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Abstract

We study the problem of linear dimension reduction for classification, with a focus on sufficient dimension reduction, i.e.,
finding subspaces without loss of discrimination power. First, we formulate the concept of sufficient subspace for classification
in parallel terms as for regression. Then we present a new method to estimate the smallest sufficient subspace based on
an improvement of decision boundary analysis (DBA). The main idea is to combine DBA with support vector machines
(SVM) to overcome the inherent difficulty of DBA in small sample size situations while keeping DBA’s estimation simplicity.
The compact representation of SVM boundary results in a significant gain in both speed and accuracy over previous DBA
implementations. Alternatively, this technique can be viewed as a way to reduce the run-time complexity of SVM itself.
Comparative experiments on one simulated and four real-world benchmark datasets highlight the superior performance of the
proposed approach.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Dimension reduction is widely accepted as an analysis
and modeling tool to deal with high-dimensional spaces.
There are several reasons to keep the dimension as low
as possible. For instance, it is desirable to reduce the sys-
tem complexity, to avoid thecurse of dimensionality, and
to enhance data understanding. In general, dimension re-
duction can be defined as the search for a low-dimensional
linear or nonlinear subspace that preserves some intrinsic
properties of the original high-dimensional data. However,
different applications have different preferences of what
properties should be preserved in the reduction process.
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At least we can identify three cases:

1. Visualization and exploration, where the challenge is to
embed a set of high-dimensional observations into a low-
dimensional Euclidian space that preserves as closely as
possible their intrinsic global/local metric structure[1–3].

2. Regression, in which the goal is to reduce the dimension
of the predictor vector with the minimum loss in its ca-
pacity to infer about the conditional distribution of the
response variable[4–6].

3. Classification, where we seek reductions that minimize
the lowest attainable classification error in the trans-
formed space[7].

Such disparate interpretations might thereby cast a strong
influence on the design and choice of an appropriate dimen-
sion reduction algorithm for a given task as far as optimality
is concerned.
In this paper we study the problem of dimensionality

reduction for classification, which is commonly referred to
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as feature extraction in pattern recognition literature[8,9].
Particularly, we restrict ourselves to linear dimension reduc-
tion, i.e., seeking linear mapping that minimizes the lowest
attainable classification error, i.e. the Bayes error, in the re-
duced subspace. Linear mapping is mathematically tractable
and computationally simple, with certain regularization abil-
ity that sometimes makes it outperform nonlinear models.
In addition, it may be nonlinearly extended, for example,
through global coordination of local linear models (e.g.,
Refs.[10,11]) or kernel mapping (e.g., Refs.[12,13]).
PCA, ICA and LDA are typical linear dimension reduc-

tion techniques used in the pattern recognition community,
which simultaneously generate a set of nested subspaces of
all possible dimensions. However, they are not directly re-
lated to classification accuracy since their optimality criteria
are based on variance, independence and likelihood. Vari-
ous other dimension reduction methods have also been pro-
posed, which intend to better reflect the classification goal
by iteratively optimizing some criteria that either approx-
imate or bound the Bayes error in the reduced subspace
[7,14–18]. Such methods exclusively assume a given out-
put dimension, and usually have the problem of local min-
ima. Even though one can find the optimal solution for a
given dimension, several questions still remain. How much
discriminative information is lost in the reduction process?
Which dimension should we choose next to get a better re-
duction? What is the smallest possible subspace that loses
nothing from the original space as far as classification ac-
curacy is concerned? Is there any efficient way to estimate
this critical subspace other than the brute force approach,
i.e. enumerating every optimal subspace for every possible
dimension? The motivation for the present work is to ex-
plore possible answers to these questions.
For recognition tasks, finding lower dimensional feature

subspaces without loss of discriminative information is es-
pecially attractive. We call this processsufficient dimension
reduction, borrowing terminology from regression graphics
[6]. The knowledge of smallest sufficient subspace enables
the classifier designer to have a deeper understanding of the
problem at hand, and thus to carry out the classification in
a more effective manner. However, among existing dimen-
sion reduction algorithms, few have formally incorporated
the notion of sufficiency[19].
In the first part of this paper, we formulate the concept

of sufficient subspace for classification in parallel terms as
for regression[6]. Our initial attempt is to explore a poten-
tial parallelism between classification and regression on the
common problem of sufficient dimension reduction. In the
second part, we discuss how to estimate the smallest suffi-
cient subspace, or more formally, theintrinsic discriminative
subspace(IDS). Decision boundary analysis(DBA), origi-
nally proposed by Lee and Landgrebe in 1993[19], is such
a technique that is promised, in theory, to recover the true
IDS. Unfortunately, conditions for their method to work ap-
pear to be quite restrictive[20]. The main weakness of DBA
is its dependence on nonparametric functional estimation in

