αi

i∏

j=0

(1 − α j)
]
ci (8)

where
[
. . .
]

and Fp are constants, and ci are the unknowns that we want to estimate.

4 Implementation

4.1 Iterative Back-Projection Based on EM

Various methods of solving linear systems have been proposed. When the coefficient
matrix of the linear system is full-rank, we can solve the system either by using a direct
method such as the Gauss-Jordan elimination, or an iterative method such as the con-
jugate gradient method. If the system is either under- or over-constrained, the solution
that maximizes the certain likelihood measure is estimated, for instance, by singular
value decomposition.

Our linear system, however, cannot be solved directly by these conventional methods
owing to the gigantic size of the system. The number of unknowns in equation (7) and
equation (8) is equivalent to the number of voxels that increases in a cubic order. On the
other hand, the number of equations in the linear system is roughly equal to the number
of image pixels. Thus, the computational cost of our problem can be extremely high.
It is also the case that the coefficient matrix cannot be stored in the limited working
memory of a standard computer.

In order to overcome these difficulties, we propose an algorithm that can solve such
a gigantic linear system within a framework of the EM (Expectation Maximization)
method [14]. This algorithm starts with an initial estimation of the solution, and iter-
atively improves the solution through the maximization of an objective function. The
algorithm can improve the solution monotonically, and can reach the global optimum.

The EM estimation is composed of two steps, namely, E-step and M-step. In the
E-step, the expectation of certain probabilistic phenomena is calculated using the cur-
rent estimation of parameters. In the M-step, the parameters are modified so that the
expectation is maximized. Repeating E-step and M-step alternatively can maximize the
expectation function even when some parameters cannot be measured directly.

The parameters that we want to estimate are the color ci and occupancy αi of voxels.
The observed data that we have is Fp and Ap. In the E-step of the inverse volume
rendering, we simply perform forward projection of voxel values. This is equivalent
to the volume rendering according to equation (2). In the M-step of the inverse volume
rendering, we improve either the color or the occupancy of voxels using back-projection
for each viewing ray. The expectation can be calculated as a linear combination of
unknowns. Hence, the function is concave and has a single global optimum.

Let the n-th estimations of unknowns in a linear system be {x(n)
j }, the coefficients of

the system be {ri, j}, the constants of the system be {ci}, then the n + 1-th estimation of
unknowns can be obtained by
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x(n+1)
j =

x(n)
j∑

i ri, j

∑

i

ri, jci∑
j ri, jx

(n)
j

(9)

where
∑

j ri, jx
(n)
j is the result of forward projection in the E-step, and the summation

of projections with regard to ri, jci corresponds to the result of back projection. This
relationship is illustrated in Fig. 1. It is worth noting that this EM estimation is a generic
framework for solving linear systems.

Fig. 1. Interpretation of the update law
in EM

The EM algorithm in our estimation can be
accelerated by dividing the problem into several
subsets. First, we divide the set of input images
into several subsets. Then, the linear system is
solved using one of the subsets. Once the algo-
rithm has been converged, the linear system is
solved using another subset using the previous
solution as an initial estimation. This scheme is
called OSEM (Ordered Subset EM) [15]. In our
experiments, we made subsets by choosing four images such that the distances between
their viewpoints are as large as possible.

4.2 Shell Voxels

The voxels in which no foreground object exists (αi = 0) do not affect the estimation
of other voxels along the viewing rays that pass through the empty voxel. Similarly,
the voxels that are completely occupied by foreground object (α = 1) neither affect the
estimation of the voxels along the viewing rays. We can reduce computational cost by
just omitting the computation for these rays.

After the alpha estimation for each input image has been completed, the voxels are
classified into three types according to the opacities of corresponding image pixels.

1. background voxel: Ap = 0 in at least one image
2. internal voxel: Ap = 1 in all images
3. shell voxel: otherwise

The classification of voxels is performed as follows. Firstly, we classify as background
the voxels whose projection is completely transparent (the corresponding pixels are all
Ap = 0) at least in one of input images. Secondly, we construct the visual hull [4] of
completely opaque pixels (Ap = 1), and classify the voxels enclosed by the hull as
internal. The rest are shell voxels.