the full-dimensional space, which is a hard problem due to
the curse of dimensionality. Similar problems have been ob-
served inaverage derivative estimation(ADE) [21,22], a
dimension reduction technique for regression in analogy of
DBA for classification.
However, recent discovery and elaboration of kernel

methods for classification and regression seem to suggest
that learning in very high dimensions is not necessarily a
terrible mistake. Several successful algorithms (e.g., Refs.
[23–25]) have been demonstrated with direct dependence
on the intrinsic generalization ability of kernel machines in
high dimensional spaces. In the same spirit, we will show
in this paper that the marriage of DBA and kernel methods
may lead to a superior reduction algorithm that shares the
appealing properties of both. More precisely, we propose
to combine DBA with support vector machines (SVM),
a powerful kernel-based learning algorithm that has been
successfully applied to many applications. The resultant
SVM–DBA algorithm is able to overcome the difficulty of
DBA in small sample size situations, and at the same time
keep the simplicity of DBA with respect to IDS estimation.
Thanks to the compact representation of SVM, our algo-
rithm also achieves a significant gain in both estimation
accuracy and computational efficiency over previous DBA
implementations. From another perspective, the proposed
method can be seen as a natural way to reduce the run-time
complexity of SVM itself.

2. Brief review of existing linear dimension reduction
methods

There are two basic approaches to dimensionality reduc-
tion, supervisedandunsupervised. In the context of classi-
fication, a supervised approach is generally believed to be
more effective. However, there are strong evidences that this
is not always true (e.g., PCA and ICA might outperform
LDA in face identification[26,27]). In this paper, we fo-
cus on supervised methods. According to the choice of cri-
terion function, we further divide supervised methods into
likelihood-basedanderror-basedcategories.
LDA is a time-honored reduction tool, which maximizes

the Fisher’s criterion (i.e., ratio of between-class over within-
class variances). LDA is proven to be equivalent to the max-
imum likelihood solution to a Gaussian model subject to the
equal within-class covariance constraint and reduced rank
constraint on class centroids[28]. This likelihood-based in-
terpretation of Fisher’s criterion has led to several recent
proposals. As the name suggests,heteroscedastic discrim-
inant analysis(HDA [29,30]) allows unequal within-class
covariance. When a diagonal covariance model is assumed,
a special case of HDA calledmaximum likelihood linear
transform(MLLT [31]) can be used to make the diagonal
constraint more valid as evidenced from the data.Mixture
discriminant analysis(MDA [32]) andnonparametric dis-
criminant analysis(NDA [33]) extend LDA to non-Gaussian
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Table 1
Summary of existing supervised linear dimension reduction algorithms reviewed in Section 2

Iterative Non-iterative

Likelihood HDA [29,30], MLLT [31], MDA [32], NDA [33] LDA [28], PDA [34]

Error bound or MMI[18,35], DFE [15], error integral[16], aPAC[36],
error approximation k-NN estimate[7], Patrick–Fisher distance[14], DBA [19]

Kullback divergence, Bhattachayya distance[17]

Other F-LDA [37] NDA [38], RP [39]

distributions and thus show greater flexibility.Penalized dis-
criminant analysis(PDA [34]) is designed for situations
with highly correlated features, such as sampled time-series
or gray-scale pixel values, where a spatial smoothness con-
straint is imposed on the LDA coefficients. Exclusively,
likelihood-based methods are not directly related to the clas-
sification error. Though LDA can be formulated as a gen-
eralized eigenvalue problem, its extensions above often re-
quire iterative computation.
Most error-based methods assume that Bayes error is a

good criterion for comparing different feature (sub)spaces.
As the full calculation of Bayes error is quite difficult, var-
ious error bounds have consequently been used in practice.
These bounds are functionals of the marginal class densities
of the projections, and can be evaluated by replacing the den-
sities with their parametric or non-parametric estimates. For
example,Bhattacharyya distanceandKullback–Leibler di-
vergenceare computationally simple for Gaussian distribu-
tions[17], whilePatrick–Fisher distance[14] andmaximum
mutual information(MMI) [35] might be used with non-
parametric densities. Recently, an improved approximation
of MMI is proposed[18] that combines Renyi’s quadratic
entropy and Gaussian kernel density estimator. Besides us-
ing suboptimal bounds, there are also attempts to directly
estimate the error functional itself[7,16,19,36]. An interest-
ing property of these Bayes error-related algorithms is that
they are classifier independent. For feature selection, the so-
called wrapper approach has been popular for a long time
which incorporates the classifier as part of the evaluation
process in the search of the best possible feature subset.
For linear dimension reduction, however, the joint optimal-
ity of dimension reduction and classifier design seems to
be largely ignored.Discriminative feature extraction(DFE
[15]) is one of the few exceptions that explicitly examine
such interactions, which in essence minimizes a smoothed
version of the empirical error.
To conclude this section, we summarize the supervised

linear dimension reduction methods reviewed so far in
Table 1. In the bottom row, we have listed some approaches
that are not covered by our taxonomy due to their heuristic
nature, including Fractional-step LDA (F-LDA[37]) and
Fukunaga’s NDA[38]. The “effortless”random projection
(RP) has recently been used in learning high-dimensional

mixture models[39]. Theoretical results indicate that it
preserves distances quite nicely, and experiments show
that RP can yield results comparable to PCA with much
less computational cost. Among the 18 algorithms listed in
Table 1, only DBA has formally incorporated the notion of
sufficiency.

3. Sufficient dimension reduction

This section serves two purposes: (1) to formulate the
concept of sufficient subspace for classification in rigorous
mathematical form, and (2) to reveal the potential paral-
lelism between classification and regression on the com-
mon problem of sufficient dimension reduction. To these
ends, we closely follow the recent work of Cook and Li
(2002)[40].
Consider aQ-class classification problem with the un-

derlying joint distributionP(x, y), wherex ∈ Rd is a d-

dimensional random vector (feature), andy ∈ K = {k}Q
k=1

is a discrete-valued random variable (class label). LetU be
a d × m, (m<d), matrix,S(U) be the subspace ofRd

spanned by themcolumn vectors ofU. The notion ofu@v|z
is used to represent the conditional independence between
random vectorsu andv given random vectorz.
We are interested in finding the linear mappingU such

thatS(U) contains the same amount of discriminative in-
formation asRd . In the general case, this discriminative in-
formation can be characterized by the expected Bayes risk
r given a loss matrixC = [cjk]Q×Q as

r =
∫ [

min
1� j �Q

rj (y|x)
]
P(x)dx, (1)

where

rj (y|x) =
∑

1�k�Q,k 
=j

cjkP (k|x). (2)

It is easy to show that the expected Bayes risk in the orig-
inal space is the same, with arbitrary loss matrix, as in
the projected subspace if and only if the projection pre-
serves the a posteriori probability distributionP(y|x) at any



4 J. Zhang, Y. Liu / Pattern Recognition ( ) –

ARTICLE IN PRESS

point x. This condition can be formalized by the following
definition.

Definition 1. If y@x|UTx, thenS(U) is a Bayes sufficient
discriminative subspace (BSDS) for theP(x, y) classifica-
tion problem.

The next proposition gives equivalent conditions for the
conditional independence used in Definition 1.

Proposition 3.1. The following two statements are equiva-
lent:

(i) y@x|UTx,
(ii) P(y|UTx) = P(y|x), ∀x ∈ Rd andP(x)>0.

The definition is equivalent to saying that all the points
x that are mapped into a pointUTx ∈ S(U) should have
the same a posteriori probability distributionP(y|UTx),
which implies that thed×1 feature vectorx can be replaced
by them × 1 vectorUTx without increasing the expected
Bayes risk. LetSy|x denote the smallest BSDS. We call
Sy|x Bayes intrinsic discriminative subspace(BIDS), and
d = dim(Sy|x) Bayes intrinsic discriminative dimension
(BIDD).
In many cases we are only concerned with the Bayes error

�, which equals the Bayes risk with 0–1 loss:

� = 1−
∫

max
1�k�Q

P(k|x)P (x)dx. (3)

It can be shown that, in order to leave the Bayes error un-
changed in the transformed space, only the Bayes-rule as-
signment at each point needs to be preserved. Letf (x) be
the Bayes minimum error decision rule

f (x) = arg max
1�k�Q

P(k|x), (4)

then the error preserving condition can be formalized by the
following definition.

Definition 2. If y@f (x)|UTx, thenS(U) is a sufficient
discriminative subspace (SDS) for theP(x, y) classification
problem.

The next proposition gives equivalent conditions for the
conditional independence used in Definition 2.

Proposition 3.2. The following statements are equivalent:

(i) y@f (x)|UTx,
(ii) P(y|f (x), UTx) = P(y|UTx),
(iii) f (x) is a function ofUTx, i.e., Var(f (x)|UTx) = 0.

LetSf (x)|x denote the smallest SDS.We callSf (x)|x in-
trinsic discriminative subspace(IDS), andd=dim(Sf (x)|x)

intrinsic discriminative dimension(IDD). It follows from
Definition 2 that a BSDS is necessarily a SDS, because
y@x|UTx implies y@f (x)|UTx. Consequently we have
Sf (x)|x ⊆ Sy|x .
As the condition of arbitrary loss function is less common

in practice, we will only discuss IDS (under 0–1 loss) in
the rest of the paper. The concept of IDS is potentially use-
ful because it represents the maximally possible reduction
which is sufficient in the sense that nothing is lost from the
original feature space as far as the classification problem is
concerned. This knowledge would be valuable for charac-
terizing the intrinsic properties of the data, and for guiding
the design of generative models. In practice, however, IDS
is not directly available because the underlying joint distri-
bution P(x, y) is unknown. What we have is usually a fi-
nite number of samples randomly drawn from this unknown
distribution. To make the concept of IDS really useful, we
need to answer one important question: How can we es-
timate IDS from finite samples accurately and efficiently?
This is the task of Section 4.
Finally, we should point out that, conceptually, there

exists parallelism between sufficient subspaces for classi-
fication and those for regression[4,6,40], such ascentral
subspacefor BIDS, structural dimensionfor BIDD, and
central mean subspacefor IDS. This is so since clas-
sification and regression are inherently similar and can
be seen as special cases of function approximation. We
plan to further investigate their connections in estima-
tion methodologies for sufficient subspaces in our future
work.