4.3 Optimization of Voxel Traversal

In each EM estimation, a set of coefficients in the left hand of equation (7) has to be
prepared. This calculation requires the voxel traversal along arbitrary viewing rays and
therefore is computationally expensive. Therefore, we precompute the set of voxels
along every viewing ray beforehand, and store the result into LDI structures [16] for
each input pixel. We can omit the LDI entry for the pixels where Ap = 0 and Ap = 1.
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Fig. 2. Example of voxel reconstruction. (left) shell voxels in green and internal voxels in red,
(center) reconstructed spatial occupancy, and (right) reconstructed color distribution.

5 Experimental Results

We have implemented the proposed method of inverse volume rendering and conducted
some experiments on a standard PC with Pentium4 3.4GHz CPU and 2G byte main
memory. Input images are captured from 36 viewpoints around the object that we want
to model. The size of input images are 320 × 240, and the voxel resolution is set to 643

and 1283.

5.1 Alpha Estimation

We adopted the multi-background scheme proposed by Smith et al.[9] for alpha estima-
tion from input images. The background color of images is controlled by a liquid crystal
projector. For each viewpoint, two images with different background color, Ck1 and Ck2

in RGB color space, were taken. Let the observed image color at the same pixel be Cm1

and Cm2 respectively, then the foreground opacity Ap of the pixel can be estimated by
the following equation.

Ap = 1 − (Cm1 −Cm2) • (Ck1 −Ck2)
(Ck1 −Ck2) • (Ck1 −Ck2)

(10)

(a) object (b) green back (c) blue back (d) estimated α image

Fig. 3. Multi-background matting
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(a) input image (b) rendered voxel model

Fig. 4. Results of volume rendering

where an operator (•) represents dot-product of RGB vectors. The foreground color Fp

of the pixel is calculated as follows.

Fp =
(
Cm1 +Cm2 − (1 − Ap)(Ck1 +Ck2)

)
/2 (11)

An example of input images in alpha estimation and obtained alpha image is shown
in Fig. 3.

5.2 Results of Volume Rendering

The reconstructed voxel model is rendered in Fig. 4. The voxels are rendered using the
volume rendering equation (equation (2)) with the viewpoints not included in the input
images.

5.3 Convergence
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Fig. 5. Convergence

In Fig. 6, the convergence of our proposed
method is illustrated. The upper and lower
rows show the process of estimating αi and ci

respectively. The resolution of reconstructed
voxels is 1283. The figure indicates that the
visually sufficient result can be obtained in 10
iterations.

Fig. 5 is the plot of reprojection error in the
EM estimation for the data shown in Fig. 6.
The lines indicate the decreases in error for
two different voxel resolutions. The error de-
creases rapidly within 5 iterations, and then
gradually converges into the minimum value.
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Fig. 6. Iterative optimization

5.4 Computational Cost

Table 1 shows the figures of memory usage and computational time. We have recorded
these figures in the experiments using voxel resolutions of 643 and 1283. Owing to
the limitation of computer hardware, we could not conduct experiments with larger
resolution. For example, reconstruction of a mannequin object with the resolution of
1283 failed because of limited memory space on 32 bit computer.

Table 1. Performance

object #shell vxl memory(byte) time(min)
#voxels 643 1283 643 1283 643 1283

cow 23379 185013 ∼256M ∼2.1G ∼30 ∼186
mannequin 32531 254123 ∼510M — ∼45 —

6 Discussion and Future Work

In this paper we proposed a novel method of voxel reconstruction that can deal with
an object with intricate shapes such as a fur and hairs. We formulate our reconstruc-
tion process as the inverse volume rendering problem, and show how to solve it. We
also present an effective implementation and conduct experiments on real objects to
demonstrate the usefulness of the proposed method.

In Fig. 4, we see artifacts in the fur where the spatial occupancy seems higher than
the real value. The reason for this is that computing log(1− Ap) and log(1−αi) become
erroneous when αi and Ap is close to 1, and therefore the small errors in alpha estimation
for input image drastically affect the estimation of voxel occupancy.

We implemented some measures to reduce the computational costs in the inverse
volume rendering. However, the cost is still high, and therefore we cannot reconstruct
the object in a proper spatial resolution. We are planning to adopt adaptive voxel struc-
tures, such as octree and k-d tree, and to extend our algorithm so that it can be executed
on parallel computers.
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