4. Estimation of intrinsic discriminative subspace

Given an original feature space of dimensiond, one brute-
force procedure to estimate its IDS can be carried out as
follows. First solved independent reduction problems cor-
responding to alld possible subspace dimensions, resulting
in a total ofd subspaces{�m}d

m=1, each of which is opti-
mized for a particular subspace dimensionm. Then choose
one of them as the final estimate via, e.g., hypothesis testing,
cross validation or other model selection techniques. The
assumption behind this procedure is that{�m}d

m=1 do cover
some good IDS estimate. Therefore each�m is required
to minimize some criterion function that well approximates
or bounds the Bayes error. Most error-based algorithms re-
viewed in Section 2 can be readily applied for this purpose.
However, this brute-force approach has an obvious diffi-
culty, i.e., its high computational complexity. Solving each
�m involves time-consuming iterative optimization, while
the computational burden increases rapidly withm. The
problem will be more severe if the expensive but necessary
cost to guard against local minima is further counted. Be-
sides complexity, there is a second and less obvious obstacle
this approach would face when the true IDS dimension is
high. That is, most error-based methods depend on density
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estimation in the reduced subspace, and thus do not scale
well with the output dimension.
If we are only concerned with the estimation of IDS,

computing optimal subspaces for every possible output di-
mension is unnecessary. DBA is such a technique that gen-
erates a set of nested subspaces via eigen-decomposition in
which the true IDS is promised, in theory, to be covered.
However, previous implementations of DBA suffer from se-
rious sample size problem. To overcome this, we propose a
combination of DBA with support vector machines.

4.1. Decision boundary analysis

For a two class problem, define a discriminant function

h(x) = P(C1|x) − P(C2|x). (5)

The decision boundary is represented asB = {x |h(x) =
0}. Then we can compute the so-calleddecision boundary
scatter matrix(DBSM)

M =
∫
B

N(s)NT(s)p(s)ds, (6)

whereN(s) is the normal vector at points on the decision
surface. The essence of DBA is applying eigen analysis to
DBSM. Several observations can be made from such a de-
compositionM=�T��, where� is an orthonormal matrix
and� is a diagonal matrix with decreasing eigenvalues:

1. The number of non-zero eigenvalues,m = dim(�), cor-
responds to the dimension of IDS.

2. The firstm eigenvectors ofM (i.e., the firstm columns
of �) provide an orthonormal basis of IDS.

3. The non-zero eigenvalues show how muchh(x) varies
in each direction.

These assertions are based on the following result: LetN=
{N(s),∀s ∈ B}, thenN ⊆ Sf (x)|x andN⊥∩Sf (x)|x=∅.
The above result is first stated and proven in Ref.[19] but
in a quite different form.
When given finite samples,M can be replaced by the

estimate

M̂ =
l∑

i=1

N̂(ŝi )N̂(ŝi )
T/l, (7)

where {ŝi}li=1 are l points sampled from the estimated
decision boundary. DBA can be readily extended to
multi-category problems by computing average DBSM
in either one-versus-all or pairwise mode. For the latter
case, we may employ the following weighted average

DBSM:

M =
Q∑
j=1

Q∑
k=1,k 
=j

wjkMjk , (8)

whereMjk is the DBSM between classj andk.
In previous nonparametric implementations of DBA

[41,42], Parzen density estimator and BPNN have been
employed to estimateh(x) from finite samples, and nor-
mal vectors are numerically approximated by simple
differences:

∇h(x) ≈ �h

�x1
e1 + �h

�x2
e2 + · · · + �h

�xd
ed . (9)

4.1.1. Limitations of DBA
The major limitation of DBA is the accuracy of the deci-

sion boundary estimate. Both Parzen density estimator and
BPNN have large variance when the original feature dimen-
sion is too high. In fact, one of the motivations for dimen-
sion reduction is just that we cannot accurately estimate
the boundary in high-dimensional space. Another limitation
of DBA is the accuracy of normal vector approximation.
Numerical gradient calculation might introduce significant
noise into the DBSM estimate due to various reasons, such
as inappropriate step size, unsmooth local density estimate,
bad Parzen scale parameter, and round-off errors. In ad-
dition, the numerical approximation is time expensive. To
implement the simplestd-dimensional forward differences,
h(x) has to be evaluated(d + 1) times for each decision
surface point.

4.2. SVM–DBA algorithm

We propose a multi-class SVM–DBA algorithm. The
main idea is to combine DBA with SVM, a powerful
kernel-based learning algorithm that has shown potential to
break the curse of dimensionality in many applications. The
goal is to overcome the difficulty of DBA in small sample
size situations, and at the same time keep the simplicity of
DBA with respect to IDS estimation.
The decision function of a two-class problem derived by

SVM can be written as

h(x) = w · �(x) + b =
n∑

i=1

�iyiK(x, xi) + b, (10)

wherexi ∈ Rd is the training sample, andyi ∈ {±1} is
the class label ofxi . A transformation�(·) maps the data
points x of the input spaceRd into a higher dimensional
feature spaceRD (D�d). The mapping�(·) is performed
by a kernel functionK(·, ·) which defines an inner product
in RD . The parameters�i �0 are optimized by finding the
hyperplane in feature space with maximum distance to the
closest image�(xi) from the training set, which reduces to
solving the following linearly constrained convex quadratic
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program:

min
�

1

2

n∑
i,j=1

�i�j yiyjK(xi , xj ) −
n∑

i=1

�i (11)

s.t.
n∑

i=1

�iyi = 0 (12)

0��i �C, i = 1, . . . , n, (13)

whereC is the weight that penalizes misclassifications. In
the general case of nonlinear mapping�, SVM generates a
nonlinear boundaryh(x) = 0 in the input space.
The maximum margin boundary provided by SVM has

been proven to be optimal in a structural risk minimization
sense. Thus we expect that the subspace derived from it
through decision boundary analysis can inherit its good gen-
eralization performance. However, the small sample size be-
haviors of most error (or error bound) functionals reviewed
in Section 2 do not seem to have been comprehensively in-
vestigated.
As the decision boundary of SVM is represented in a

closed form by a small number of support vectors, it be-
comes unnecessary to employ numerical gradient approxi-
mation. By computing normal vectors analytically, both the
accuracy and the computational efficiency of DBSM esti-
mation are significantly improved.
Given any two pointsz1, z2 ∈ Rd such thath(z1)h(z2)<

0, a surface points = �z1 + (1− �)z2, � ∈ [0,1], can be
found by solving the following equation with respect to�:

h(s) = h(�z1 + (1− �)z2) = 0. (14)

The unit normal vectorN(s) at the boundary points is then
given by

N(s) = ∇h(x)|x=s

‖∇h(x)|x=s‖ , (15)

where

∇h(x) = �h(x)

�x
=

n∑
i=1

�iyi
�K(x, xi)

�x
. (16)

Computations of�K(s, xi)/�s with commonly used kernel
functions are tabulated inTable 2. We mainly employ poly-
nomial kernels of various degreesp, where

�h(x)

�x
=

n∑
i=1

�iyiK(x, xi)

x · xi + 1
xi . (17)

Table 2
Commonly used kernel functions and their derivatives, whereu
andv ared-dimensional vectors

Kernel type K(u, v) �K(u, v)/�u

Linear u · v v

Polynomial (u · v + 1)p K(u,v)
u·v+1 v

Gaussian exp(−‖u−v‖2
2�2

) −K(u,v)

�2
(u − v)

radial basis
Sigmoid 1

1+exp[−�(u·v)+�] −�K(u, v)(1− K(u, v))v

Now, we are ready to summarize our multi-class
SVM–DBA algorithm as follows.

Input: n sample pairs{(xi , yi)}ni=1.
Output: dnested linear subspacesS1⊂ S2⊂ · · · ⊂ Sd .
Algorithms:

S1 For k = 1 toQ
S2 Divide thensamples into two subsetsT+={xi |yi=k}

andT−={xi |yi 
= k}. Learn a SVMdecision function
h(x) usingT+ andT−.

S3 Sort then samples in an ascending order by their
absolute function output values|h(xi)|. Denote the
subset consisting of the firstr × n samples asT ′,
where 0<r�1.

S4 For eachz1 ∈ T ′, find its nearest neighborz2 ∈
T ′ such thath(z1) h(z2)<0. For each sample pair
(z1, z2), solve Eq. (14) to an accuracy of�, and thus
get l estimated boundary points{ŝj }lj=1.

S5 Compute the unit surface norm̂N(ŝj ) at ŝj according
to Eq. (15), and estimate the decision boundary scatter
matrix asM̂k = ∑l

j=1 N̂(ŝj )N̂(ŝj )
T.

S6 End (Fork = 1 toQ).
S7 Compute the average scatter matrixM̂ =∑Q

k=1 M̂k/Q, and its eigen decomposition

M̂ = �T��, where� is an orthonormal matrix and
� is a diagonal matrix with decreasing eigenvalues.

S8 LetSm=S(�m),m=1, . . . , d, where�m is ad×m

matrix that consists of the firstm columns of�.

Here are some necessary explanations on the above pro-
cedures.

1. InS3we prune those training samples far away from the
decision boundary in locating the boundary points. This
helps to reduce the computational cost and suppress the
negative influence of outliers.

2. We adopt the one-versus-all approach for solving theQ-
class problem with SVMs. A total ofQ SVMs need to
be trained, each of which separates a single class from
all remaining classes.

3. The complexity of SVM–DBA can be controlled by sev-
eral parameters includingr, the ratio of near-boundary
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samples, and�, the accuracy of the root to Eq. (14). Our
experiments seem to suggest that SVM–DBA is not very
sensitive to the choice of these parameters.

4. We have usedp-degree polynomial kernels in our exper-
imental study.

5. Experiments

5.1. Datasets

We evaluate the proposed linear dimension reduction al-
gorithm by one simulated and four real-world datasets drawn
from the UCI Machine Learning Repository. Their basic in-
formation is summarized inTable 3.
WAVE-40 is a modified version of the simulated example

from the CART book. It is a three-class problem with 40
attributes. The first 21 attributes of each class are generated
from a combination of two of three “base” waves in Gaussian
noise,

xi = ub1(i) + (1− u)b2(i) + �i , Class 1,

xi = ub1(i) + (1− u)b3(i) + �i , Class 2,

xi = ub2(i) + (1− u)b3(i) + �i , Class 3 (1� i�21),

whereu ∼ U(0,1) and�i ∼ N(0,1). The “base” waves are
shifted triangular waveforms:b1(i) = max(6− |i − 1|,0),
b2(i)= b1(i − 4), andb3(i)= b1(i + 4). The remaining 19
attributes of each class are pure Gaussian noise (�2 = 9).
PIMA consists of 768 medical test records, where the

problem is to predict whether a patient would test positive
for diabetes. VEHICLE is an ensemble of shape features ex-
tracted from 2D silhouettes of 3D vehicle models. LETTER
contains image features of 26 English capital letters, which
are calculated using edge counts and statistical moments.
MEAT consists of handwritten numerals (‘0’–‘9’) extracted
from a collection of Dutch utility maps. These digits are
represented in terms of six feature sets with a total of 649
attributes.
All these datasets have been extensively benchmarked.

Benchmark error rates are listed in the last column of
Table 3, including the Bayes error for WAVE-40, the lowest

Table 3
Summary of dataset information

Dataset #Classes #Features #Samples Benchmark error (%)

WAVE-40 3 21+ 19 — 14
PIMA 2 8 768 22.3
VEHICLE 4 18 846 15.0
LETTER 26 16 20,000 6.4
MFEAT 10 649 2000 2.3

error rates of more than 20 classifiers reported in the StatLog
Project for PIMA, VEHICLE and LETTER, and the median
error of 25 classifier combination schemes for MFEAT[9].

5.2. Experimental setup

On each dataset, we compare the goodness of the sub-
spaces induced by SVM–DBA to those by PCA, LDA and
DBA [41] (the previous implementation using Parzen den-
sity estimator). The experimental setup is summarized in
Table 4.
To help comparison, we have adopted the same evalua-

tion methods as in the benchmark experiments. For WAVE-
40, training and test samples are generated independently
at random. PIMA and VEHICLE use 12-fold and 9-fold
cross-validations respectively, while LETTER and MFEAT
use deterministic training/test splits. To help SVM training,
all features are linearly normalized into the range of[0,1]
before running dimension reduction algorithms.
The degree of polynomial kernelp and the penalty weight

C in SVM–DBA, as well as the Parzen scale parameter	
in DBA, are determined via cross-validation on the training
data. The ratior of training samples used to find boundary
points in SVM–DBA is set manually.
We employ p-polynomial SVM classifiers to evaluate

the feature subspaces generated by PCA, LDA, DBA and
SVM–DBA, respectively. Since SVM is presently one of
the best classification techniques, it might provide a better
index for the discrimination power of the induced subspace.
A constant polynomial degreep is used for each dataset,
which is the same as in SVM–DBA. However, the penalty
C is optimized for different subspaces via cross-validation.

5.3. Results

We first illustrate the robustness of SVM–DBA to small
sample size on WAVE-40. It can be proven that the Bayes
error of WAVE-40 is about 14%, and its IDS dimension
equals two. Hence we can generate training sets of different
sizes, and directly evaluate the quality of the IDS estimate
(i.e., the induced 2D subspaces). The average SVM error
over 50 simulations in the estimated IDS is plotted inFig. 1
as a function of the size of training data. The gap between
LDA and SVM–DBA error increases from 1.6% to 11.3%
when sample size is reduced from 1500 to 100. The per-
formance of DBA is extremely poor even when the sample
size is relatively large, with errors no better than that of ran-
dom guesses. This confirms that DBA is sensitive to noise.
To give an intuitive impression, we show inFig. 2 the scat-
ter plots of projected training and test samples in the two-
dimensional intrinsic discriminative subspaces estimated via
different methods.
We then apply SVM–DBA to the four real-world datasets.

Comparative results over all output dimensions are given in
Fig. 3. We observe that SVM–DBA is consistently supe-
rior on all datasets over a large range of output dimensions.
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Table 4
Experimental setup

Dataset (#Training, #Test) p C r 	

WAVE-40 (100–1500,5000) 3 0.01–0.6 1.0 0.9
PIMA 12-fold cross validation 2 2–60 0.2 0.04
VEHICLE 9-fold cross validation 5 0.5–60 0.2 0.05
LETTER (15,000, 5000) 5 2–100 0.2 0.005
MFEAT (500,1500) 5 2 0.6 5.0

Fig. 1. Quality of IDS estimation as a function of sample size.
SVM classifier is used for evaluation.

Failures of SVM–DBA at low dimensions are expected,
since the optimality of DBA does not hold in subspaces with
dimensions less than the true IDS dimension of the data. The
drop in SVM error on PIMA suggests that SVM–DBA has
introduced further regularizations into SVM for this dataset
where there are many irrelevant and/or redundant features.
However, similar effects have not been observed with the
other three algorithms. Also note that all SVM–DBA er-
ror curves are, at some subspace dimensions, lower than or
close to the benchmark values. We believe that evaluating
the best possible performance of the reduced subspace is
meaningful in terms of sufficient dimension reduction.
One may argue that the “good” performance of

SVM–DBA can be attributed to the use of the evaluator
(i.e., the SVM classifier) itself, and it may work “badly”
for other evaluators. To the best of our knowledge, almost
all existing linear dimension reduction algorithms can be
labeled as so-calledfilters, and we believe further study on
the coupling effect between reduction methods and types of
classifiers deserves attention. On the other hand, we believe
that there are some common regularities in most real-world
datasets that distinguish them from pure random sets, as
has been confirmed by the results of other authors[43,44].
Hence a subspace that allows high performance of one clas-

sifier should also facilitate high performance of a different
classifier. As a preliminary attempt, we replace the SVM
evaluator with a 1-NN classifier and repeat the comparison
of the four reduction algorithms. The results are given in
Fig. 4. Although the best performances of 1-NN are much
worse than SVM (seeFig. 3) on all datasets except LET-
TER, the superiority of SVM–DBA is still held. On two
datasets (VEHICLE and MFEAT) LDA becomes compara-
ble to SVM–DBA. This can be explained by its “whitening”
effect that favors nearest neighbor classification.
Finally, we demonstrate the speed-up of SVM–DBA

compared to the previous DBA implementation. Shown in
Table 5are the average execution times of all four dimen-
sion reduction algorithms (programmed in Matlab) on a
Pentium IV 2GHz PC. We observe that the combination of
SVM reduces the computational cost of DBA by at least an
order of magnitude. The improvement in efficiency is sig-
nificant when the feature dimension is high (e.g., MFEAT).
Note that DBA was not applied to LETTER, because the
sample size is so large that DBA did not terminate after 48h
until we gave up. In another aspect, SVM–DBA provides a
way to reduce the run-time complexity of the final classifi-
cation system. To demonstrate this, we list inTable 6, as an
example, the run-time performance of SVM and NN classi-
fiers on MFEAT in typical SVM–DBA subspaces. Note that
the SVM time cost is reduced from 9.02 s in the original
feature space to 0.72 s in the 15-dimensional subspace with
a minor increase in error. For the same subspace, the time
cost of NN is reduced from 40.2 to 4.06 s with a 15% de-
crease in error. Similar results have been observed on other
datasets.

6. Discussion

Our concept formulation in Section 3 is largely inspired
by the work of Cook et al. on sufficient dimension reduc-
tion for regression[6,40]. The rigorous statistical language
they used allows us to treat the sufficient dimension reduc-
tion problem for classification in a coherent way. We expect
our concept formulation to serve as a good starting point for
further investigations of parallelism in estimation method-
ologies between these two similar problems. For example,
using SVM–DBA to estimate thecentral mean subspaceis
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Fig. 2. Scatter plots of training and test samples from WAVE-40 in the 2D intrinsic discriminative subspaces estimated via different methods.
The number of training samplesn = 500.

found to be straightforward and promising, since SVM is
also recognized as a powerful tool for high-dimensional re-
gression.
DBA itself is by no means a new concept. Our main

contribution is using SVM to derive the boundary with the

aim of avoiding the curse of dimensionality that original
DBA suffers. Thanks to SVM’s compact representation, it
is possible for us to analytically compute normal vectors,
thus significantly reducing both the estimation error and
computational expense.
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(a) (b)

(c) (d)

PIMA

LETTER MFEAT

VEHICLE

Fig. 3. Comparison of subspaces over all output dimensions on real-world datasets using SVM classifier.

SVM boundary has been used in locally adaptive metric
techniques to improvek-NN performance[23,25], in which
local feature relevance measures are computed from surface
normals and a local full-rank transformation is derived for
each query. Instead, SVM–DBA tries to globally character-
ize the discriminative information embedded in the SVM
decision boundary and construct a single reduced-rank pro-
jection. SVM boundary has also been used to rank features
for subset selection[24]. To the best of our knowledge, our
use of SVM for linear dimension reduction is novel.

7. Conclusion

We formulate the concept of sufficient dimension reduc-
tion for classification in parallel terms as for regression. A
new method is proposed to estimate IDS, the smallest suffi-

cient discriminative subspace for a given classification prob-
lem. The main idea is to combine DBA with SVM in order
to overcome the difficulty of DBA in small sample size sit-
uations, and at the same time keep the simplicity of DBA in
regard to IDS estimation. It also achieves a significant gain
in both estimation accuracy and computational efficiency
over previous DBA implementations. The proposed method
can also be seen as a natural way to reduce the run-time
complexity of SVM itself.
The main weakness of our method is its exclusive de-

pendence on SVM performance. Isolating full-dimensional
boundary estimation from subspace projection inevitably re-
sults in suboptimal solutions. For a complex problem as di-
mension reduction, it would not be wise to anticipate the
existence of any single tool that can outperform all oth-
ers in every practical situation. Real world problems gen-
erally require a number of passes to the same data, while
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PIMA VEHICLE

LETTER MFEAT

Fig. 4. Comparison of subspaces over all output dimensions on real-world datasets using 1-NN classifier.

Table 5
Average execution times (s) of different dimension reduction algo-
rithms

Dataset PCA LDA SVM–DBA DBA

WAVE-40 0.02 0.02 39.2 361
PIMA 0.01 0.01 8.35 81.7
VEHICLE 0.01 0.01 10.3 118
LETTER 0.23 0.30 2363 —
MFEAT 3.17 45.8 136 17,373

different approaches often lead to different structural find-
ings at various stages. In this sense, SVM–DBA provides a
simple yet effective way to explore the intrinsic discrimi-
native structure of high-dimensional data, and thus may be
used as a pre-processing step before a more elegant iterative

Table 6
The run-time performance of SVM and NN classifiers on MFEAT,
in subspaces induced by SVM–DBA over typical output dimensions

Dimension 15 25 35 45 65 649

Training time (s) 0.94 0.99 0.98 1.02 1.06 2.50
SVM Test time (s) 0.72 0.84 0.88 0.94 0.97 9.08

Error (%) 2.3 2.2 2.2 2.2 2.2 2.2

Test time (s) 4.06 4.69 5.67 6.02 6.84 40.2
NN

Error (%) 2.7 3.0 2.8 3.0 3.1 3.2

approach or generative model is considered. Future research
topics include: (1) close the loop of SVM boundary estima-
tion and subspace induction byminimizing SVM generaliza-
tion bounds, (2) attach prior to the linear mapping structure,
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and (3) apply SVM–DBA to central mean subspace
estimation.

Appendix

Proof of Proposition 3.1. According to the definition of
@, (i) impliesP(y, x|UTx)=P(y|UTx)P (x|UTx). On the
other hand, from the chain rule we haveP(y, x|UTx) =
P(y|x,UTx)P (x|UTx). SinceP(y|x,UTx)=P(y|x), the
equivalence between (i) and (ii) follows immediately.�

Proof of Proposition 3.2. That (i) implies (ii) is immedi-
ate. That (iii) implies (i) is also immediate, because, iff (x)

is a function ofUTx, then, givenUTx, f (x) is a constant
and hence independent of any other random variable. Now
let us prove that (ii) implies (iii).
Suppose there existUTx=� ∈ S(U) such thatP(UTx=

�)>0 andVar(f |UTx=�) 
= 0, then there must exist�, 
 ∈
K (� 
= 
), such thatP(f = �|UTx = �)P (f = 
|UTx =
�)>0, or equivalentlyP(f =�, UTx =�)P (f =
, UTx =
�)>0. According to the definition off (x), the inequality

P(y = �|x, f = �, UTx = �)

>P (y = 
|x, f = �, UTx = �) (18)

consistently holds whenP(x|f = �, UTx = �)>0. So

P(y = �|f = �, UTx = �)>P (y = 
|f = �, UTx = �).

(19)

Similarly we have

P(y = �|f = 
, UTx = �)<P (y = 
|f = 
, UTx = �).

(20)

Combining inequalities (19) and (20), we get

P(y|f = �, UTx = �) 
= P(y|f = 
, UTx = �), (21)

which contradicts (ii). �
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